
Combining Runtime and Static
Universe Type Inference

Andreas Fürer

Master Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

September 11, 2006 – March 10, 2007

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

The Universe type system provides means to structure the heap memory. This structuring
enables to reason about object structures. Annotating Java source code with Universe type
modifiers can be a big effort for developers. To ease the manual annotating tasks, we use
inference of Universe type modifiers. Preceding projects worked on two different inference
approaches: runtime inference, where execution traces are used to create an extended object
graph and infer types, and static inference, where a SAT solver is used to find correct modifiers.
In this thesis, we work on combining the two approaches and enhancing the tools. We use
the runtime inference to define a weight scheme that is respected by the static inference.
In such a way we can use the strengths of both inference approaches. We implemented the
tools in the Eclipse IDE and improved the usability of the Universe tools. The tools are
integrated as a set of plug-ins which enable intuitive configuration and interaction with the
inferer. Type modifiers can directly be added to the source code. We also worked on the
graphical visualization of Universe structures.

3

4

Acknowledgments

I would like to thank my supervisor Werner Dietl for all his contributions to this thesis and
the useful advices on the report. Also, I would like to thank Prof. Peter Müller and the whole
SCT group for the good and friendly atmosphere.

Special thanks to my parents for supporting me throughout my studies at the ETH. With-
out your support that would not have been possible.

Finally, thanks to my girlfriend Natalie.

5

6

Contents

0.1. General Terms and Abbreviations . 11
0.2. Eclipse Specific Terms and Abbreviations . 11

1. Introduction 13

1.1. Motivation . 13
1.2. Universe Type System . 13
1.3. Runtime Inference Tool . 14

1.3.1. Inference Algorithm Overview . 14
1.3.2. Static Methods, Arrays, and Method Body Annotations 15

1.4. Static Inference Tool . 16
1.4.1. Inference Algorithm Overview . 16
1.4.2. Problem Solver . 16

1.5. Goals and Requirements . 17

2. Combining Runtime and Static Inference 19

2.1. Comparison of Runtime and Static Inference 19
2.1.1. Runtime Inference . 19
2.1.2. Static Inference . 20

2.2. Assessment of Runtime Inference . 20
2.2.1. Bad Code Coverage . 21
2.2.2. Bad Method Sequence . 24

2.3. Assessment of Static Inference . 26
2.4. Approaches . 27

2.4.1. Partially Annotated Sources . 27
2.4.2. Fixing Types . 27
2.4.3. Setting Weights . 28
2.4.4. Bad Cast Verification . 28

2.5. Determination of Runtime Inference Solution Quality 29
2.5.1. Code Coverage . 29
2.5.2. Method Call Sequences . 32

2.6. Weight Functions . 34
2.6.1. Interpretation of the Weights . 34
2.6.2. Global and Local Preferences . 35
2.6.3. Setting the Weights for Local Preferences 37
2.6.4. Coverage Heuristic . 38
2.6.5. Parameter Heuristic . 40
2.6.6. Field Heuristic . 41

7

8 Contents

3. Eclipse User Guide 43
3.1. Installation and Configuration . 43

3.1.1. Plug-in Installation . 43
3.1.2. Solver Installation . 44
3.1.3. Logging Settings . 44

3.2. Runtime Inference Plug-in . 44
3.2.1. Tracing Agent . 45
3.2.2. Type Inferer . 46
3.2.3. Project Properties . 46

3.3. Static Inference Plug-in . 47
3.3.1. Type Inferer . 47
3.3.2. Project Properties . 48
3.3.3. Workspace Preferences . 48
3.3.4. Annotation View . 49

3.4. Annotator Plug-in . 51
3.4.1. Annotating Java Sources . 51
3.4.2. Editing Sources . 53

3.5. Combined Inference Plug-in . 53
3.6. JML Tools . 53
3.7. Inference Visualizer . 55

3.7.1. Start the Visualization . 55
3.7.2. Properties View . 56
3.7.3. Layout . 56
3.7.4. Zooming . 57
3.7.5. Alignment . 57

4. Implementation 59
4.1. Overview . 59

4.1.1. Package Structure . 59
4.1.2. Identifier Naming Conventions for AST Elements 60

4.2. Command Line Tools . 61
4.2.1. JVMTI Agent . 61
4.2.2. Java SE 6 Type Checking Verifier . 62

4.3. Annotator . 63
4.3.1. Design and Shortcomings of First Version 63
4.3.2. New Implementation . 64

4.4. Logging in Eclipse . 66
4.5. Runtime Inference Tool . 68

4.5.1. Design and Shortcomings of the Runtime Inference Tool 69
4.5.2. Eclipse Integration . 70

4.6. Static Inference Tool . 71
4.6.1. Design and Shortcomings of the Static Inference Tool 71
4.6.2. Eclipse Integration . 72

4.7. Combined Inference . 74
4.7.1. Coverage . 75
4.7.2. Weight Heuristics . 75

4.8. Eclipse Integration Issues and Comments . 77

Contents 9

4.8.1. Class Loading . 77
4.8.2. Insert Text into an Editor . 79
4.8.3. Accessing UI Thread . 79
4.8.4. Obtaining a Workbench Reference . 80
4.8.5. Process Termination Notification . 81

4.9. Universe Visualizer . 82
4.9.1. GEF Introduction . 82
4.9.2. Architecture . 83
4.9.3. Implementation . 85
4.9.4. Layout . 88
4.9.5. Package Overview . 89

5. Results and Conclusions 91
5.1. Results . 91

5.1.1. Combining Runtime and Static Inference 91
5.1.2. Eclipse Integration . 94

5.2. Future Work . 94
5.3. Conclusion . 96

A. Generation of Parser 101

B. Generation of XML Binding Classes 103

C. Annotation XML Schema 105
C.1. Indexing . 105
C.2. Annotation XML Schema [annotations.xsd] . 106

D. CVS Structure 119

E. Plug-in Deployment 121

F. Example of the Jaro-Winkler Algorithm 123
F.1. Jaro Algorithm . 123
F.2. Example . 123
F.3. Jaro-Winkler Algorithm . 124
F.4. Example . 124

10 Contents

Glossary

0.1. General Terms and Abbreviations

AST Abstract Syntax Tree

EOG Extended Object Graph

JDK Java Development Kit

JML Java Modeling Language

JSR Java Specification Request

JVM Java Virtual Machine

JVMTI JVM Tool Interface

MAX-SAT Maximum Satisfiability Problem

MJ MultiJava

PBS Pseudo Boolean Solver

RI Runtime Inference

SI Static Inference

SUTI Static Universe Type Inference

UI User Interface

XSD XML Schema Definition

0.2. Eclipse Specific Terms and Abbreviations

Editor Editors are used to view and edit a specific resource (e.g., Java file, XML file, C++
file, ...). Editors follow the common open-save-close model.

EMF Eclipse Modeling Framework

Feature A feature is a unit of download and installation consisting of one or more plug-ins.
It is used to easier package and deploy several Eclipse plug-ins.

GEF Graphical Editing Framework, an Eclipse framework to create rich graphical editors.

GMF Graphical Modeling Framework

11

12 Contents

JDT Java Development Tools

PDE Plugin Development Environment

Perspective A perspective is a set of views. It groups views with related tasks (e.g., Java
Perspective, C++ Perspective, Debug Perspective, CVS Perspective).

RCP Rich Client Platform. The concept of using the platform functionality (e.g., UI, plug-in
mechanism) of Eclipse as a framework for other programs.

SWT Standard Widget Toolkit, an open source framework for developing graphical user
interfaces in Java. The Eclipse alternative for AWT or Swing.

View A view is a window within a workbench page. Views are typically used to navigate
resources and modify properties of a resource (e.g., Package Explorer, Outline View,
Problems View). Only a single instance of any one view can be open at one time.

Workbench Workbench is the name of the user interface infrastructure in Eclipse. It is
responsible for the presentation and coordination of the user interface. Internally, the
workbench is a single root object that contains the menu bar, tool bar, perspective bar,
status line, and a main area for displaying pages containing workbench parts. Only one
page can be active at a time.

Workbench page A page can contain zero or more workbench parts.

Workbench part A workbench part can be a view or an editor.

Workspace The workspace is a folder on the disk. All project settings and files are stored
within a workspace.

Chapter 1.

Introduction

1.1. Motivation

Object-oriented programming languages access objects through references. An effect of this
mechanism is aliasing. An alias occurs if two ore more variables hold a reference to the same
object, that is, they point to the same memory cell. In some cases aliasing is intended for
efficiency reasons (e.g., pass-by-reference), but there are unintended drawbacks of aliasing
as well. Concepts and techniques like information hiding and object encapsulation do not
prevent leaking and capturing of references. Reference leaking occurs when a data structure
passes a reference to an object, which is supposed to be internal, to the outside. Reference
capturing occurs when objects are passed to a data structure and then stored by the data
structure.

The Universe type system[28] provides a mechanism for aliasing control. It structures the
heap and enforces encapsulation of whole object structures to enable modular verification and
reasoning about complex programs.

Manually structuring large programs with Universe types can be a big effort. The mo-
tivation of the Universe type inference is to automatically inferring the Universe structure.
That would ease the task of a programmer. Two different inference approaches are feasible:
a runtime observation of a program (Runtime Inference) or extraction of the type relations
from the source code statically (Static Inference).

1.2. Universe Type System

The Universe type system structures the heap into Universes. It is an ownership type system
that assigns at most one owner to each object. Objects with the same owner are grouped into
one context (called “Universe”). Objects without owner are in the root context which forms
the root of the ownership hierarchy. Only references within a context and from an owner to
an owned object can be used for modifications, either by field updates or method calls. Other
references can only be used to read fields and call side-effect-free methods. The ownership
properties are expressed with ownership modifiers that are used to annotate each reference:

• peer denotes a reference to an object inside the same context.

• rep denotes a reference from an object into the context it owns.

• readonly denotes a reference that is read-only and might point to objects in any arbitrary
context.

13

14 1 Introduction

Since primitive types are value and not reference types, they cannot be aliased and do not
need Universe annotations. Notice that the Generics Universe Type formalization [11] intro-
duced the any modifier instead of the readonly modifier. To be backward-compatible with the
JML implementation[12], we still use the readonly keyword.

Methods can be annotated with the modifier pure if they do not modify existing objects.

Type Combinator

In order to choose Universe types of transitive accesses like an attribute access, array accesses,
or method invocations, the type of the expression is determined by the type combinator func-
tion ?. The type combinator takes two ownership modifiers and returns the resulting owner-
ship modifier (see Table 1.1). For the field access x.f, x is the first argument (left-most cells
of the rows) and f the second argument (top-most cells of the columns). Dereferencing chains
are applied with a left-right preference. Analogous rules are used for method invocations.

? peer rep readonly
peer peer readonly readonly
rep rep readonly readonly

readonly readonly readonly readonly

Table 1.1.: Type combinator of the Universe types. The this reference is always a peer

reference. If the first argument is a this reference, the type combinator is not
applied.

Subtyping

The subtype relation on Universe types follows the subtype relation in Java: two peer, rep,
or readonly types are subtypes if the corresponding classes or interfaces are subtypes in Java.
Furthermore, every peer and rep type is a subtype of the readonly type with the same class.

Tool Support

The Universe type system is integrated into the MultiJava[9] compiler and the Java Modeling
Language (JML) Tools [13, 12]. A JML tool integration into Eclipse was developped in [5]
and our current work is a further step heading in the same direction.

1.3. Runtime Inference Tool

Two preceding Master projects dealt with the topic of Runtime Inference. These were the
works done by Frank Lyner[24] and Marco Bär[4]. This section will outline the ideas imple-
mented in these projects.

1.3.1. Inference Algorithm Overview

The inference algorithm consists of the following steps:

1.3 Runtime Inference Tool 15

1. Program monitoring with a tracing agent.

2. Building the datastructure.

3. Structuring the object store in Universe contexts.

4. Finding valid annotations.

5. Generating output into an annotation XML file.

The program monitoring is done with a tracing agent which runs as an agent in the Java
Virtual Machine and gets notified about the inspected program using the Java Virtual Machine
Tool Interface (JVMTI). The gathered tracing information is stored in a trace XML file.
The type inferer parses the tracing file and builds up the Extended Object Graph (EOG),
the datastructure that is used for the type inference. An EOG is a representation of the
heap during the whole execution time. Nodes of the EOG represent the objects on the
heap; vertices are the references. We distinguish between two kinds of references: the first
are variable references used to denote relationships between two objects and the associated
variable that stores the reference. The latter are write references used to express a write
operation between two objects. Write references are not associated with a variable. Method
calls of non-pure methods also introduce write references. Once the graph is built up, the type
inferer assigns an owner to each node in the EOG using an owner-as-dominator algorithm
as an approximation for the Universe structure. Possible conflicts like write references that
cross context boundaries are resolved in the conflict resolution and harmonization phase and,
finally, establish the owner-as-modifier property. During the annotation phase every variable
reference in the graph is followed and the ownership modifiers are determined as a result of
the Universe structure. The annotation structure is externalized in an XML file conforming
to the annotations.xsd schema (see Appendix C).

1.3.2. Static Methods, Arrays, and Method Body Annotations

The scope of Frank Lyner’s work was limited to annotations of fields and method signatures.
Static method calls, arrays, and annotations of method bodies (i.e., local variables, object
creations, casts) were not addressed. To bring the Runtime Inference to a practical level, the
work done by Marco Bär resolved these issues.

Static Methods and Object Creations

Static methods and objects do not have a target because they are not related to a specific
instance of a class. This implies that rep types must not be used in signatures of static
methods or anywhere else inside a method. Bär extended the EOG with an artifical target
object for each static method call. The extension of the object graph enabled to annotate
static method calls and object creations.

Arrays

Array operations do not trigger the standard events defined by the JVMTI, therefore, array
handling was ignored in [24]. Bär used the possibility of bytecode instrumentation to generate
the missing events for array operations. In the Universe type system, references to arrays of

16 1 Introduction

reference types need two ownership modifiers: the first describes the relationship between
the this object and the array, the second the relationship between the array and the objects
referenced by its components. In order to be able to handle array component updates, Bär
introduced a new kind of reference to the EOG, called component references, that connect
array objects with the objects referenced by its components.

Annotations of Method Bodies

Annotations of method bodies can lead to several problems like the dereferencing chains
problem or bad code coverage issues that are discussed in Section 2.2. A dereferencing chain
is a number of read accesses followed by a write access. Dereferencing chains are problematic
because the JVMTI tracing agent only generates an event for the write access to the object
on the stack at last.

Bär’s approach to annotate method bodies relies on an abstract interpretation. The abstract
interpretation which he performs is very similar to the one that bytecode verifiers for the JVM
prior to Java 6 implement.

1.4. Static Inference Tool

Two preceding Master projects dealt with the topic of the Static Inference. These were the
works done by Nathalie Kellenberger[22] and Matthias Niklaus[29]. In this section we will
outline the ideas implemented in these projects.

1.4.1. Inference Algorithm Overview

The inference algorithm consists of the following steps:

1. Source code parsing.

2. Generation of constraints out of the syntax tree.

3. Finding solutions.

4. Generating output into an annotation XML file.

The source code parsing is implemented using the MultiJava[9] and JML[13] parser. Out
of the Abstract Syntax Tree(AST), the constraints describing the Universe type system prop-
erties are generated and written down in a designated format. An external solver is used
to determine the inference solution of the Universe types. The inference result is written to
an annotation XML file with the same format that is used for the Runtime Inference (see
Appendix C).

1.4.2. Problem Solver

Natalie Kellenberger used Prolog as the solver system. That led to an implementation which
was tightly coupled to Prolog and was not very practical because Prolog could not find infer-
ence solutions for overconstrained systems. Also the restrictions on Universe type casts were
too strong.

1.5 Goals and Requirements 17

Matthias Niklaus introduced an abstract interface between the Java front-end and an inferer
back-end, called the UTI interface. This abstraction enables to support different inferer back-
ends. Because our Universe type inference problem is an optimization and not a decision
problem, we are more interested in the formulation of a MAX-SAT problem than using Prolog.
Niklaus has chosen the pseudo boolean solver PBS v2.1[3] as the problem solver.

Using a MAX-SAT solver enables to define a qualitative description of the type inference
solution by setting weights. More details are explained in Section 2.6.

1.5. Goals and Requirements

The goal of this thesis is to combine runtime and static Universe type inference. The exist-
ing tools have to be enhanced in a way that they can be used together. We think that the
inference result can be improved by combining the two inference approaches.

The Runtime and Static Inference tools described above are both stand-alone tools. The
configuration and usage of these tools can be quite complicated. Our goal is to integrate
them as a collection of plug-ins in the Eclipse IDE. We integrate the Universe inference tools
together with the JML tools implementation done in the semester project by Paolo Bazzi[5].
The integration in Eclipse is crucial to combine and simplify the usage of the different tools.
Together with a visualization of the Universe structure, we think that we can improve the
usability of the Universe type system tools and make it available to a wider community of
developers. We integrate the tools in a way that we do not break the existing functionality
of the programs and it is still possible to use the tools on the command line without Eclipse.

In Chapter 2 we present our ideas about combining the two inference approaches. Chapter
3 is the user guide of the Eclipse plug-ins that we have developed. The implementation is
outlined in Chapter 4. Finally, Chapter 5 concludes this thesis with the discussion of the
results that we have achieved.

18 1 Introduction

Chapter 2.

Combining Runtime and Static Inference

In this chapter we will explain how we combine the Static and the Runtime Inference. We
start with a conceptual comparison of the inference approaches, showing the pros and cons
in Section 2.1. We deepen the comparison with an assessment in Section 2.2 and 2.3 where
we look at some specific examples. In Section 2.4 we discuss some combination concepts.
Furthermore, we outline some ideas based on the results of our assessment in 2.5 and show
the way how we solve it in our current implementation in Section 2.6.

2.1. Comparison of Runtime and Static Inference

We start with a comparison of Runtime and Static Inference. Let us consider an overview of
the assets and drawbacks of both inference concepts.

2.1.1. Runtime Inference

Runtime Inference delivers good inference quality provided that the code coverage is good.
The following items list some properties that we observed:

1. Solution Quality
The Runtime Inference always finds the solution with the deepest nested Universe struc-
ture. However, good code coverage is crucial for the solution quality. Infering types for
test cases with bad code coverage might lead to bad annotations. Also, a particular
runtime trace does not generalize to future executions of a program.
The annotation of super declarations of methods is not supported yet. Methods declared
in interfaces and methods of abstract classes are not annotated at all. The JVMTI events
are only triggered for the implementing classes. Although the annotations are inferred
for the class that triggered the event, they are not propagated to the superclasses and
interfaces during the harmonization phase of the inference algorithm.

2. Method Body Annotations
Unfortunately, it is not possible to generate events for modifications of local variables
in JVMTI. Therefore, the Runtime Inference cannot annotate method bodies. The
approach taken by [4], the abstract interpretation of the bytecode, was a static analysis
and is not a pure runtime analysis approach.

3. Partially Annotated Programs
The Universe annotations in a program do not trigger a JVMTI event if runtime checks
are disabled. It is not possible that a programmer introduces some annotations that are
assumed to be correct and let the inferer annotate the rest of the program.

19

20 2 Combining Runtime and Static Inference

4. Time Consumption
Because the Runtime Inference monitors the program execution, we need at least the
running time of the actual program. Examples that generate huge tracing files lead to a
bottleneck during the parsing of the tracing file and the build-up phase of the Extended
Object Graph (EOG).

2.1.2. Static Inference

The solution quality of the Static Inference depends on the preference settings and is not al-
ways optimal. On the other hand it allows to annotate method bodies and partially annotated
programs. Let us consider the following points.

1. Solution Quality
We cannot assure that the solution returned first by the PBS solver is the optimal
solution. The solution quality depends on the settings of the preferences (see Section
2.6). But contrary to the Runtime Inference, the developer can interact with the inferer
and influence the solution quality.

2. Method Body Annotations
Since the Static Inference parses the source code, we have all required information to
build constraints about method bodies like local variable declarations. We do not need
a special concept for the annotation of method bodies.

3. Partially Annotated Programs
Annotations can be added directly in the source code and are parsed by the JML parser.
It is possible, therefore, to use partially annotated programs. The given annotations are
inserted in the generated constraints.

4. Time Consumption
For small examples the performance of the Static Inference is good and is faster than
the Runtime Inference. Nevertheless, the MAX-SAT problem has a high computational
complexity and is NP-hard for arbitrary propositional logic expression. Also, using an
approximation algorithm for the MAX-SAT problem is a complex problem as it is stated
in the following theorem:

There is no polynomial-time approximation scheme for MAX-SAT unless P = NP . [6]

Even though our MAX-SAT solver has good performance, there can be cases where
running time is exponential.

5. Bad Casts
We cannot guarantee that all casts in a program work out during runtime. It is possible
that casts are statically correct and compilable, but fail at runtime.

2.2. Assessment of Runtime Inference

As we mentioned earlier we want to use the the Runtime Inference in its original form without
the method body annotation which actually is a form of static inference. We strictly want to

2.2 Assessment of Runtime Inference 21

inspect the runtime behavior of a program and infer the missing parts in the Static Inference
phase.

2.2.1. Bad Code Coverage

There are cases where the Runtime Inference leads to undesired annotations. These anno-
tations are good in a certain test case, but having the knowledge of the whole code base it
seems obvious that there are more suitable Universe annotations. Let us look at this problem
by considering an example.

Listing 2.1: A bad code coverage example.
1 public class Coverage {
2 Coverage field1;
3 Coverage field2;
4
5 public void foo(boolean condition) {
6 field1 = new Coverage();
7 field2 = new Coverage();
8 if (condition) {
9 field1.makePeer(this);

10 } else {
11 field2.makePeer(this);
12 }
13 }
14
15 public void doWrite() {
16 // creates a write reference
17 }
18
19 public void makePeer(Coverage other) {
20 other.doWrite();
21 }
22
23 public static void main(String[] args) {
24 Coverage c = new Coverage();
25 c.foo(true); // or c.foo(false) for other path
26 }
27
28 }

Since the Runtime Inference is based on the runtime behavior of a program, our Universe
type annotations depend on a given test run. This means that we may have execution paths
that might not have been taken by the program, leading to wrong annotations. Even worse,
it can lead to code that is not compilable and rejected by the JML compiler. Consider the
example in Listing 2.1: there are two execution paths depending on the case of the predicate
condition in the if expression. In a given test case we may set the condition to true. The
Runtime Inference algorithm will annotate field1 with peer as follows: the first invocation
of makePeer(Coverage) on line 9 inserts a write reference from this to the Coverage field1.

22 2 Combining Runtime and Static Inference

The call of the non-pure method other.doWrite() on line 20 inserts a second write reference
from the target object of the method call (the field1) to the this object. This cycle of write
references enforces the peer annotation.

The field2 remains untouched and, therefore, is annotated as rep. However, if we try
to compile the code with these annotations, we will get an error. The method call field2
.makePeer(this) on line 11 is illegal because there is no way to cast a rep object to peer.
Considering the opposite test case with a parameter false would lead to the same situation
with a peer annotation for field2 and rep for field1. The reason for this uncompilable
example is a bad coverage issue. We need to take into account that test cases that do not
cover the whole code can result in wrong inference results.

Listing 2.2: A doubly-linked list example.

1 public class LinkedList {
2 /∗@ rep @∗/ Node first;
3
4 LinkedList() {
5 first = null;
6 }
7
8 public void createList() {
9 Data d1 = new Data(1);

10 Data d2 = new Data(2);
11 Data d3 = new Data(3);
12 Data d4 = new Data(4);
13 first = new Node(d1);
14 first.insertTail(d2);
15 first.insertTail(d3);
16 first.insertTail(d4);
17 }
18
19 public static void main(String[] args) {
20 LinkedList l = new LinkedList();
21 l.createList();
22 }
23 }
24
25 public class Node {
26 /∗@ rep @∗/ Node next;
27 /∗@ readonly @∗/ Node previous;
28 Data item;
29
30 public Node(Data toStore) {
31 item = toStore;
32 next = null;
33 }
34

2.2 Assessment of Runtime Inference 23

35 public void insertTail(Data toStore) {
36 if (next == null) {
37 next = new Node(toStore);
38 next.previous = this;
39 } else {
40 next.insertTail(toStore);
41 }
42 }
43
44 public void insertHead(Data toStore) {
45 if (previous == null) {
46 previous = new Node(toStore);
47 previous.next = this;
48 } else {
49 previous.insertHead(toStore);
50 }
51 }
52 }
53
54 public class Data {
55 private int value;
56
57 public Data(int i) {
58 value = i;
59 }
60
61 }

Problems may also arise in situations as described in the Example 2.2. A doubly-linked list
is implemented in two classes: the LinkedList which implements the list head and the Node
which represents an element in the doubly-linked list that will hold a reference to a stored
object.

New elements can be added at the head or the tail of the list. Notice that not the list head
inserts new list items, but a new item inserted with insertTail(Data) is handed down the list
and appended at the end. Similarly, new elements are moved towards the list head using the
method insertHead(Data). Considering the example, we see that all elements are inserted
at the list tail. So, we only have write references in the Extended Object Graph (EOG) in
one direction (from the list head towards the end). The back links to the predecessor items
are represented as variable references. Hence, the Runtime Inference annotates the field next
with rep and the field previous with readonly as it can be seen in Listing 2.2. We would
prefer a solution with peer annotations for both fields next and previous. Despite the fact
that the program would not compile because of the missing annotations (those for the method
bodies and the item field), this inference result is wrong. Consider method insert(Data): the
assignment on line 47 is illegal because the target previous is readonly. The same argument
applies for the non-pure method call on a readonly target in line 49.

As in the example 2.1, this result is originated by bad coverage. The method insertHead
(Data) is never executed and thus no write access over the previous reference is performed.

24 2 Combining Runtime and Static Inference

That is why the Runtime Inference annotated the previous reference with readonly instead
of peer. If we use the outcome of this test case as an input into the Static Inference, we have
to take into account that the bad code coverage could lead to not optimal or even wrong
ownership annotations.

2.2.2. Bad Method Sequence

The following problem was already discovered in Frank Lyner’s report [24], but with a wrong
conclusion. A singly-linked list is implemented as shown in Listing 2.3 and is similar to the
example in Section 2.2.1: LinkedList implements the list head and the Node represents a list
element. For simplicity reasons the items are only linked in one direction.

Listing 2.3: A singly-linked list example.

1 public class LinkedList {
2 /∗@ rep @∗/ Node first;
3
4 LinkedList() {
5 first = null;
6 }
7
8 public void createList() {
9 Data d1 = new Data(1);

10 Data d2 = new Data(2);
11 Data d3 = new Data(3);
12 Data d4 = new Data(4);
13 first = new Node(d1);
14 first.insert(d2);
15 first.insert(d3);
16 first.insert(d4);
17 first.remove(d2);
18 }
19
20 public static void main(String[] args) {
21 LinkedList l = new LinkedList();
22 l.createList();
23 }
24 }
25
26 public class Node {
27 /∗@ readonly @∗/ Node next;
28
29 Data item;
30
31 public Node(Data toStore) {
32 item = toStore;
33 next = null;
34 }

2.2 Assessment of Runtime Inference 25

35
36 public void insert(Data toStore) {
37 if (next == null) {
38 next = new Node(toStore);
39 } else {
40 next.insert(toStore);
41 }
42 }
43
44 public Data remove(Data toRemove) {
45 if (next == null) {
46 return null;
47 }
48 else if (toRemove.equals(next.item)) {
49 Data ret = next.item;
50 next = next.next;
51 return ret;
52 } else {
53 return next.remove(toRemove);
54 }
55 }
56 }

If elements are only inserted in the list, the Runtime Inference algorithm will find a rep

annotation for the next field. But if an element is deleted from the middle of the list and no
new element is inserted, then the predecessor of the deleted element will receive a variable
reference to the successor in the Extended Object Graph. These two objects will not be
connected by a write reference. The variable reference will therefore connect two objects that
are neither peers nor owner-owned related. The algorithm will have no other choice than to
annotate the next field with readonly in the harmonization phase which is clearly not precise
enough and would require downcasts to be correct. As you may have noticed, the example
would be rejected by the JML compiler because the call next.insert(toStore) is executed on
the readonly target field next. The field has to be cast to rep or peer. The Runtime Inference
cannot detect the relation between the field access and the method call during the JVMTI
event callback handling. The target for the method invocation is just an object reference and
not related to the field. The resolution of this conflict is handled in the abstract method body
analysis which we skipped because we annotate method bodies in the Static Inference.

If, on the other hand, another object is inserted in the list after an object was deleted, then
the predecessor would have a write reference to the successor. This would result in a false
cycle in the Extended Object Graph, which would be resolved by making all the items peer

to each other. The field next would be annotated with peer.

As we can see, the imprecise annotations are not triggered by bad code coverage. Both
methods insert(Data) and remove(Data) are invoked and the field first is covered. We
have a code coverage of 100%. Also a path coverage of 100% would not help. There are still
possible sequences of method invocations that lead to a non-optimal Universe inference result.

26 2 Combining Runtime and Static Inference

2.3. Assessment of Static Inference

Let us consider the example in Listing 2.4 where the Static Inference does not infer an optimal
Universe structure:

We have a car with five wheels, four normal wheels and one spare wheel. A wheel can be
deflated which sets the tire pressure to the ambient pressure of 1 bar. If the pressure of a tire
falls below 2 bar, the car is not safe anymore and must not be used. Of course, this does only
apply to the normal wheels and not to the spare wheel. Although it is not recommendable
to drive with a deflated spare wheel, that does not harm the safety of the car. To prevent
deflating a wheel, we set the preferences for the Static Inference in a way that fields get an-
notated with readonly for the declared type and rep for the runtime type. We use readonly for
the declared type in order to prevent unintended deflating of a tire.

Listing 2.4: Universes for the automobile roadway repair service

1 public class Wheel {
2 private float pressure;
3
4 public void deflate() {
5 pressure = 1.0f;
6 }
7 }
8
9 public class Car {

10 /∗@ readonly @∗/ Wheel frontLeft;
11 /∗@ readonly @∗/ Wheel frontRight;
12 /∗@ readonly @∗/ Wheel rearLeft;
13 /∗@ readonly @∗/ Wheel rearRight;
14 /∗@ readonly @∗/ Wheel spareWheel;
15
16 public Car() {
17 frontLeft = new /∗@ rep @∗/ Wheel();
18 frontRight = new /∗@ rep @∗/ Wheel();
19 rearLeft = new /∗@ rep @∗/ Wheel();
20 rearRight = new /∗@ rep @∗/ Wheel();
21 spareWheel = new /∗@ rep @∗/ Wheel();
22 }
23 }
24
25 public class Driver {
26 private /∗@ readonly @∗/ Car car;
27
28 public Driver() {
29 car = new /∗ peer ∗/Car();
30 }
31
32 public void doJob() {

2.4 Approaches 27

33 /∗@ readonly @∗/ Wheel sw = car.spareWheel;
34 ((/∗@ peer @∗/Wheel)sw).deflate();
35 }
36
37 public static void main(/∗@ readonly readonly @∗/ String[] args) {
38 /∗@ peer @∗/ Driver me = new /∗@ peer @∗/ Driver();
39 me.doJob();
40 }
41 }

For some unknown reasons the driver decides to deflate the spare wheel. Therefore, the
Static Inference inserts a cast for the spare wheel to peer. It is cast to peer because the
preferences are set in such a way that local variables are annotated with this type. We used
the Extended Conflict Type system with a 6 bit encoding for this example. Statically, this
cast is correct, but fails at runtime because the dynamic rep type cannot be cast to peer.

This example shows that the annotation of the Static Inference depend on the preference
settings. The quality of the inference solution is just as good as the preferences are set.
Furthermore, it shows that the Static Inference can introduce bad cast. Statically, they are
correct and can be type checked, but fail at runtime.

2.4. Approaches

In this section we present some approaches for how to combine Runtime and Static inference
in a high-level view.

2.4.1. Partially Annotated Sources

In a first step we run the Runtime Inference and insert the inferred solution with the annotator
directly into the Java source code. Because the Static Inference is using the JML parser, we
are able to parse and interpret the Universe modifiers correctly. This approach is a simple
combination with a straightforward implementation.

The downside of this approach is the too strong restriction of the solution domain for
the Static Inference. The annotations in the source code set fixed types for some Universe
variables. This restricts the number of possible solutions for the MAX-SAT optimization
and the solver even might not find a solution. Further, adding the annotations to the Java
source code after the Runtime Inference needs additional time- and memory-consuming steps
(parsing the Java sources, parsing the annotation XML file, adding the annotations in the
AST, and printing the AST to a source file). The additional work is not advantageous for the
performance.

2.4.2. Fixing Types

The UTI Interface offers the concept of fixing and preventing types (see Figure 2.1). An
Universe type of an UtiVariable can be set by calling the methods fixType(CUniverse)
and preventType(CUniverse). Using this interface we do not have to insert the Universe

28 2 Combining Runtime and Static Inference

SI

src

RIsrc
fix type

set purity

Figure 2.1.: Combination using the fixType interface of UtiVariable.

modifiers in the Java source after the RI step, so that we achieve better performance. The
problem of restriction of the domain still stays the same as mentioned in 2.4.1.

2.4.3. Setting Weights

The UTI Interface has a very flexibly weight mechanism that allows to set preferences about
annotations. The preferences are respected in the MAX-SAT solver back-end. Using the
annotation results from the Runtime Inference and set the appropriate weights for the Static
Inference serves as a hint and still leaves a high degree of flexibility for the Static Inference.
See Section 2.6 about how the weights are calculated and mapped to preferences.

We think that using these weights gives the user a comprehensive, but intuitive and flexible
mechanism to adapt and express preferences about the inference constraint system (see Figure
2.2.

2.4.4. Bad Cast Verification

Using this combination approach we would run a Static Inference first. If the Static Inference
introduces type casts, we double-check the correctness of the cast using the Runtime Infer-
ence. Actually, we would not use the Runtime Inference itself, but consider the EOG alone.
Since the EOG outlines the runtime behavior, that would allow us to verify the casts and
eliminate bad casts that fail at runtime.

SI

src

RIsrc
set

weights
Weight
Heuristic

Figure 2.2.: Combination by setting the weights for the Static Inference.

2.5 Determination of Runtime Inference Solution Quality 29

Test Coverage

Functional
Coverage

Object Coverage

Value Coverage

State Coverage

Specification Coverage

Function Outcome Coverage

Function State Coverage

Statement Coverage

Block Coverage

Path Coverage

Data
Coverage

Code
Coverage

Figure 2.3.: Different models of software test coverage measures.

We did not consider this idea because it is not really an inference combination. The EOG
is used to track the runtime behavior of casts and not to infer the Universe types itself.
Nevertheless, the elimination of bad casts could be interesting and might be worth for a
consideration in future work.

2.5. Determination of Runtime Inference Solution Quality

As we have seen in our assessment of the Runtime Inference, we cannot blindly trust the
inferred annotation results. The examples showed that the code coverage and the sequence
in which methods are called are essential. We need a way to determine the quality of the
Runtime Inference solution. How that can be done for the coverage issue is shown in Section
2.5.1. Some ideas about the method sequences are outlined in Subsection 2.5.2, but we did
not follow this topic sufficiently.

There are a lot of different models, patterns, and tools for testing of object-oriented systems
([7] is a good reference for this topic). Figure 2.3 shows an overview about the methods for test
coverage measures. Data coverage measures the degree to which the input space for a program
is covered. Functional coverage tests whether a program meets the whole specification. Our
focus is on the topic of code coverage.

2.5.1. Code Coverage

Code coverage is a measure describing the degree to which the source code of a program has
been tested. Code coverage can be considered as an indirect measure of test quality – indirect
because we are talking about the degree a test covers our code, or simply, the quality of the
tests, not about the quality of the actual product. It helps to identify paths in a program
that are not getting tested.

Measures

As always, there are several ways and concepts to measure the code coverage. We will present
some widely-used measures and discuss which measure applies best for our requirements.

30 2 Combining Runtime and Static Inference

Statement Coverage: Statement coverage is also known as line coverage. It measures the
degree to which individual statements are executed during a test. One advantage of
statement coverage is the existence of a lot of tools for this task. It is also quite easy to
implement. Measuring statement coverage can be done by instrumenting the bytecode
which is a lot simpler than parsing the source code. Another approach is to use a special
VM or the JVMTI to get information about executed statements. The disadvantage of
statement coverage can be shown in an example:

1 public class UniverseStatementCoverage {
2 readonly Object x;
3 peer Object y;
4 rep Object z;
5
6 public void statementCoverageExample(int i) {
7 if (i > 0)
8 x = new rep Object();
9 else

10 x = new peer Object();
11
12 if (i < 0)
13 y = (peer Object) x;
14 else
15 z = (rep Object) x;
16 }
17 }

Running the example and performing a call to the method statementCoverageExample
twice with a value +1 and -1 leads to 100% statement coverage. That may imply we have
a good coverage and tested every execution path. Calling statementCoverageExample
(0) throws a CastException even though the coverage was 100%. The peer object x
cannot be cast to rep in the assignment on line 15 .

Block Coverage: Instead of reporting individual lines, the block coverage considers each se-
quence of non-branching statements. For efficiency reasons at execution time it makes
more sense to keep track of basic blocks rather than individual lines. Furthermore, block
coverage is better in cases as follows:

public void bigBlockExample(boolean condition) throws Exception {
if (condition) {

System.out.println(”Small block #1”);
throw new Exception(”I wasn’t tested!”);

} else {
System.out.println(”Big block #1”);
System.out.println(”Big block #2”);
System.out.println(”Big block #3”);
System.out.println(”Big block #4”);
...
System.out.println(”Big block #98”);

2.5 Determination of Runtime Inference Solution Quality 31

}
}

Let us assume that a test invokes bigBlockExample(false). Statement coverage would
report a very good coverage of about 98%, even though we have missed an important
block. Basic block coverage would consider both blocks equal resulting in 50% coverage.
Block coverage is more complex to implement and needs source or bytecode parsing.
The problem described in the example method statementCoverageExample exists for
the block coverage as well. 100% block coverage does not prevent the CastException.

Decision Coverage: Decision Coverage, also known as branch coverage, is a measure based
on whether decision points (such as if and while statements) evaluate to both true and
false during test execution. The disadvantage is that it does not take into account
how the decision points are evaluated. Let us consider the following short example:

if (amount > 100 || someCode() == 0) {
doSomething();

} else {
doSomethingElse();

}

The boolean expression in the if statement is considered as one predicate regardless of
whether it contains logical AND or OR operators. The decision coverage does not make
a statement whether the code for someCode() in the OR expression is executed or not.

It is imaginable that the execution of someCode() might lead to an exceptional state
similar to the one encountered in the statement coverage example.

Path Coverage: Path coverage measures whether each possible path from start (e.g., a method
entry) to finish (e.g., a return or throw statement) is executed. Full path coverage is
usually impractical or impossible. Any code block with a succession of n decisions can
have up to 2n paths. Loop constructs can result in an infinite number of paths. The
advantage of path coverage is the right detection of the code coverage issue like the one
that exists in the example method statementCoverageExample.

Function/Method Coverage: This measure reports whether each function/method is invoked
at least once during the test execution. It is quite simple to implement and an easy way
to spot the biggest gaps in the code coverage.

Attribute/Field Coverage: The attribute or field coverage measures whether each attribute
of an object is altered at least once.

The question is which of those code coverage measures we should use. Most of the coverage
measures and tools are used in the field of software testing. Our focus is a bit different because
we are not interested in the correctness of each line of code. Our focus is the coverage in a
point of view of the Universe type system. So, we do not need a tool that covers the execution
of each line of code. Most of the code coverage measures can be classified as white box testing
because the coverage is measured against the internals of classes, not only against the interface
or contract of the system. However, a black box testing would be good enough for our purpose.

32 2 Combining Runtime and Static Inference

Also, we do not need a very accurate coverage method. The coverage is only used to get an
idea about the quality of the Runtime Inference test case and use this information to set
the weights. Full code coverage is reached with the Static Inference in a second step. We
are more interested in a good performance of the coverage measure that might reuse as much
information about the program execution as we already have gathered from the tracing agent.

As a conclusion of all the mentioned reasons, we decided to use a combination of method
and field coverage. We measure whether each function of a class is invoked at least once and
if we have a write access to each field.

2.5.2. Method Call Sequences

As mentioned in the introduction to this section, we thought about a solution resolving the
bad method call sequence problem. Since we want to get more experience in this topic, we did
not implement this approach. Nevertheless, we want to outline our ideas briefly.

The fact that we want to distinguish ‘good’ and ‘bad’ method call sequences led us to
the field of bioinformatics. Sequence comparison algorithms are used in bioinformatics to
discover areas of similarity between two sequences of biological data, such as nucleotides
in DNA sequences. The goal of these algorithms is not just simply using lexical matching
techniques, such as string matching or longest common substring searches, but to also take
into account that certain mutations can occur in sequences.

Our approach is to map the bad method call sequence problem to a sequence comparison
as it is done for DNA sequences. We build a sequence string by assigning a unique identifier
to each method. The sequences of method calls can be extracted from the tracing files. Using
the sequence comparisons we think that we can perform a classification between ‘good’ and
‘bad’ method call sequences. If a method call sequence has a large distance to a sequence,
from which we know that it is good, we say that this is a bad method call sequence. In the
same manner we can make statements about sequences with short distances. The closer a
specific seqence is to a good sequence, the higher we set the preferences in the Static Inference.

The distances could be measured using one of the following similarity algorithms:

Hamming Distance

The Hamming distance is defined as the number of bits which differ between two binary
strings. In other words, it measures the number of bits which need to be changed to turn one
string into the other.

Let us consider an example. The strings
10011011 and
10001100 have a Hamming distance of 4 bits.

The Hamming distance can only be used for strings of the same length. That is why it does
not meet our requirements. Method call sequences can be of different lengths.

2.5 Determination of Runtime Inference Solution Quality 33

Levensthein Distance

The Levensthein distance is an example of an edit distance metric. Edit distance metrics
measure the cost of the transformation of one string into another using operations, such as
character copy, insertion, deletion, and substitution.

The edit operations for the Levensthein distance are as follows:

• Copy a character from string1 over to string2 (cost 0).

• Delete a character in string1 (cost 1).

• Insert a character in string2 (cost 1).

• Substitute one character for another (cost 1).

The Levensthein algorithm is an application of a bottom-up dynamic programming algo-
rithm.

Smith-Waterman and Monge-Elkan

The Smith-Waterman[31] algorithm is similar to the Levensthein distance, but adds variable
cost values for substitution and gaps (deletion or insertion). Monge-Elkan[27] is an affine
variant of the Smith-Waterman distance function. Affine means that it assigns a lower cost
to a sequence of insertions or deletions. Further, Monge-Elkan is scaled to the interval [0, 1].

Jaro-Winkler

The Jaro-Winkler[21, 33] metric is not based on an edit distance model. It is based on the
number and order of the common characters between two strings. While the edit distance
metrics are designed to find similarities between DNA sequences, the Jaro-Winkler metric has
a different focus. It was designed for linking records in huge databases (e.g., record linking in
address databases or linkage of cencus data). Therefore, the Jaro and Jaro-Winkler metrics
seem to be intended for short strings like matching of personal and last names.

As an exercise we applied the algorithm and noted the calculations down. The example
can be found in Appendix F.

Evaluation and Conclusion

We did some simple evaluation of the discussed distance metrics. The examples are computed
using the Java open source library SecondString[10]. We compared the character sequence
AAAAAAAA with the sequences AAAABBBB, ABABABAB, and ABABABBA.

metric/string AAAAAAAA AAAABBBB ABABABAB ABABABBA

Levensthein 0.0 -4.0 -4.0 -4.0
Jaro-Winkler 1.0 0.8 0.7 0.7
Smith-Waterman 16.0 8.0 5.0 4.0
Monge-Elkan 1.0 0.5 0.275 0.225

34 2 Combining Runtime and Static Inference

The Levensthein algorithm only measures the pure edit operations. It does not take into
account that ABABABBA is more random than AAAABBBB and, therefore, would probably
be a better method sequence. The result with Jaro-Winkler looks similar. It does not reflect
the difference between the strings in the last two columns. The distribution of the values for
Smith-Waterman and Monge-Elkan seem to meet our requirements best.

The edit distance metrics are dynamic programming algorithms. Consequently, the memory
consumption is quite high, especially for long sequences. The Jaro and Jaro-Winkler metric
are good for short strings. However, our method call sequences can be quite long.

To perform the classification we need some initial sequences with which we compare our
call sequences. It is not obvious how to generate these initial sequences and how to make a
semantical statement about ‘good’ and ‘bad’ of the initial sequence. This point is crucial and
needs to be investigated furthermore.

2.6. Weight Functions

As introduced in Subsection 2.4.3, we use the Runtime Inference to determine weights and
use these weights for the Static Inference. The Static Inference solves an optimization prob-
lem by taking the weights into account and returning the solution that maximizes the weights.

In order to set appropriate weights we use heuristics. A heuristics considers the result of
the Runtime Inference and calculates some weight contributions. Each heuristic returns a
weight contribution for all Universe modifiers rep, peer, and readonly. After all heuristics
have calculated their contributions we combine them into a so-called preference and pass it
to the Static Inference.

Subsection 2.6.1 and 2.6.2 discusses how preferences are expressed in the Static Inference.
The mapping of the heuristic contributions into preferences is outlined in Subsection 2.6.3.
We discuss some heuristics in Subsection 2.6.4, 2.6.5, and 2.6.6.

2.6.1. Interpretation of the Weights

The Static Inference tries to annotate a program in such a way that the solution meets the
requirements specified with weights. These weights can be set in the inference launch config-
uration or they are predetermined by the heuristics discussed in the following subsections.

In this subsection we describe how the weights have to be understood and how they are
set. The concept of these weights was introduced by Matthias Niklaus[29]. For reasons of
comprehensibility we will recall the interpretation of the weights.

What we described as weights so far is grouped in the Static Inference into the following
categories:

• Annotation Preference

• Cast Acceptance

An annotation preference is specified for each kind of Universe type. In such a way it is
possible to express a relation between allowed Universe type modifiers. The preferences are
placed in a finite range that goes from minus 100 to plus 100. The default value is zero.

2.6 Weight Functions 35

The higher the value, the higher a preference for an annotation with the chosen modifier is.
Positive values mean a preference for a modifier. Negative values mean that we do not like
that modifier. Let us consider an example using Figure 2.4. We can see the preferences for a
Universe type modifier of an instance field, for creation of an instance, parameters of public
methods, and parameters of static methods. The weight for modifier of instance fields (see
right-hand side of figure) are set to zero for peer and readonly. The weight for rep is set
to the value +60. This means that a field of an instance should be annotated with rep. If
that is not possible, then it does not matter whether a field is annotated as readonly or peer.
Priorities are used to express the importance to fulfill a specific preference compared with
other preferences.

The cast acceptance is a property that states how many casts are accepted to reach a good
solution. Like the other preferences the cast acceptance is a value between 0 and 100, but
only positive values are allowed. The higher the value the more casts we accept.

2.6.2. Global and Local Preferences

We extended the preference data structures and introduced a distinction between two types
of preferences, called global preferences and local preferences.

Global Preferences

Global preferences are the same as the existing preferences used by Niklaus. A global prefer-
ence expresses how a certain kind of member of any class should be annotated. This allows
us to make statements like:

• Annotate fields with a higher priority than other class members.

• Fields are best to be rep.

• Parameters and return types are best to be readonly.

• Use as few peer annotations as possible.

Global preferences can be characterized with the three properties kind, affiliation, and
visibility:

• Kind: Specifies the situation where the annotation occurs

– Field: The declaration of a field.

– Local: The declaration of a local variable.

– Parameter: The declaration of a parameter. The affiliation is related to the method
in that case.

– Return type: The return type. The affiliation is related to the method in that
case.

– Creation: The explicit instantiation of an object. The affiliation is related to the
scope where this expression occurs. For the creation peer and rep modifier are the
only modifiers that are allowed.

36 2 Combining Runtime and Static Inference

• Affiliation: States whether the item or the current scope belongs to an instance or to a
type.

– Type: Static fields or items defined in a static context. For all preferences the
modifier rep is prohibited.

– Instance: All non-static situations.

• Visibility: States which access modifier is used for the item or the scope.

– Public

– Private

– Protected

– Default access

Local Preferences

Local preferences are used to express annotation preferences for specific Java class members.
The members are identified by a unique name identifier (see Section 4.1.2 on page 60). For
instance, we can state how a certain field or method return type should be annotated. In
contrast to global properties, the local properties do not respect the affiliation and visibility
properties. The local preferences are characterized by the properties

• Kind: Specifies the situation of the local property

– Field: The declaration of a field.

– Parameter: The declaration of a parameter.

– Return type: The return type of a method call.

• Identifier: A name that uniquely identifies the member.

Since we do not use the Runtime Inference to annotate method bodies we only respect the
members in the class scope and do not state anything about method body behavior like local
variable declaration or object creation. Conceptionally, the kinds “Creation” and “Local”
could also be considered in local preferences. But our current implementation does not do
that.

Interaction Between Local and Global Preferences

The preferences are looked up when the Static Inference generates the constraints for the
inference back-end. For each Java class member that is getting annotated with a Universe
modifier, a lookup in the local preferences table is performed. If the Runtime Inference did
suggest an annotation we do have an entry in the local preferences and return the correspond-
ing weight. In the other case where we do not have a local preference, we revert back to the
global preferences and return the global weight for the corresponing member kind.

2.6 Weight Functions 37

Low Priority (0) High Priority (100)Medium Priority (50)

Avoid (-100)

Never Mind (0)

Prefer (100)

Kind:
Affiliation:
Visibility:
Identifier:

Field
Instance
*

readonly

peer

rep

Creation
Instance
*

peer

rep

Param
Instance
Public

readonly

peer

rep

Param
Type
*

readonly

peer

Field

Node.next

readonly

peer

rep

Local
Preference

Global
Preference

Global Preferences

Figure 2.4.: Weights for the Universe annotations. Figure adapted from Niklaus[29]

2.6.3. Setting the Weights for Local Preferences

The Universe type modifiers that are determined by the Runtime Inference and chosen as a
suggestion for the Static Inference need appropriate weights. This subsection shows how the
weight contributions are combined and mapped to preference weights.

As outlined in the introduction to Section 2.6, each heuristic i in the system returns a weight
contribution for all Universe modifiers. After all heuristics calculated the weight contribution,
we combine the contributions into a local preference.

To describe the weight calculations we use the following notations:
The notation name〈v1, v2, ..., vk〉 denotes a tuple name with the tuple values v1 to vk. Helper
functions are denoted with an overline h.

OM : OM = {rep, peer, readonly}
the set of Universe modifiers.

u: u ∈ OM
an arbitrary Universe modifier.

uvar,k: uvar,k ∈ OM
The Universe modifier of a variable var that is suggested by the Runtime Inference in
test run k.

hi(uvar,k): uvar,k → wci〈wcrep, wcpeer, wcreadonly〉, wcu ∈ [−1,+1]
the weight contribution function of a heuristic i for the variable var in a test run k.
Returns a tuple (the weight contribution) consisting of three elements

38 2 Combining Runtime and Static Inference

prefvar,k〈ωrep, ωpeer, ωreadonly〉: ωu ∈ [−100,+100]
the preference weight tuple. These weights are assigned to a preference and used as
weights in the MAX-SAT solver.

combine: wc× wc× . . . → pref ∈ [−ωLocalPrefs,+ωLocalPrefs]
Function that combines several weight contributions to a single pref tuple.

ωLocalPrefs: ωLocalPrefs ∈ [−100,+100]
Constant which defines the maximum weight that is set for a combination of weight
contributions.

The combine function is used to combine and normalize the weight contributions of each
heuristic i. It also maps the weight contribution values to a preference. The calculated pref-
erence weights are bounded by ±ωLocalPrefs in order to set how strong the local preferences
should be regarded in relation with the global preferences. The combine function is defined
as follows:

prefsvar,k = combine(wc1, wc2, ..., wcn) := ωLocalPrefs ·
∑n

i=0 hi(uvar,k)
n

The interpretation of the weight contributions wcvar,k = hi(uk,var) is as follows: if a heuristic
contributes +1 that means we do like a certain annotation and prefer a preference weight
close to ωLocalPres. A value of 0 means that a heuristic does not make a contribution; a
value of -1 expresses that we prevent an annotation by setting the preference weight close to
−ωLocalPreference.

2.6.4. Coverage Heuristic

As we have seen in Section 2.2.1 the quality of the Runtime Inference directly depends on
the code coverage. That is why we want to set the weights based on the value of the code
coverage. Good code coverage implies high weight values while bad coverage implies lower
weights.

Code coverage is expressed as a percentage. We use a value between 0 and 1. Consequently,
a value of 0.7 means that 70% is covered. The meaning of this depends on what form of code
coverage has been used, as 70% path coverage is more comprehensive than 70% line coverage.
To define what good code quality is, we considered the following empirical evaluations:

The Agitar open quality initiative [17] publishes monthly updated reports about quality of
different software projects. Agitar measures the code coverage of some open source projects
that is achieved with the unit test cases provided together with the source code. Table 2.1
shows an excerpt of the results. The number of methods and lines in the first and second
column give an idea about the size and complexity of the projects. The third column states
how many of the classes are tested with JUnit test cases and the last column shows the code
coverage achieved by the test cases. Agitar uses a combination of line and decision coverage
as the coverage metric. As we see, none of the projects’ test cases cover more than 77.8% of
the code.

Another evaluation is taken from Binder[7] and refers to [16]. The experiment was con-
ducted on the two widely used utility programs TEX and AWK. Both programs were instru-

2.6 Weight Functions 39

Project Number of Executable Classes with Coverage
Methods Lines Test Points

dom4j 2510 6416 27.8% 52.0%
Jakarta-Commons Collections 3539 10429 36.8% 77.8%
jdom 839 3426 21.1% 38.2%
Lucene 1583 7339 33.2% 67.4%
Spring 9880 32125 35.8% 23.0%

Table 2.1.: Coverage report of some widely-used open source projects.

Block Decision p-use c-use

TEX 85% 72% 53% 48%
AWK 70% 59% 48% 55%

Table 2.2.: Coverage reported by [16] “p-use”= pathways between where a variable is assigned
and where it is used in a conditional. “c-use”= pathways between where a variable
is assigned and where it is used, but not in a conditional.

mented and the code coverage using the published test suites was calculated. The results are
shown in Table 2.2.

Considering these examples we see that, taking an approximation for decision coverage, the
best values are around 80%. Binder states that 80% to 85% branch coverage can be achieved.
Reaching 100% coverage is not profitable either. A lot of effort is needed to create test cases
to reach such perfection.

We define our coverage heuristic as follows:
Let us say that 80% coverage is good coverage, so we want to set high weights. Contrary, if a
program inspection reaches 40% coverage, we assume that this program does not have good
coverage. We do not want a weight that is the half of the weight of a well covered program
with 80% coverage. We assume that 40% coverage is low and want to set a low weight as
well. Therefore, our coverage heuristic is not a linear function. Instead we use an exponential
function to model this behavior.

CodeCoverage(var, k): the code coverage of a class that contains var in the test run k.

The coverage contribution function for the coverage heuristic is defined as follows:

hcoverage(uvar,k) := wci〈h(rep, uvar,k), h(peer, uvar,k), h(readonly, uvar,k)〉

40 2 Combining Runtime and Static Inference

where

h(u, uvar,k)

CodeCoverage(var, k)3 if u = uvar,k

1
(CodeCoverage(var, k) + 1)3

if u 6= uvar,k ∧

CodeCoverage(var,k)3>
1

(CodeCoverage(var,k)+1)3

CodeCoverage(var, k)3 if u 6= uvar,k ∧

CodeCoverage(var,k)3<
1

(CodeCoverage(var,k)+1)3

The functions are chosen such that the coverage weight contributions are mapped into a
finite range [0, 1].

The case 2 in the helper function h regards the fact that the Runtime Inference can make
a wrong suggestion if we have bad code coverage. Therefore, we have to give the Static In-
ference a certain degree of flexibility by not giving too low weights for the “other modifiers”
OM \ uvar,k that were not suggested by the Runtime Inference.

The case 3 ensures that we never want to assign a higher value than the one suggested
by the Runtime Inference. The alternative types should never be treated better than the
result from the Runtime Inference. If the alternative value is higher we simply set the weight
contribution equal to the one of the suggestion. In that way we say that we give the same
preference to all Universe types:

2.6.5. Parameter Heuristic

In the Universe type system methods are executed in the context that contains the receiver
object. Method parameters and return types are relative to the context of the receiver. Con-
sequently, method parameters and return types are best to be readonly or peer. To get deep
universe structures, we prefer readonly to peer.

These properties are expressed in the parameter heuristic. The parameter heuristics assigns
a weight factor to each ownership type of a parameter:

• the weight contribution of readonly parameters is set to 1.

• the weight contribution of peer parameters is set to 0.8.

• the weight contribution of rep parameters is set to 0.5.

hparam(uvar,k) := wcparam〈h(rep)), h(peer), h(readonly)〉

where

h(u)

1.0 if u = readonly

0.8 if u = peer

0.5 if u = rep

2.6 Weight Functions 41

2.6.6. Field Heuristic

Instance fields are best to be rep. That is why we set the weight contribution to 1.0 if the
suggested ownership modifier for a field is rep. If the Runtime Inference inferred a peer or
readonly solution we decrease the weight contribution to 0.8.

A possible extension would be to respect the visibility modifiers in this heuristic as well.
If a field is private, it is more likely to be rep. A public field is more likely to be peer or
readonly. Currently this is not implemented in this field heuristic.

42 2 Combining Runtime and Static Inference

Chapter 3.

Eclipse User Guide

This chapter is a description of the implemented Eclipse plug-ins from a user’s point of view.
The Eclipse User Guide should be relatively independent from the rest of the report, so that
it could easily be used as a documentation for plug-in users. Implementation or architectural
design details are not described in this chapter, but can be found in Chapters 2 and 4.

3.1. Installation and Configuration

To run the plug-ins Eclipse 3.2 is required. We developed and tested our implementation on
Linux (Ubuntu with kernel 2.6.17). We have also successfully run the project under Windows
XP. Mac OS X is not supported because the PBS solver is only available as a binary for
Windows, Linux, and Solaris.
The Universe tool plug-ins are packed in three different plug-in features:

• JML Tools The JML Tools (JML checker, JML compiler)

• Universe Type Inference All the Universe type inference plug-ins

• Universe Visualizer The graphical visualization of the Universe structure.

3.1.1. Plug-in Installation

Online updates are available on http://sct.inf.ethz.ch/research/universes/tools/eclipse/.

Define a site bookmark in Eclipse’s Update Manager view as follows:

1. Choose Software Updates I Find and Install from the Help menu.

2. Select Search for new features to install and press Next.

3. Press New Remote Site...

4. Enter “Eclipse Universe Tools” (or whatever you like) as the name, and the Site URL
mentioned above.

5. Press Finish

6. Check the boxes next to the features and versions you would like to install and press
Next.

7. Accept the license agreement and press Next.

43

http://sct.inf.ethz.ch/research/universes/tools/eclipse/

44 3 Eclipse User Guide

8. Press Finish.

9. Eclipse may ask if you want to restart. We recommend that you do.

3.1.2. Solver Installation

Due to the curious license of the PBS solver we are not allowed to deliver the solver binary
together with our plug-ins. Therefore, you have to download and install the solver yourself.

1. Go to http://www.eecs.umich.edu/~faloul/Tools/pbs/ and download the PBS solver

2. Extract the archive somewhere on your machine.

3. Start Eclipse and choose Preferences... I Universe Type Inference I Static
Inference from the Window menu.

4. Click on the Browse... button and select the binary of the PBS solver (see Figure 3.6).

5. Press Apply to save the preferences.

3.1.3. Logging Settings

The Runtime and the Static Inference produce a bunch of log messages during the execution
of the algorithms. These messages are classified in different levels and shown in the standard
Eclipse “Error Log” view. To keep the control over all logging message, the logging behaviour
is configurable as follows:

1. Open the workspace preferences by clicking the menu Window and selecting Prefer-
ences... I Universe Type Inference I Logging.

2. Check the items for the different log levels you want to have logged.

debug Shows all debugging log events

info Shows the info status log events

warning Shows warnings

error Shows log events for errors

fatal Shows fatal error log events

3. Click on Apply to save the settings persistently. The settings are valid for all projects
in your current workspace.

3.2. Runtime Inference Plug-in

The Runtime Inference plug-in automatically infers Universe type annotations from executable
Java programs. This is done through a runtime observation and without static code analysis
of the Java program. The inference process is subdivided into two parts. The first step is
to monitor the program execution with a special tracing agent that is attached to the Java
virtual machine. The second is the type inferer itself which uses the tracing information for
the type deduction.

http://www.eecs.umich.edu/~faloul/Tools/pbs/

3.2 Runtime Inference Plug-in 45

Figure 3.1.: Launch configuration with the Agent Output tab.

3.2.1. Tracing Agent

The tracing agent can be started and configured in the new launch configuration type “Run-
time Inference Agent”. Running such a launch configuration creates a new virtual machine
process with the attached tracing agent and monitors the program execution. As every exe-
cutable Java application, at least one of the inspected classes has to have a main method.
To create a new Tracing Agent launch configuration right-click on the desired Java source
file and select Run As I Runtime Inference Agent. Alternatively, if you want to spec-
ify arguments for the program or the destination of the tracing file you have to open the
Launch Configuration dialog by selecting Run... in the Run drop-down menu. Create a
launch configuration under the category “Runtime Inference Agent”. A launch configuration
allows you to configure how a program is launched, including its arguments, classpath, and
other options. The Java specific tabs are identical to the ones under the launch configuration
for normal Java applications. Additionally, we have the “Agent Output” tab that is used to
specify the destination of the tracing file (see Figure 3.1). The user can choose whether or not
he wants to be asked for the name of the output file before each run of the tracing agent. The
tab “Configuration” shows the command that has to be executed in order to run the agent on
the command line.

The input and output of the tracing agent is processed in the “Console” view. You get
notified about the termination of the tracing agent with the status message “tracing done.”
in the “Console” output. The project directory is also updated as soon as the tracing agent is
terminated in order to see the the tracing file in your project. If the inspected program needs
input from the command line you can enter these directly in the “Console” view.

Create many different traces with different inputs to get good code coverage and conse-
quently get a better inference result.

46 3 Eclipse User Guide

Figure 3.2.: Inference configuration for the Runtime Inference.

3.2.2. Type Inferer

Similar to the launch configurations for launching programs we have inference configurations
for launching a Universe Type inference for a program. Open the UT Inference dialog by
selecting the menu Inference I Run Inference Configuration or by clicking the icon

in the toolbar. Create an inference configuration for the inference type “Runtime UT
Inference” (see Figure 3.2).

The “Main” tab is similar to the main tab for Java applications and is used to specify the
project. The tab “Inference Files” (see Figure 3.2) allows to specify input and output files of
the inference. Add all trace files to the list “Agent Trace File(s)”. Optionally, you can select
the purity file with a few purity annotations in the “Purity” text field. The output directory
and the annotation XML file is specified in “Annotation File”. On the “Configuration Tab”
there is an Export XML... button that saves the current configuration in a configuration
XML to be used when you run the type inferer on the command line.

3.2.3. Project Properties

The Runtime Inference plug-in has some project properties which can be managed in an own
property page (see Figure 3.3). Precisely, these are the settings for the output path and
the file name of the annotation XML output file. To open the property dialog right-click on
the project in the Package Explorer and select Properties I Runtime Inference. The
properties set in this property page are valid as long as they are not overwritten in a specific
Runtime Inference launch configuration as we have seen above in 3.2.1. The default values for
these property settings are stored in the Runtime Inference Resources plug-in within the file
runtimeinference.default.properties. Changing these default values does not require

3.3 Static Inference Plug-in 47

Figure 3.3.: Runtime Inference Project Properties.

to recompile the plug-in project. The path value can contain an absolute path or use path
variables as shown in the screenshot.

3.3. Static Inference Plug-in

The Static Inference plug-in automatically infers Universe type annotations from Java sources.
This is done through a static code analysis of the Java source code. The result of the Static
Inference is shown in an own view and can be edited and refined by the user.

3.3.1. Type Inferer

Similar to the inference configuration for the Runtime Inference (described in 3.2.2) there is
an inference configuration for the Static Inference. Open the UT Inference dialog and create
an inference configuration for the inference type “Static UT Inference” (see Figure 3.4).

The “Main” tab serves as a selection for the actual project and is pretty self-explaining.
More interesting is the tab “Preferences”. It allows to specify the preferences for the Static
Inference. We focus here on the handling and setting of the preferences. See Section 2.6 for
more detailed explanations of the concept of preferences and weighting functionality.
You can use the default preferences or set customized preferences that are better suited for
your current project. Notice that no default settings are used when you select the radio
button “Use custom preferences”. To add a new preference click on the button “Add” and
directly edit the new entry in the table. To delete a preference select the candidate in the
table and click the button “Delete”. The value for the weight must be in the range -100 and
+100. The cast acceptance can be selected with the slider and goes from 0 to 100. A cast
acceptance of 100 means that you allow a lot of casts, a value of 0 means that you do not want
casts necessarily. In the “Options” tab you can select how pre-annotated sources are handled.
There are the two options “Fix Types” and “Set Weights”. The mode “Fix Types” is more
restrictive and fixes the types. The solver might not find a inference solution because of too
strong restrictions in the constraints. The mode “Set Weights” is less restrictive. It simply

48 3 Eclipse User Guide

Figure 3.4.: The Preferences tab of a Static Inference configuration.

sets some constant weights as local preferences and lets the solver find an optimal solution
with maximal weights. Changes of pre-annotations to other Universe modifier are possible.

3.3.2. Project Properties

Like in the Runtime Inference plug-in a project in the Static Inference plug-in has also prop-
erties which can be managed in an own property page. Open the project properties dialog
and click on “Static Inference” to open the Static Inference property page (see Figure 3.5).

The property page allows to set some settings that are relevant for the SAT solver back-
end. “Internal Constraint File”, “PBS Format”, and “PBS Constraint File” are internal set-
tings that describe how the constraints are passed to the Pseudo-Boolean Solver (PBS).
Normally, the default settings are fine and you do not have to touch them. The default
settings can be changed in the Static Inference Resources plug-in within the file staticin-
ference.default.properties without recompiling the plug-ins. More interesting are the
other settings. “Constraint Builder” enables to select whether a constraint builder that ac-
cepts casts or not should be used. With the setting “PBS Boolean Rep” the user can choose
the type system and its SAT encoding that is used for the inference. Notice that the different
type systems lead to different inference results. Please consult the report done by [29] to read
more about the type settings and encodings.

3.3.3. Workspace Preferences

In contrast to the project properties the workspace preferences are not valid for only one
project, but are persistent for all projects in the workspace. In the case of the Static Inference
these are the path and arguments for the PBS solver. Open the workspace preferences by
selecting the menu Window I Preferences... I Universe Type Inference I Static
Inference (see Figure 3.6). The setting “SAT Solver” is the path to the SAT solver (in our

3.3 Static Inference Plug-in 49

Figure 3.5.: Static Inference Project Properties.

case the PBS solver PBSv2.1_linux). “Solver Arguments” are the command line arguments
that are passed to the SAT solver during the process creation. See the documentation on [3]
about the PBS solver.

3.3.4. Annotation View

After launching a Static Inference launch configuration the result of the inference is shown
in the Universe Type Annotation View (see Figure 3.7). The Universe Type Annotation
View is something similar to the Java Outline View, except that it does not show all Java
members, but only the ones that are relevant for the Universe type system needs. Precisely
speaking, it shows types, field declarations, method return values, object creations, local
variable declarations, and casts. There is a special icon associated with each kind of annotation
(see table below).

Icon Description

A type containing Universe type annotations
A field declaration
An initializer for a field or array
A method containing Universe type annotations
A method parameter
A local variable declaration
A new object instantiation
A type cast
A method return

A double-click on an item in the Annotation View opens the corresponding Java source in
the editor and jumps to the defining position. Also, if the cursor in the source editor is set to
a position that has a counterpart in the Annotation View, the item in the AnnotationView
is highlighted.

50 3 Eclipse User Guide

Figure 3.6.: Workspace preferences page to set the path and arguments for the SAT backend.

Figure 3.7.: The Universe Type Annotation View.

3.4 Annotator Plug-in 51

Infer New Solution

The Annotation View allows to change some Universe annotations. Right-click on an item
in the tree and select the menu to set or prevent a certain type. The purity of methods can
be edited as well. After setting or preventing some types, the Annotation View is dirty and
the “Infer” button in the toolbar gets enabled. Clicking on the infer button infers a new
solution and performs all changes for implicit dependencies. If the inferer does not find a
solution it undoes all fix and prevent actions that were done since the last inference.

Notice that the Java source is parsed only once. The abstract syntax tree and constraints
are kept in memory resulting in better performance. If you want the sources to be parsed
again, open the view menu (arrow in the top-right corner of the view) and select the menu
Parse Sources.

Insert Annotation Into Source Code

If you are satisfied by the current inference result you can insert the annotations directly into
the source code by clicking on the icon in the toolbar. The style of the annotation can be
changed in the workspace preferences (see Section 3.4 for details).

Export Annotations

The current solution shown in the Annotation View can be exported into an annotation XML.
Click on the icon in the toolbar. A file dialog opens and lets you choose where to store the
annotation XML.

Import Annotations

It is possible to import annotations from an XML file and fix the types based on the settings
in the XML file. Open the drop-down menu in the top-right corner of the view and select the
menu Fix Types.... A file selection dialog opens and lets you choose the annotation XML
with the pre-annotations. Notice that the import does not change anything in the structure
of the types. Only the Universe type fixes of members in the Annotation View that can be
matched with an entry in the XML file are performed.

3.4. Annotator Plug-in

The Annotator plug-in is used to insert Universe modifiers into the Java source code. To run
the annotator you have to perform the steps described below.

3.4.1. Annotating Java Sources

Right click on a Java file in the Package Explorer or Navigator and select the menu An-
notator I Run Annotator.... Choose the XML annotation file with the corresponding
annotation information in the openend file selection dialog. After clicking OK the annota-
tions are inserted. If you want to insert the annotations into more than one Java file, just
select several files or run the annotation action on the whole package by selecting the package

52 3 Eclipse User Guide

Figure 3.8.: The workspace preferences for the Annotator styles.

in the Package Explorer.

There are several styles for the annotations:

Style Description Example

Keyword Use Universe modifiers like a normal
modifier keyword. Not compatible
with standard Java compiler.

private rep Obj myObj;

JML Use JML comments. Compatible
with standard Java compiler.

private /*@ rep @*/ Obj myObj;

Compatible
JML

Use escaped JML comments. Com-
patible with standard Java com-
piler. Ignored if JML is used with-
out Universe support

private /*@ \rep @*/ Obj myObj;

The style of the annotations can be selected in the workspace preferences. Select menu
Window I Preferences... I Universe Type Inference I Annotator (see Figure 3.8).

If you have a source file with unsaved modifications openend in an editor, the Annotator
asks you whether you want to save the modifications before the annotation step. After anno-
tating the affected sources are opened in the editor. If you do not like the inserted annotations
you can simply discard them by undoing the operation. Click on Edit menu and select Undo
Typing.

Notice that the Annotator plug-in has to parse the source in order to insert the Universe
modifiers at appropriate positions. Hence, the original code formattings (whitespaces, indents,
linespaces) get lost.

3.5 Combined Inference Plug-in 53

3.4.2. Editing Sources

We use the normal Eclipse JDT editor to edit Java files with Universe annotations. Thus, the
whole JDT functionalities are available. We extended the JDT editor with code templates for
the Universe annotations. If you want to insert a Universe keyword, you only have to type
the Universe modifier keyword (just a few letters are enough) and type Ctrl + space. That
inserts the modifier in the JML style without finger acrobatics. Notice that Eclipse reformats
code templates per default. Therefore, a whitespace is inserted between the * and @ which
is not JML conform. The reformatting can be switched off in Window I Preferences I
Java I Editor I Templates. Unselect the checkbox “Use code formatter” at the bottom
of the dialog. Unfortunately, Eclipse applies this setting for all templates.

3.5. Combined Inference Plug-in

The Combined Inference is a combination of both approaches, the Runtime Inference and the
Static Inference. In a first step a Runtime Inference is run and its results are used as an input
to the Static Inference that is run in a second step.

To launch a Combined Inference open the UT Inference dialog and create a new inference
configuration of the type“Combined UT Inference”(see Figure 3.9). The tabs for this inference
type are the same as for the Runtime Inference (see Section 3.2.2) and Static Inference (see
Section 3.3.1) and have to be configured in the same way. Notice that the preferences for the
Static Inference, either the default preferences or the custom preferences, are used as global
preferences. Local preferences for the annotation of specific fields and parameter types are
determined based on the result of the Runtime Inference. The result of the predetermined
local preferences are shown in an own dialog (see Figure 3.10). The user can adapt the weights
if they do not fit to their needs.

The tab “Heuristics” lists all heuristics that are applied to determine the local preferences
for the Static Inference (see Figure 3.11). Selecting a heuristic shows a short description
about the goal of the heuristic. With the slider at the bottom you can set the maximum
value for a weight that can be set by the heuristics. In the “Options” tab you can additionally
select wether you want to run the Runtime Inference or use an annotation XML file that has
already been written in a previous inference run. The option how pre-annotations are handled
is identical to the one in the Static Inference.

3.6. JML Tools

Paolo Bazzi integrated the JML tools into Eclipse. The JML checker is available in the con-
text menu of each Java source code file. By right-clicking a Java file and choosing the pop-up
menu JML Tools I JML Checker the JML checker is executed. Errors which are found
by the checker are shown in the “JML Error View”.

The JML compiler is integrated in a very similar way. Open the pop-up menu of a source
file and select JML Tools I JML Compiler. Compiler errors are shown in the “JML Error
View” and the Eclipse “Problems” view. There is a special launch configuration to run JML
compiled classes with runtime assertion checks. Open the launch dialog by selecting menu

54 3 Eclipse User Guide

Figure 3.9.: The inference configuration for the Combined Inference approach.

Figure 3.10.: The weight dialog for the local preferences.

3.7 Inference Visualizer 55

Figure 3.11.: The configuration tab for the applied heuristics.

Run I Run... and creating a RAC launch configuration.

Please refer to [5] for more detailed instructions about the usage of the JML tools.

3.7. Inference Visualizer

The Inference Visualizer is a plug-in that graphically visualizes the Universe structure. There
are several motivations for the Visualization. The visualization of the Universe structure
improves the usability of the Universe type system tools significantly. Obviously, a graphical
visualization is more intuitive than reading and manually interpreting annotated source code
files. Another goal of the Visualizer is, that it enables to step through the Runtime Inference
algorithm and observe the EOG. Future work might extend the Visualizer to interact with
the annotation model and the inferer.

3.7.1. Start the Visualization

Runtime Inference

To start the Inference Visualizer you have to open the tab “Visualizer” in the Runtime In-
ference configuration dialog and select the checkbox “Show Universe Visualization”. If you
check the box “Show class fields and methods” the objects are visualized similar to UML class
diagrams (see screenshot in Figure 3.12).

If you start the inference, a new editor is opened automatically. Either you click on the
play button to go directly through the different steps of the algorithm, or you click on the
next step icon which only displays one algorithm step and pauses. The status line shows a
short message about the action that was executed by the algorithm at last.

56 3 Eclipse User Guide

Figure 3.12.: Screenshot of a Universe structure visualization.

Static Inference

Start a Static Inference and open the“Universe Type Annotation View”. Click on the icon in
the view’s action toolbar. This opens the Visualizer Editor and shows the visualization of the
current Universe structure. The current implementation only visualizes the heap structure,
that means only field references are shown.

3.7.2. Properties View

If you click on a class object or a Universe in the editor, the properties of the selected object
are shown in the properties view. It might be that the property view is not shown in your
current Eclipse perspective. In this case, open the property view by selecting Window I
Show View.

3.7.3. Layout

As a default setting the Inference Visualizer uses an automatic layout that tries to find the
best positioning of class instances and Universe bubbles. If you are not satisfied with the
automatic layout, you can click on to change to manual layout mode. In the manual layout
mode you can move and scale class and Universe nodes.

The references between nodes can be arranged by selecting a reference edge and grab the
small icon anchor that appears in the middle of the edge. In this way you can create bendpoints
through which the reference edges are routed. To remove bendpoints just drag a connection
back to a straight line and the bench points gets removed automatically.

It is also possible to remove reference edges for visibility reasons. Selecting a reference edge
and pressing “Delete” removes an edge from the visualizer view. All actions can be undone
with the undo and redo actions (see screenshot of the toolbar in Figure 3.13).

3.7 Inference Visualizer 57

Figure 3.13.: The toolbar of the Inference Visualizer with the actions for undo, redo, the
zoom, toggle between automatic and manual layout, the player control, and the
alignment.

3.7.4. Zooming

The editor content can be scaled using the zoomer. To zoom in or out you have to select the
zoom percentage value in the zoom box that you can find in the toolbar. To keep the overview
the outline view shows the big picture with the currently selected excerpt of the editor.

3.7.5. Alignment

Once you changed the layout to the manual mode, you can align class boxes as follows: press
the Ctrl key and select several boxes with the mouse. Now you can select an align action
to align the selected boxes on the left, right, top, bottom side, or in the middle (see Figure
3.13). The last two icons are the actions to adjust the box size. The width and height of the
selected boxes are matched with the size of the primary selection.

58 3 Eclipse User Guide

Chapter 4.

Implementation

This chapter describes the implementation of our project as Eclipse plug-ins. The introduc-
tion into the Eclipse world can be quite painful. But after getting used to all the terms and
concepts, we really began to like the Eclipse environment. One can see the influence of the
“Gang of Four” members resulting in the clean architecture and the application of design
patterns. As references we can recommend the books [8] and [14].

We will start with the overview of the whole plug-in collection and go step-by-step through
each plug-in itself.

4.1. Overview

4.1.1. Package Structure

The Eclipse integration of the Universe Type Inferer is distributed over a collection of plug-
ins. The motivation is to keep the degree of modularization and reuse as high as possible. We
introduced some naming conventions for package names and identifiers of plug-ins or exten-
sion points to keep a consistent structure.
The whole integration is implemented as a part of the package ch.ethz.inf.sct.inference.
Classes related to static inference are in a package called si, classes related to runtime in-
ference in a package called ri. Notice that it is not possible in Java to use a keyword in a
package name. Therefore, it was not possible to chopse the package name static. That is
why the abbreviations si and ri are used. Each plug-in resides in a project directory of its
own. The Eclipse identifier of a plug-in is identical to the package name.

Eclipse extensions are identified by extension identifiers. All extension identifiers are set-
tled at the level of the plug-ins because an extension is valid in the whole scope of the plug-in
respectively and not only for a subset of a plug-in.

To keep the system structured we use the following naming conventions for the extension
identifiers and package names:

Convention: plugin-name.extension-name.uniqueExtensionIdentifier
Example: ch.ethz.inf.sct.inference.common.launchConfigurationType.si

59

60 4 Implementation

CI Plug-In
.inference.ci.plugin

Common Plug-In
.inference.common.plugin

Common Resources
.inference.common

SI Plug-In
.inference.si.plugin

SI Resources
.inference.si

RI Plug-In
.inference.ri.plugin

RI Resources
.inference.ri

Annotator Plug-In
.annotator

Logging Plug-In
.util.logging

Visualizer Plug-In
.inference.visualizer

Figure 4.1.: The dependencies between the different plug-ins.

Dependencies between the plug-ins are illustrated in Figure 4.1 and organized as follows:

Plug-in Identifier Description

inference.si Recources of the Static Inference tool
inference.ri Resources of the Runtime Inference tool
inference.si.plugin Eclipse plug-in code for SI
inference.ri.plugin Eclipse plug-in code for RI
inference.common Common resources shared by both resource plug-ins
inference.common.plugin Common code shared by both plug-ins
inference.ci.plugin Eclipse plug-in code for the combined inference
inference.visualizer The graphical Universe visualizer
annotator Eclipse plug-in code for the annotator
util.logging Log4j integration in Eclipse

The prefix ch.ethz.inf.sct. is common for all plug-ins.

4.1.2. Identifier Naming Conventions for AST Elements

The class members that are represented in the AST have to be uniquely identifiable for some
tasks. That is the lookup of local preferences, the determination of the coverage, and the
identification of UtiVariables. In this context, an identifier is a string key that uniquely
identifies a class member like a field, a parameter, or a return type. The identifiers have to
be consistent for the Runtime and the Static Inference. Therefore, we introduce the following
conventions how to build these identifier strings:

Fields

Grammar: (package-name “.”)* class-name “.” field-name

4.2 Command Line Tools 61

Example: com.acme.test.List.first

Parameter

Grammar: (package-name “.”)* class-name “.” method-name “(” (parameter-type (“,”)?)*
= “)”“:PARAM” parameter-index

Example: com.acme.test.Node.insert(int,Object):PARAM0

Return Type

Grammar: (package-name “.”)* class-name “.” method-name “(” (parameter-type (“,”)?)* “)”
Example: com.acme.test.Node.remove(Object)

4.2. Command Line Tools

4.2.1. JVMTI Agent

Since there was no binary for the agent under Windows we tried to compile the agent source
code with Microsoft Visual Studio. That required to replace the include files jni.h and jvmti.h
with the ones provided by the Windows version of the Java SDK. The include files can be
found in the include directory of your JDK installation. Unfortunately, the tracing agent
crashed during the execution, even though the code was identical to the Linux version. The
reason why it crashed was as follows:

The instrumenter class is loaded into a byte array. Under Linux the class was correctly
loaded into the memory, but that was not the case under Windows. A memory access violation
occurred because file_stats.st_size returned a larger size than the current length of the
byte array in the memory. Opening the file in the mode ios::binary solved the issue.

ifstream inst_file;
inst_file.open(instrumenter_file_path, ios::binary);
jbyte∗ buf = NULL;
buf = new jbyte[file_stats.st_size];
inst_file.read((char∗)buf, file_stats.st_size);

The instrumenter class, its location, and required library files were hard-coded in the trac-
ing agent. We replaced these constants such that the tracing agent can be parametrized. We
also added some exception handling to the agent code. Errors are shown on the standard
output and the agent exits with one of the following exit codes:

0 normal termination of the agent.
-1 Unknown error.
-2 An argument is not set correctly.
-3 A class could not be found on the classpath
-4 The instrumenter class is not found

Usage

If the JVMTI agent is used in Eclipse, it can be started in the launch configuration (see the
user guide in Chapter 3 for details). It is also possible to start the agent on the command

62 4 Implementation

line. In that case the usage of the JVMTI tracing agent is as follows:
java -cp <classpath> -agentpath:<ap>=<mc>,<of>,<ifp>,<icn>,<il> <mc>

where:

classpath: The classpath of the program to trace.

ap: The JVMTI agent is used by the Java Virtual Machine as a shared library. The path to
the agent must contain the absolute path to the agent plus the agent name itself. For
Linux systems the library uts_type_inferer.so is needed, for Windows systems the
DLL win32_trace_agent.dll.

mc: The fully qualified name of the class containing the main method to execute. This
includes the exact package name of the class. Do not omit to add this class to the
classpath specified above! This information is needed twice for the following two reasons:
first, the Java Virtual Machine has to know which program to start and second, the agent
has to be informed about the main class to be able to start the tracing correctly.

of: The path to the file into which the gathered information will be written.

ifp: The path to the instrumenter class that is used for the bytecode instrumentation. The
path must contain the absolute or relative path to the instrumenter class, including the
file extension .class.
Example: bin/ch/ethz/inf/sct/runtime_typinfer/instrument/Instrumenter.class

icn: The fully qualified name of the instrumenter class. This includes the exact package
name of the instrumenter class. The class has to be included in the classpath specified
above.
Example: ch/ethz/inf/sct/runtime_typinfer/instrument/Instrumenter

il: Path(s) to JAR libraries which are needed for the bytecode instrumentation. Currently,
we only need javassist.jar
Example: lib/javassist.jar

4.2.2. Java SE 6 Type Checking Verifier

The Java Virtual Machines provides means for a static analysis of the bytecode called bytecode
verification. A bytecode verifier checks at loading time whether the program is well typed, only
initialized variables are read, and some other properties. Until Java 5 the type information
was inferred using a fixpoint iteration called abstract interpretation (see [23] for detailed
description of the algorithms and formalizations). With Java SE 6, released in December
2006, Sun introduced a much simpler and faster verifier, called the type-checking verifier. The
bytecode verification is split into two phases: the type inferencing and the type checking.
Unlike the old verifier process the type inferencing is done during compile time and the type
information to check the bytecode type consistency is stored in the class file. That enlarges
the class file, but due to a simpler type checking algorithm at loading time the performance
is improved by 50% [20].

The type-checking verifier required to change the class file format and added the StackMapTable
code attribute [19]. The StackMapTable contains information like

• targets of conditional and unconditional jumps

4.3 Annotator 63

• entry points of exception handlers

• instructions immediately following an instruction that unconditionally changes the con-
trol flow

The consequence of this change is that tools that manipulate the bytecode also have to
adapt the new StackMapTable attribute correctly. The bytecode library javassist that we
use to instrument class files for the tracing agent did not support this feature and, therefore,
breaks the new type-checking verifier. We could not find official information about the support
for JDK 6 in the latest javassist release version 3.4. The fact that there is a class implementing
StackMapTable seems to indicate that the type checking verifier is supported. Nevertheless,
Sun implemented a fall-back behaviour that allows to use the old verifier in the case the
new verifier fails. This fall-back mechanism is controlled by the -XX command line flag
FailOverToOldVerifier and is enabled by default. Make sure that this flag is enabled until
a new version of javassist is released.

4.3. Annotator

The annotator is a tool that inserts the annotations stored in an annotion XML file into the
Java source code. The first version of an annotation tool was implemented as a semester
project by Marco Meyer [26]. We will show how we re-implemented the annotation tool to
meet our requirements.

4.3.1. Design and Shortcomings of First Version

Design

The Annotation Tool mainly has three tasks to do. Firstly, we have to read in the annotations
provided by the Type Inferer. Secondly, we have to read in the input Java source file. As a
third task we have to combine the first two tasks so that the annotations get inserted into
the source code.
The Java source files are parsed with a parser that is generated with JavaCC[1] and the Java
Tree Builder JTB[2]. The Java Tree Builder JTB provides the Abstract Syntax Tree (AST)
and an interface to the AST nodes using the visitor pattern. With a customized visitor the
syntax tree nodes can easily be explored and modified. Visiting all AST nodes and output
the syntax tree as an exact copy of the original input source is called “pretty printing”. In
addition to just dumping the unmodified source file the first version of the annotation tool
extended the pretty printer by adding the Universe modifiers provided by the annotation
XML at appropriate positions. The parsing of the annotations in XML file format is done
by a direct mapping of the structured data into Java objects. As a binding technology the
Apache XMLBeans[30] Framework is used.

Shortcomings

The annotation tool by [26] did not meet all our requirements. The tool did not accept pre-
annotated source files and there was no support for the new Java 1.5 keywords.
The grammar file used for the Annotation Tool was the one delivered by JTB. There were
no modifications done on this grammar file and the AST remained untouched as well. As

64 4 Implementation

a consequence it was not possible to parse and process pre-annotated source files. This is
crucial for our Static Inference integration since we need to be able to annotate pre-annotated
files during the incremental Static Inference steps. Source files that were using the Java 1.5
standard were rejected because of the obsolete grammar file. The annotation tool had some
problems with annotating nested structures like nested and anonymous classes.

4.3.2. New Implementation

Since the annotation tool was not Java 1.5 compliant, we modified the grammar file and
re-implemented the whole annotator tool. The grammar should support the whole Java 1.5
syntax like generics or the sugared form of for loops. The grammar file is also modified to
accept the Universe type modifiers peer, rep, and readonly. The modifiers are accepted in field
declarations, local variable declarations, object instantiations, parameter declarations, return
types, and cast expressions. Methods can be annotated with the keyword pure .
The Universe modifiers can be used in a JML-like style with a comment notation /∗@ <jml−
expression> @∗/. That means that we have to interpret the comments. And because we do
not need the parser for a compilation task, but for a source code transformation, we would
like to have the original comments in the transformed source code as well. Normally parsers
simply ignore comments by filtering out the comment tokens in the tokenizer phase. The
JavaCC parser uses a special concept for source code comments. Comments are handled as
special tokens during the tokenizer phase. A special token does not participate in parsing.
Instead, it is saved to be returned along with the next normal token. Thus, it is possible
to access a special token through its normal neighbour token over the field specialToken.
This feature of the JavaCC parser generator enables to add the comments when the AST is
serialized with a pretty printer. Before parsing the source code the annotator executes some
preprocessor steps. The input source is scanned and JML-style Universe type annotation
patterns are replaced with the Universe keyword in the normal keyword style.

We also had to harmonize the annotation XML schema in order to have a consistent anno-
tation format for both inference tools. Because some internals in the annotation XML format
like indexing of parameters and assignments was not properly documented, we described that
in Appendix C.

AnnotationFilterReader

Using the decorator pattern the input stream is scanned to detect JML-style Universe modi-
fiers and replace these with the modifiers in keyword-style. This happens before the parsing.
The preprocessor step simplifies the grammar since we do not have to treat the JML com-
ments as special keywords and can handle it consistently like the normal keywords (without
the comment notation). The AnnotationFilterReader is a normal java.io.Reader, so that
the filtering is transparent to the user of the reader. The tokens in the stream are matched
and replaced with the following regular expressions:

(/*)\s*@\s*\\?(peer|rep|readonly)(\s*\\?(peer|rep|readonly))?[^*/]*(*/)

matches Universe modifiers for references.

(/*)\s*@\s*(pure).*(*/)

4.3 Annotator 65

matches Universe modifiers for methods.

(//)\s*@\\?(peer|rep|readonly|pure)(\s*\\?(peer|rep|readonly))?.*

matches Universe modifiers in single comment lines.

JTBParser

The JTBParser class is the main class of the parser. It is generated by the parser generator
JavaCC, implements a top-down parser, and builds the syntax tree provided by JTB. For
more information about the generation of these files see Appendix A. The parser is started
by passing an InputReader during construction and invoking its method CompilationUnit().

XMLAnnotationReader

The XMLAnnotationReader is used by the AnnotationVisitor and reads the annotation
information from the XML annotation file. The XMLAnnotationReader is an intermediate
file that does the traversing of the object graph and provides a simple interface to get the
annotation information. The parsing and mapping of the XML is done by the Apache XML-
Beans framework. The current implementation traverses the mapped object graph with each
lookup of an annotation. If speed becomes an important factor, the performance of the
XMLAnnotationReader could be improved by using a cache for the annotation lookup. An-
other improvement would be to query the XML by using XPath or XQuery.

AnnotationVisitor

The AnnotationVisitor is a vistor for the abstract syntax tree built up by the Java Tree
Builder (JTB). It extends the DepthFirstVisitor which is, as the name implies, a depth-
first traversal of the syntax tree. During visiting the AST nodes, the Universe annotation
information is looked up from the XML file. New nodes for the annotations are created
and added at the appropriate position in the tree for all field declarations, local variable
declarations, object instantiations, parameter declarations, return types, and cast expressions.
The top of the stack corresponds to the currently investigated class and method. Using a
stack we can annotate nested and anonymous classes without any complications.
In addition to the visitor methods, the AnnotationVisitor implements some helper methods
for creating the new AST nodes for the Universe modifiers. Since the AST structure can
be quite long and complicated, the Eclipse debugging tools were a huge help during the
development. The grammar file is not intuitive enough to imagine the AST structure with
its long and nested branches. The interactive visualization given by the JDT debugger is a
great tool for this job since we do not have a special AST view.

PrettyPrinter

The PrettyPrinter is another extension of the DepthFirstVisitor. The AST nodes are visited
in order to dump the tree into a source file representation. The pretty printer provided in
the JTB libraries only supported a Java 1.4 grammar without Universe modifiers. In order to
support Java 1.5 and the Universe modifier keywords we had to write our own implementation
of a pretty printer. The pretty printer adjusts the line and column information of each syntax

66 4 Implementation

node. After the PrettyPrinter visited each node the syntax tree can be passed to the
TreeDumper in order to dump the tree into a character stream.
The PrettyPrinter formats the source code according to the Java code conventions [18].
There might be slightly differences to the official conventions. We did not test that extensively.

ClassInformation, FieldInformation, InitializerInformation, MethodInformation

These are helper classes that keep track of class, field, initializer, and method information.
This information is needed because the visitor method implementations are dependent on
the grammar file and sometimes additional information from a different method is used in a
certain context.

4.4. Logging in Eclipse

The Static and Runtime Inference stand-alone tools were command line applications. The
interaction with a user happens with the standard input and output console. Logging events
that are displayed on the standard output are useless in a GUI environment. They might
appear in log files, but are not visible to the user in a simple manner. Fortunately, Apache
log4j was used as a logging facility that helped a lot to integrate the existing code into Eclipse.
This section gives a short overview about the logging tools in Eclipse and how we integrated
the logging of the stand-alone tools into Eclipse. Our ideas about a log4j integration in our
plug-ins were influenced by the article [25].

Eclipse Logging Tools

Eclipse provides its logging services with the interface org.eclipse.core.runtime.ILog. This
interface is accessed through the method getLog() from the Plug-In activator class. Just
create an instance of org.eclipse.core.runtime.Status with the right information and call
the log() method on ILog. The Ready for IBM Rational software (RFRS) requirements
indicate that exceptions and other service-related information should be appended to a log
file and users are informed about log events. Therefore, the log object accepts more than one
log listener instance. Eclipse adds two listeners, one that writes to the “Error Log” View and
one that writes to the generic Eclipse log file. You can create your own log listeners as well.
Just implement the interface org.eclipse.core.runtime.ILogListener and add the listener
through the method addLogListener() to the log object. The listener is notified about each
log event.

Log4j Integration

Log4j has the concept of a hierarchy of Logger objects that can send log events to any number
of handlers (called Appenders in log4j), which delegate the message formatting to a formatter
(called Layouts in log4j). One of log4j’s major strengths is that the tool is easy to extend. All
we have to do is to implement a custom appender for log4j. For that appender, org.apache
.log4j.AppenderSkeleton is extended and implemented in ch.ethz.inf.sct.util.logging.
PluginLogAppender. The appender translates a org.apache.log4j.spi.LoggingEvent event
into an Eclipse Status event. This status is passed to the plug-in’s log() method. The log4j
error levels are translated into status instance codes the following way:

4.4 Logging in Eclipse 67

start

<<create>>

doConfigure

aPluginEventListenerLog4j FrameworkaPluginLogManageraEclipsePlugin LoggingPlugin PluginLogAppender

addApenderEvent

setLog

addLogManager

append

aLog

log

Figure 4.2.: The Log4j integration into the Eclipse logging facility.

• Level.FATAL → Status.ERROR

• Level.ERROR → Status.ERROR

• Level.WARN → Status.WARNING

• Level.DEBUG → Status.INFO

• default → Status.OK

Log4j is seen as a black box that may process several different tasks internally.
The whole log4j integration is implemented in a plug-in project called ch.ethz.inf.sct.util.-

logging. To add logging support to a plug-in project, the plug-in writer just has to add ch.-
ethz.inf.sct.util.logging to the dependency list and create a log4j configuration file. Instantiate
a PluginLogManager and configure it with this file. This should be done only once, so you
can do it when the plug-in starts. For the log statements, just use them as you would do with
log4j. Listing 4.1 shows an example and Figure 4.2 explains the call sequences of the log4j
integration.

Listing 4.1: PluginLogManager configuration inside a plug-in.

1 private static final String LOG_PROPERTIES_FILE = ”logger.properties”;
2
3 public void start(BundleContext context) throws Exception {
4 super.start(context);
5 configure();
6 }
7
8 private void configure() {
9 try {

10 URL url = getBundle().getEntry(”/” + LOG_PROPERTIES_FILE);
11 InputStream propertiesInputStream = url.openStream();
12 if (propertiesInputStream != null) {
13 Properties props = new Properties();

68 4 Implementation

14 props.load(propertiesInputStream);
15 propertiesInputStream.close();
16 this.logManager = new PluginLogManager(this, props);
17 this.logManager.hookPlugin(
18 TestPlugin.getDefault().getBundle().getSymbolicName(),
19 TestPlugin.getDefault().getLog());
20 }
21 }
22 catch (Exception e) {
23 String message = ”Error while initializing log properties.” + e.getMessage();
24 IStatus status = new Status(IStatus.ERROR,
25 getDefault().getBundle().getSymbolicName(),
26 IStatus.ERROR, message, e);
27 getLog().log(status);
28 throw new RuntimeException(”Error while initializing log properties.”,e);
29 }
30 }

The PluginLogManager uses the properties from the property file (a normal log4j property
file) and configures the log4j framework. The property file has to be configured in a way that
the PluginLogAppender gets added as an appender to the log4j framework. For that purpose
configure the appender in the property file as follows:

A2 is set to be a PluginLogAppender
log4j.appender.A2=ch.ethz.inf.sct.util.logging.PluginLogAppender
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%p %t %c − %m%n

add appender A2 to ch.ethz.inf.sct.inferer.si level only
log4j.logger.ch.ethz.inf.sct.inferer.si=, A2

The log4j framework fires an addAppenderEvent which adds the current log instance to
the PluginLogAppender. In our case the log instance (aLog in the sequence diagram) is the
Eclipse log object. If the PluginLogAppender now gets notified from log4j about a log event
with append(LoggingEvent), it can transform and forward the event to the Eclipse log object.
Finally, the event is shown in the Error Log view.

4.5. Runtime Inference Tool

Section 4.5.1 shows the design of the Runtime Inference Tool and some shortcomings that
had to be fixed in order to integrate it into Eclipse. Because the source code of the tracing
agent was not yet well documented, we briefly highlight some aspects of the agent that were
important for us. How we solved and implemented the issues is shown in Subsection 4.5.2

4.5 Runtime Inference Tool 69

4.5.1. Design and Shortcomings of the Runtime Inference Tool

Design

The tracing agent is loaded by the Java VM. The main function that is executed after at-
taching to the VM is Agent_OnLoad(JavaVM ∗vm, char ∗options, void ∗reserved). This
function checks whether all required arguments are passed and valid. After that the agent
registers its callback functions to get notifications about the JVMTI events. Whenever a
class is loaded, the agent is notified in the callback function ClassFileLoadHookCallback.
The agent dynamically loads the Java class that is used to instrument bytecode (Instru-
menter.class in the instrumenter package) and instruments the class that is currently being
loaded by the VM. The instrumentation happens in-memory by operating on the bytecode
array of the loaded class. After instrumenting, the modified bytecode array is returned back
to the VM. So, we directly interact with the JVM class loader. MethodEntryCallback and
FieldModificationCallback are the callback functions for field modification and method
entry events. They directly print out the event with the corresponding arguments to the
tracing XML file.

The runtime inference algorithm is implemented as a couple of visitor classes. The visitors
operate directly on the EOG. The BuildUpVisitor builds the graph based on the tracing
XML file. The DominatorVisitor computes the direct dominator for each graph node and
sets the owner field of every GObject node. After that the StoreDominatorLevelVisitor
computes the depth of each object in the dominator tree. ResolveConflictsVisitor is used
to resolve conflicts that are introduced by the owner-as-dominator approximation. If enabled,
the AbstractInterpretationVisitor performs the abstract interpretation of method bodies
and the HarmonizationVisitor maps the dynamic EOG structure to a static structure of
the program classes. Finally, the OutputVisitor writes the annotations into an annotation
XML file.

Shortcomings

We experienced some issues with the tracing agent. Firstly, the agent did not compile un-
der Windows. After having fixed these problems, the agent crashed the VM process. The
resolution of this issue is described in Subsection 4.2.1. The agent implementation did also
hard-code a lot of paths and constants which had to be parameterized.

The integration approach taken by Bazzi[5] ran the type inferer in an own Java VM process.
This is not suitable for our purpose. Passing of inferer configurations in-memory or the
interaction with the Inference Visualizer over the observer interface requires that the type
inferer runs in the same VM process. Like in the Static Inference, process termination with
System.exit(−1) is not acceptable because it terminates the whole Eclipse instance.

Further, the Runtime Inference uses Java reflection to dynamically load classes and read
class information in the visitor implementations. In the preceding projects the type inferer
ran in the same classpath as the test project did as well. Using Eclipse the project classes are
not in the classpath automatically. How to resolve this issue is described in Subsection 4.8.1.

70 4 Implementation

4.5.2. Eclipse Integration

The following enumeration picks out the most important classes of the Runtime Inference plug-
in. The list is not complete, further documentation is available as javadoc source comments.

RuntimeInferenceLaunchDelegate [plugin package]

The RuntimeInferenceLaunchDelegate is the launch delegate for a Runtime Inference con-
figuration. It creates the configuration out of the settings defined in the inference configuration
dialog and passes the configuration to the RI inferer. If the visualizer plug-in is installed and
the visualizer is enabled, the delegate opens the visualizer editor.

EclipseRIInterface [plugin.core package]

The EclipseRIInterface acts as an interface between the Runtime Inference classes in the
RI resource plug-in and the controller (Eclipse in this implementation). The superclass
AInferenceController divides the inference process in several subtasks that are executed in
methods:

• init(): Initialization of the inferer. Only called once.

• beforeInfer(): Pre-inference tasks like setting up the visualizer and registering the
trace observer(s).

• infer(): The main inference tasks. Running the inferer backend.

• afterInfer(): Post-inference tasks.

RIAgentLaunchListener [plugin.core package]

The RIAgentLaunchListener listens to RI tracing agent launches. As soon as the tracing
agent VM process terminates, we are notified through a DebugEvent and update the project
directory. The goal is to reflect the changes (adding or modifying a trace file) in the file
structure of the project and navigator view (see Subsection 4.8.5 as well).

RIPlugin [plugin.core package]

RIPlugin is the main and activator class which controls the life cycle of the Runtime Inference
plug-in. In addition to starting and stopping the plug-in and offering some helper methods
it holds a reference to PluginLogManager to redirect log4j logging events to the Eclipse log
view.

RIProjectPropertiesPage [plugin.ui package]

RIProjectPropertiesPage implements the UI components of the project property dialog for
the Runtime Inference. The properties can be changed under the tab ”Runtime Inference” in
the project properties. This class also handles the persistence of the properties.

4.6 Static Inference Tool 71

Inference Configuration Tabs [plugin.ui package]

The class RuntimeInferenceTabGroup assembles the tabs used for RI inference configuration.
The following tabs are settled in this package:

• TraceTab: The tab to add trace, purity file, and to define the annotation output file.

• VisualizerTab: The tab to enable or disable the visualizer.

4.6. Static Inference Tool

Section 4.6.1 roughly explains the implementation and shows all components of the Static
Universe Type Inference designed by Matthias Niklaus[29]. We discuss some shortcomings of
the design regarding an Eclipse integration. How these issues are solved and implemented is
shown in Section 4.6.2

4.6.1. Design and Shortcomings of the Static Inference Tool

Design

The architecture that was chosen by the SUTI2 project is splitted up in two parts. The client
part and the inferer part. The first part provides the Java program structure to the inferer. A
parser parses the source code and builds the constraints used for the Universe type inference.
The latter, the inferer part, takes all provided program information into account and infers an
optimal solution for the Universe types. Between these two parts is a clearly defined interface,
called Universe Type Inference Interface (UTI), which allows the independent development
of both parts.
The JML client provides the interface with the required information for the type infer-
ence. It parses the source file using the JML parser and typechecker of the MultiJava
project. That is why the Java sources might be pre-annotated with Universe modifiers.
From the JML parser we get the abstract syntax tree. The AST is traversed with the visitor
UniverseJmlVisitor. This visitor translates the program structure provided by the AST to
the necessary UtiConstraintBuilder interface method calls that build up the constraints.
It also builds up the JmlToUtiMapper which is a mapping between UTI variables and the
corresponding nodes from the JML AST.
After all information is provided, the inferring process may be started. This process is con-
trolled by a controller. The controller creates a new process and runs the PBSTool.

Shortcomings

The architecture by [29] defined a separation between the model (UTI Interface), the view
(SimpleUI), and the control (UserInteraction). A misuse of the MVC separation happens
with the method interact(UtiController, AnnotationWriter) in the UtiController in-
terface. That passes the control and the model to the view. The design of the SimpleUI, a
mixture of view and control, was driven by the sequential command-line oriented process. A
further issue of that design was the following: if the execution of the inference controller was
interrupted due to an exceptional state, the process was stopped by calling System.exit(−1).
This destroyed the instance of the Virtual Machine and stopped the program which is okay for
a command-line tool. Using a graphical environment like Eclipse this behavior is not desirable

72 4 Implementation

because stopping the virtual machine shuts down the whole Eclipse instance. Creating a new
virtual machine process for each inference run is not possible because the constraints and
result of the inference are used in an Eclipse view and require inter-process communication
between different virtual machine instances. Also the performance of the inferer would suffer
from creation of new processes each time.
The SUTI2 project seemed to work perfectly under Linux. Nevertheless, a test on a Windows
machine did not work out. The parser crashed with a NullPointerException. It turned out
to be an issue in the TypeLoader of the JML compiler that was originated by wrong path
comparisons. The helper function Helper.isEqualFilePath() compared two paths by using
a simple String comparison. Since Windows and Linux are using different path separators
that led to the problem. The fixing of this bug was a work of two minutes even though the
debugging took me several hours.
Another incompatibility was the tight coupling of the SUTI configuration with the XML con-
figuration file. Using Eclipse it would be desirable to have convenient configuration settings
in the project and workspace preferences without soiling one’s hands with editing the XML
configuration file. Therefore, the configuration interface had to be changed and decoupled
from the XML instance.

4.6.2. Eclipse Integration

StaticInferenceController [plugin.core package]

The StaticInferenceController implements the controller, following a MVC pattern. It
holds a reference the model (AnnotationWriter) and to the view (UTAnnotationView).
The controller gets notified about changes in the model and the view through the handlers
modelChangedHandler and viewChangedHandler. Also includes an implementation of User-
Interaction which starts the user interaction after the inference is done by the inferer backend.
The EclipseUserInteraction fires a modelChanged event, opens the UTAnnotationView,
and displays the result of the executed inference step.

EclipseSIInterface [plugin.core package]

The EclipseSIInterface acts as an interface between the Static Inference classes and the
controller (Eclipse in this implementation). The superclass AInferenceController divides
the inference process into several subtasks that are executed in methods:

• init(): Initialization of the inferer. Only called once.

• beforeInfer(): Pre-inference tasks as setting the SolutionDescription or parsing the
sources and building the AST.

• infer(): The main inference tasks. Running the inferer backend.

• afterInfer(): Post-inference tasks. Starts the interaction with the user interface after
an inference step.

PreferencesList [plugin.core package]

The PreferencesList is the model of a list of preferences for the Static Inference. The prefer-
ences represent the weights that are used for the MAX-SAT formalization. The PreferencesList

4.6 Static Inference Tool 73

is needed for the persistence of the preferences values in a launch configuration for the Static
Inference. The preferences are serialized and deserialized into a string list that can be han-
dled by ILaunchConfigurationWorkingCopy. It is also possible to translate the preferences
directly into an UtiSolutionDescription.

SIPlugin [plugin.core package]

SIPlugin is the main and activator class that controls the plug-in life cycle of the Static
Inference plug-in. Besides starting and stopping the plug-in and offering some helper methods
it holds a reference to PluginLogManager to redirect log4j logging events to the Eclipse log
view.

SIProperties [plugin.core package]

Encapsulates the properties that are used for the Static Inference. Loads properties identified
by a string identifier key from the persistent project property store. If properties are not
available from the project property store it uses the default property settings defined in the
file staticinference.default.properties.

StaticInferenceLaunchDelegate [plugin.launching package]

A launch delegate is the action delegate that is executed after clicking on the“Launch”button
in the inference configuration dialog. We built our inference configuration on top of the launch
configuration classes provided by Eclipse. As you might have noticed in the UI, the inference
configuration dialog is identical to the launch configuration dialog. We extended Eclipse
with a new type of launch configuration (extension point org.eclipse.debug.core.launch-
ConfigurationTypes).
Similarly, the StaticInferenceLaunchDelegate is the extension of an AbstractInference-
LaunchConfigurationDelegate and used for launching the Static Universe Type Inference.
Also provides convenience methods for accessing and verifying launch configuration attributes
such as the preferences and the UtiSolutionDescription.

SIProjectPropertiesPage [plugin.ui package]

SIProjectPropertiesPage implements the UI components of the property dialog for the
Static Inference. The properties can be changed under the tab “Static Inference” in the
project properties. This class also handles the persistence of the properties.

SIPreferencePage [plugin.ui package]

This class represents a preference page for the Static Inference preferences. It is used to edit
the workspace settings for the Static Inference plug-in, such as the path to the SAT solver
binary and the solver arguments.
The initial default values for the preference settings are provided by PreferenceInitializer.

UTAnnotationView [plugin.ui.views package]

The UTAnnotationView is a workbench view that shows the data obtained from the model
UTAnnotationWriter. The view shows the inferred Universe Type annotations.

74 4 Implementation

The UTAnnotationView displays a structured tree that shows the Universe types of the fol-
lowing members of a class

• Fields

• Field initializers

• Class initializers

• Casts

• Local variable definitions

• Methods

• Object creation

• Parameters

• Return types

Each kind of member is associated with an icon by AnnotationViewLabelProvider.
The UTAnnotationView allows to set or prevent a certain annotation. After fixing or pre-
venting a Universe type it is possible to re-infer the types and implicitly set the annotations
of dependencies. The purity of methods can be changed as well. The UTAnnotationView
provides actions to export the inferred annotations to and XML or to insert the annotations
directly into the Java source code.
UTAnnotationView implements a PageSelectionChanged listener to be informed about

selection events in other view parts. If a Java structure is selected in the source editor, the
focus is set to the corresponding annotation structure in UTAnnotationView. A double click
on an annotation member jumps to the corresponding source code in the Java editor.

AnnotationManager

The AnnotationManager is a singleton instance that holds a reference to the AnnotationWriter
currently shown in the UTAnnotationView. Since a view part like UTAnnotationView is al-
ways a singleton instance in Eclipse, it is enough to keep a singleton instance of the model
as well. Whenever a plug-in needs the last inferred Universe Type annotations it can get
them by calling AnnotationManager.getManager().getAnnotations(). AnnotationManager
also contains some helper methods that are related with the AnnotationWriter model.

4.7. Combined Inference

The Combined Inference tries to reuse as much as possible from the Static and the Runtime
Inference. All the views and inferene configurations are shared. The Combined Inference plug-
in adds all the new required functionality and data structures for the coverage and weight
heuristics.

4.7 Combined Inference 75

4.7.1. Coverage

The field and method coverage is calculated based on an annotation XML file. This is imple-
mented in a class with the amazingly long name AnnotationDocumentCoverageStructure
Builder which takes a parsed XML file (an AnnotationsDocument) and builds the coverage
structure. The coverage structure is accessed over the class Coverage. It stores the coverage
information and gets the values for the method, field, and parameter coverage. Because there
is no guarantee about the order how classes appear in the trace file and therefore also no guar-
antee when they are added to Coverage, we have to build the class inheritance structure, the
class – superclass relationships, at the end. The code has to ensure that all classes are added
to the structure before a call to getFieldCoverage, getNumFields(), getMethodCoverage
(), or getNumMethods() is made. ClassCoverage stores information about classes and its
members, FieldCoverage about the fields. Method and parameter informations are kept in
MethodCoverage and ParameterCoverage (see UML class diagram in Figure 4.3).

4.7.2. Weight Heuristics

WeightHeuristic

A WeightHeuristic is used to weight the suggested ownership annotations from the Runtime
Inference. All heuristics must implement the interface WeightHeuristic. A WeightHeuristic
is notified by a WeightFactorStructureBuilder about the events. Each field, method, or
parameter triggers an event and lets the heuristic calculate the weight factor.

Weight heuristic can extend the abstract class AWeightHeuristic to share some common
attributes and methods. At the moment there are two kind of heuristics. Those who are
only based on the WeightFactorStructure and those who need additional parameters like
a coverage heuristic that needs the coverage information. Future extensions may add more
kinds of heuristic types. See the UML class diagram in Figure 4.4 about the inheritance
structure.

How To Extend the Heuristics

The system can be extended with heuristics that are written by other contributors. We built
a flexible extension mechanism for heuristics based on the Eclipse plug-in system. Other
heuristics can be added as plug-ins to our Combined Inference plug-in. To do that one has to
use the extension point ch.ethz.inf.sct.inference.ci.plugin.heuristic as follows:

1. Create a new Eclipse Plug-In project

2. Implement your heuristic class and implement the interface WeightHeuristic

3. Open the MANIFEST.MF in the PDE editor and add a new Extension for the extension
point ch.ethz.inf.sct.inference.ci.plugin.heuristic

4. Add a new heuristic element and set the attributes as described in the schema below.

5. The heuristic is listed in the heuristic tab in the inference configuration for the Combined
Inference (see 3.5).

Configuration Markup:

76 4 Implementation

Figure 4.3.: UML class diagram of the coverage model.

4.8 Eclipse Integration Issues and Comments 77

<!ELEMENT extension (heuristic)>
<!ATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

<!ELEMENT heuristic EMPTY>
<!ATTLIST heuristic
id CDATA #REQUIRED
name CDATA #REQUIRED
description CDATA #REQUIRED
type CDATA #IMPLIED
class CDATA #REQUIRED>

id The unique identifier for this weight heuristic.

name The name of the heuristic

description Textual description about the heuristic functionality.

type [optional] The type/kind of weight heuristic (to distinguish different types of
heuristic that need additional parameters like classes that extend the Coverage-
Heuristic).

class The class that implements a weight heuristic.

WeightFactorStructureBuilder

A WeightFactorStructureBuilder builds a WeightFactorStructure using different Weight
Heuristic. The WeightHeuristics can be added to the WeightFactorStructureBuilder
by calling addHeuristic and are notified by the structure builder. The collection of built
WeightFactorStructures can be retrieved by calling getWeightFactorStructures().
The AnnotationsDocumentWeightFactorBuilder is an implementation of a WeightFactor
StructureBuilder that builds the factor structure based on the information in an Annotations
Document, a Java object representation of an annotation XML. This structure builder can
be seen as the main interface between the Runtime and the Static Inference. It maps the
information in the annotation XML into weights that can be used for the Static Inference.

4.8. Eclipse Integration Issues and Comments

This section discusses some general Eclipse integration issues that we have experienced in our
work.

4.8.1. Class Loading

The BuildUpVisitor uses dynamic class loading for the inspected classes during the Runtime
Inference. The classes are loaded dynamically to determine superclass relationships, settings

78 4 Implementation

Figure 4.4.: UML class diagram of the weight heuristic model.

4.8 Eclipse Integration Issues and Comments 79

of types, and other minor tasks with the Java reflection API. The implementation by [4] used
the normal class loading mechanism with Class.forName(String). This was fine because the
examples were in the same runtime classpath like the Runtime Inference package. If you
use Class.forName(String) in an Eclipse plug-in, then you will only be able to instantiate
objects already known to your plug-in due to the usage of the plug-in’s class loader and thus
will only instantiate objects in your plug-in’s classpath. What we need is a class loader that
instantiates classes from the project folder. We fixed that by implementing our own extension
of an URLClassLoader. The URLs added to the customized class loader have to be of the form
file:/path/to/a/directory/ and end with a slash. If the URL points to a file (without a
slash at the end) it is assumed to point to a JAR file.

4.8.2. Insert Text into an Editor

The annotator uses its own parser and does not respect the AST built by the JDT editor.
Using the Eclipse refactoring functionality would need a mapping from our own AST into
the Eclipse representation. Regardless, to use the undo functionality of Eclipse we want to
replace the whole text in the editor with our transformed source code. Text editors have no
public API to insert text. Furthermore, they do not expose their internal widget used to edit
the document. Therefore, inserting text in the currently active editor is not trivial. We solved
this issue the following way:

Text editors obtain a document model by using a document provider. What we have to do
is to locate the active editor, get its document provider, request the underlying document,
and insert the source into it:

IWorkbenchPage page = ...;
IEditorPart part = page.getActiveEditor();
if (!(part instanceof AbstractTextEditor)

return;
ITextEditor editor = (ITextEditor)part;
IDocumentProvider dp = editor.getDocumentProvider();
IDocument doc = dp.getDocument(editor.getEditorInput());
try {

doc.replace(0, doc.getLength(), modifiedSource);
} catch (BadLocationException e) {

...
}

4.8.3. Accessing UI Thread

SWT is organized such that all drawing operations occur only in a special thread, called the UI
thread. Any method that accesses or changes a SWT widget must be called in the UI thread.
If not done this way, an SWTException with the value ERROR THREAD INVALID ACCESS
will be thrown.

We can access an SWT method in a non-UI thread in a safe manner by requesting that the
default SWT display runs our runnable. This can be done as follows:

Display.getDefault().asyncExec(new Runnable() {
public void run() {

80 4 Implementation

// access the SWT methods here
}

});

Using Display.asyncExec(Runnable) performs an asynchronous execution. This adds a
request to the queue of the UI thread and returns immediately. If you need synchronous
behavior instead, you can use Display.syncExec(Runnable), which will suspend the current
thread until the drawing took place in the UI thread.

Another possibility is subclassing org.eclipse.ui.progress.UIJob. The thread’s run method
runInUIThread() will, as the name implies, always run in the UI thread. It is also possible
to install a listener on the job to find out when it completes and to set priorities for the job.
Make sure that you never schedule jobs that take a long time to run. The UI thread will
make the UI unresponsive if long running tasks are performed.

4.8.4. Obtaining a Workbench Reference

A frequently encountered issue is getting a reference to an IWorkbechWindow or IWorkbenchPage.
A lot of APIs, like opening an editor or a view, are accessible over these objects. In the best
case the following code snippet leads to the goal:

IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActiveWorkbenchPage();

However, as documented in the Javadoc, these methods will return null if we do not have
an active window (e.g., if we are in a non-UI worker thread). This means that another dialog
or shell has the focus and we are not able to access these APIs to get the active window or
page. As well, it returns null if we are in a non-UI worker thread. Have a look at 4.8.3 to
see how you can schedule these operations into the UI thread.

There are several ways to obtain a workbench reference:

• If you are in a view or editor, you can do the following:

IWorkbenchPage page = getSite().getPage();

• If you are in an action that implements IWorkbechWindowActionDelegate, you can get
a reference to the window over the init method:

class MyAction implements IWorkbenchWindowActionDelegate {
private IWorkbenchWindow window;

...
public void init(IWorkbenchWindow window) {

this.window = window;
}

}

• If you are in a wizard, you can get access to the window over the init method of
IWorkbenchWinzard similarly as above.

4.8 Eclipse Integration Issues and Comments 81

4.8.5. Process Termination Notification

The tracing agent runs in an own JVM process and not in the same VM as Eclipse. We
had the problem that we did not know when the agent terminated and could not update
the project directory or print out status messages about the agent’s termination. Finally, we
solved this issue by implementing the RIAgentLaunchListener.

Eclipse offers the interface LaunchListener that gets notifications in launchChanged(
ILaunch) when a process or debug target is added to a launch instance. During the start of
a launch configuration we have to register the launch listener in the LaunchManager of the
Java Debug plug-in. Unfortunately, a LaunchListener does not get notifications when the
VM process is terminated. For this purpose, we use the interface IDebugEventSetListener
and implement the method handleDebugEvents(DebugEvent[]). That notifies us about De-
bugEvents. We look for the debug termination event DebugEvent.TERMINATE. If we get such
an event, we compare whether the process that is the source of the debug event is equal to
the process of our tracing agent launch instance. If yes, we know that the tracing agent has
been terminated. The LaunchListener can now be deregistered from the LaunchManager.

82 4 Implementation

4.9. Universe Visualizer

This section discusses the architecture and implementation of the Universe Visualizer. A
prototype implementation of the Visualizer was done in [26]. Unfortunately, we were not able
to successfully run this project and the architecture did not meet our requirements. Also,
Meyer focused on the Runtime Inference visualization therefore his model was bound to an
EOG. Since we also use the Universe visualization for the Static Inference, we introduced a
more generic model. Our architecture differs significantly from Meyer’s work.

Subsection 4.9.1 gives an overview and a very short introduction to GEF. A slightly deeper
insight into the architecture is given in Subsection 4.9.2. The implementation is discussed in
4.9.3 and rounded off with the package overview in 4.9.5.

4.9.1. GEF Introduction

The Graphical Editing Framework(GEF) allows to easily develop rich graphical editors in
Eclipse. All graphical visualization is done via the Draw2D framework, which is a standard
2D drawing framework based on SWT.

GEF: Separation of Concerns

GEF follows a strict MVC (model-view-controller) approach. The controller is the main part
responsible for updating the view and performing model operations that are requested by UI
events. GEF realizes the MVC separation as follows:

Model The model defines the data that gets visualized in an abstract way. Almost any
arbitrary model can be implemented by a user. In our case, the model is the Universe
structure (Universes and Classes/Objects). In our implementation the model notifies
the controller about modifications.

View The view is anything visible to the user. It consist of figures and connections. Draw2D
provides basic figures like rectangle, circles, but also more complex widgets like labels,
buttons, or checkboxes.

Controller GEF usually has a controller for each visualized model. As mentioned in the
introduction, the controller, called EditPart in GEF, is the link between the model and
the view.

GEF Terms

Command Commands are used to edit the model. They describe how the model is modified
in a way that can be undone and redone by the user.

Request Requests are the units of interaction in GEF. They are used to create, move, resize,
delete, and group graphical objects in the view. A request contains information that
might be necessary for executing the request later. An EditPart forwards a Request to
an EditPolicy.

EditPolicy An EditPolicy understands a Request and creates a Command for it. Executing
the Command will perform the model modifications needed to fulfill the Request.

4.9 Universe Visualizer 83

Diagram
Model

EditParts Figures

Notification

Command

Refresh

Request
Observer

Observer
Interface

Business
Model

Business
Model

Observer
Interface

Observer SchedulerCommand

Figure 4.5.: The Inference Visualizer architecture overview.

4.9.2. Architecture

Figure 4.5 shows the overall architecture of our Inference Visualizer implementation. Notice
the difference between the two models, called “Business Model” and “Diagram Model” in the
figure. While the business model is the model that is built by the Universe type inferer,
the EOG for the Runtime Inference and the AnnotationComponent structure for the Static
Inference, the diagram model is used for modelling the graphical parts. The graphical model
can abstractly be seen as a normal graph consisting of nodes and edges. It would be nice to
have just one consistent model. Regarding the fact that the already existing models for the
Runtime and Static Inference are different, we decided to do this step over an intermediate
model.

Runtime Inference Visualization

The observer interface for the Runtime Inference is defined in TraceObserver. The observer
itself can be found in EOGObserver in the visualizer plug-in. We extended the TraceObserver
interface that was originally defined by [24]. We added two methods for the notifications when
a trace observing starts and ends:

/∗∗ Notification about the start of tracing for the specified ProgramTraces ∗/
public void tracingStarted(ProgramTraces traces, TraceVisitor changer);

/∗∗ Notification about the completion of traces . ∗/
public void tracingCompleted(ProgramTraces traces, TraceVisitor changer);

All observer notification calls are executed with synchronous calls in the thread in which
the inference algorithm runs. It enables to suspend the algorithm execution until the observer
has finished the processing of the actual observer notification. This behavior allows the user
to step through each action of the algorithm. The suspending of the algorithm thread takes
place in the Scheduler. The scheduler is used for another purpose as well. GEF is built on
top of SWT and interacts with the UI. Therefore, all GEF paint actions have to take place

84 4 Implementation

Application

LinkedList

Node

Data

Node

Data

Node

Data

Iterator

Figure 4.6.: A hypothetical visualization of the SI AnnotationComponent.

in the SWT UI thread. We use the scheduler as the synchronizer between the algorithm and
the UI thread.

Static Inference Visualization

The visualization of the Runtime Inference is actually a visualization of the heap structure.
An object node is generated for each object instance on the heap. The Static Inference
visualization is not supposed to visualize instances, but the static class structure. Neverthe-
less, we would like to see an enhanced structure that is more suited for Universe visualizations.

Let us consider the doubly-linked list example in Listing 2.2 where the previous and next
node are annotated as peer. A visualization is supposed to look like in Figure 4.6. While
“normal” classes, such as Application, LinkedList, or Iterator, are just displayed once,
we have to be careful with recursive structures like the Node.

We suggest to use the following algorithm:

Start with the main class cMain
visit(cMain)

function GraphNode visit(Class c) {
if c in classtable of current universe and c is processed

return corresponding node n for c from classtable
if c contains rep field or rep in method signature

create universe node n and store it in classtable of current universe
else

create class node n and store it in classtable of current universe

if c is not yet processed {

4.9 Universe Visualizer 85

mark c as processed
for each field in c {

fnode = visit(f)
create reference from n to fnode

}
for each parameter p in c {

pnode = visit(p)
create reference from n to pnode

}
for each return type r in c {

rnode = visit(r)
create reference from n to rnode

}
}
return n

}

We visit all fields of a class exactly once. This guarantees the termination of the recursion.
Notice that, applying the algorithm, the Data object is not displayed three time like in the
figure, but only once.

Due to lack of time we were not able to implement the whole algorithm. Our current algo-
rithm slightly differs from the one above. Only fields are considered. Support for parameters,
return types, or local variables is left to future work.

4.9.3. Implementation

Model

All model objects must sublass ModelElement (see model package). ModelElement imple-
ments the basic functionality for the persistence and event notification mechanism described
below.

Persistence is implemented using the standard Java object serialization into a binary format.
All model elements implement Serializable. Fields that must not be serialized have to be
annotated with the modifier transient.

We implemented an event notification mechanism in our model, although GEF itself does
neither provide nor require such a functionality. The motivation is to easily be able to
keep track of model changes in the EditParts. Whenever our model is changed, we fire an
event that allows the EditPart to handle the model change and update the view accordingly.
Our approach is to use the Java beans event support provided by the classes java.beans
.PropertyChangeSupport and java.beans.PropertyChangeListener. Events are fired for
the following model modification effects:

• Children: The hierarchy structure of our Universe graph changed. Children were
added or removed from a Universe.

• Owner: The owner of an object changed.

• Input: Incoming references added or removed.

86 4 Implementation

ModelElement

UniverseElement Reference

Universe Clazz

Universe
Diagram

ReferenceBendpoint

Figure 4.7.: The model of our Universe visualization

• Output: Outgoing reference added or removed.

• Position: The position (x-y-position) of a Universe element changed.

• Layout: The layout mode changed.

The owner changed event does not mean that we enhanced the Universe type system with
ownership transfers. We need this event because the owner of a class or Universe might not
be known during the build up of the EOG in the Runtime Inference and gets changed during
the execution of the algorithm.

UniverseElement models all elements that are needed in the Universe structure visualiza-
tion. It is subclassed by Universe and Clazz. While Clazz models a normal class, or in the
case of the Runtime Inference visualization also object instances, a Universe is a container
that can contain nested Universes and Clazzes. UniverseDiagram is a special kind of Uni-
verse, namely the root Universe. It is the root of our Universe structure and, therefore, also
the root of a Universe diagram visualization.
Reference models references between objects and classes. Precisely, a Reference is a

directed edge between two UniverseElement. A ReferenceBendpoint is a point through
which a Reference has to be routed. Refer to Section 4.9.4 for more details about layouts
and routing.

Controller

We use a factory to create EditPart objects. Typically this happens in the PartFactory
when a creation command is executed. The factory has to be registered to GEF for that
purpose.

4.9 Universe Visualizer 87

ModelElementPart

UniverseElementPart ClazzPart

Universe
Diagram
Part

Universe
Part

Figure 4.8.: The EditPart controller structure.

There are two types of EditParts that we implement by subclassing the corresponding
abstract base classes provided by the framework: GraphicalEditParts and ConnectionEdit
Parts. The former is used to represent model object with figures as graphical representation,
the latter represents connections between GraphicalEditParts.

The GraphicalEditParts need to create the figure, update it on model changes, and
dispose it if the EditPart is deactivated. The figure is created by overriding the method
createFigure(). This method is called only once and the figure will be cached. Therefore,
updating the figure has to take place in a dedicated method, namely refreshVisuals().
Figures have to be updated in this method implementation according to the encountered
model changes.

The inheritance structure of the EditParts is shown in Figure 4.8. ModelElementPart
implements the event notification handling. Normally, an event notification requests to redraw
the figures by invoking refreshVisuals().

View

Everything that is visible in our Inference Visualizer plug-in is drawn in a figure. The figures
implement the following functionality:

• Managing the figure hierarchy, adding and removing of child figures

• Accessor methods for layout managers (providing figure’s preferred size and location)

• Setting the focus of a figure

• Painting

• Validating

ClassFigure implements the yellow class or instance boxes (see Figure 3.12 on page 56).
It contains CompartmentFigures to add field and method labels to our class figures. That
enables to visualize classes like in UML class diagrams.

88 4 Implementation

A SubgraphFigure is used to paint container figures that can contain other nested fig-
ures. The SubgraphFigure consist of three parts, a header, a content, and a footer part.
UniverseFigure subclasses SubgraphFigure and adds the owner class in the header part.

4.9.4. Layout

LayoutManagers are used to manage the position and size of figures. Respecting each figures
preferred size, a layout algorithm calculates final size and locations of figures. Additional
guidance for placements can be passed to the LayoutManager using constraints. It depends
on the type of layout manager whether these constraints are respected or not. The Draw2D
frameworks provides the following layout managers:

• ToolbarLayout: Arranges figures in a single row or column.

• FlowLayout: Lays out children figures in rows or columns, wrapping when the current
row/column is filled.

• GridLayout: Lays out figures in a grid. Similar to the Swing GridLayout.

• BorderLayout: Similar to the Swing BorderLayout.

• XYLayout: Figures are placed at specified x-y-coordinates.

None of the built-in layouts meets our requirements exactly. Universe graphs can have quite
a lot of references leading to confusing graph representation without a good layout mechanism.
On one hand, we would like to have a layout that automatically places the nodes during the
graph build-up. On the other hand, we would like to have manual editing functionality for
the graph.

Our conclusion was to implement both approaches using different layout modes. We use a
DelegatingLayoutManager that implements the whole LayoutManager interface and pretends
to the EditParts to be a layout manager. In reality it just delegates the layouting tasks
to GraphLayoutManager or GraphXYLayoutManager according to the chosen layout mode.
GraphLayoutManager is the automatic layout that tries to place graph nodes and edges in
an optimal way. GraphXYLayoutManager is the manual layout that lets the user move class
and Universe elements. Changing the layout mode fires the Layout property in the model.
That makes the controller change the layout manager in the DelegatingLayoutManager and
request all figures to be repainted.

The automatic GraphLayoutManager uses the DirectGraphLayout implementation done
by the GEF contributor Randy Hudson. It uses a network simplex algorithm for assigning
ranks to the nodes. The nodes are ordered according to the ranks to minimize crossings of
edges. The rank ordering is done using the Sugiyama algorithm[32]. The y-coordinates of
each node is assigned based on the ranks. Final x-coordinates are assigned to a node using
an auxiliary graph as described in [15].

The manual GraphXYLayoutManager is a simple layout that sets the location and size
according to user interaction in the view. Moving or resizing an element in the view cre-
ates a request that is delegated to UniverseXYLayoutPolicy. The policy then creates a
ModelElementMoveCommand command and sets the new layout constraints.

4.9 Universe Visualizer 89

4.9.5. Package Overview

Action Package [ch.ethz.inf.sct.inference.visualizer.actions] The action package contains
all classes that are related to actions and can be triggered through the user interface. Visualizer
ActionBarContributor contributes the actions as icons to the toolbar. These are the actions
to control the player (PlayAction, OneStepAction, PauseAction) and ChangeLayoutAction
to toggle between the automatic and the manual layout. VisualizerContextMenuProvider
is the contributor for actions that appear in the context menu of the editor.

Editor Package [ch.ethz.inf.sct.inference.visualizer.editor] The InferenceVisualizer
Editor implements the editor which is used for the Universe visualization. The editor initial-
izes different objects like the Scheduler, the GraphicalViewer, and OverviewOutlinePage.
It also creates the VisualizerContextMenuProvider and the ZoomManager for the toolbar
and context menu contributions.

Eclipse editors are following an open-save-close model. That means, each editor instance
corresonds to a file and is responsible to open, save, and close the associated file. Normally,
this model also implies the following: Before opening a resource, the resources is already
created and persistent on the hard disk. Therefore, an editor always needs an IEditorInput.
Since we are starting our visualization by launching an inference configuration, we do not
have this preexisting resource file to be passed to the editor. We solved this issue by creating
an artificial input object, called NonExistingFileEditorInput, that is not related to a file.
Once we save the file, we detect the missing file association and create the file on-the-fly.
Saving a file serializes the GEF model. Therefore, the GEF model can be reconstructed at
later time. This is only true for the graphical model. The EOG model is not serialized,
consequently, the inferring process is interrupted.

OverviewOutlinePage is shown in the Outline View when a visualizer editor is activated.
It shows the overview of the Universe graph in a thumbnail image.

Figures Package [ch.ethz.inf.sct.inference.visualizer.figures] The figure package contains
all figures. See the description in the View subsection on page 87.

Layout Package [ch.ethz.inf.sct.inference.visualizer.layout] The layout package contains
all layout related classes, such as the DelegatingLayoutManager, GraphLayoutManager, and
the GraphXYLayoutManager. See the description in the Subsection 4.9.4.

Model Package [ch.ethz.inf.sct.inference.visualizer.model] The model package contains
all classes that are related to the GEF diagram model. See the description in the Model
subsection on page 85.

The subpackage commands contains all Commands used to modify the GEF model. As
already explained, Commands normally get created by Policies. In our case, we also use the
Commands to build the Universe graph in the observer EOGObserver (see Figure 4.7 on page
86).

90 4 Implementation

EditorParts Package [ch.ethz.inf.sct.inference.visualizer.parts] The parts package contains
all EditPart controller classes. See the description in the Controller subsection on page 86.

Policies Package [ch.ethz.inf.sct.inference.visualizer.policies] The policies are settled in
this package. Although not all policies are really needed to fulfill the current use case of
the Universe visualization, we implemented most of them. They are needed for an enhanced
interaction with the graph (e.g., modification and re-inference of the Universe structure due
to moving classes between Universes).

RI Package [ch.ethz.inf.sct.inference.visualizer.ri] Contains the Runtime Inference related
classes. Currently, this is only the observer class EOGObserver.

SI Package [ch.ethz.inf.sct.inference.visualizer.si] Package for classes related to the GEF
model build-up out of a Static Inference result.

Notes on the CVS structure and instructions about updating and deploying the plug-ins
can be found in Appendix D and E.

Chapter 5.

Results and Conclusions

In this chapter we discuss the results of this thesis. Some examples that demonstrate the
functionality of the tool are presented in Section 5.1.1 and 5.1.2. Possible future work that
could improve the existing implementation is presented in Section 5.2. Section 5.3 completes
this report with the conclusions.

5.1. Results

5.1.1. Combining Runtime and Static Inference

We use the same example as in Listing 2.4 in Section 2.3. The global preferences that were
chosen for this example were quite sneaky, therefore we got such a bad inference result. The
global preferences were chosen such that field got annotated with readonly, object creation
with rep, and local variables with peer. It also introduced a bad cast because of this global
preference settings. Nevertheless, considering the following example shows that, although the
global preference settings are bad, the local preferences can correct that using the Combined
Inference.

Listing 5.1: Results of using the Combined Inference.

1 public class Car {
2 /∗@ rep @∗/ Wheel frontLeft;
3 /∗@ rep @∗/ Wheel frontRight;
4 /∗@ rep @∗/ Wheel rearLeft;
5 /∗@ rep @∗/ Wheel rearRight;
6 /∗@ peer @∗/ Wheel spareWheel;
7
8 public Car() {
9 frontLeft = new /∗@ rep @∗/ Wheel();

10 frontRight = new /∗@ rep @∗/ Wheel();
11 rearLeft = new /∗@ rep @∗/ Wheel();
12 rearRight = new /∗@ rep @∗/ Wheel();
13 spareWheel = new /∗@ peer @∗/ Wheel();
14 }
15 }
16
17 public class Driver {
18 private /∗@ rep @∗/ Car car;
19

91

92 5 Results and Conclusions

Figure 5.1.: The local preferences that were computed for the wheel example.

20 public Driver() {
21 car = new /∗@ rep @∗/ Car();
22 }
23
24 public void doJob() {
25 /∗@ rep @∗/ Wheel sw;
26 sw = car.spareWheel;
27 sw.deflate();
28 }
29
30 public static void main(/∗@ peer readonly @∗/ String[] args) {
31 /∗@ peer @∗/ Driver me = new /∗@ peer @∗/ Driver();
32 me.doJob();
33 }
34 }
35
36 public class Wheel {
37 private float pressure;
38
39 public void deflate() {
40 pressure = 1.0f;
41 }
42 }

The Runtime Inference inferred all normal wheels as rep and the spare wheel as peer. There-
fore it sets in the local preferences quite high weights for the rep modifier of the wheels and
peer for the spare wheel. Using all heuristics the local preferences were computed as shown
in Figure 5.1. This forced the SAT solver to infer a peer annotation for the spareWheel and
the other wheels with rep. Since the Car object and Wheel sw are in the same context they
are both rep to the Driver object and can be safely deflated.

This example showed that the Static Inference alone is only as good as the preferences are
set by the user (see the bad example in Listing 2.4 on page 26). Using the Combined Infer-
ence, bad global preferences can be repaired through the local preferences that are calculated

5.1 Results 93

using the Runtime Inference.

The Combined Inference is also suited to get rid of code coverage issues as discussed in
Section 2.2. Listing 5.2 shows the same example as Listing 2.1.

Listing 5.2: No coverage issues with the Combined Inference.

1 public class Coverage {
2 /∗@ peer @∗/ Coverage field1;
3 /∗@ peer @∗/ Coverage field2;
4
5 public void foo(boolean condition) {
6 field1 = new /∗@ peer @∗/ Coverage();
7 field2 = new /∗@ peer @∗/ Coverage();
8 if (condition) {
9 field1.makePeer(this);

10 } else {
11 field2.makePeer(this);
12 }
13 }
14
15 public void doWrite() {
16 // creates a write reference
17 }
18
19 public void makePeer(/∗@ peer @∗/ Coverage other) {
20 other.doWrite();
21 }
22
23 public static void main(/∗@ peer readonly @∗/ String[] args) {
24 /∗@ peer @∗/ Coverage c = new /∗@ peer @∗/ Coverage();
25 c.foo(false); // or c.foo(true) for other path
26 }
27 }

Contrary to the Runtime Inference solution where one field got annotated with rep, both
fields are annotated with peer using the Combined Inference. Table 5.1.1 shows the local
preferences that were calculated using the heuristics “Class Scope Coverage Heuristic” and
“Parameter Heuristic”. The very low weights for the fields are effected by the coverage heuris-
tic. Our coverage metric mesured a relatively low coverage value of 20%. Therefore, the
weights for the field1 and field2 are also very low although the Runtime Inference inferred
a rep annotation for field1. The annotation suggestion for the method parameter Coverage
other from the Runtime Inference is supported by the parameter heuristic. That is why it
suggests a relatively high preference for peer.

We have seen in this example that potentially wrong annotation suggestions caused by bad
code coverage can be fixed with the coverage heuristic. The result of the Combined Inference
is correct and corresponds to our expectations.

94 5 Results and Conclusions

Member Kind peer rep readonly

Coverage.field2 Field 3 3 3
Coverage.field1 Field 3 3 3
Coverage.makePeer(Coverage):PARAM0 Parameter 34 3 3

Table 5.1.: The local preferences determined for the Coverage.

5.1.2. Eclipse Integration

The goal of this master thesis was to develop the Eclipse plug-ins for the Universe inference
tools. We implemented a collection of 10 plug-ins that build the Universe Inference tools for
Eclipse.

We conclude that the Eclipse plug-in infrastructure is a powerful framework that enables,
after the time it takes to familiarize oneself with it, to develop plug-ins with quite powerful
functionality. The problems we encountered were different integration issues. The design of
the existing inference projects was not always consistent with the Eclipse architecture style.
The separation of model, view, and controller in the command line tools was different than
the Eclipse state-of-the-art MVC separation. The command line tools were designed to run
in a single process with one main thread. Contrary, the Eclipse integration supports several
concurrent worker threads and synchronisation with the SWT UI-thread. Further, we also
had to integrate the logging facilities to Eclipse. Sometimes there were a lot of minor issues
that led to code refactorings that need some time and are error-prone.

GEF turned out to be a very productive framework to create graphical applications in
Eclipse. Offering a well structured and predefined architecture, we were quite amazed how
fast one can develop with GEF. The whole Universe visualization was done in around three
weeks. However, GEF has its drawbacks as well. It is not easy to find good documentation
about it. Because the framework is still under heavy development, the source code is not
yet well documented with Javadoc. Sometimes we had to look up the GEF example source
code to understand how things work in GEF. We also noticed some conceptual issues with
GEF. Connections are arranged in a special layer which is always the top layer. Therefore,
z-buffering is not working properly (see Figure 5.2).

Due to time constraints we were not able to implement all desired functionality of the
Universe visualizer, such as the interaction with the inferer. Nevertheless, we built the func-
tionality of manipulating Universes and moving nodes from one Universe to another.

5.2. Future Work

Annotator

Semantic Checks: Perform semantic checks during the annotation phase. Report errors if
an annotation file contains semantically illegal annotations.

XML: Use caching to speed up the lookup of annotations in the XML DOM.
Probably also use XPath or XQuery instead of iterating through the

5.2 Future Work 95

Figure 5.2.: The class instance 3:Node is covered behind a Universe. Nevertheless, the con-
nections to the node are painted because of the missing z-buffering in GEF.

DOM.

Source Layout: Respect original source code layouts (whitespaces, indents, and lines-
paces).

Eclipse AST: Use Eclipse AST and the Eclipse refactoring API to insert Universe
modifiers.

Runtime Inference

Tracing with JDI: It might be possible to get rid of the intermediate step of the tracing
and directly build up the EOG while tracing events. This could be
possible by re-implementing the tracing agent using the Java Debugging
Interface (JDI).

Merge: Instead of merging multiple trace files in the EOG it would also be
possible to merge multiple annotation XML files in the Static Inference.

Classloading Issues: We encountered different classloading issues with the abstract interpre-
tation in Eclipse. While we use our own classloader implementation in
Eclipse to load classes from a project directory, BCEL uses an internal
classloader. This led to incompatibility issues.

JVM Crashes: We encountered the issue that the tracing agent crashed the JVM when
autoboxing was used in the source code. Unfortunately, the issue is not
deterministic. Sometimes the tracing works fine, sometimes not.

Static Inference

Heuristic: Improve and enhance heuristics. Conduct extensive case studies to get
more empirical data and adjust the heuristics.

Pre-Annotations: We currently set constant weights for Universe modifiers in pre-annotated
sources. It might be interesting to use heuristics and set dynamic
weights for the pre-annotations.

Generics: Enhance the Static Inference in order to support Universe annotations
for generics.

96 5 Results and Conclusions

Preferences: Extend the global and local preferences for static method annotations.

Bad Casts: Extend the Static Inference in a way that bad cast can be eliminated
by considering the runtime behavior in the EOG.

Visualizer

SI Visualizer: Extend the Visualizer for the Static Inference in order to visualize the
whole static structure of a program.

Interaction: Extend the Visualizer so that interaction with the inferer model is pos-
sible. It would be nice to change Universe modifiers by moving objects
between the Universes. Automatically re-infer annotations after modi-
fications in the Universe graph.

Layout: Improve the automatic graph layout. Prevent the crossing of references
with objects.

Persistence: There was an issue with reconstrucing the layout from persistent visu-
alization files. After saving manually edited Universe layout, the layout
was not reconstructed and the automatic graph layout was applied. Due
to lack of time we were not able to fix this issue.

Connections: Use curved connections with splines instead of polygone connections.
Currently this is not supported with GEF, but announced as a feature
of a future GEF release.

Export: Export of the Universe graph to images (SVG, PDF, EPS).

Snap-to-G: Enhance the visualizer with placement tools. Use grids for dragging and
resizing confined to grid coordinates, or dragging and resizing snap to
the rows and columns implied by existing objects in the diagram graph.
Also, use user defined horizontal and vertical guides.

5.3. Conclusion

In this master thesis we presented an approach to combine Runtime and Static Inference and
the integration of the inference tools into the Eclipse development environment. As result
both tools are now fully integrated in Eclipse and can easily be used in the normal Java
perspective together with the already existing JML plug-ins.

With the inference tools a programmer is now able to infer Universe types using a powerful
user interface. Universe modifiers can be inferred by either using the Runtime Inference or the
Static Inference alone or as a combination together. The inference settings can be configured
with a few mouse clicks and do not need complicated editing of XML files. The inference
results are presented in a dedicated view that enables easy interaction with the Java editor.
The inference result can be reviewed, fixed, and maybe re-inferred in an easy manner. The
Universe ownership modifier can easily be inserted into the Java source using the annotator

5.3 Conclusion 97

plug-in.

The Inference Visualizer can be used to visualize the different steps of the Runtime Infer-
ence algorithm and the resulting Universe structure. It is also extendable to be used for the
Static Inference as well. The visualization provides automatic layouting facilities and allows
the programmer to edit and interact with the Universe graph.

Finally, all the plug-ins are packaged into Eclipse features which are deployable over update
sites with the Eclipse Update Manager.

98 5 Results and Conclusions

Bibliography

[1] JavaCC - Java Compiler Compiler. Available from https://javacc.dev.java.net/.

[2] JTB - Java Tree Builder. Website of UCLA Compilers Group. Available from http://compilers.cs.ucla.edu/jtb/.

[3] Fadi Aloul. PBS v2.1: Incremental pseudo-boolean backtrack search SAT solver and optimizer, 2003. Available
from http://www.eecs.umich.edu/~faloul/Tools/pbs/,.

[4] Marco Bär. Practical runtime universe type inference. Master’s thesis, ETH Zurich, May 2006.

[5] Paolo Bazzi. Integration of universe type system tools into eclipse. Semester thesis, ETH Zurich, September 2006.

[6] S. Bergman and E. L. Lozinskii. A fast algorithm for max-sat approximation. pages 424 – 431, 2003.

[7] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley Professional,
1st edition, 1999.

[8] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-ins. Addison-Wesley Professional, 2nd
edition, 2006.

[9] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava project. OOPSLA, 2000. Available
from http://multijava.sourceforge.net/.

[10] W. Cohen, P. Ravikumar, and S. Fienberg. Secondstring project. Available from http://secondstring.

sourceforge.net/.

[11] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In Foundations and Developments of Object-
Oriented Languages (FOOL/WOOD ’07), January 2007.

[12] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology (JOT), 4(8):5–32,
October 2005.

[13] A. L. Baker G. T. Leavens and C. Ruby. Preliminary design of JML: A behavioral interface specification language
for java, 2004. See http://www.jmlspecs.org/.

[14] Erich Gamma and Kent Beck. Eclipse erweitern: Prinzipien, Patterns und Plug-Ins. Addison-Wesley, München,
2004.

[15] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo. A technique for drawing
directed graphs. Software Engineering, 19(3):214–230, 1993.

[16] Joseph R. Horgan and Aditya P. Mathur. Software testing and reliability. pages 531–566, 1996.

[17] Agitar Software Inc. The open quality initiative, 2006. Available from http://www.agitar.com/openquality/

initiative.html.

[18] Sun Microsystems Inc. Code conventions for the java(TM) programming language, April 1999. Available from
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html.

[19] Sun Microsystems Inc. JSR 202: Java class file specification update, 2006. Available from http://www.jcp.org/

en/jsr/detail?id=202.

[20] Sun Microsystems Inc. What is the type checking verifier?, 2006. Available from https://jdk.dev.java.net/CTV/

learn.html.

[21] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in Medicine 14.

[22] Nathalie Kellenberger. Static runtime inference. Master’s thesis, ETH Zurich, 2005.

[23] Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning, pages
235 – 269, 2003.

99

https://javacc.dev.java.net/
http://compilers.cs.ucla.edu/jtb/
http://www.eecs.umich.edu/~faloul/Tools/pbs/
http://multijava.sourceforge.net/
http://secondstring.sourceforge.net/
http://secondstring.sourceforge.net/
http://www.jmlspecs.org/
http://www.agitar.com/openquality/initiative.html
http://www.agitar.com/openquality/initiative.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://www.jcp.org/en/jsr/detail?id=202
http://www.jcp.org/en/jsr/detail?id=202
https://jdk.dev.java.net/CTV/learn.html
https://jdk.dev.java.net/CTV/learn.html

100 Bibliography

[24] Frank Lyner. Runtime universe type inference. Master’s thesis, ETH Zurich, 2005.

[25] Manoel Marques. Plugging in a logging framework for eclipse plug-ins. IBM Developer Works, 2004.

[26] Marco Meyer. Interaction with ownership graphs. Semester thesis, ETH Zurich, January 2006.

[27] Alvaro E. Monge and Charles Elkan. The field matching problem: Algorithms and applications. In Knowledge
Discovery and Data Mining, pages 267–270, 1996.

[28] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency control. Technical Report
279, Fernuniversität Hagen, 2001.

[29] Matthias Niklaus. Static universe type inference using a SAT-solver. Master’s thesis, ETH Zurich, May 2006.

[30] Apache XML Project. Java XMLBeans, 2003. Available from http://xmlbeans.apache.org.

[31] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of Molecular Biology,
147:195–197, 1981.

[32] Tagawa S. Sugiyama, K. and M. Toda. Methods for visual understanding of hierarchical system structures. IEEE
Trans. on Sys. Man and Cyb, pages 109–125, 1981.

[33] William E. Winkler. The state of record linkage and current research problems. Statistics of Income Division,
Internal Revenue Service Publication R99/04, 1999.

http://xmlbeans.apache.org

Appendix A.

Generation of Parser

Because further work might has to enhance the annotator grammar file and generate a new
parser, we append our ANT script to ease the tasks of a future student:

<project name=”AnnotationTool Build Parser” default=”” basedir=”.”>

<target name=”jtb” description=”Generate the tree builder grammer using JTB.
”>
<java classname=”EDU.purdue.jtb.JTB”>
<arg line=”−p EDU.purdue.jtb −jd −f −tk −printer Java1.5.jj” />
<classpath>

<pathelement location=”lib/jtb132mod.jar”/>
</classpath>
</java>
<copy todir=”src/EDU/purdue/jtb/visitor”>

<fileset dir=”visitor”/>
</copy>
<copy todir=”src/EDU/purdue/jtb/syntaxtree”>

<fileset dir=”syntaxtree”/>
</copy>
<delete dir=”visitor”/>
<delete dir=”syntaxtree”/>

</target>

<target name=”javacc” description=”Generate the parser using JavaCC.”>
<mkdir dir=”src/EDU/purdue/jtb/parser” />
<javacc

target=”jtb.out.jj”
outputdirectory=”src/EDU/purdue/jtb/parser”
javacchome=”D:/Programme/javacc−4.0”

/>
</target>

<target name=”compileparser” description=”Compiles the generated parser”>
<javac sourcepath=”” srcdir=”src” destdir=”bin” >

<include name=”EDU/purdue/jtb/∗.java”/>
</javac>

</target>

101

102 A Generation of Parser

<target name=”correct comment” description=”Corrects the code and javadoc
comments”>
<replaceregexp

match=”"\∗/"”
replace=”"(star)/"” >
<fileset dir=”src/EDU/purdue/jtb” includes=”∗∗/∗.java” />

</replaceregexp>
</target>

<target name=”all” depends=”jtb, javacc, correct comment, compileparser”>
</target>

<target name=”clean” description=”Cleans all the generated files”>
<delete dir=”bin/EDU” />
<delete dir=”src/EDU/purdue/jtb/syntaxtree” />
<delete dir=”src/EDU/purdue/jtb/visitor” />
<delete>

<fileset dir=”src/EDU/purdue/jtb/parser”>
<include name=”JTBParser.java”/>
<include name=”JTBParserTokenManager.java”/>
<include name=”JTBParserConstants.java”/>
<include name=”∗CharStream∗.java”/>
<include name=”TokenMgrError.java”/>
<include name=”ParseException.java”/>

</fileset>
</delete>
<delete file=”jtb.out. jj ” />

</target>

</project>

Appendix B.

Generation of XML Binding Classes

The accessing of the XML files is done by binding the XML to Java types. To compile the
XML schema to Java classes, you have to perform the task described in the ANT script below.
XMLBeans needs the JAR libraries xbean.jar and jsr173 api.jar. Both are in the CVS or can
be downloaded from [30].

<project name=”XMLBean” default=”” basedir=”.”>

<taskdef name=”xmlbean” classname=”org.apache.xmlbeans.impl.tool.XMLBean”
classpath=”lib/xbean.jar”/>

<target name=”compileTypes” description=”Compile the XML Schema”>
<xmlbean classgendir=”src” classpath=”${classpath}”

destfile =”xmltypes.jar” failonerror =”true” javasource=”1.5” >
<fileset dir=”src” excludes=”∗∗/∗.xsd”/>
<fileset dir=”schemas” includes=”∗∗/annotations.xsd”/>

</xmlbean>
</target>

</project>

103

104 B Generation of XML Binding Classes

Appendix C.

Annotation XML Schema

C.1. Indexing

The indexing of parameters and assignments was not clear to me and not properly docu-
mented. Therefore, we try to describe the indexing and outline some problems:

The AddCast element in the annotation XML can have the position type assignment,
method_call, array_initialyzer, and return_stmt.

Pos Type Pos Description Example

assignment -1 Add cast to target ((peer C)x.y.z).field = a;
0 Add cast to the expression

on the right hand side
x.field = (rep C)a;

>0 not valid
method call -1 Add cast to target ((peer C)x.y.z).foo();

≥0 Add cast to the argument
at this position

x.foo((peer C)p);

array initializer -1 not valid
≥0 Array entry at this position C [] = new C[] { (peer C)e1, e2 };

return stmt -1 not valid
0 Add cast to the expression return (peer C)obj;

≥0 not valid

Notice the case where a cast has to be added to y = foo(). Not to cast the return value
of the call, but the target, one has to rewrite the expression to y = ((peer C)this).foo().
Semantically, this does not make any sense because this is always a peer reference. Casts
only have to be inserted in the case of a downcast of a readonly target that is calling a non-
pure method. This would require a semantic check. Semantic checks are not supported
in the current implementation, therefore the annotator does not perform the transformation
described above.

The XSD schema allows to add different casts for the elements of an array. Similar to
method parameters, a position attribute identifies the element at the associated position. So,
it is possible to add semantically incorrect casts since the array components all have to be of
the same type. Something like peer peer C[] cArray = new C[] { new rep C(), new peer C() }
is wrong.

We do not perform any semantic checks with the annotation tool. We assume that anno-
tations in the XML are semantically correct and simply insert it into the Java sources.

105

106 C Annotation XML Schema

C.2. Annotation XML Schema [annotations.xsd]

<?xml version=”1.0” encoding=”UTF−8”?>
<!−−
Schema for annotation files that specify Universe annotations that
should be added to existing sources.

Author: WMD

$Id: annotations.xsd,v 1.6 2007/03/11 14:40:00 anfuerer Exp $

Revision History:
− (anfuerer 10.03.07)

Wrong schema was checked in to CVS. Corrected that.
− (anfuerer 21.09.06)

Made schema of RI and SI consistent
− (anfuerer 23.09.06)

Some minor changes (typo, formatting)
− (anfuerer 10.12.06)

Updated description
− (anfuerer 29.01.07)

Updated description comment for index of addcast.
− (anfuerer 08.03.07)

Minor formatting changes
−−>
<xsd:schema xmlns:po=”http://sct.inf.ethz.ch/annotations” xmlns:xsd=”http://www.w3.

org/2001/XMLSchema” targetNamespace=”http://sct.inf.ethz.ch/annotations”>

<!−−XXX
Some additional types to automatically check the input.
XXX −−>

<!−−
The modifiers that are valid for simple reference types .
−−>
<xsd:simpleType name=”SimpleUniverseModifier”>

<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”implicit peer”/>
<xsd:enumeration value=”peer”/>
<xsd:enumeration value=”rep”/>
<xsd:enumeration value=”readonly”/>

</xsd:restriction>
</xsd:simpleType>

<!−−

C.2 Annotation XML Schema [annotations.xsd] 107

The modifiers that are valid for types , including arrays.
−−>
<xsd:simpleType name=”UniverseModifier”>

<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”implicit peer”/>
<xsd:enumeration value=”peer”/>
<xsd:enumeration value=”rep”/>
<xsd:enumeration value=”readonly”/>

<xsd:enumeration value=”peer peer”/>
<xsd:enumeration value=”peer readonly”/>
<xsd:enumeration value=”rep peer”/>
<xsd:enumeration value=”rep readonly”/>
<xsd:enumeration value=”readonly peer”/>
<xsd:enumeration value=”readonly readonly”/>

</xsd:restriction>
</xsd:simpleType>

<!−−
The modifiers that are valid for methods.
−−>
<xsd:simpleType name=”UniverseMethodModifier”>

<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=””/>
<xsd:enumeration value=”pure”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name=”CastPositionType”>
<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”assignment”/>
<xsd:enumeration value=”method call”/>
<xsd:enumeration value=”array initialyzer”/>
<xsd:enumeration value=”return stmt”/>

</xsd:restriction>
</xsd:simpleType>

<!−−
What target should be modified?
−−>
<xsd:simpleType name=”ToolTarget”>

<xsd:restriction base=”xsd:string”>
<!−− Modify the original Java sources −−>
<xsd:enumeration value=”java”/>

108 C Annotation XML Schema

<!−− Create JML specification files −−>
<xsd:enumeration value=”jml”/>

</xsd:restriction>
</xsd:simpleType>

<!−−
With what style should the annotations be inserted?
−−>
<xsd:simpleType name=”ToolStyle”>

<xsd:restriction base=”xsd:string”>
<!−− As standard type annotations, e.g. ”peer T” −−>
<xsd:enumeration value=”types”/>

<!−− Within JML comments, e.g. ”/∗@ peer T @∗/” −−>
<xsd:enumeration value=”jml”/>

<!−− As escaped JML comments, e.g. ”/∗@ \peer T @∗/” −−>
<xsd:enumeration value=”oldjml”/>

</xsd:restriction>
</xsd:simpleType>

<!−−XXX
The elements of our schema.
XX−−>

<!−−
The top−level element consisting of one header element and
at least one class element.
−−>
<xsd:element name=”annotations”>

<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs=”1” minOccurs=”1” ref=”po:head”/>
<xsd:element maxOccurs=”unbounded” minOccurs=”1” ref=”po:class”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!−−
Some additional information at the beginning.
Should be overridable on the command line.
−−>
<xsd:element name=”head”>

<xsd:complexType>

C.2 Annotation XML Schema [annotations.xsd] 109

<xsd:sequence>
<!−− Should we create a ”.jml” specification or embed the

annotations in existing ”. java” files ? −−>
<xsd:element name=”target” type=”po:ToolTarget”/>

<!−− What style of Universe annotations should we use? −−>
<xsd:element name=”style” type=”po:ToolStyle”/>

<!−− Maybe the source of the annotations. −−>
<xsd:element name=”comment” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!−−
The annotations for one class.
−−>
<xsd:element name=”class”>

<xsd:complexType>
<xsd:sequence>

<!−− Annotations for the fields of the class . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:field”/>

<!−− Annotations for the methods of the class. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:method”/>

<!−− Annotations for the object initializers . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” name=”object init” type=”

po:object class init”/>

<!−− Annotations for the class initializers . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” name=”class init” type=”

po:object class init”/>
</xsd:sequence>

<!−− The fully qualified name of the class. −−>
<xsd:attribute name=”name” type=”xsd:string” use=”required”/>

<!−− Optionally, the relative path to the source file . −−>
<xsd:attribute name=”file” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>

<!−−

110 C Annotation XML Schema

The annotation for a field .
−−>
<xsd:element name=”field”>

<xsd:complexType>
<xsd:sequence>

<!−− The annotations for the field initializer . −−>
<xsd:element maxOccurs=”1” minOccurs=”0” ref=”po:field init”/>

</xsd:sequence>

<!−− The name of the field. −−>
<xsd:attribute name=”name” type=”xsd:string” use=”required”/>

<!−− The Java type of the field. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− Optionally, the source line of the declaration .
Would this really help a tool to insert the annotation?
What if there is more than one declaration per line?

−−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”po:UniverseModifier”/

>

</xsd:complexType>
</xsd:element>

<!−−
The annotations for a method or constructor.
−−>
<xsd:element name=”method”>

<xsd:complexType>
<xsd:sequence>

<!−− The annotation for the return type. −−>
<xsd:element maxOccurs=”1” minOccurs=”0” ref=”po:return”/>

<!−− The annotations for the parameter types. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:parameter”/>

<!−− The annotations for the local variables. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:local”/>

<!−− The annotations for object creations in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:new”/>

C.2 Annotation XML Schema [annotations.xsd] 111

<!−− The annotations for casts in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:cast”/>

<!−− The annotations for casts in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:addcast”/>

<!−− The annotations for static calls in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:static call”/>

</xsd:sequence>

<!−− The name of the method. −−>
<xsd:attribute name=”name” type=”xsd:string” use=”required”/>

<!−− The signature of the method. Multiple methods can have the
same name, the signature resolves the overloading. −−>

<xsd:attribute name=”signature” type=”xsd:string” use=”required”/>

<!−− Optionally, the source line of the declaration .
Would this really help a tool to insert the annotation?
What if there is more than one declaration per line?

−−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− Modifiers that should be added to the method.
At the moment there is only ”pure” or ””. −−>

<xsd:attribute default=”” name=”modifier” type=”po:UniverseMethodModifier”/>
</xsd:complexType>

</xsd:element>

<!−−
The annotations for a field initialzier .
−−>
<xsd:element name=”field init”>

<xsd:complexType>
<xsd:sequence>

<!−− The annotations for object creations in this initializer . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:new”/>

<!−− The annotations for casts in this initializer . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:cast”/>

<!−− The annotations for casts in this initializer . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:addcast”/>

<!−− The annotations for static calls in this initializer . −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:static call”/>

112 C Annotation XML Schema

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!−−
The annotations for an object or class initializer .
Careful: all the initializer blocks are merged into one of each kind
for execution.
So if the annotation information comes from the runtime inference tool,
the indices might be larger than expected from one initializer alone.
−−>
<xsd:complexType name=”object class init”>

<xsd:sequence>
<!−− The annotations for the local variables. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:local”/>

<!−− The annotations for object creations in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:new”/>

<!−− The annotations for casts in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:cast”/>

<!−− The annotations for casts in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:addcast”/>

<!−− The annotations for static calls in this method. −−>
<xsd:element maxOccurs=”unbounded” minOccurs=”0” ref=”po:static call”/>

</xsd:sequence>

<!−− The index of the initializer within the class ,
starting from zero.

−−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− Optionally, the source line of the opening ”{”. −−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− Modifiers that should be added to the method.
At the moment there is only ”pure” or ””.
Not supported yet, but might come...
<xsd:attribute name=”modifier” type=”UniverseMethodModifier” default=””/>

−−>
</xsd:complexType>

<!−−

C.2 Annotation XML Schema [annotations.xsd] 113

The annotation for the return type.
−−>
<xsd:element name=”return”>

<xsd:complexType>
<!−− The Java type of the return value. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− Optionally, the source line of the declaration .
Would this really help a tool to insert the annotation?
What if there is more than one declaration per line?

−−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”po:UniverseModifier”/

>
</xsd:complexType>

</xsd:element>

<!−−
The annotation for a parameter.
−−>
<xsd:element name=”parameter”>

<xsd:complexType>
<!−− The index of the parameter, starting from zero.

Might be the only thing available . −−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− The Java type of the parameter. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− The name of the parameter, if available.
Otherwise ”param” + index is used as name if needed. −−>

<xsd:attribute name=”name” type=”xsd:string”/>

<!−− Optionally, the source line of the declaration .
Would this really help a tool to insert the annotation?
What if there is more than one declaration per line?

−−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”po:UniverseModifier”/

>
</xsd:complexType>

</xsd:element>

114 C Annotation XML Schema

<!−−
The annotation for a local variable .
−−>
<xsd:element name=”local”>

<xsd:complexType>
<!−− The index of the local variable, starting from zero.

Might be the only thing available . −−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− The Java type of the local variable . −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− The name of the local variable, if available .
Otherwise ”local” + index is used as name if needed. −−>

<xsd:attribute name=”name” type=”xsd:string”/>

<!−− Optionally, the source line of the declaration .
Would this really help a tool to insert the annotation?
What if there is more than one declaration per line?

−−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”po:UniverseModifier”/

>
</xsd:complexType>

</xsd:element>

<!−−
The annotation for an object creation .
The existing new expressions in a method are indexed, starting from zero.
−−>
<xsd:element name=”new”>

<xsd:complexType>
<!−− The index of the new, starting from zero. −−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− The Java type of the new. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− Optionally, the source line of the new.
Would this really help a tool to insert the annotation?
What if there is more than one new per line?

−−>

C.2 Annotation XML Schema [annotations.xsd] 115

<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”po:UniverseModifier”/

>

</xsd:complexType>
</xsd:element>

<!−−
The annotation for a cast.
At the moment this is very limited .
The existing casts in a method are indexed, starting from zero.
No new casts can be introduced.
How could we exactly say where a new cast should be inserted??
−−>
<xsd:element name=”cast”>

<xsd:complexType>
<!−− The index of the cast, starting from zero. −−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− The Java type of the cast. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− Optionally, the source line of the cast .
Would this really help a tool to insert the annotation?
What if there is more than one cast per line?

−−>
<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”po:UniverseModifier”/

>
</xsd:complexType>

</xsd:element>

<!−−
The annotation for an additional cast .
At the moment we only support static type inference tools .
−−>
<xsd:element name=”addcast”>

<xsd:complexType>

<!−− The Java type of the cast. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

116 C Annotation XML Schema

<!−− Optionally, the source line of the cast .
Would this really help a tool to insert the annotation?
What if there is more than one cast per line?

−−>
<xsd:attribute name=”line” type=”xsd:int” use=”optional”/>

<!−− One of the Universe modifiers. −−>
<xsd:attribute name=”modifier” type=”po:UniverseModifier” use=”required”/>

<!−− One of the possible postitions to insert casts method, assignment or
array initializer −−>

<xsd:attribute name=”position type” type=”po:CastPositionType” use=”required”/>

<!−− The index of the position. starting from zero −−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− The position in the position type. −1 means target. A value greater or equal 0
means the parameter at this position for position type method call. Notice that
parameters are numbered starting from 0 until (n−1) where n is the number of
parameters.
For an assignment 0 is the expression to assign (the right hand side)
−−>

<xsd:attribute name=”position” type=”xsd:int” use=”required”/>

</xsd:complexType>
</xsd:element>

<!−−
The annotation for a static method call.
The existing static method calls in a method are indexed, starting from zero.
One index for each target class is maintained. The target class needs to be specified
in the static method call.
−−>
<xsd:element name=”static call”>

<xsd:complexType>
<!−− The index of the static call , starting from zero. −−>
<xsd:attribute name=”index” type=”xsd:unsignedInt” use=”required”/>

<!−− The Java type of the call. −−>
<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

<!−− Optionally, the source line of the call .
Would this really help a tool to insert the annotation?
What if there is more than one new per line?

−−>

C.2 Annotation XML Schema [annotations.xsd] 117

<xsd:attribute name=”line” type=”xsd:int”/>

<!−− One of the simple Universe modifiers, because static calls are
not possible on array types.

−−>
<xsd:attribute default=”implicit peer” name=”modifier” type=”

po:SimpleUniverseModifier”/>
</xsd:complexType>

</xsd:element>

</xsd:schema>

118 C Annotation XML Schema

Appendix D.

CVS Structure

All Eclipse projects related with this thesis can be found in the CVS on host waldorf.inf.ethz.ch
in the module dietlw/projects/inference-pack/.

The structure is as follows:

Directory Project

annotation-tool-plugin The annotator plug-in that parses Java sources and
inserts Universe modifiers.

annotation-xml-plugin XML annotation file plug-in. Contains the generated
EMF model code.

annotation-xml-plugin.edit XML annotation file plug-in. Contains the generated
EMF code providing the model edit capabilities.

annotation-xml-plugin.editor XML annotation file plug-in. Contains the generated
EMF code for the editor UI.

inference-combined-plugin Combined Inference plug-in project.
inference-common-plugin Inference Common plug-in. Contains code that is

shared by all inference Eclipse plug-ins.
inference-common-resources Common Inference resources plug-in. Contains com-

mon libraries and code of all inference projects (also
the resources projects).

inference-feature Feature project for the deployment of the inference
plug-ins.

inference-update-site Update site project for the deployment with an Eclipse
update site.

inference-visualizer-2 The Inference Visualizer plug-in.
jml-plugin The JML plug-in.
jml-resources The JML resources plug-in.
logging-plugin The logging plug-in used for the log4j integration in

Eclipse.
runtime-inference-config The XML configuration file editor plug-in. Contains

the generated EMF model code.
runtime-inference-config.edit The XML configuration file editor plug-in. Contains

the generated EMF code providing the model edit ca-
pabilities.

runtime-inference-config.editor The XML configuration file editor plug-in. Contains
the generated EMF code for the editor UI.

119

120 D CVS Structure

runtime-inference-plugin The Runtime Inference Eclipse plug-in.
runtime-inference-resources The Runtime Inference resources plug-in.
static-inference-plugin The Static Inference Eclipse plug-in.
static-inference-resources The Static Inference resources plug-in.

Appendix E.

Plug-in Deployment

If you want to update a plug-in (e.g., perform bug-fix, update JML libraries, etc.) the following
steps are necessary to deploy the plug-in:

• Check out latest CVS version of the corresponding plug-in.

• Replace libraries or other files with the new version.

• Open the file MANIFEST.MF and increase the plug-in version number.

• Use the build_plugin.xml to build a new version of the plug-in.

• Copy the new plug-in file from the /dist folder into the Eclipse /plugin folder and test
it.

• Check out the latest CVS version of the feature project containing the plug-in to update.

• Increase the version number of the feature.

• Check out the latest CVS version of the update site project.

• Open the file site.xml, synchronize the changed feature and rebuild the feature con-
taining the plug-in to update.

• Copy the new feature and plug-in files together with the changed site.xml file to the
Web server providing the update site.

JAR libraries are settled in the resource projects. Updating the plug-ins with a new JML
release only requests to replace the JML and MJ JARs in the JML resource plug-in.

121

122 E Plug-in Deployment

Appendix F.

Example of the Jaro-Winkler Algorithm

F.1. Jaro Algorithm

The Jaro algorithm [21] is described as follows:

Given strings s = a1 . . . aK and t = b1 . . . bL

Define a character ai in s to be common with t.

There is a bj = ai in t such that i−H 6 j 6 i + H, where H = min(|s|,|t|
2

Let s′ = a′
1 . . . a′

K , be the characters in s which are common with t (they appear in the
same order) and let t′ = b′1 . . . a′

L be analogous.

Now define a transposition for s′, t′ to be a position i such that a′
i 6= b′i.

Let Ts′,t′ be half the number of transpositions for s′ and t′. The Jaro similarity metric for
s and t is

Jaro(s, t) =
1
3

(
|s′|
|s|

+
|t′|
|t|

+
|s′| − Ts′,t′

|s′|

)

F.2. Example

Let s = AAAAAAAA
and t = AAAABBBB

s′ = AAAA and t′ = BBBB

Ts,t =
0
2

= 0

Jaro(s, t) =
1
3

(
4
8 + 4

8 + 4−0
4

)
= 2

3

123

124 F Example of the Jaro-Winkler Algorithm

F.3. Jaro-Winkler Algorithm

A variant of this due to Winkler [33] also uses the length P of the longest common prefix of
s and t.

Letting P ′ = max(P, 4) we define

JaroWinkler(s, t) = Jaro(s, t) +
P ′

10
(1− Jaro(s, t))

F.4. Example

P = 4 and P ′ = max(P, 4) = 4

JaroWinkler(s, t) =
2
3

+
4
10

(
1− 2

3

)
= 0, 8

	0.1 General Terms and Abbreviations
	0.2 Eclipse Specific Terms and Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Universe Type System
	1.3 Runtime Inference Tool
	1.3.1 Inference Algorithm Overview
	1.3.2 Static Methods, Arrays, and Method Body Annotations

	1.4 Static Inference Tool
	1.4.1 Inference Algorithm Overview
	1.4.2 Problem Solver

	1.5 Goals and Requirements

	2 Combining Runtime and Static Inference
	2.1 Comparison of Runtime and Static Inference
	2.1.1 Runtime Inference
	2.1.2 Static Inference

	2.2 Assessment of Runtime Inference
	2.2.1 Bad Code Coverage
	2.2.2 Bad Method Sequence

	2.3 Assessment of Static Inference
	2.4 Approaches
	2.4.1 Partially Annotated Sources
	2.4.2 Fixing Types
	2.4.3 Setting Weights
	2.4.4 Bad Cast Verification

	2.5 Determination of Runtime Inference Solution Quality
	2.5.1 Code Coverage
	2.5.2 Method Call Sequences

	2.6 Weight Functions
	2.6.1 Interpretation of the Weights
	2.6.2 Global and Local Preferences
	2.6.3 Setting the Weights for Local Preferences
	2.6.4 Coverage Heuristic
	2.6.5 Parameter Heuristic
	2.6.6 Field Heuristic

	3 Eclipse User Guide
	3.1 Installation and Configuration
	3.1.1 Plug-in Installation
	3.1.2 Solver Installation
	3.1.3 Logging Settings

	3.2 Runtime Inference Plug-in
	3.2.1 Tracing Agent
	3.2.2 Type Inferer
	3.2.3 Project Properties

	3.3 Static Inference Plug-in
	3.3.1 Type Inferer
	3.3.2 Project Properties
	3.3.3 Workspace Preferences
	3.3.4 Annotation View

	3.4 Annotator Plug-in
	3.4.1 Annotating Java Sources
	3.4.2 Editing Sources

	3.5 Combined Inference Plug-in
	3.6 JML Tools
	3.7 Inference Visualizer
	3.7.1 Start the Visualization
	3.7.2 Properties View
	3.7.3 Layout
	3.7.4 Zooming
	3.7.5 Alignment

	4 Implementation
	4.1 Overview
	4.1.1 Package Structure
	4.1.2 Identifier Naming Conventions for AST Elements

	4.2 Command Line Tools
	4.2.1 JVMTI Agent
	4.2.2 Java SE 6 Type Checking Verifier

	4.3 Annotator
	4.3.1 Design and Shortcomings of First Version
	4.3.2 New Implementation

	4.4 Logging in Eclipse
	4.5 Runtime Inference Tool
	4.5.1 Design and Shortcomings of the Runtime Inference Tool
	4.5.2 Eclipse Integration

	4.6 Static Inference Tool
	4.6.1 Design and Shortcomings of the Static Inference Tool
	4.6.2 Eclipse Integration

	4.7 Combined Inference
	4.7.1 Coverage
	4.7.2 Weight Heuristics

	4.8 Eclipse Integration Issues and Comments
	4.8.1 Class Loading
	4.8.2 Insert Text into an Editor
	4.8.3 Accessing UI Thread
	4.8.4 Obtaining a Workbench Reference
	4.8.5 Process Termination Notification

	4.9 Universe Visualizer
	4.9.1 GEF Introduction
	4.9.2 Architecture
	4.9.3 Implementation
	4.9.4 Layout
	4.9.5 Package Overview

	5 Results and Conclusions
	5.1 Results
	5.1.1 Combining Runtime and Static Inference
	5.1.2 Eclipse Integration

	5.2 Future Work
	5.3 Conclusion

	A Generation of Parser
	B Generation of XML Binding Classes
	C Annotation XML Schema
	C.1 Indexing
	C.2 Annotation XML Schema [annotations.xsd]

	D CVS Structure
	E Plug-in Deployment
	F Example of the Jaro-Winkler Algorithm
	F.1 Jaro Algorithm
	F.2 Example
	F.3 Jaro-Winkler Algorithm
	F.4 Example

