
Implementing a Purity and Side Effect
Analysis for Java Programs

David A. Graf

Semester Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

Winter Semester 2005/06

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

I present an implementation of a new method purity analysis for Java programs, which is described
in [1]. A method is pure if it does not mutate any location that exists in the program state
right before method invocation. The analysis is built on top of a combined pointer and escape
analysis for Java programs and is capable of determining whether methods are pure even if they
do heap mutation, provided that the mutation affects only objects created after the beginning of
the method.

My implementation is able to parse and analyze methods of Java Bytecode and writes the
results into an XML-file that can be parsed and used by tools which need purity information.
Additionally, the analyzer is able to export analyzer information of analyzed methods that can be
reparsed and reused by later analyses.

I have tested the implementation on several test cases. Apart from some parsing problems, the
analyzer runs correctly and in acceptable time. The parsing is based on an external tool which
has problems with a few classes of the Java runtime environment. The results of the analyzer
show that the analysis effectively recognizes a variety of pure methods, including pure methods
that allocate and mutate complex auxiliary data structures.

To test and present my analyzer, I have additionally implemented a GUI which shows all
information that is saved and computed by the analyzer.

3

4

Contents

1 Introduction 7

2 Internal Representation 9

3 Parser 13
3.1 Bytecode Parsing . 13

3.1.1 Bytecode Parsing with the JODE Decompiler 14
3.2 XML Parsing . 19

4 Analyzer 21
4.1 Preparations . 21

4.1.1 Inheritance relations . 21
4.1.2 Calling relations . 21
4.1.3 Control Flow Graph . 23
4.1.4 Method Worklist . 23
4.1.5 Statement Worklist . 23

4.2 Analysis . 23
4.2.1 Analyzer Graph . 24
4.2.2 Intra-procedural Analysis . 25
4.2.3 Inter-procedural Analysis . 28

5 Results of the Analysis 31
5.1 Purity . 31
5.2 XML Output . 31
5.3 Starting the Analyzer . 33

5.3.1 Command Line . 33
5.3.2 Imported JAR . 34
5.3.3 GUI . 34

6 Future Work / Conclusion 37
6.1 Future Work . 37
6.2 Conclusion . 37

5

6 CONTENTS

Chapter 1

Introduction

Methods in object-oriented languages often update the objects that they access, including the
”this”/”self” object. Accurately characterizing these updates is important for many tasks. In the
Software Component Technology Group1, many implemented analyzer tools for Java programs
need information about purity of each method which will be analyzed. Examples for such projects
are the type inference tools [3] and [4]. Currently, the purity information is passed to the analyzers
by hand with an XML-file. With my implementation, it will be possible to automate this task.

Commonly, researchers in a variety of fields have identified method purity as a useful concept.
For example, pure methods can be used safely in program assertions and specifications. When
model checking Java programs, it is important to know that methods are pure because this infor-
mation allows the model checker to reduce the search space by removing irrelevant interleavings.
Examples for using this concept are JML2 and the Universe Type System[5].

The implementation presented in this report is based on a paper [2] which introduces a new
method purity analysis for Java Programs and the corresponding technical report [1]. The analysis
is built on top of a combined pointer and escape analysis that accurately extracts a representation
of the region of the heap that each method may access. The analysis conservatively tracks object
creation, updates to the local variables and updates to the object fields. This information enables
the analyzer to distinguish objects allocated within the computation of the method from objects
that existed before the method was invoked.

Therefore, the analyzer can check that a method is pure, in the sense that it does not mutate
any object that exists in the program state right before the method invocation. This definition
allows a method to perform mutation on newly allocated objects (important for iterators).

The analyzer could be divided into three parts (see figure 1.1): a parser, an analyzer and a
result part. The parser (see chapter 3) parses Bytecode (.class-files) and transfers them into an
internal representation which is explained in chapter 2. The internal representation is analyzed by
the implementation of the analyzer, which is presented in the technical report[1]. This analyzer
generates for each method an analyzer graph (see section 4.2.1), which represents the combined
pointer and escape analysis. With the help of this analyzer graph, it is possible to find out if a
method is pure or not not and write this information into an XML-file.

In addition to this ’core’ functionality, I have implemented a device, to save analysis information
about already analyzed methods in an XML-file and to load analysis information about methods.
This device is useful in two ways. First, methods, which are used often and which need a lot
of resources to be analyzed (numerous methods from the Java Runtime Environment have this
property, such as System.out.println) have to be analyzed only once. Second, a lot of Java classes
from the Java Runtime Environment contain native methods. Logically, these classes cannot be
analyzed (with this analysis). Thus, the user will be able to declare the analyzer graph of native
methods by hand and to load this informations over an XML-file into the purity analyzer.

1http://sct.ethz.ch
2Java Modeling Language http://www.cs.iastate.edu/~leavens/JML/index.shtml

7

http://sct.ethz.ch
http://www.cs.iastate.edu/~leavens/JML/index.shtml

8 1 Introduction

Figure 1.1: overview purity analyzer

The purity analysis can either be started over the command line, a GUI or an imported JAR
in a Java project. The GUI shows the internal representation of the analyzer in an effective way.
How this three possibilities can be started and what they do exactly is explained in chapter 5.
When starting the analyzer, the user can decide if he wants an XML-file with purity information
or an XML-file with analyzer information as output.

In the last chapter (chapter 6), I present possible extensions to the purity analyzer (future
work) and the conclusions.

Chapter 2

Internal Representation

To analyze .class-files they have to be transformed into an internal representation (IR) which can
by analyzed by the purity analyzer. In the following description, I explain in which state the parser
has to pass the IR to the analyzer. All classes for building the IR can be found in the package
ch.ethz.inf.sct.purity analyzer.ir in my implementation. Before the ’real’ analysis can start, the
analyzer has to add some other (redundant) information to the IR. This is explained in section 4.1.

The IR is a tree with a root object which is an instance of the class IRTree. This root object
contains a list of classes (instances of IRClass) and interfaces (instances of IRInterface). The
interface objects contain a list of names of interfaces which they extend. That is all an interface
object has to save. The analyzer doesn’t need any methods and fields of the interfaces, because
the analysis is only built on the program code.

The class objects contain a list of names of interfaces which they implement, and a name of
a class which they extend. Like the interfaces, the class objects don’t have to save the fields,
but logically information about the methods. Each class object contains a list of methods (in-
stances of implementations of IRMethodable). The implementations of IRMethodable have to save
all information which are written in the method head, and have to be able to return analyzer
information. To the information of the method signature belongs whether the method is static,
abstract, and a constructor and the list of parameters. A parameter is a tuple of type and name
of the parameter. The parameters are used to compute the signature of a method. Because of
simplicity, the analyzer doesn’t use the same signature as Java Bytecode. The signature of the
analyzer consists of the name of the method and in brackets and separated with commas the full
parameter types (e.g. public void test(int i, Object o) =⇒ test(int, java.lang.Object)).

As mentioned above, the implementations of Methodable have to be able to return analyzer
information. There are two possibilities where this information comes from. First, this informa-
tion is saved in an XML-file. To save such methods, the analyzer uses the implementation for
light methods (IRMethodLight). This implementation is only able to save analyzer information.
The second implementation (IRMethod) saves the program code of the method and will later be
analyzed by the analyzer, which means that the analyzer information will be built later.

How the program code has to be saved is introduced in the technical report[1]. The program
code has to be transferred into a list of a small subset of Java instructions, called statements. This
subset consists of statements which are introduced in figure 2.2. The first section of the statements
in the figure comes from the technical report. It was problematic to represent Bytecode with these
statements, because the Goto statement is missing; therefore I introduced an additional Goto
statement. Because the set of statements contains jump instructions (Goto and If), it must be
possible to set labels for the statements. This lead to a further problem: Sometimes the parser
(which is explained in chapter 3) knows where to jump, but the statement there is not yet defined.
(For example during parsing a while loop, it is not possible to know what the next statement will
be after the while loop. But at the condition of the while loop, it must be possible to jump to
the next statement after the loop.) To bypass this problem, I introduced a statement that doesn’t
have a particular purpose except for having a label. This statement is called Nop. The Entry and

9

10 2 Internal Representation

Figure 2.1: Internal representation example: The IR represents a set of classes (C) and interfaces
(I). These sets are saved in a root object (T). Classes contain methods (M) and each method a
list of statements (S).

Statement Statement Format Informal Semantics
Copy v1 = v2 copy one local variable into another
New v = new C create a new object of class C; all fields of the new

object are initialized to null
NewArray v = new C[k] create an array of k references to objects of class C;

all array cells are initialized to null
Store v1.f = v2 store a reference into an object field
StaticStore C.f = v store a reference into a static field
ArrayStore v1[i] = v2 store a reference into an array cell
Load v1 = v2.f load a reference from an object field
StaticLoad v = C.f load a reference from a static field
ArrayLoad v2 = v1[i] load a reference from an array cell
If if (...) goto at conditional transfer of control to stmt with label at

Call vR = v0.s(v1, ..., vj) call method named s of object pointed to by v0

Return return v return from the currently executed method with the
result v

ThreadStart start v start the thread pointed to by v

Helper Stmt Statement Format Informal Semantics
Goto goto at transfer of control to stmt with label at

Nop does nothing, helper to set a label
Entry start statement in the control flow graph
Exit end statement in the control flow graph

Figure 2.2: Relevant Statements in the Analyzed Program

11

Exit statements are used for the start and end node of the control flow graph of a method (see
subsection 4.1.3).

I have implemented a class for each type of statement, which can be found in the package
ch.ethz.inf.sct.purity analyzer.ir.stmts. The types of statements are extended from the class State-
ment which saves all data. This is used by each type, like the label and the list of predecessors
and successors (used to build the control flow graph, see subsection 4.1.3). The classes which rep-
resent statements have to save the information, which is in figure 2.2 in the column Stmt Format,
except all information about size of array initialization and index of array store and load. This
information is not used by the analysis. For example the Copy statement has to save the names
of the source and destination variable, the New statement, the name of the destination and of the
class, the If statement the jump address, and so on.

What are these statements for? I have explained in the introduction that the analysis is built
on a combined pointer and escape analysis. To perform this analysis, the analyzer generates an
analyzer graph, a so called points-to graph (see chapter 4). The technical report[1] introduces
rules how the statements make changes to the points-to graph. What happens with the helper
statements? For the analysis, the analyzer has to build for each method the control flow graph.
The analyzer eliminates the helper statements during building this control flow graph (see subsec-
tion 4.1.3).

12 2 Internal Representation

Chapter 3

Parser

As already mentioned in the introduction, the purity analyzer has two possibilities to parse data.
One possibility is to parse Bytecode and the other is to parse analyzer information from already
analyzed methods out of XML-files.

All classes for the parsing can be found in the package ch.ethz.inf.sct.purity analyzer.parser.
The parser is started by invoking the method parse in the class Parser. The parameters are an
array of package or class names (classes which are imported by Bytecode parsing) and an array of
paths of XML-files (classes, which are imported by XML parsing).

3.1 Bytecode Parsing

Parsing Bytecode and transferring the program code of the methods into a list of statements was
really a challenge. Because parsing the Bytecode myself would be absolutely too complex, I had to
find a tool which parses the Bytecode for me. Tools which parse Java Bytecode in some way exist
abundantly, but my Bytecode parse has to be written in Java and work under Java 1.5. Further,
it has to present the program code of a method in a way that I can build the statement list which
I have presented in chapter 2.

First, I tested special analyzer tools for Java Bytecode. Examples for such analyzer tools are
BCEL1 from the Apache Jakarta Project2 and ASM3 from ObjectWeb4. The problem with these
analyzer tools was always the same. They could not pass the program code in a way that would
have been useful for me. They save the program code at the methods with an array of Bytecode
instructions which don’t contain variable names, because Java Bytecode doesn’t contain them.
Bytecode may contain information about variable names (normal case), but this information is
saved at the end of each method and not in the program code (see in the following Bytecode the
variables this and a).

@signature ”(I)V”
public void <init>(int) {

@line 10
L0: @aload 0

@invokespecial void java.lang.Object.<init>()
@line 11

@aload 0
@iload 1
@putfield int Test.a

@line 12

1Byte Code Engineering Library http://jakarta.apache.org/bcel/
2http://jakarta.apache.org
3http://asm.objectweb.org/
4http://www.objectweb.org/

13

http://jakarta.apache.org/bcel/
http://jakarta.apache.org
http://asm.objectweb.org/
http://www.objectweb.org/

14 3 Parser

L5: @return
@var 0: this Test [L0, L5]
@var 1: a int [L0, L5]

Transferring Bytecode instructions into the instruction of the IR would not be a problem, but I
had to find a tool which either transfers the variable information into the Bytecode or introduces
new variable names for the unknown ones. Finding such a tool was not very easy, so I asked the
writer5 of the paper[2] what he is using for his implementation. He is using the Flex Compiler
Infrastructure6 which was implemented by the same research group he comes from. But this tool
didn’t solve my problem, because I never got it running. I asked for documentation, but I never
got any and the code of the tool contains nearly no comments.

After these recurring drawbacks, I was a little bit desperate, but then my supervising assistant
had a resounding idea. The idea was to use the internal representation of a decompiler to build
the IR of the purity analyzer. Thus, I had to select a decompiler. This wasn’t really difficult,
because I only found one decompiler, which is written in Java and works under Java 1.5, the
JODE7 decompiler.

3.1.1 Bytecode Parsing with the JODE Decompiler

As mentioned above, the Bytecode parser gets an array of packages and classes which the user
wants to have analyzed. Important about this classes and packages is that they have to be in the
Classpath and that they are written in the normal Java syntax (e.g. java.lang.Object). So first, all
classes which are in the passed packages have to be found. This is mastered with the help of JODE.
JODE provides a class Classpath (net.sf.jode.bytecode.ClassPath) which has to be instantiated by
passing all Classpaths of the current Java program. The instantiated object contains methods
like isPackage(packageName), existsClass(className) and listClassesAndPackages(packageName).
With these methods, it is possible to find all class names.

Then the analyzer has a list of all classes (and interfaces) which it has to analyze. To do this,
JODE has to decompile all these classes:

// gets classInfo of className (JODE−internal information object of a class)
ClassInfo classInfo = classPath.getClassInfo(className);
// instantiates a class analyzer object with the classInfo and some settings (imports)
ClassAnalyzer classAnalyzer = new ClassAnalyzer(classInfo, imports);
// lets JODE decompile the class, writer = where JODE writes the decompiled Java−File
classAnalyzer.dumpJavaFile(writer);

After ’dumping’ all classes, the Java-code of all classes is written into the writer. But that is only
a nice side effect. The major benefit is that the internal representation of JODE is saved in the
object classAnalyzer.

From the classAnalyzer object, the analyzer reads if the class is an interface and the names of
super classes and super interfaces. The object also contains a list of methodAnalyzer objects (of
course not for interfaces). These objects contain the internal representation of the methods. It is
rather intricate to get these method analyzers:

// iterates through all methodInfos of the classInfo
for (MethodInfo methodInfo : classInfo.getMethods()) {

// gets type of the methodInfo
MethodType methodType = Type.tMethod(classPath, methodInfo.getType());
// gets methodAnalyzer with the name and type of the method
MethodAnalyzer methodAnalyzer = classAnalyzer.getMethod(methodInfo

.getName(), methodType);

5Alexandru Sǎlcianu http://www.mit.edu/~salcianu
6http://www.flex-compiler.lcs.mit.edu/
7Java Optimize and Decompile Environment from Jochen Hoenicke http://jode.sourceforge.net/

http://www.mit.edu/~salcianu
http://www.flex-compiler.lcs.mit.edu/
http://jode.sourceforge.net/

3.1 Bytecode Parsing 15

}

The method analyzer object contains all information the purity analyzer needs to analyze the
method, that is, whether the method is abstract, static, all parameters (name and type) and the
program code in a special form.

The program code is stored as a tree with blocks and expressions. A Block correlates with
a block in Java code (like an if-block, loop-block, try-block, etc.) and an expression correlates
with an expression in Java code (like a = b + c, b + c, etc.). You see that the IR of JODE is
very similar to Java code. On the one hand, it is an advantage, because now all variables can
be found out easily, on the other hand everything is nested. A block can contain other blocks
and expressions and an expression can contain other expressions (e.g. the expression ’a = b + c’
contains the two subexpressions ’a’ and ’b + c)’.

To transfer the block-expression-tree into my internal representation, the analyzer walks
through all these blocks and expressions and builds the statement list for them. In JODE, the
blocks can be found in the package net.sf.jode.flow and the expressions in net.sf.jode.flow.expr.

To get the statement list of a block, the analyzer contains for each type a method which
transfers the specific block into a statement list. These methods are in the class ParserBlocks. To
invoke such a method, I have implemented the following method in the class Parser that builds the
method name with the help of the block type and invokes the corresponding method by reflection.

void parseBlock(StructuredBlock block, IRMethod irMethod,
IRStmtList stmtList, String breakLabel, String continueLabel) {

// creates method name with the class of the block
String methodName = ”parse” + block.getClass().getSimpleName();
Class partypes[] = { block.getClass (), this .getClass (), irMethod.getClass(),

stmtList.getClass (), String. class , String. class };
Object arglist [] = { block, this , irMethod, stmtList, breakLabel,

continueLabel };
// gets the class of the method
Class cls = Class.forName(this.getClass().getPackage().getName()

+ ”.ParserBlock”);

// gets the method
Method method = cls.getDeclaredMethod(methodName, partypes);
// invoke the method
method.invoke(null, arglist);

StructuredBlock is the super type of all types of blocks, irMethod is the current method, stmtList
is where the invoked method adds the new statements (at the end) and the break and continue
labels are used for break and continue instructions.

The following table explains, how each block type from JODE is transferred into the statement
list stmtList for the internal representation.

Block Name Additions to the statement list
BreakBlock
break | break label

If break has no label, then add a Goto statement that jumps to the
break label (parameter). If break has a label, then add a Goto state-
ment that jumps to the label ”%end%” + label. This works, because
the parse methods for loop and switch blocks which are labeled add a
Nop with this kind of label at the end.

CaseBlock
case in a switch block

Parse each subblock.

Continued on next page

16 3 Parser

Block Name Additions to the statement list
CatchBlock Right now, only all subblocks of this block are parsed. Theoreti-

cally, the exception which is passed to the block should also be ob-
served. But because of simplicity reasons, this is not implemented yet
(see 6.2).

ConditionalBlock if-
then-block with an
empty then-part and
no else-part

Parse the condition-expression.

ContinueBlock
continue | continue la-
bel.

If continue has no label, then add a Goto statement that jumps to the
continue label (parameter). If continue has a label, then add a Goto
statement that jumps to the label ”%begin%” + label. This works,
because the parse methods for loop blocks which are labeled add a
Nop with this kind of label at the end.

EmptyBlock empty → does nothing
FinallyBlock Parse each subblock. This structure is never used in Java 1.5, because

the compiler adds the code of the final block at the end of the try-
and of each catch-block.

IfThenElseBlock Parse the condition-expression and the then- and else-block. Adds the
stmtLists from the condition, the ’then’ and the ’else’ with additional
Goto’s, If’s and Nop’s to the stmtList, that the inserted statements
represent the code from the if-then-else block (first the stmts from the
condition, then an if, then the stmts from the ’then’, etc.).

InstructionBlock An instruction block contains an expression. It parses this expression
and adds the statements to the stmtList.

LoopBlock Parses the condition-expression and the body (which is a block). Adds
the resulting stmtList from the condition and the body with additional
Goto’s, If’s and Nop’s to the stmtList that the inserted statements
represent the code from the loop block. If the loop has a label, then
adds a Nop with the label ”%begin%” + label at the beginning and a
Nop with the label ”%end%” + label at the end. If the loop has no
label, then add Nop’s with newly created labels at the beginning and
the end. This has to be done because of possible break and continue
labels in the body of the loop. The names are passed to the parsing of
the body by passing the name of the ’begin Nop’ as break label and
the name of the ’end Nop’ as continue label.

ReturnBlock Parses the expression in the return instruction and adds a new Return
statement to the stmtList.

SequentialBlock Parse each subblock.
SwitchBlock Parse the condition-expression, each case-block and the default-block.

Adds the stmtLists from the condition, the cases and the default with
additional goto’s, if’s and Nop’s to the stmtList that the inserted
statements represent the code of the switch block. A switch block
might also contain break labels. To be able to handle them, the an-
alyzer has to insert a Nop before the default block and to pass the
name of the Nop as break label.

SynchronizedBlock Parse each subblock.
ThrowBlock In the ThrowBlock, the analyzer only analysis the thrown expression.

That the thrown object should be handled specially is not imple-
mented yet (belongs to the not yet solved problem in the Catch block,
see 6.2).

Continued on next page

3.1 Bytecode Parsing 17

Block Name Additions to the statement list
TryBlock The TryBlock is handled like as Switch statement without a condition.

The try and catch blocks are like ’cases’ and the finally block like
’default’. That is not a correct transformation of the code, but the
analysis of a switch block and a try block is the same.

The same has been implemented for the expressions. The methods for parsing an expression
are in the class ParserExpression. To invoke the methods, I have implemented a similar method
as for the blocks.

String parseExpression(Expression expr, IRMethod irMethod,
IRStmtList stmtList, String destVar) {

// creates method name with the class of the block
String methodName = ”parse” + expr.getClass().getSimpleName();
Class partypes[] = { expr.getClass(), this .getClass (), irMethod.getClass(),

stmtList.getClass (), String. class };
Object arglist [] = { expr, this , irMethod, stmtList, destVar };

// gets the class of the method
Class cls = Class.forName(this.getClass().getPackage().getName()

+ ”.ParserExpression”);

// gets the method
Method method = cls.getDeclaredMethod(methodName, partypes);
// invoke the method
return (String)method.invoke(null, arglist);

Expression is the super type of all types of expression, irMethod is the current method, stmtList
is where the invoked method adds the new statements (at the end). destVar is a special construct.
A lot of expressions are expressions, which save something in a variable. If such an expression
should save its result in a known variable, then the name of the variable can be passed over the
destVar. If such an expression gets null as destVar, then it saves its result in a newly created
variable and returns the name of this variable.

The following table explains, how each expression type from JODE is transferred into the
statement list stmtList for the internal representation.

Expression Name Addings to the statement list
ArrayLength
subexpr.length

Array length not significant for the analysis. Only parse subexpression
(subexpr).

ArrayLoad
a[i]

Parses subexpression a. Creates new ArrayLoad Statement. The
name of the source is the returned string of the parsing of the subex-
pression and the name of the destination comes from the passed
parameter destVar. If destVar is null, creates a new destVar (in-
voke method getNameForAdditionalVariable in the passed object
irMethod). Returns destVar.

Binary Operations
e.g. a + b

Operations with base types are ignored. Only the subexpressions are
parsed (a and b).

CheckCast
(Type)subexpr

Parses subexpression.

Continued on next page

18 3 Parser

Expression Name Addings to the statement list
ClassField
ClassName.class

Create a new StaticLoad statement with ClassName as source
class,’class’ as source field and passed destVar as destination if not
null, else create new destVar.

CompareBinary
a < b

Ignored. Parses only subexpression (a and b).

CompareToInt
a < 1

Ignored. Parses subexpression (a).

CompareUnary
a < 1.2

Ignored. Parses subexpression (a).

ConstantArray
A[] a = {x,y,z}

Parses all subexpressions (x, y, z). Creates a NewArray Statement
with A as type and the passed destVar as destination if destVar not
null, else creates a new destVar. Afterwards, creates for each variable
x,y and z an ArrayStore statement with destVar as array name and
the variable name (x,y or z) as source.

Const
a constant

Only significant, if the constant is null, because constants are always
base types or null. Then create a new Copy statement with source
”null” and destination destVar and return destVar. Else return null.

Convert
(Type)subexpr

Ignored. Parses subexpression.

GetField
static (Type.x) or non-
static (subexpr.x) field
access

If non-static, parse subexpression and creates new Load statement. If
static, creates new StaticLoad statement.

IfThenElse
(a ? b : c)

Handeled like an IfThenElse block.

IInc
subexpr++

Ignored. Parses subexpression.

InstanceOf
subexpr instanceof type

Ignored. Parses subexpression.

InvokeOperator
subexpr.m(v1, ..., v2)
or Type.m(v1, ..., v2)

Parses subexpression, if non-static method invocation and argument
expressions (v1, ..., v2). Creates parameter list and new Call state-
ment. The parameter of the parameter list have as type the parame-
ter type of the invoked method, and not the static type of the passed
arguments (except for the ’this’ argument in non static method, be-
cause this undecidable)! That is like this, because a call statement
must be able to compute the signature of the invoked method.
If the method invocation invokes the method start0 of the class
java.lang.Thread, creates a new ThreadStart statement, because this
method starts a new thread.

LocalLoad LocalLoad represents a read access to a local variable.
If the variable is a base type, returns null. If the passed destVar is
null, return the name of the variable, else create a new Copy statement
with the destination destVar and the variable name as source.

LocalStore LocalStore represents a write access to a local variable.
Returns the name of the local variable.

MonitorEnter Ignored. Parses subexpression (object, which is entered to the moni-
tor).

MonitorExit Does nothing.
NewArray
destVar = new Type[]

Creates a new NewArray statement.

Continued on next page

3.2 XML Parsing 19

Expression Name Addings to the statement list
New
destVar = new Type()

Creates a new New statement.

Nop Does nothing.
OuterLocal Special load local expression. Handled like LoadLocal.
PrePostFix Some special binary operator. Ignored. Parses subexpressions.
PutField Ignored because the PutField expression should be catches at the pars-

ing of the expression Store. Parses subexpressions, because it happens
in some special cases that the parser comes to this expression.

Store
a = b

Parses subexpression if necessary. Creates, dependent of the two sub
expressions a StaticStore, a Store, an ArrayStore statement or noth-
ing.

StringAdd
a = ”a” + ”b”

Ignored. Parses subexpressions.

This If destVar is null, then returns ”this”. Else add a new Copy statement
with source this and destination destVar.

Unary Ignored. Parses subexpressions.

In the descriptions above, I have often mentioned ’base types’. Base types are types, which
aren’t significant for the analysis. Theoretically, a type is not significant to the analysis, if it is
known that the type doesn’t contain impure methods. In my implementation, I defined all Java
primitive types as base types and String. String, because it contains only pure methods and is
used very often.

3.2 XML Parsing

Parsing the exported IR’s is done with XMLBeans8. The XML Schema file which defines the
XMLBeans generated runtime JAR9 is in the folder xml and is called annotations.xsd. The
Schema contains also annotations for the purity output (see chapter 5). The generated runtime
JAR is in the folder lib and is called xmlTypes.jar.

After parsing the XML-file with xmlBeans, the analyzer transfers the structure from XMLBeans
into the its IR. It is noteworthy that this analysis builds only ’light’ methods (IRMethodLight),
because the XML-file saves for each method the analyzer information. Further, the XML parser
doesn’t overwrite methods, which are already inserted into the IR from the Bytecode parser. The
XML parser adds only the methods which haven’t been parsed by the Bytecode parser.

8http://xmlbeans.apache.org/
9See XMLBeans Schema Compilation http://xmlbeans.webappshosting.com/schemaToolsV103/compile.do

http://xmlbeans.apache.org/
http://xmlbeans.webappshosting.com/schemaToolsV103/compile.do

20 3 Parser

Chapter 4

Analyzer

The analyzer part is more or less a transformation of the description in the paper [1] into code
with little extension.

The analyzer is divided into two parts. First, it makes some preparations to the IR. Afterwards,
it does the ’real’ analysis.

4.1 Preparations

During the preparation phase, the following items have to be added to the internal representation:
inheritance relations, calling relations, control flow graph of each method and the order in which
the methods and statements have to be analyzed (method worklist, statement workslist).

4.1.1 Inheritance relations

The classes in the IR have to save the super class, if they have one and all sub classes and super
interfaces. The interfaces have to save all super interfaces, sub interfaces and sub classes.

The parser saves only the names of the super interfaces and sub class in each class object, and
the super interfaces in each interface object. To find the classes and interfaces of these names, the
classes and interfaces are saved in maps with their names as key in the root of the IR tree.
Algorithm to get the super class, list of super interfaces and list of sub classes for classes and list
of super and sub interfaces for interfaces:

• For each interface (curInt):
– For each superinterface name of curInt :

∗ Gets the interface (superInt) of the superinterface name.
∗ Adds superInt to the super interfaces of curInt.
∗ Adds curInt to the sub interfaces of superInt.

• For each class (curClass):
– For each superinterface name of curClass:

∗ Gets the interface (superInt) of the superinterface name.
∗ Adds superInt to the super interfaces of curClass.
∗ Adds curClass to the sub classes of superInt.

– If the curClass has a superclass name:
∗ Gets the class (superClass) of the name.
∗ Adds superClass to the super classes of curClass.
∗ Adds curClass to the sub classes of superClass.

4.1.2 Calling relations

To build the worklist of methods, the analyzer needs to know the callers and callees of each method.
Further, the call statements in the statement list of each method have to know all possible methods

21

22 4 Analyzer

Figure 4.1: example of control flow creation

which the invocation could invoke, which means that each call statement has to know is possible
callees.

To find out these relations, the analyzer has to iterate through all Call statements and to search
in all possible dynamic types in which the method could be invoked, the method with the same
signature as the Call statement. Searching all possible dynamic types works like this:

• If the static type of the method invocation is an interface:
– Searches in all direct and indirect sub classes of the interface for methods with the same

signature as the method invocation.
• If the invoked method is a constructor, ’static’, or ’super’:

– Searches in the static type the method with the same signature as the method invoca-
tion.

• Else (normal invocation on an object of a class):
– Searches in the static type the method with the same signature as the method invoca-

tion.
– If the method cannot be found in the static type, it searches in the next super class. If

it cannot be found in the super class, then it searches in the super class of the super
class, and so on.

– Searches in all direct and indirect sub classes of the static type for a method with the
same signature as the method invocation.

4.2 Analysis 23

4.1.3 Control Flow Graph

For each method, the list of statements has to be converted into a control flow graph. This is
done by saving at each statement the statement’s successors and predecessors in the control flow.
During this process, the two helper statements (Goto, Nop) are deleted respectively replaced with
links and an Entry and an Exit statement are introduced, that the analyzer knows where to start
and where to end (see figure 4.1). The Entry statement has the first statement of the method as
successor, the Exit statement the last and all Return statement as predecessors.

4.1.4 Method Worklist

The methods should be analyzed in an optimal order: The analysis of a method is dependent on
all its callees. Because of this, before a method is analyzed, all callees should have been analyzed.
Logically, this is not always possible, because of strongly connected methods (methods, which
mutually call each other).

The analyzer builds a worklist of methods that as few methods as possible are analyzed before
their callees. Algorithm:

• Builds a list curMethodList with all methods of the IR.
• As long as curMethodList is not emtpy, it gets a method form the list and calls deepFirst-

Strategy(method)

deepFirstStrategy(Method method):

• Marks method as visited and deletes it in the curMethodList.
• For each callee of method that is not visited

– calls deepFirstStrategy(callee)
• Inserts method at last position in the methodWorklist.

4.1.5 Statement Worklist

The reason for having a statement worklist at each method is the same as for the method worklist.
The analysis of a statement is dependent on all the statement’s predecessors. This is also not
always possible, because of loops.

The analyzer builds a worklist of statements for each method, that as few as possible statements
are analyzed before their predecessors. Algorithm:

• Builds a list curStmtList with all statements of a method.
• As long as curStmtList is not empty, it gets a stmt form the list and calls deepFirstStrat-

egy(stmt)

deepFirstStrategy(Statement stmt):

• Marks stmt as visited and deletes it in the curStmtList.
• For each successor of stmt that is not visited

– calls deepFirstStrategy(successor)
• Inserts stmt at first position in the methodWorklist.

4.2 Analysis

The analysis, which is described in this section, builds for each statement an analyzer graph (see
subsection 4.2.1). The analyzer graph of a method is equivalent to the analyzer graph of the last
statement (Exit statement) which is used to find out if a method is pure or not (see chapter 5).

The analyzer iterates through the method worklist (see subsection 4.1.4) and analyzes each
method. After analyzing a method, the analyzer checks if the analysis of the method has made
any changes to the analyzer graph of the method. If yes, the analyzer analyzes again all callers

24 4 Analyzer

n ∈ Node = INode] PNode] LNode] nGBL

nI
lb ∈ INode(inside nodes)

nP
m,i ∈ PNode(parameter nodes)

nL
lb ∈ LNode(load nodes)

〈n, f〉 ∈ AField = Node× Field(abstract fields)

I ∈ IEdges = P(Node× Field×Node)
O ∈ OEdges = P(Node× Field× LNode)
L ∈ LocV ar = V ar→P(Node)

G ∈ PTGraph = IEdges×OEdges× LocV ar × P(Node)

Figure 4.2: Sets and notations of the Points-To Graph

of the method, which already have been analyzed. This is done, because the analysis of a method
is dependent on the analyzer graphs of all callees. When a callee’s analyzer graph changes, the
method has to be analyzed again.

What happens when the analyzer analyze a method? It iterates through the statement worklist
(see subsection 4.1.5) and analyzes each statement. After analyzing a statement, the analyzer
checks if the analysis of the statement has changed the analyzer graph of the statement. If yes, the
analyzer analyzes again all successors of the statement which already have been analyzed. This is
done, because the analysis of a statement is dependent on the analyzer graphs of all predecessors.
In the technical report[1], the analysis of a statement is called intra-procedural analysis. The
intra-procedural analysis is explained in the subsection 4.2.2, after the analyzer graph.

For method invocations which are represented by the Call statement, the analyzer has to map
the analyzer information of the invoked methods to the Call statement. This operation is called
inter-procedural analysis and is explaind in the subsection 4.2.3.

4.2.1 Analyzer Graph

As I have written in the introduction, the whole analysis is built on top of a combined pointer and
escape analysis. To represent the pointer analysis, the analyzer computes for each statement an
analyzer graph that models the heap and a set Wm of mutated, externally visible (from outside the
method to which the statement belongs to) abstract fields, after executing that statement (changed
fields). In the technical report[1], the graph is called Points-to Graph (see sets and notations of
the graph in figure 4.2).

The nodes represent objects and the arrows references on the heap. Parameter nodes represent
objects, which have been passed as parameter, load nodes objects, which are referenced from a
node, which is visible from the outside and inside nodes objects, which have been newly created.
The graph contains two different types of references. Outside edges represent references, which
have existed before method invocation and inside edges references, which have been newly created
from the current method. Local variable (LocVar) represents all possible objects to which a local
variable might point to.

Additional to the elements which are given by the technical report, I have added some elements
to the Points-to Graph:

4.2 Analysis 25

• A set of abstract fields to represent the mutated fields Wm (changed fields).
• A linked list of the parameter nodes (in the order in which they are passed). This list is

useful for the inter-procedural analysis (subsection 4.2.3).
• A set of globally escaped nodes. That are nodes which are referenced from outside the

method.
• A set of return nodes (represents all possible return objects).
• A set of all local variables which have been used.

The creation of new nodes is rather special. If a statement asks for a new parameter node, it
always gets one with another unique name. If a statement asks for a new load or inside node, it
always gets the same (unique) one. The special handling with inside and load nodes is because of
possible loops. A statement creates usually one new node (except Entry statement). If it always
gets another one, the statement would change the analyzer graph in a loop forever. The parameter
nodes are not handled like this, because they are only created in the Entry statement.

The changed fields are represented by a tuple of a node and a field. As I have written before,
the node represents an object. What happens if a statement mutates a static field? In this case,
the analyzer contains one instance of the class GlobalNode. This instance is used to create a
changed field for a write access to a static field.

4.2.2 Intra-procedural Analysis

The paper[1] names the transformation that each statement causes to the analyzer graph, intra-
procedural analysis. To start the intra-procedural analysis of a statement, the analyzer has to
create the analyzer graph which represents the heap right before statement execution. This graph
is built by merging all analyzer graphs from the predecessors.

The following table explains the changes to the analyzer graph from each statement type. The
reasons for doing all these things are mentioned in the technical report[1] in the section 5.1.

Stmt Name Transformations to the Analyzer Graph

Copy
v1 = v2 • Gets LocVars of v1 and v2

• Removes all nodes from LocV arv1

• Adds all nodes of LocV arv2 to LocV arv1

New
v = new C • Gets LocVar of v

• Removes all nodes from LocV arv

• Adds a new inside node to LocV arv

NewArray
v = new C[k] • Gets LocVar of v

• Removes all nodes from LocV arv

• Adds a new inside node to LocV arv

Continued on next page

26 4 Analyzer

Stmt Name Transformations to the Analyzer Graph

Store
v1.f = v2 • Gets LocVar of v1

• Adds all not Internal Nodes of LocV arv1 with the field f to Changed
Fields.

• If v2 is not null (not a basetype):
– Gets LocVar of v2

– Introduces a new Internal Edges from all nodes of LocV arv1 to all
nodes of LocV arv2 with field f

StaticStore
C.f = v • If v is not null (not a base type):

– Gets LocVar of v
– Adds all nodes of LocV arv to the list of global nodes

• Adds field f with node Global Node to Changed Fields

ArrayStore
v1[i] = v2 • Gets LocVar of v1

• Adds all not Internal Nodes of LocV arv1 with the field f to Changed
Fields.

• If v2 is not null (not a base type):
– Gets LocVar of v2

– Introduces new Internal Edges from all nodes of LocV arv1 to all
nodes of LocV arv2 with field []

Load
v1 = v2.f

Special handling: invokes method processLoad (processLoad(v1, v2, f)) which
is described after the table.

StaticLoad
v = C.f • Gets LocVar of v

• Removes all nodes from LocV arv

• Adds Global Node to LocV arv

ArrayLoad
v2 = v1[i]

Special handling: invokes method processLoad (processLoad(v1, v2, ”[]”))
which is described after the table.

If
if (...) goto at

modify nothing (statement is only needed for creating the control flow)

Continued on next page

4.2 Analysis 27

Stmt Name Transformations to the Analyzer Graph

Call vR =
v0.s(v1, ..., vj) • If the Call statement contains callees (target methods of the invocation),

the analyzer does the inter-procedural analysis (see subsection 4.2.3).
Theoretically, this is not correct, because the analyzer relies on the fact
that either a Call statement contains all possible invoked methods or
none. This might no be true, but it is not definite. For example, the
analyzer cannot detect if the user has forgotten to pass a class which
contains a possible callee.

• If the Call statement contains no callees (in the IR tree):
– Adds node Global Node with field %native% to changed fields (be-

cause each native call must raise impurity)
– Gets LocVar of vR and remove all nodes
– Adds Global Node to LocV arvR

– For each parameter vi:
∗ Gets LocVar of vi

∗ Adds all nodes from LocV arvi to the list of global nodes

Return
return v • If v not null or void (not a return without a variable)

– Gets LocVar of v
– Adds all nodes from LocV arv to the list of return nodes

ThreadStart
start v • Gets LocVar of v

• Adds all nodes form LocV arv to the list of global nodes

Entry Initializes the analyzer graph:
• Creates the parameter list: Adds for each parameter of the method a new

parameter node to the parameter list if the type of the parameter is not a
base type. If the parameter is a base type, adds null to the parameter list
(has to be done, because the position of a parameter node must match
with the index of the corresponding parameter).

• Adds for each (non base type) parameter a LocVar to the analyzer graph
and adds the corresponding parameter node.

Exit Does nothing except holding the final analyzer graph, the analyzer graph of
the method.

processLoad(String destVar, String srcVar, String srcField):

• Gets LocVars for destVar and srcVar.
• Creates a set of nodes, which are pointed by an internal edge from nodes of LocV arsrc →

srcNodes .
• Creates a set of nodes from LocV arsrc, which are escaped (reachable form from outside the

method) → srcEscaped.
• Removes all nodes from LocV ardest and adds srcNodes.
• If srcEscaped not empty:

– Creates a new load node and adds it to LocV ardest.
– Creates for each node in srcEscapted an Outside Edge to the new Load Node with field

srcF ield.

28 4 Analyzer

4.2.3 Inter-procedural Analysis

At a Call statement with possible callees, the analyzer maps all analyzer graphs from the callees
into the analyzer graph before the Call execution: The analyzer saves the analyzer graph before
Call execution and makes each mapping on this saved graph. Afterwards, the analyzer merges all
resulting graphs. The result of the merging is the result of the execution of the Call statement.

The mapping is divided into four steps: Construction of the Node Mapping, Combination of
the Analyzer Graphs, Analyzer Graph Simplification, and Modification of the Changed Fields.

Construction of the Node Mapping:

The mapping starts by computing the ’core’ mapping µ that disambiguates as many parameter and
load nodes from the callee as possible. Example: The mapping µ(LNode1) = {INode2, LNode3}
has the following meaning: The node LNode1 from the callee is equivalent to two nodes from the
caller, INode2 and LNode3. The technical report[1] introduces the rules for the mapping µ with
the following formulas:

L(vi) ⊆ µ(nP
callee,i), ∀i ∈ {0, 1, ..., j} (4.1)

〈n1, f, n2〉 ∈ Ocallee, 〈n3, f, n4〉 ∈ I, n3 ∈ µ(n1)
n4 ∈ µ(n2)

(4.2)

〈n1, f, n2〉 ∈ Ocallee, 〈n3, f, n4〉 ∈ Icallee,

(µ(n1) ∪ {n1}) ∩ (µ(n3) ∪ {n3}) 6= ∅,
(n1 6= n3) ∨ (n1 ∈ LNode)

µ(n4) ∪ ({n4} \ PNode) ⊆ µ(n2)
(4.3)

Constraint 1 maps each parameter node from the callee to the nodes pointed to by the passed

variables (L(vi) = Nodes from the LocVar of vi).
The handling of constraints 2 and 3 is a bit more complex. They are executed as a fixpoint

iteration as long as any mapping changes:
• Constraint 2:

Handles the case when the callee reads references created by the Call statement. It matches
an outside edge (〈n1, f, n2〉) from the callee against an inside edge (〈n3, f, n4〉) from the Call
statement in the case when n1 might represent n3, i.e., n3 ∈ µ(n1). In this situation, the
analyzer adds n4 to the mappings of n2, i.e., n4 ∈ µ(n2).
Algorithm in the analyzer:

– Iterates through all outside edges of the callee.
– Iterates through all inside edges of the Call statement.
– If the startnode of a inside edge has a mapping to the startnode of the outside edge,

it adds the end node of the inside edge to the mappings of the endnode of the outside
edge.

• Constraint 3:
Matches an outside edge against an inside edge from the callee. This constraint deals with the
aliasing present in the calling context. Consider an outside edge (〈n1, f, n2〉) and an inside
edge (〈n3, f, n4〉) from the callee. If the start node of the outside edge and the startnode
of the inside edge might represent the same node in the callee (if the mappings of n1 and
n3 have nodes in common, µ(n1) ∩ (µ(n3) 6= ∅), then n2 might be n4 (i.e. n4 ∈ µ(n2)).
Therefore, n4 ∈ µ(n2), if n4 is not a parameter node, because the analyzer already knows
all the nodes that the parameter nodes stand for. Also, as n4 is a node from the callee, it
might be a node placeholder that represents some other nodes. Therefore, node n2 might
represent not only n4, it might represent also µ(n4). The same reasoning is valid, if n1 might
represent n3. Therefore, the Constraint has the condition (µ(n1) ∪ n1) ∩ (µ(n3) ∪ n3) 6= ∅.

4.2 Analysis 29

The third part of the precondition ((n1 6= n3) ∨ (n1 ∈ LNode)) reduces the applicability of
Constraint 3 and avoids fake mappings.
Algorithm in the analyzer:

– Iterates through all outside edges of the callee.
– Iterates through all inside edges of the callee.
– If all the conditions of the Constraint 3 are true, it adds all mappings of the end node

of the inside edge and the end node itself, if it is not a parameter node to the mappings
of the end node of the outside edge.

The analyzer computes the final mapping µ′ by extending the ”core”mapping µ with a mapping
from each non-parameter node to itself (∀n, µ′(n) = µ(n) ∪ (n\PNode). µ′ maps nodes form the
analyzer from the callee to nodes that appear in the analyzer graph after the Call statement.
Inside nodes from the callee are added to their mapping, because when a callee creates an object
on the heap, the object exists also for the caller.

Unlike parameter nodes, load nodes are generally not fully disambiguated. Each load node is
a placeholder for the nodes that a specific Load instruction loads from an escaped node. That
escaped node might remain an escaped node even in the analyzer graph after the Call statement.

Combining the Analyzer Graphs:

After the analyzer obtains the node mapping µ′, it uses it to combine the analyzer graph before
the execution of the Call statement with the analyzer graphs of the callees. Formally, it is defined
with the following equations:

IEdgesCallStmt = IEdgesCallStmt ∪
⋃

〈n1,f,n2〉∈IEdgescallee

µ′(n1)× {f} × µ′(n2)

OEdgesCallStmt = OEdgesCallStmt ∪
⋃

〈n,f,nL〉∈OEdgescallee

µ′(n)× {f} × {nL}

Nodes(CallStmtLocV arvR
) = µ′(Nodes(CalleeLocV arvret

))

EscapedNodesCallStmt = EscapedNodesCallStmt ∪ µ′(EscapedNodesCallee)

The equations above require some explanation. The heap references that existed before the call
might also exists after the call. Hence, all edges persist. In addition, if the callee created a heap
edge 〈n1, f, n2〉 where n1 may be any node from µ′(n1), and n2 may be any node from µ′(n2),
then the callee might have created any of the inside edges from the set µ′(n1) × f × µ′(n2). All
these edges appear in the analyzer graph after the Call statement.

The outside edges are a bit different. Because the end node of an outside edge is always a load
node, the end node could never be newly created in the callee. Because of this, it doesn’t have to
be mapped. Only the start node of an outside edge has to be mapped.

The LocVar of the variable to which the Call statement passes the return variable contains
after the Call Statement only the mappings of the nodes which are saved as return nodes in the
analyzer graph of the callee. Finally, the set of globally escaped nodes is the union of the set of
the globally escaped nodes of the analyzer graph before the Call Statement and the mappings of
the globally escaped nodes of the analyzer graph from the callee.

Analyzer Graph Simplification:

The analyzer simplifies the analyzer graph for the program point after the Call statement by
removing all captured (not reachable from the outside, not reachable from a parameter node or
globally escaped node) load nodes (together with all adjacent edges), as well as all outside edges
that start in a captured node. These rules are very clear because the definition of a load node is
that a it represents an object from outside the method. If such an object is captured, it is a case

30 4 Analyzer

for the garbage collector! The same for an outside edge that starts in a captured node. An outside
edge is a reference from an escaped (opposite of captured) node. So if the node is captured, the
reference is for nothing.
Algorithm in the purity analyzer:

• Gets all escaped node from the analyzer graph (all parameters, all nodes which are reachable
from parameters over outside edges and all globally escaped nodes).

• Iterate through all outside edges and delete all edges which have a start node that is not in
the list of globally escaped nodes and/or an end node that is a load node and not in the list
of globally escaped nodes.

• Iterate through all inside edges and delete all edges which have a start and/or a node load
which is not in the list of globally escaped nodes.

• Deletes all captured load nodes in local variables.
• Deletes changed fields with captured load nodes.
• Deletes all captured load nodes from the list of return nodes.

Modifiy Changed Fields:

Finally, the most important update, the mapping of the changed fields (Wm). This is done by
adding the following set to Wm of the Call Statement:⋃

〈n,f〉

((µ′(n)\InsideNode) ∩N)× {f}

N is the set of nodes that appear in the simplified analyzer graph. The analyzer uses the mapping
µ′ to project each node modified by the callee. As usual, it ignores inside nodes. We also use the
set intersection ”∩N” to ignore nodes that have been removed by the analyzer graph simplification.

Chapter 5

Results of the Analysis

The goal of the purity analyzer is to find out, if a method is pure or not. In the next sections,
I explain how the analyzer detects if a method is pure or not and in what form it saves this
information in an XML-file. Finally, I describe the three ways of starting the analyzer

5.1 Purity

A method is pure, if its analyzer graph satisfies the following conditions:
• A parameter node or a node which is reachable from parameter nodes over outside edges

must not escape globally.
• A parameter node or a node which is reachable from parameter nodes over outside edges

must not be changed, meaning, must not be a node in the list of changed fields.
• Notes:

– A node escapes globally if it is reachable from the set of globally escaped nodes or the
global node (the node that represents all static fields).

– For constructors, the analyzer follows the JML1 convention of allowing a pure construc-
tor to mutate fields of the ”this” object: it suffices to ignore all changed fields for the
parameter node that models the ”this” object.

5.2 XML Output

The purity analyzer has two possible output types. One type is only for writing purity information
into an XML-file and the other is to export the internal representation in a simplified form into
an XML-file that can be imported by a later analysis (see section 3.2). An example for the first
type is the following XML-file:

<?xml version=”1.0” encoding=”UTF−8”?>
<ann:annotations xmlns:ann=”http://sct.inf.ethz.ch/annotations”>

<ann:class name=”ch.ethz.inf.sct.purity analyzer . test .speech.Data”>
<ann:method name=”<init>” modifier=”pure”/>

</ann:class>
<ann:class name=”ch.ethz.inf.sct.purity analyzer . test .speech. Iter ”>

<ann:method name=”next” modifier=””/>
<ann:method name=”<init>” modifier=”pure”/>
<ann:method name=”remove” modifier=”pure”/>
<ann:method name=”hasNext” modifier=”pure”/>

</ann:class>
</ann:annotations>

1Java Modeling Language http://www.cs.iastate.edu/~leavens/JML/index.shtml

31

http://www.cs.iastate.edu/~leavens/JML/index.shtml

32 5 Results of the Analysis

Like the parsing, the output is made with XMLBeans and need no further explanations. The
schema for output was not introduced by me; it was introduced for another project that needed
purity information as input. The analyzer saves the following elements in the (purity) XML-file:

• classes
– name
– methods

∗ name
∗ all parameters with name, type and index
∗ modifier pure if method is pure

For the second output type, I had to make some extensions to the schema. As I said, the
analyzer exports a simplified form of the internal representation. This simplified form contains
the following elements:

• classes
– name
– is interface
– array of names of super interfaces
– name of super class
– methods

∗ name
∗ all parameters with name, type and index
∗ is constructor
∗ is static
∗ is abstract
∗ modifier pure if method is pure (saved here that this file can also be used as purity

input)
∗ analyzer graph

· array of inside edges
· array of outside edges
· array of local variables
· array of globals
· array of changed fields
· array of return nodes
· array of parameter nodes

Notes: if a class represents an interface, it doesn’t contain methods, and if a method is abstract,
it doesn’t contain an analyzer graph.

Example for a simplified IR:

<?xml version=”1.0” encoding=”UTF−8”?>
<ann:annotations xmlns:ann=”http://sct.inf.ethz.ch/annotations”>

<ann:class name=”ch.ethz.inf.sct.purity analyzer . test .paper.Iterator” isInterface =”true”/>
<ann:class name=”ch.ethz.inf.sct.purity analyzer . test .paper.Element”>

<ann:method isConstructor=”true” isStatic=”false” name=”<init>” isAbstract=”false”
modifier=”pure”>
<ann:parameter name=”d” type=”java.lang.Object” index=”0”/>
<ann:parameter name=”n” type=”ch.ethz.inf.sct.purity analyzer.test.paper.Element”

index=”1”/>
<ann:ptgraph>

<ann:edgeinside startnode=”P0” field=”data” endnode=”P1”/>
<ann:edgeinside startnode=”P0” field=”next” endnode=”P2”/>
<ann:varlocal varname=”d”>

<nodename>P1</nodename>
</ann:varlocal>

5.3 Starting the Analyzer 33

<ann:varlocal varname=”n”>
<nodename>P2</nodename>

</ann:varlocal>
<ann:varlocal varname=”this”>

<nodename>P0</nodename>
</ann:varlocal>
<changedField field=”next” nodename=”P0”/>
<changedField field=”data” nodename=”P0”/>
<nodeparam nodename=”P0” index=”0”/>
<nodeparam nodename=”P1” index=”1”/>
<nodeparam nodename=”P2” index=”2”/>

</ann:ptgraph>
</ann:method>
<superclass>java.lang.Object</superclass>

</ann:class>
</ann:annotations>

5.3 Starting the Analyzer

All files of the purity analyzer are saved on the ’waldorf.inf.ethz.ch’-CVS-Server in the folder
’dietlw/people/projects/purity-analyzer’, which is an Eclipse2 project. If you check out the project,
you must take care that all Eclipse variables are correctly set. The Eclipse variables are used be-
cause the purity analyzer contains SWT3 elements and they are imported over build-path variables.
The problem with these variables is that they have different names in each Eclipse version .

I have also created two JARs in the folder ’jars’. The difference between the two files is that
the light version doesn’t contain the packages which are necessary for the GUI, because they are
quite big. Unfortunately, the GUI in the full version works only under Windows, because for
starting the GUI, the ’swt-win32-3212.dll’-file must be in the same folder as the JAR-file and this
is a Windows library. SWT needs this library, because the most of the toolkit is native. It has
the advantage that it is faster and the rendering works better, but the disadvantage is that it is
operating system dependent.

The analyzer can be started, respectively the result can be generated in three different ways:
Over command line, an imported JAR in a Java project or with a GUI. The three ways have in
common that they can only analyze classes/packages which are in the Java Classpath and the
names of the classes/packages have to be passed in Java form, e.g. ’java.lang.Object’.

5.3.1 Command Line

There are three possible targets to start the analyzer over a command line:
• The class ch.ethz.inf.sct.purity analyzer.Main with all Classpathes. Because this is cumber-

some, I have written a small batch-file which already contains the Classpathes.

command.bat <input>

• One of the two JARs.

java −jar purity−analyzer full . jar <input>

The input has the following form: ’-fulloutput|-normaloutput -classes:{class1,package1} -
irs:{address1,address2}’. -fulloutput causes an XML-output of the internal representation and

2http://www.eclipse.org/
3Standard Widget Toolkit http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html

http://www.eclipse.org/
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html

34 5 Results of the Analysis

Figure 5.1: GUI

-normaloutput a normal purity XML-output. -classes are the classes and packages, that the ana-
lyzer analyzes and -irs all internal representations in XML-form, which the analyzer imports.

If the analyzer is started over a JAR, all result files are saves in the same folder as the JAR
otherwise they are saves in the folder ’print’ in the project.

5.3.2 Imported JAR

If one of the JARs is imported to a Java project, the project can start the analyzer by invok-
ing the method ’analyze(String[] classesPackages, String[] imports, boolean normalOutput, String
fileAddress)’ in the class ch.ethz.inf.sct.purity analyzer. classesPackages are the classes and pack-
ages that the analyzer analyzes and imports all internal representations in XML-form which the
analyzer imports. If normalOutput is true, the analyzer writes only purity information in the file
with the name fileAddress, else the simplified internal representation.

5.3.3 GUI

To test and present my purity analyzer, I have implemented a GUI which shows
the internal representation. The GUI can be started in Eclipse with the main class
ch.ethz.inf.sct.purity analyzer.gui.Gui (make sure that you run it as a SWT Application and not
as a Java Application!), with a double click on ’purity-analyzer full.jar’, or with a double click on
’purity-analyzer light.jar’, if all SWT libraries are in the Classpath.

The analysis can be started by writing all classes and packages in the classes/packages field and
one IR-XML-file in the import field and click analyze (it is only possible to parse one IR-XML-file,
but thats enough for testing and presenting).

The left sub window represents the tree of the internal representation. The elements are Tree
root (brown), Classes (blue), Interfaces (purple), methods (green/red) and statements (orange).
The green methods are pure and the reds are not. You may notice that some method signs have
a bleached color. These methods are parsed from an XML-file and the other ones from Bytecode.

5.3 Starting the Analyzer 35

The numbers that are written next to the statement signs are the hashcode of the objects which
represent a statement.

When you click with the mouse on an element, the right window shows some information about
this element:

• Tree Root
– method worklist

• Interface
– name
– super interfaces, sub interfaces, super classes

• Class
– name
– super interfaces, super class, sub classes

• Bytecode Method
– name
– callees and callers
– code
– statement worklist (the statements are identified by the hashcode of the representing

objects)
– analyzer graph

• XML-IR Method (light method)
– name
– analyzer graph

• Statement
– signature
– predecessors and successors (identified by the hashcode of the representing objects)
– analyzer graph

36 5 Results of the Analysis

Chapter 6

Future Work / Conclusion

6.1 Future Work

Right now, it is only possible to feed the analyzer with Bytecode (.class-files) and exported internal
representation as XML-file. The analyzer is able to write purity information or simplified, parseable
internal representation as output.

Analogous to the Bytecode, it should be possible to feed the analyzer with Java code (.java-
files). With a suitable Java code parser, it should be no problem to implement this update.

At the moment, the analyzer builds the analyzer graph only to detect if a method is pure or
not. That is fine, but because the analysis extracts a precise representation of the region of the
heap that each method may access, it is able to provide useful information even for methods with
externally visible side effects:

• Write Effects:
For each method a regular expression that describes the changes that the method has done
to the heap state before method invocation (see section 6.2 in the technical report[1]).

• Read-Only Parameters:
A parameter pi is read-only if none of the locations transitively reachable (over outside edges)
from pi is mutated (section 6.3 in the technical report).

• Safe Parameters:
A parameter is safe if it is read-only and its method does not create any new externally
visible heap paths to an object transitively reachable from the parameter (section 6.4 in the
technical report).

Additional to this technical extensions, it would be useful to have a graphical view of the
analyzer graph. In the current version, it is quite cumbersome to check if an analyzer graph is
correct. With pointed nodes and edges, it would be better.

Unfortunately, there is also some future work to do in the current implementation: The problem
is that the transformation of the throw instruction from the internal representation of JODE to
the IR of the purity analyzer is not correctly handled. Right now, a throw instruction is ignored.
Theoretically, a throw instruction is like a method invocation of a catch structure somewhere
higher in the call graph. However that is very difficult to handle. Furthermore, the technical
report doesn’t mention this problem.

6.2 Conclusion

Recognizing method purity is important for a variety of program analysis and understanding task.
I present the implementation of the first purity analyzer for Java that is capable of recognizing
pure methods that mutate newly allocated objects, including encapsulated objects that do not
escape their creating method.

37

38 6 Future Work / Conclusion

Figure 6.1: Future Work

My purity analyzer is able to analyze each internal representation which comes correctly from
JODE in acceptable time (analysis of the analyzer itself lasts 5 seconds). JODE has for example
problems with a few classes of the Java runtime environment. When JODE has problems with a
class, the class is not inserted into the internal representation, meaning that this class will no be
analyzed.

The technical report[1] provides the following about the most important future work: The
most important future work direction concerns making the analysis better suited to the analysis of
incomplete programs and libraries, to make this possible, one should have a specification for the
missing parts of the program. With my implementation, it is possible to add specifications for
missing parts over the imported IR-XML. It is rather cumbersome to write an analyzer graph into
an XML-file by hand, but it is possible.

I have written around forty test classes for my analyzer which are all analyzed cor-
rectly. Some interesting cases (like all examples of the technical report[1], examples to
check each statement, loops, strongly connected methods, etc.) are located in the package
ch.ethz.inf.sct.purity analyzer.test.

Acknowledgement

I would like to thank my supervisor Werner Dietl and Jochen Hoenicke (creator of JODE) for their
assistance.

Bibliography

[1] Martin Rinard Alexandru Sǎlcianu. A combined pointer and purity analysis for java programs. Technical report,
Massachusetts Institute of Technology, 2004.

[2] Martin Rinard Alexandru Sǎlcianu. A Combined Pointer and Purity Analysis for Java Programs. PhD thesis,
Massachusetts Institute of Technology, 2004.

[3] N. Kellenberger. Static Universe type inference. Master’s thesis, ETH Zurich, 2005.

[4] F. Lyner. Runtime Universe type inference. Master’s thesis, ETH Zurich, 2005.

[5] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency control. Technical Report 279,
Fernuniversität Hagen, 2001. Available from www.informatik.fernuni-hagen.de/pi5/publications.html.

39

	1 Introduction
	2 Internal Representation
	3 Parser
	3.1 Bytecode Parsing
	3.1.1 Bytecode Parsing with the JODE Decompiler

	3.2 XML Parsing

	4 Analyzer
	4.1 Preparations
	4.1.1 Inheritance relations
	4.1.2 Calling relations
	4.1.3 Control Flow Graph
	4.1.4 Method Worklist
	4.1.5 Statement Worklist

	4.2 Analysis
	4.2.1 Analyzer Graph
	4.2.2 Intra-procedural Analysis
	4.2.3 Inter-procedural Analysis

	5 Results of the Analysis
	5.1 Purity
	5.2 XML Output
	5.3 Starting the Analyzer
	5.3.1 Command Line
	5.3.2 Imported JAR
	5.3.3 GUI

	6 Future Work / Conclusion
	6.1 Future Work
	6.2 Conclusion

