
Universe Type System for Scala

Daniel Schregenberger

Master Thesis

Software Component Technology Group
Department of Computer Science

ETH Zurich
http://sct.inf.ethz.ch/

September 2006 - June 2007

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

Scala combines the object-oriented and functional paradigms to an expressive programming lan-
guage. It supports the creation of class hierarchies known from object-oriented languages like Java
or C# and at the same time allows to model algebraic types through pattern matching, as found
in many functional programming languages.

The Universe type system applies the concept of ownership to Java-like languages and allows
to control object modi�cation and thereby maintain invariants. It does so by controlling aliasing
without restricting it.

This thesis presents an ownership type system for Scala and other Java-like programming
languages. It combines support for type genericity with path-dependent types to extend the static
expressiveness of the Universe type system.

3

4

Acknowledgments

I would like to thank my supervisor Werner Dietl for his contributions and the advices on the
report.
And special thanks go to my family and in particular to my brother Stefan.

5

6

Contents

1 Introduction 9
1.1 Universe Types . 9

1.1.1 Ownership . 9
1.1.2 Ownership modi�ers . 9
1.1.3 Subtyping for ownership modi�ers . 9
1.1.4 Aliasing control . 11
1.1.5 Generic Universe Types . 11

1.2 Scala . 11
1.2.1 Why Scala? . 12
1.2.2 Short introduction to the Scala syntax . 12

1.3 Notation and naming conventions . 12
1.4 Outline . 13

2 Informal Overview 15
2.1 Path-dependent types . 15
2.2 Universe Types are viewpoint-dependent . 15
2.3 Path-dependent types in Scala . 16
2.4 Viewpoint adaptation . 17

2.4.1 Viewpoint adaptation in Generic Universe Types 17
2.4.2 Separating encapsulation and topology . 17

2.5 Limited covariance for parameterized types . 19
2.6 Main concepts . 20

2.6.1 Additional ownership modi�ers . 20
2.6.2 Paths . 21
2.6.3 Di�erent forms of path types . 21
2.6.4 Viewpoint adaptation for path-dependent Universe types 23
2.6.5 Paths containing mutable �elds . 24
2.6.6 Path normalization and conventions . 25
2.6.7 Path aliasing . 25
2.6.8 Subtyping . 26
2.6.9 Methods with dependent parameters . 26
2.6.10 Parameterized types . 28
2.6.11 Visibility . 28

3 Path-dependent Universe Types 29
3.1 Static type system . 29

3.1.1 Syntax . 29
3.1.2 Classifying path types . 30
3.1.3 Type mapping and path normalization . 30
3.1.4 Field selections . 31
3.1.5 Checking method calls . 34
3.1.6 Computing loose paths . 35

7

8 CONTENTS

3.1.7 Path simpli�cation . 36
3.1.8 Subtyping . 37
3.1.9 Type rules . 38

3.2 Parameterized types . 38
3.2.1 Syntax . 39
3.2.2 Type mapping and auxiliary functions . 39
3.2.3 Field selections . 40
3.2.4 Viewpoint adaptation . 40
3.2.5 Subtyping . 41

3.3 Runtime Types for Scala . 41
3.3.1 Runtime checks in Java . 41
3.3.2 Runtime checks in the Universe type system 42
3.3.3 Runtime representation of path-dependent Universe types 42
3.3.4 Proposed implementation for the Universe runtime checks 42

3.4 Additional restrictions to enforce encapsulation . 43
4 Discussion 45

4.1 Prototype implementation . 45
4.1.1 Notation . 45
4.1.2 Experiences with Scala . 46
4.1.3 Test suite . 46

4.2 Examples . 46
4.2.1 Field selection . 46
4.2.2 Method calls . 48
4.2.3 Parameterized types . 50

4.3 First-class functions . 55
4.4 Summary . 55

5 Related Work 57
6 Conclusion 59

6.1 Contribution . 59
6.2 Implementing path-dependent Universe Types . 59
6.3 Future Work . 59

A The assignable function 61
B Predicate and Function Overview 65

B.1 Functions concerned with universes . 65
B.2 Functions concerned with types . 66
B.3 Subtyping . 66

C Prototype implementation 69
C.1 universes.scala . 69
C.2 types.scala . 84
C.3 misc.scala . 92
C.4 logger.scala . 97

Chapter 1

Introduction

This chapter gives a short introduction to both, the Universe Type System and Scala. Its intention
is to make our work understandable even for readers not familiar with both of them. Besides that
it also gives an outlook to further readings for those interested.

1.1 Universe Types
The Universe type system [10], an extension of the Java programming language, represents an
ownership type system enforcing the owner-as-modi�er discipline. This discipline does not restrict
aliasing, but allows owners to control state changes of their owned objects. This property can for
example be used to maintain invariants and to support reasoning about various program properties.

1.1.1 Ownership
Ownership type systems partition the object store and thereby establish a hierarchical relation
between the objects. The fundamental concept of ownership assigns each object at most one
owner. The set of all objects with the same owner is called context. The set of objects with
no owner is called the root context and the tree structure evolving from these rules is called the
ownership topology.

1.1.2 Ownership modi�ers
In the Universe type system static type rules establish the ownership topology and enforce the
owner-as-modi�er discipline. In order to do so, types are annotated with ownership modi�ers.
Such ownership modi�ers in the Universe type system are always relative to some object, which
we are calling the viewpoint object or simply the viewpoint.

Using this, the current instance of the enclosing class, as the viewpoint, references to objects
sharing the same owner with this are expressed by the peer modi�er and references to objects
owned by this by the rep modi�er. Finally the any modi�er can be used to refer to any arbitrary
object without knowledge of its owner. Figure 1.1 illustrates the modi�ers and the relations
between objects.

Since ownership modi�ers are viewpoint dependent but contexts are absolute, di�erent owner-
ship modi�ers may, depending on the viewpoint, map to the same context.

1.1.3 Subtyping for ownership modi�ers
The de�nition of ownership modi�ers suggests establishing some kind of subtype relation between
them. Figure 1.2 illustrates this relation. Keep in mind that ownership modi�ers are properties
of the reference, not the object itself, and they are thus viewpoint dependent.

9

10 1 Introduction

peer

rep

peer

peer

rep

rep

reprep

any

any

this

Figure 1.1: Visualization of the ownership relations in an object structure. Objects are represented
by boxes and sit atop the context (rounded boxes) of objects they own. Ownership modi�ers are
attributes of the reference. For example an object pointed to by a rep reference (an arrow in the
visualization) is rep to the object holding the reference (the source of the arrow). Note that only
any references are allowed to cross arbitrary context boundaries.

peer

any

rep

Figure 1.2: Type hierarchy for ownership modi�ers.

1.2 Scala 11

1.1.4 Aliasing control
Unlike other ownership type systems, Universe Types do not apply the owner-as-dominator disci-
pline to control referencing. Systems enforcing the owner-as-dominator discipline restrict aliasing
by requiring every reference to an object o having to go through o's owner. Instead the Universe
type system enforces the less restrictive owner-as-modi�er discipline, which allows any object to
reference some object o, but ensures that only reference chains passing through o's owner may
be used to modify o. This allows owners to control state changes of their owned objects and thus
maintain invariants.

According to [8] the owner-as-modi�er discipline is enforced by disallowing modi�cations of
objects through any references. Expressions of an any type may only be used as receiver of �eld
reads and to call side-e�ect free methods. To check this property, side-e�ect free methods are
required to be annotated with the keyword pure.

Note that like Aldrich and Chambers [1] we consider ownership type systems to be twofold:
�rstly the concept of ownership establishes the aforementioned ownership topology and secondly
aliasing control is applied to enforce encapsulation. We call systems without aliasing control
topological type systems and consider the aliasing restrictions to manifest themselves in an overlay
system named the encapsulation type system.

1.1.5 Generic Universe Types
Generic Universe Types (GUT) [8] presents the �rst type system that combines the owner-as-
modi�er discipline with type genericity. A type in [8] is either a type variable or consists of an
ownership modi�er, a class name, and possibly type arguments. The ownership modi�er expresses
object ownership relative to the current receiver object this. The modi�ers of type arguments
also express ownership relative to the current this object and not relative to the instance of the
generic class that contains the argument modi�er.

Note that when we are referring to the Universe type system, we are actually referring to
Generic Universe Types as its latest incarnation.

1.2 Scala
Scala is a modern programming language which combines object-oriented and functional program-
ming in an elegant way. It is a pure object-oriented language in the sense that every value is an
object and its mixin-based composition mechanism provides a clean alternative to the multiple-
inheritance models of other languages. By supporting higher-order functions, currying, function
nesting, pattern matching, and anonymous functions it is also a functional language.

Scala code is compiled to either Java bytecode or .net assemblies. The integration with these
platforms is very tight. For example Java classes can be used from Scala code and vice versa. This
allows Scala programs to reuse the existing Java libraries and keeps the price for switching from
Java to Scala low.

In the following we give a short motivation for combining Universe Types with Scala and a
short introduction to the Scala syntax. While this should be su�cient to understand our type
system, we encourage to read some of the various documents, papers, and web pages about Scala.
A good starting point is the o�cial Scala web page1. To get a high-level overview over Scala we
recommend the paper by Odersky et al. [19] and if more in-depth information about a speci�c
feature is required, the Scala language reference [18] is a good source.

There are also several papers [17, 24, 20] that serve as an introduction for programmers willing
to give Scala a try. Since people are usually more familiar with object-orientation and Java than
with the functional concepts Scala supports, most of them are more or less focusing on advertising
the functional features. We are sharing the opinion of the authors that the transition from Java
to Scala for the object-oriented features is straightforward. However, the real elegance and power

1http://www.scala-lang.org/

http://www.scala-lang.org/

12 1 Introduction

of Scala lies in its functional features, which usually need some time to get accustomed to. Be
sure to check the community page of the Scala website. There are more and more people on the
Internet sharing their experiences with Scala, giving hints and tips.

1.2.1 Why Scala?
The main objective of our work was to create a system that combines path-dependent types with
Universe Types. Since Scala supports path-dependent types and, among other things, also the
very interesting concept of de�nition-site variance annotations for type parameters, we decided to
use the Scala language to base our system on.

1.2.2 Short introduction to the Scala syntax
The syntax of Scala is not fundamentally di�erent from that of Java and for someone familiar with
Java it should be possible to understand basic Scala programs. Some Scala code, however, may
require a bit of knowledge in functional programming to fully understand it, but since Universe
Types are all about objects and references, the lack of a functional background should be no
problem for understanding this report.

0 class Syntax[T] (init: T) {val constant: T = initvar variable = init

5

def printMessage (m: String) = {
10 Console.println(m)

}
}

Scala

0 class Syntax<T> {�nal T constant;
T variable;
Syntax (T init) {

5 constant = init;
variable = init;

}
void printMessage (String m) {

10 System.out.println(m);
}

}
Java

Figure 1.3: Comparison of Scala and Java syntax.
Figure 1.3 shows a side-by-side comparison of the Scala and the Java syntax by means of a

small example program. Most of the di�erences are only notational: Scala uses square brackets
to delimit type parameters instead of the angle brackets used by Java. In Scala each de�nition
is prepended by a keyword such as val for values (final variables in Java), var for variables
and def for methods. Types are speci�ed after the identi�er, separated by a colon. For method
return values and local values or variables types may even be omitted, in which case the compiler
automatically infers them. Probably the biggest di�erence in this example is the fact that in Scala
the class body represents the default constructor.

1.3 Notation and naming conventions
We are adopting the Scala way of naming things as opposed to the Java way used in previous
Universe related papers. For example we use the term parameterized types for what the Java
community calls generic types.

Like Generic Universe Types we are using tuples of an ownership modi�er and a type, as in
any List[any Object], for the notation.

1.4 Outline 13

1.4 Outline
Chapter 2 motivates the use of path-dependent types to extend the Universe type system and
provides and informal overview of the main concepts of our type system. Chapter 3 then presents
a �rst formalization of the type system and Chapter 4 discusses some of its aspects. In Chapter
5 related work is discussed and Chapter 6 concludes and gives an outlook for possible directions
of future work.

14 1 Introduction

Chapter 2

Informal Overview

In this chapter we motivate the introduction of path-dependent types to the Universe type system
and provide an informal overview of the main concepts of our type system.

2.1 Path-dependent types
The idea of path-dependent types is closely related to the concepts of virtual types and virtual
classes. While the idea of virtual classes has been around for a while, the theoretical foundations
have taken a bit longer to evolve. In fact only recently a virtual class calculus [14] has proven
them to be not as inherently unsafe as they were assumed to be.

Virtual classes are in many ways similar to virtual methods. They are de�ned as attributes
of classes, may be rede�ned within subclasses, and are accessed with dynamic binding through
object instances and not statically, like for example inner classes in Java. This means the actual
value of a virtual class is generally not known at compile time but depends on the identity of
the object it is accessed through. A virtual class therefore only speci�es a well-de�ned type if it
is accessed through an immutable reference, or more generally, an immutable expression. Such
immutable expressions are better known as paths and the types introduced by virtual classes as
path-dependent types.

2.2 Universe Types are viewpoint-dependent
When introducing Universe Types, we have emphasized that universes are viewpoint dependent. So
far we have implicitly assumed the viewpoint to be the current instance this of the enclosing class.
More explicitly one could therefore write this.peer instead of the shorter peer and this.rep
instead of rep. The idea of using paths to introduce other viewpoints than this is now just a
step away.

Similar to the additional typing power introduced by parameterized types, path-dependent
Universe Types have the potential to increase static type safety of programs using Universe Types.
And since there are already a number of systems [5, 21, 6, 14] using virtual classes or virtual types
to establish family polymorphism [12], path-dependent types suggest themselves to increase the
static type safety of ownership type systems.

The concept of family polymorphism is very similar to what can be expressed with an ownership
type system. Family polymorphism on object level groups objects to families. For example a list
and all its nodes form a family. Nodes from di�erent lists belong to di�erent families and are
distinguished by the identity of the list object, the so-called family object, to prevent (accidental)
mixing of nodes of di�erent lists. Yet if the family identity is not of interest, for example in a
pure method, nodes of di�erent lists can be processed by simply typing them with their common
supertype.

15

16 2 Informal Overview

2.3 Path-dependent types in Scala

Since Scala already includes support for path-dependent types, we evaluated the possibility of
using them to establish the ownership topology. Path-dependent types in Scala are introduced by
type members accessed through paths. According to [18] a path in Scala may be the empty path
ε, C.this, C.super (where C references a class) or p.x, where p is a path and x a stable member
of p. A member is stable if it is introduced by a value, singleton object or package de�nition. For
an example consider the de�nition on line 1 in Figure 2.1, which introduces T as a type member
of class Cell.

Our initial idea was that a class would simply de�ne type members for all types it would be
using in its representation and then only use the dependent type introduced by this type member
for declarations. Figure 2.1 shows a sketch of this idea using inner classes. Our assumption was
that a type p.T would be a subtype of the type referenced by it and only valid if accessed via a
path p. Unfortunately it turned out that path-dependent types in Scala are, due to their relation
to virtual classes, too heavily linked to inner classes for this idea to work out.

The main use for type members in Scala is the de�nition of abstract datatypes and not path-
dependent types. For example the Featherweight Scala calculus [6], which captures amongst other
Scala core constructs also dependent types, has a rich syntax of types combining both, path-
dependent types and abstract datatypes. It de�nes a type to be virtual only if the type member
introducing it is abstract. If the type member is bound to a speci�c type, it represents this type
and is indeed nothing more than a mere alias.

0 class Cell {type T = Nodevar value: T = new T
class Node

5 }
object inner extends Application {val cell = new Cellval item = new Cell

10
cell.value = item.value // error: type mismatch
item.value = cell.value // error: type mismatch
cell.value = new cell.T

15 item.value = new item.T
}

Figure 2.1: Path-dependent types in Scala using inner classes.

Notice the type mismatch between the types of cell.value (cell.T) and item.value (item.T)
in Figure 2.1. Expressing the same without using inner classes, as in Figure 2.2, fails since, unlike
our expectations, the types of cell.value and item.value are compatible. They are in fact, as
explained above, aliases for type Node.

However, our goal was to enable the programmer to freely decide what classes he wants to
group to a context and thus allowing a higher degree of reuse without losing type safety, similar
to the idea of generics. Since path-dependent types in Scala are to closely related to inner classes
and fail to ensure type safety on a level required for an ownership type system, we decided to
build our own system of path-dependent types. Our experience suggests that a separate system
lets us better focus on ownership than piggybacking ownership types on Scala's path-dependent
types would.

2.4 Viewpoint adaptation 17

0 class Cell {type T = Nodevar value: T = new T
}

5 class Node
object path extends Application {val cell = new Cellval item = new Cell

10
cell.value = item.value // ok
item.value = cell.value // ok
cell.value = new Node // ok

15 item.value = new Node // ok
}

Figure 2.2: Path dependent types in Scala using arbitrary classes.

2.4 Viewpoint adaptation
Since universes are viewpoint dependent, Generic Universe Types perform viewpoint adaptations
to compute the combined type of expressions such as �eld selections, method parameters and
return values. To compute the combined type of a �eld expression c.f for example, the type of
f, which is relative to its enclosing object instance c, has to be adapted to the viewpoint this.

The viewpoint adaptation has to be re-evaluated and adapted for path-dependent Universe
Types, which we are doing in this section.

2.4.1 Viewpoint adaptation in Generic Universe Types
The basic viewpoint adaptation function used in GUT is depicted in Figure 2.4(a). If for expression
c.f the receiver c equals this, then the adapted type equals the �eld type since it already is relative
to the viewpoint this. If the �eld is peer, the object referenced by it has the same owner as the
receiver used to access it (here c). If c is peer as well it has the same owner as this and thus
c.f has the same owner as well. And if c is rep it is owned by this and so is c.f. For any other
case it is impossible to statically express the exact relation between this and c.f in the Universe
type system. Therefore the combined type for all remaining cases is any.

In accordance with the owner-as-modi�er discipline no updates are possible if the universe of
the receiver is any, since a reference to an object in an arbitrary context may not be used to
update �elds. Along the same lines only rep �elds of this are modi�able. It can easily be seen
that all cases in Figure 2.4(a) which are not marked to be forbidden by the type rules can be
allowed without breaking type safety. Thus type safety with regards to the ownership topology
is in GUT ensured by the type rules enforcing the owner-as-modi�er discipline. The viewpoint
adapted type alone does not indicate whether modi�cations are permitted or not.

2.4.2 Separating encapsulation and topology
In order to keep focused on path-dependent types we decided to build our system step by step by
�rst establishing the ownership topology without any aliasing control. Enforcing encapsulation by
means of the owner-as-modi�er discipline is then done in a second step towards the �nal system.

Decoupling topology and encapsulation helps us evaluating the impact of the path-dependent
types on the Universe Type System and allows experimenting with novel ideas and concepts
regarding the encapsulation policy.

18 2 Informal Overview

To separate the establishment of the ownership topology from the encapsulation enforced by
the owner-as-modi�er discipline we need to drop the restrictions in the type rules. This enables us
for example to use an any reference to assign to an any �eld, which does not corrupt the ownership
topology since such a �eld does not care about the context of the object it references. On the
other hand we have to disallow updates of peer or rep �elds on any references since such �elds
care about the context of the objects they reference but the any type of the receiver does not allow
assignments conforming to such �eld types.

Unfortunately the removal of the restrictions imposed by the owner-as-modi�er discipline not
only invalidates the encapsulation properties, but also breaks type safety with regards to the
ownership topology. Therefore the viewpoint adaptation function has to be adjusted to indicate
topological type safety of modi�cations all by itself.

0 class C {val f : peer Object
}
val c : any C = new peer C

5 val a : any Object = c.f
// ...
c.f = a // compile time error

Figure 2.3: Viewpoint adaptation for �eld selections.
As an example consider the type of the expression c.f in Figure 2.3. According to the viewpoint

adaptation function in GUT the combined type is any and while read accesses are always allowed
for Universe Types, assigning a value to c.f, as attempted on line 8, cannot be allowed since
it would break type safety. For example one could try to assign it a rep reference. But since,
as explained above, we have no knowledge about the owner of c.f, it is not safe to assign it a
reference to an object owned by this. This means for viewpoint adapted types being any we have
to di�erentiate between those with �eld type any, in which case assignments can be allowed, and
those with a di�erent �eld type.

peer rep any
this peer rep any
peer peer any∗ any
rep rep any∗ any
any any∗ any∗ any∗

(a) In GUT.

peer rep unknown any
this peer rep unknown any
peer peer unknown unknown any
rep rep unknown unknown any

unknown unknown unknown unknown any
any unknown unknown unknown any
(b) Adapted for Path-dependent Universe Types.

∗Assignments forbidden through type rules.
Figure 2.4: The viewpoint adaptation function.

In order to achieve both, being able to assign any �elds through arbitrary references and
nevertheless protect type safety for peer and rep �elds, we are introducing the unknownmodi�er as
a new ownership modi�er. The viewpoint adaptation function is adjusted to return any whenever
the �eld type is any and unknown for all cases where it is impossible to statically determine
the relation between the current viewpoint this and the object referenced by a �eld selection
expression c.f. To protect type safety, �eld updates are then only permissible if the viewpoint
adaptation for the left-hand side does not yield unknown. Along the same lines methods with an
expected parameter universe being unknown can not be called. With this restriction we can safely

2.5 Limited covariance for parameterized types 19

consider unknown types to be subtypes of their respective any type.
Figure 2.4(b) depicts the adapted viewpoint adaptation function for our topological type system

and Figure 2.5 shows the updated type hierarchy including unknown. The updated viewpoint
adaptation function clearly shows that the purpose of the unknown modi�er is to ensure that type
safety with regards to the ownership topology is not violated. And the type hierarchy indicates
that a reference annotated with unknown may, similar to one annotated with any, refer to objects
in arbitrary contexts.

unknown

any

peer rep

Figure 2.5: Updated type hierarchy for ownership modi�ers.
Since the main use of the unknown modi�er is protection of type safety, we enforce useful uses

of it. So since the any modi�er can always be used to annotate references to arbitrary objects, we
do not allow unknown to be used as main modi�er.

2.5 Limited covariance for parameterized types
Abandoning the owner-as-modi�er discipline also makes it necessary to revisit the limited covari-
ance and viewpoint adaptation problem described in Generic Universe Types [8].

While subtyping with covariant type arguments is in general not statically type safe, the owner-
as-modi�er discipline allows for a limited form of covariance without additional runtime checks. As
an example consider the type peer List[rep Object] of value l in Figure 2.6. According to the
limited covariance in GUT any List[any Object], the type of value a, would be an admissible
supertype, since not only the element modi�er is any but also the main modi�er. Thus for reference
a any modi�cation of the list that could possibly break type safety is prohibited and assigning l
to a as done on line 1 can be permitted.

0 val l : peer List[rep Object] = new peer List[rep Object]val a : any List[any Object] = l

Figure 2.6: Limited covariance for an encapsulating type system as proposed by GUT.
But for a purely topological type system without encapsulation this does not hold and modi-

fying the main modi�er to any whenever the modi�er of a type argument changes to any does not
yield an admissible supertype. So for our system any List[any Object] is not a supertype of
peer List[rep Object]. Simply because a reference of this type would still allow modi�cations
of the list and therefore type safety could be broken by putting an object of an arbitrary context
into the list. But the referenced list might, and for this case does in fact, care about the actual
context of the objects it holds. Even if we do not know which context it is, it is a speci�c one and
we are obliged to only add objects of this speci�c context to the list.

However, we do not have to resort to invariant handling of type parameters. The unknown
modi�er, when used to annotate type arguments, allows us to express that we have no knowledge

20 2 Informal Overview

about the context of the elements of a parameterized type. This of course implies that we cannot
allow modi�cation of the elements or addition of new elements.

While for our system collections of any objects may hold references to objects of any number of
contexts, collections of unknown objects are (in general) considered to hold objects of one speci�c,
yet unknown context, hence the name. See �gure 2.7 for an illustration of the limited covariance
for parameterized types allowed by the unknown modi�er.

0 val l : peer List[rep Object] = new peer List[rep Object]val k : rep List[peer Object] = new rep List[peer Object]var u : any List[unknown Object] = lvar a : any List[any Object] = l // compile time error
u = k

5 a = k // compile time error
u = a

Figure 2.7: Limited covariance for a topological type system using the unknown modi�er.
While, for the reasons explained in the previous section, we are not allowing the unknown

modi�er to be used as main modi�er, it is allowed to be used to annotate type arguments. It is,
however, not possible to create a new instance of a parameterized type if one of the main modi�ers
of its direct type arguments is unknown. This restriction applies since it would be impossible to
create elements for such a type. If a type with elements in arbitrary contexts is wanted, the any
modi�er should be used as element modi�er instead. Figure 2.8 shows some examples illustrating
these restrictions.

0 val x = new unknown Object // compile time errorval y = new peer List[unknown Object] // compile time error
/∗ a list containing lists with unspeci�ed element type ∗/val z = new rep List[any List[unknown Object]] // ok

5 z.add(new peer List[rep Object]) // ok
z.add(new rep List[peer Object]) // ok
z.add(new rep List[any Object]) // ok

Figure 2.8: Examples for using the unknown modi�er.

2.6 Main concepts
In this Section we explain the main concepts of our path-dependent Universe Types with informal
examples.

2.6.1 Additional ownership modi�ers
We are adding three additional ownership modi�ers. The up modi�er allows objects to hold a
quali�ed reference into their owners context. Figure 2.9 revisits the object structure from Figure
1.1 and illustrates the usage of the up modi�er as well as the virtual owner �eld referencing an
objects owner.

The reps modi�er allows to reference the rep context and any context below it in the topology.
In other words it is a shorthand for sequences of rep modi�ers and therefore subsumes all paths
to objects in contexts transitively owned by this. The third new modi�er, ups, carries a very
similar idea. It is a shorthand for sequences of up modi�ers and allows to reference all objects
in contexts along the context topology path from this to the root object. See Figure 2.10 for a

2.6 Main concepts 21

peer

rep

up

peer

peer

rep

rep

reprep

owner/up

owner/up

this

Figure 2.9: Visualization of the owner �eld and the up modi�er in the object structure from Figure
1.1.

visualization of the reps and ups modi�ers and Figure 2.11 for the updated type hierarchy for
ownership modi�ers.

2.6.2 Paths
Every path starts with a local value or variable, the this reference, a singleton object, or a
value parameter1. It is then followed by any number of �eld selections and a sequence of context
modi�ers: Start.F ield .Context. For simplicity we are not allowing packages or super references
in paths. They are not of special interest to us but could be added easily if needed.

To avoid confusion we are using the explicit form with leading this for the rest of this thesis.
And we are also adjusting the naming conventions to avoid confusions between the simple owner-
ship modi�ers in GUT and their use as path elements in our system. The peer, rep, up, reps,
and ups modi�ers are therefore referred to as context modi�ers from now on. And for our system
paths form, together with the unknown and any modi�ers, the class of ownership modi�ers which
we are referring to as universes.

2.6.3 Di�erent forms of path types
We partition paths into three classes, namely stable, exact, and loose paths. A path is considered
to be stable, if it starts with an immutable value, contains only immutable �eld selections and
no trailing contexts. This corresponds to the notion of stable paths used in Scala. Exact paths
consist of a stable pre�x followed by exactly one of the peer, rep or up modi�ers. Any path that
is neither stable nor exact is considered to be loose. This includes all paths containing a reps or
ups modi�er or more than one context modi�er.

1Value parameters, as opposed to type parameters, are simply the usual method parameters. In Scala methodparameters programs are immutable, while in Java a method may modify its parameters and use them just likelocal variables.

22 2 Informal Overview

this

(a) reps

this

(b) ups

Figure 2.10: The ownership modi�ers reps and ups. A bright shade of grey is used to denote
contexts and a darker shade for objects contained by the respective modi�er. Contexts and objects
remaining white are not covered by the modi�er.

unknown

any

peer rep

reps

up

ups

Figure 2.11: Updated type hierarchy for ownership modi�ers.

2.6 Main concepts 23

Loose paths, as opposed to exact paths, describe not a single context but a family of contexts.
For example the loose path this.peer.rep describes all contexts owned by peers of this, including
the context owned by this itself.2 Variable h in line 11 of Figure 2.12 is annotated with this loose
path. In this environment, it subsumes the paths this.rep, f.rep and g.peer and therefore is a
supertype of them. More generally variable h may, as its type indicates, refer to any rep object
of the current this reference or its peers.

0 class D
class E {var x : this .peer D = new this.peer Dvar y : this .rep D = new this.rep D

5 }
class C {val f : this .peer E = new this.peer Eval g : this .rep E = new this.rep E

10 var h : this .peer.rep Object = g
h = g.x
h = f.y

}

Figure 2.12: Loose path example.

Generally stable paths identify an object, exact paths identify one speci�c context and loose
paths describe families of contexts.

2.6.4 Viewpoint adaptation for path-dependent Universe types
Path-dependent types increase the precision of the viewpoint adaptation function used to type
expressions. Figure 2.13 revisits the example from Figure 2.3 to illustrate this for a �eld selection.

0 class C {val f : peer Object
}
val c : any C = new peer C

5 val a : c.peer Object = c.f
// ...
c.f = a // ok

Figure 2.13: Type combination for �eld selections
Instead of resorting to any to type value a, path-dependent types allow to use the more expressive
c.peer. Generally the path-dependent viewpoint adaptation for a �eld selection expression c.f
is performed by substituting the receiver expression (here c) for the leading this in the �eld
type (here this.peer). If c is a mutable expression the resulting degenerate path is only an
intermediate result. The next section gives more insight on the handling of paths containing
mutable components.

2The context owned by this is included according to the subtype relation for ownership modi�ers <:u. SeeSection 3.1.8 for details.

24 2 Informal Overview

2.6.5 Paths containing mutable �elds
Because we are only using paths to identify the context of an object and not the object itself,
it is safe to allow paths containing mutable �elds to some extent. We believe it improves the
readability of a program when expressions which are used relative to some object o can also be
typed relative to o. Even if o is mutable or there would be an equivalent path without mutable
components. Mutable path elements are therefore allowed for convenience.

However, internally all user-speci�ed paths are normalized and the resulting paths contain no
more mutable parts but consist of a stable pre�x and one or more trailing context modi�ers. The
actual type system therefore does not have to deal with mutable paths, they are simply syntactic
sugar for the programmers.

0 class E
class C {var f : this .peer Evar g : this .rep E

5 def m (a : this .peer E) : this .rep E = {
// ...

}
10 def foo (x : this .rep E) = {

// ...
}

}
15 object mutable {var c : this .rep C = new this.rep Cval ret: c.rep E = c.m(c.f) // normalized universe : this .rep.rep

c.g = ret // compile time error
20 c.foo(ret) // compile time error

}

Figure 2.14: Motivation for mutable paths.

Figure 2.14 shows an example that further motivates the need for mutable paths. If we would
disallow mutable paths altogether, the method call on line 17 would be impossible, since the
expected type for argument a depends on the receiver of the method call, which in this case is
the mutable reference c. This call is, however, type safe and perfectly legal. The normalization
of the argument universe c.peer yields this.rep, which contains no mutable parts anymore. In
fact the normalization of the universe of c.f to this.rep does not loose any information. It is
equivalent to a simple universe combination as discussed in Section 2.4.

The universe of the method return value c.rep, on the other hand, is normalized to the
loose path this.rep.rep and so is the universe of value ret. Even though the normalized uni-
verse of c.g is this.rep.rep as well, the assignment on line 19 is not type safe since the path
this.rep.rep does not identify the exact context of c.g. Along the same lines the call to method
foo on line 20 cannot be allowed either.

To avoid confusions originating from normalized paths, implementations of our type system
should issue a warning to the programmer if the normalization result di�ers from the original path.
In order to keep the amount of such warnings on an acceptable level, only normalizations loosing
information should be reported. If the normalization was lossless the warning is not mandatory.
Figure 2.15 shows an example for each.

2.6 Main concepts 25

0 var c : this .peer C = new this.peer C
val x : c.peer C // lossless normalization to this .peerval y : c.rep C // lossy normalization to this .peer .rep − issues a warning

Figure 2.15: Example of a lossless and a lossy normalization of mutable paths.

2.6.6 Path normalization and conventions
As explained above paths speci�ed by programmers are normalized in order to allow mutable
paths. Normalization also ensures paths are valid with respect to the following restriction: paths
given by programmers need to end with a context modi�er. In other words they must not be
stable. This helps indicating that universes are used to identify the context of an object. A
universe describes a group or family of objects, not a single object as stable paths do.

Exact paths represent the most common form of ownership annotations for our path-dependent
universe type system. In the form of this.peer and this.rep they also subsume the peer and
rep modi�ers known from previous Universe type systems. For convenience we are even allowing
paths to omit the leading this. Paths starting with a �eld name or context modi�er are implicitly
assumed to have this as start value and the empty path is implicitly expanded to the default
path, usually this.peer.

2.6.7 Path aliasing
Path types introduce a new source for aliasing problems. Since objects of an equivalent or compat-
ible type do not have to be of syntactically equivalent types, type aliasing may occur. Figure 2.16
shows an example for the type aliasing introduced by paths. The assignment on line 9 is correct

0 class D
class C {var d : this .peer D = new this.peer D
}

5
// ...val c : this .rep C = new this.rep Cval d : c.peer D = c.dvar e : this .rep D = d

10 c.d = e

Figure 2.16: Path aliasing example.
despite the syntactically di�erent types. The same holds for the �eld update on line 10. While for
the former assignment one could argue that this.rep has to be a supertype of c.peer, the later
clearly cannot be solved through subtyping and indicates that the two types are in fact equivalent.
The type system we are presenting is able to detect this kind of type equivalence by simplifying
each path to its most simple form. In our example the most simple universe for value d would be
this.rep, since replacing c in c.peer by its universe this.rep yields this.rep.peer which can
be simpli�ed to this.rep. More details on path simpli�cation are given in Section 3.1.7.

Path simpli�cation forms an important part of our system. It ensures path aliasing is low which
prevents the programming from getting too tedious and therefore keeps the system functional.
Without path simpli�cation, the left-hand side for the assignment on line 10 would be typed with
c.peer, which has to be considered incompatible with this.rep, the universe of variable e, and
the assignment would be rejected. It is, however, important to notice that path simpli�cation

26 2 Informal Overview

retains the exactness of the original path and does not loose any information. Thus no warning
to the user has to be issued.

2.6.8 Subtyping
Loose paths introduce a whole lot of new types and relations between them. Previously we have
already seen that this.rep is a subtype of this.peer.rep, reps is a shorthand for sequences
of rep modi�ers and likewise ups for sequences of up modi�ers. Additionally a path containing
other stable components besides this is a subtype of the path computed by loosening it.

0 class Eclass D {var f : this .rep E = new this.rep E
}class C {

5 val d : this .rep D = new this.rep D
var x : this .d.rep E = this .d.fvar z : this .rep.rep E = x // ok

}

Figure 2.17: Loose supertypes.

For example path this.d.rep, the path of �eld x in Figure 2.17, is a subtype of this.rep.rep
as the de�nition of �eld z indicates. This can be established since this.d.rep identi�es the context
owned by the object �eld d references and since this object is again owned by this, the current
instance of class C. Field z therefore may reference any object owned by an object owned by this.
Computing loose superpaths is discussed in detail in Section 3.1.6.

Combining the rule that every path is a subtype of its loosened form with the subtyping rules
for reps modi�ers leads to a rich subtyping hierarchy. Figure 2.18 depicts two code fragments and
the respective type hierarchies showing the possible universes to type �eld z. While for Figure
2.18(a) there are quite a lot of supertypes for the most exact type this.d.f.rep, for Figure
2.18(b) the most exact type this.d.f.peer can be simpli�ed to this.peer. It is possible to use
universes like this.d.f.peer or this.d.peer to annotate z. They are, however, simpli�ed to
this.peer by the type system to reduce path aliasing as explained in the previous section and
are therefore not listed in the type hierarchy.

Note that the type hierarchies shown in Figure 2.18 are not complete since the number of
supertypes, from a static perspective, is not �nite. Consider for example that this.peer is a
subtype of this.up.rep, which is again a subtype of this.up.up.rep.rep and so on. This holds
due to the fact that this.up captures the owner of this and its peers and this.up.rep therefore
captures all objects owned by the owner of this and its peers, which includes this and its peers.

2.6.9 Methods with dependent parameters
When discussing paths containing mutable �elds we have already seen that path-dependent Uni-
verse types allow to call methods taking rep parameters on other receivers than this. Additionally
it is possible to type method parameters relative to preceding parameters. Along the same lines
the type of the return value may depend on any of the parameters.

Figure 2.19 shows an example for such a method. Note that in this case it is safe to allow the
method call even for mutable receivers, as the calls on lines 12 and 13 illustrate. The argument
corresponding to parameter a, however, has to be immutable. Otherwise it is impossible to provide
an argument for parameter b. Therefore the call on line 14 fails despite the immutable receiver c.

2.6 Main concepts 27

0 class Eclass D {val f : this .rep Eval g : this .f.rep E
}

5 class C {val d : this .rep D = new this.rep D
val z : ??? E = this .d.g

10 }

this.d.f.rep

this.d.f.reps this.d.rep.rep

this.d.rep.reps this.rep.rep.rep

this.d.reps this.rep.rep.reps

this.rep.reps

this.reps

any

(a)

0 class Eclass D {val f : this .peer Eval g : this .f.peer E
}

5 class C {val d : this .peer D = new this.peer D
val z : ??? E = this .d.g

10 }

this.peer

any

(b)

Figure 2.18: Example type hierarchies

28 2 Informal Overview

0 class C {val x : this .rep Object = new this.rep Object
def foo (a : this .peer C , b : a.rep Object) = {
// ...

5 }
}
val c : this .rep C = new this.rep Cval d : this .rep C = new this.rep C

10 var z : this .rep C = new this.rep C
c.foo(d, d.x)
z.foo(d, d.x)
c.foo(z, z.x) // compile time error

Figure 2.19: Example of a method where one parameter depends on another parameter.

2.6.10 Parameterized types
In Section 2.5 we have already seen that the unknown modi�er allows a limited form of covariance
for parameterized types. Additionally we make use of Scala's support for variance annotations for
type parameters to allow full co- and contravariance. This is possible because Scala ensures that
covariant type arguments are never used in contra- or invariant position. See Section 4.5 of the
Scala language reference [18] for more details.

Figure 2.20 shows a small example of a covariant parameterized type D.
0 class D[+X] {

// ...
}
class C {

5 var f : this .peer D[this .rep Object] = new this.peer D[this .rep Object]
}
// ...var c : this .rep C = new this.rep C

10 val x : this .rep D[this .rep.rep Object] = c.f // ok

Figure 2.20: Example of a parameterized type with covariant parameter X.
The limited covariance from Section 2.5 is nevertheless still useful to improve the �exibility for

invariant type arguments.

2.6.11 Visibility
To ensure a type can be interpreted everywhere an expression of this type appears, we impose the
restriction that paths may only depend on �elds of the same or a higher level of accessibility as
their own. This means private �elds, as well as parameters and return values of private methods,
may depend on private, protected or public �elds of its containing class instance, whereas public
ones may only depend on other public �elds.

Chapter 3

Path-dependent Universe Types

This chapter presents a �rst formalisation of our type system. The next section de�nes the syntax
of our type system and explains the type rules and predicates used by them. The presented rules
do not form a complete formalization, since this would have been out of scope for this thesis.
Complete formal speci�cation and a type safety proof is left to future work. The current kind of
semi-formalization, however, turned out to be a much easier and better understandable way to
describe the type system than with just informal text.

3.1 Static type system
This Section covers the static type system for path-dependent Universe Types. Note that the
presented rules do only cover non-parameterized types. We are extending this type system to
parameterized types in Section 3.2.

3.1.1 Syntax

T ∈ Type ::= Univ SType
C ∈ SType ::= Scala type conforming to scala.AnyRef
u ∈ Univ ::= UPath | unknown | any
p ∈ UPath ::= OPath.Context

id ∈ OPath ::= Start.F ield
s ∈ Start ::= V al | V ar
c ∈ Context ::= peer | rep | up | reps | ups
f ∈ Field ::= declared �elds plus owner
a ∈ V al ::= this, local values, value parameters, and singleton objects
x ∈ V ar ::= local variables
Γ ∈ Environment ::= maps members of V al and V ar to a Type T

Figure 3.1: Syntax and type environment.
Figure 3.1 summarizes the syntax and the naming conventions used. Like in previous Universe

type systems, a type (Type) consists of two parts. In our case a standard Scala reference type
(SType) is pre�xed by an ownership modi�er (Univ), which is either one of the unknown or
any modi�ers or a Universe path. As usual the ownership modi�er describes the context of an
expression and thus restricts the set of compatible objects from all objects of the de�ned Scala
type (and its subtypes) to a subset thereof.

Each Universe path (UPath) starts with a mandatory object path and may be followed by a
sequence of contexts. The Context sort includes the peer and rep modi�ers known from previous

29

30 3 Path-dependent Universe Types

Universe type systems and in addition the up, reps, and ups modi�ers introduced in Section 2.6.1.
Object paths (OPath) consist of a start value or variable which may be followed by a sequence

of �eld selections. Just like for regular �eld selections, only �elds de�ned by the class of the pre�x
or one of its superclasses can be selected. Additionally the Fields sort includes the virtual owner
�eld, referencing the objects owner. The start of an object path can be either a local variable
(V ar) or an element of the V al sort, which contains only immutable elements. Namely it contains
the current this reference, all local values, any method parameters in scope, and the reachable
singleton objects. Of course members of the V al, V ar and Field sorts need to be of reference
type, meaning they have to conform to scala.AnyRef.

Finally there is the type environment mapping function Γ, which is explained in detail in
section 3.1.3.

Naming conventions In the following we use the term universe to refer to ownership modi�ers
(Univ) and context for the set of all objects with the same owner. Besides that we refer to
the subclass of path-dependent universes (UPath) with the term path. To avoid confusion the
members of the Context sort are referred to as context modi�ers. And �nally we use the this
constant to identify the current instance of the encompassing class.

Instead of having two classes of �elds to distinguish mutable and immutable ones, we use a
static mutable property. If f.mutable equals true, �eld f is mutable, otherwise it is not.

Notation T denotes a sequence of T s and the i-th element is denoted by Ti. Such a sequence
can be empty and the empty sequence is denoted by ε. We use subscripts to di�er between
several expressions of the same kind. Decomposition of expressions is then done implicitly and the
subscripts are again used to help identifying the relations between the original and the decomposed
expression. For example we implicitly decompose the type T0 into its universe u0 and its Scala type
C0. Decomposition of tuples is also done with subscripts or, for anonymous tuples, via projection
↓i to select the i-th component of a tuple. Indexing for sequences and tuples ranges from 1 to n
with n being the cardinality of the sequence or tuple.

Since, as stated above, a type is a tuple u C consisting of a universe u and a Scala type C, we
write other occurrences of tuples as (x, y) to avoid confusion. Sequences of tuples, however, are
denoted by C x which we believe to be better readable.

3.1.2 Classifying path types

isStable :: Univ → bool

isStable(a.f) = ∀i :!fi.mutable

isExact :: Univ → bool

isExact(a.f.c) = isStable(a.f) ∧ c 6= reps, ups

Figure 3.2: The isStable and isExact predicates.
The predicates in Figure 3.2 are used to distinguish the di�erent classes of paths, as de�ned in

Section 2.6.3. The most important class for typing purposes is formed by the stable paths. They
are a core requirement for path-dependent types in any type system. We use the isStable and
isExact predicates to test for stable and exact paths. Loose paths are then all paths which are
not covered by either of these predicates.

3.1.3 Type mapping and path normalization
The type environment mapping function Γ, as depicted by Figure 3.3, maps variables to their
declared type but values, including the this reference, to their declared Scala type annotated

3.1 Static type system 31

Γ :: Start → Type
Γ(a) = a C with C being the declared Scala type of a
Γ(x) = declared Type T of variable x

Figure 3.3: Environment mapping.

with the identi�er of the value. Examples include this Object or myLocalV alue String. Such
types are needed by the type system in order to construct stable paths for dependent types.

Following good practice we de�ned some defaults to allow for shorter and better readable pro-
gram code. We do so by de�ning the additional SUniv sort and the validation and normalization
function normalize (Figure 3.4). SUniv is a generalization of Univ and normalize is a partial
function, which maps SUniv to Univ by applying the default values where appropriate. It also
takes care of simplifying the paths and eliminating mutable components. If normalize is not ap-
plicable to a user-speci�ed universe, the universe is not valid and has to be rejected. In particular
stable paths given by programmers are rejected, as explained in Section 2.6.6.

SUniv ::= ε | Univ | Field.Context

normalize :: SUniv → Univ
normalize(unknown) = unknown
normalize(any) = any
normalize(ε) = this.peer
normalize(f.c0.c) = normalize(this.f .c0.c)

normalize(s.f .c0.c) =

simplify(s.f .c0.c) if isStable(s.f)
normalize(simplify(s.f .c0.c))

if simplify(s.f .c0.c) 6= s.f .c0.c

normalize(simplify(loosen(s.f .c0.c))) otherwise

Figure 3.4: Path normalization
The class of valid user speci�ed universes, as de�ned by normalize, contains the unknown and

any modi�ers as well as the empty modi�er, which is expanded to the default value this.peer.
Furthermore we allow some form of degenerate paths, namely paths missing a start value or
variable and assume the start to be the this reference. This follows the typing rules for regular
�eld selections in Scala, where the explicit speci�cation of the leading this is optional as well.
Paths that start with a stable pre�x and end with a context modi�er are valid and can be accepted
after simplifying them. This eliminates path aliasing as discussed in Section 2.6.7. The next case
tries to apply this lossless simpli�cation step also to paths containing mutable components.

Finally, to eliminate remaining mutable components, all paths whose pre�x is not stable and
can not be simpli�ed anymore are normalized by applying the simplify and loosen functions
explained in Sections 3.1.6 and 3.1.7. This step eliminates mutable components, but since the
resulting path represents a loosened form of the initial path, it should be communicated to the
programmer by a warning.

3.1.4 Field selections
The major part of typing �eld selections is done by the select function in Figure 3.5. Its arguments
are the type of the receiver expression, the identi�er of the accessed �eld and the declared type
of the �eld. The return value is a pair consisting of the combined universe for the selection and a
boolean �ag which indicates if type information got preserved during the selection or not.

Please note that select always returns a valid universe, since �eld reads should always be
possible. On the other hand we can only permit �eld updates if the combined universe describes

32 3 Path-dependent Universe Types

the exact same context or set of contexts as the �elds universe from the viewpoint of the receiver.
The only di�erence should be the change of viewpoint. If any information is lost during the
viewpoint adaptation, the resulting universe describes a bigger set of contexts and the �eld selection
expression cannot be used as the left-hand side in an assignment, since a �eld update using this
type would not be save. The boolean part of the result is therefore only needed for �eld updates,
while �eld reads can simply discard it.

select :: Type× Field× Type → Type× bool

select(T0, f, Tf) =
{

(u0.f Cf , false) if isStable(u0)∧ !f.mutable
subst(Tf , (T0, this)) otherwise

where Tf is the declared Type of f and
f is a �eld selection on some expression of Type T0

Figure 3.5: Field selection.
The �rst case handled in select covers selections of immutable �elds on receivers whose universe,

as mapped by Γ, is a stable path. The resulting combined path is simply the path constructed
by the concatenation of the receivers path and the �eld name, which is a stable path again. And
since the �eld is immutable, assignments to it are impossible by de�nition. In any other case the
resulting universe has to be computed using a viewpoint adaptation.

subst :: Type× Type× V al → Type× bool
subst(u C, Tx x) = (ures C, bres)where (ures, bres) = subst1(u, ux x)

subst1 :: Univ × Univ × V al → Univ × bool
subst1(unknown,) = (unknown, true)
subst1(any,) = (any, true)
subst1(s.f .c, u x) = res

!∃(ui, xi) : s = xi : res = (simplify(s.f .c), true)
∃1(ui, xi) : s = xi :
ui = unknown : res = (unknown, false)
ui = any : res = (unknown, false)
isStable(ui) : res = (simplify(ui.f .c), true)
!isStable(ui) ∧

∣∣f ∣∣ = 0 : res = (simplify(ui.c), assignable(ui, simplify(this.c)))
otherwise : res = (subst1(simplify(loosen(s.f .c)), u x) ↓1, false)

Figure 3.6: Viewpoint adaptation.
Viewpoint adaptation Viewpoint adaptations are used at two places in our type system, one
being �eld selections and the other method invocations. We use the subst function to adapt a
type with regards to a di�erent viewpoint de�ned in terms of another type. Its arguments are the
type to adapt and a sequence of type-identi�er pairs de�ning di�erent viewpoints. The second
parameter needs to be a sequence, since we are using the same function to perform the viewpoint
adaptations needed to type method invocations. For simple �eld selections that would not be
necessary. Also while viewpoints and therefore also viewpoint adaptations are de�ned in terms of
universes, we use types instead to allow for an easy extension of the type system to parameterized
types, which is discussed in Section 3.2. To allow for better understanding we have moved the
viewpoint adaptation into the auxiliary function subst1, which, for the non-parameterized case, is
simply called by subst. The subst function of the parameterized system is slightly more complex
but also makes use of subst1 to perform the actual viewpoint adaptation of a universe with regards
to another universe.

3.1 Static type system 33

For �eld selections1 subst is invoked by select to substitute the this pre�x of the �elds path
by the full universe of the receiver expression. If the �eld universe is unknown or any, the resulting
universe trivially equals the �eld universe and assignments are allowed. For the case of the �eld
universe being unknown, this might be confusing. Recall that we are not allowing the unknown
modi�er to be used as main modi�er for �elds. So allowing assignments will not break type safety
here, since there will never be such an assignment. We need this behaviour of subst1 for the
extension to parameterized types discussed in Section 3.2.

If the �eld universe is neither any nor unknown, it is a path and we try to match the start of it
against one of the values in the viewpoint sequence supplied as second argument. If none matches,
the result is simply the �eld path and as nothing has been substituted, no type information got
lost and assignments can be allowed. This handles the case where the type of the �eld does not
depend on the receiver but on some singleton object, in which case no viewpoint adaptation is
necessary.

If the sequence contains a matching value xi, a viewpoint adaptation can be performed and
the result depends on the universe ui paired with xi. If ui is unknown or any, the substitution
result is unknown, and as this kind of viewpoint adaptation completely discards the �eld path,
assignments are not safe and cannot be permitted. Otherwise if ui is stable we can perform the
viewpoint adaptation by simply replacing the start value s by the universe ui and return the
simpli�ed result. For this case it is safe to allow assignments.

The next case then matches if ui is not stable and the �eld path contains no �eld selections but
only a start value plus a sequence of context modi�ers. It returns the simpli�ed composition of
ui with the context modi�er sequence c from the �eld path. Whether assignments are permissible
for this case is determined by a call to assignable. This helper function essentially checks whether
it is possible to describe the exact same context after the viewpoint adaptation or whether this is
impossible. This check helps us to determine whether assignments to a �eld through a mutable
receiver can be allowed and it also helps us check whether a method can be called on a mutable
receiver. Note that instead of using s as the start value for the second argument to assignable, we
are using the this constant. This is needed for the viewpoint adaptation of method parameters
as explained in the next subsection. For �eld selections s always equals this when this case is
reached and it therefore makes no di�erence.

Finally in any other case the �eld path still contains �eld selections and the receiver expression
is not stable. Combining these would result in an illegal path. To prevent this the �eld path
is loosened2 and the viewpoint adaptation calculated based on the resulting path. Since this
operation loses type information, a path computed in this manner cannot be used to type �eld
write expressions and the boolean part of the return value is set to false.

assignable :: Univ × Univ → bool
assignable(p.reps.c,) = false
assignable(p.ups.c,) = false

assignable(s.f .c, this.peer.rep.reps) = isStable(s.f) ∧ (|c| = 1 ∨ ∀i : ci = up)
assignable(s.f .c.cx, this.up.cy.rep.reps) = isStable(s.f) ∧ (|c| = 1 ∨ ∀i : ci = up)∧

∀i : cxi = rep ∧ |cy|+ 1 ≥ |cx| ∧
∀j : (cyj = up ∨ cyj = ups)

Figure 3.7: The assignable predicate.
Assignable The �rst argument to assignable (Figure 3.7) represents the receivers universe and
the second the �eld universe. The �rst two cases forbid assignments to �elds on receivers with
a reps or ups modi�er in the path, since in this case the context of the receiver is not exactly
determinable. The remaining two cases are needed to check assignments if the receiver path is

1Method invocations are explained in Section 3.1.5.2The function loosen used to achieve this is explained in detail in Section 3.1.6.

34 3 Path-dependent Universe Types

not stable, but the combined universe of receiver and �eld, as returned by subst, does not loose
any information. This is actually a very common case and can occur for example when the
receiver expression is a local variable. We are not going into details here, let us just state that
the presented patterns cover most cases of permissible �eld updates on mutable receivers. A more
detailed reasoning is given in Appendix A.

Note that the overbar over reps for the last two cases expresses that it is optional. We are,
like for most other predicates and functions, assuming that the input paths are normalized. So
according to the normalization and simpli�cation function simplify (Section 3.1.7) a repsmodi�er
may only occur once. The same holds for the ups modi�er which may occur in the �eld path for
the last case.

3.1.5 Checking method calls
Method calls can be seen and checked as a combination of at most one �eld read (for the return
value) and zero or more �eld assignments (for the argument values). Because we allow method
parameter types and the return type to not only depend on the receiver but also on other pa-
rameters, method calls are slightly more complex. First o�, to prevent circular dependencies,
we impose the restriction that a parameter may only depend on parameters preceding it in the
method signature. The return value, however, may depend on any parameter. Now while this
prohibits circular dependencies, it is still possible to have a dependency cascade. For example if,
in a method with multiple parameters, every parameter except the �rst depends on its immediate
predecessor.

To handle this, the previously de�ned subst function takes a sequence of type-value pairs. In
order to type check a method invocation, subst has to be called once for each parameter and fed
with the current parameters type and the sequence of all type-identi�er pairs of preceding param-
eters augmented by the receivers type as replacement for this. The idea behind this is to treat
the method parameters like virtual �elds and simply check if assignments would be permissible for
each of these virtual �elds. Therefore the boolean part for all results of these subst invocations has
to be true. Otherwise the method cannot be called since the viewpoint adaptation was lossy for
some parameter and it is impossible to match this parameters context, as seen from the viewpoint
of the caller, with an actual argument. For the return value it is �ne if the viewpoint adaptation
is lossy, since it is equivalent to a �eld read, not a �eld write.

0 class C {val x : this .rep Object = new this.rep Object
def foo (a : this .peer C , b : a.rep Object) = {
// ...

5 }
}
val c : this .rep C = new this.rep Cval d : this .rep C = new this.rep C

10 var z : this .rep C = new this.rep C
c.foo(d, d.x)
c.foo(z, z.x) // compile time error

Figure 3.8: Example of a method where one parameter depends on another parameter.
For an illustration of the method parameter handling consider the example in Figure 3.8 where

parameter b of method foo is depending on parameter a. For an actual invocation of method foo
it has to be checked whether the �rst argument is peer to the receiver of the method invocation
and the second argument is rep to the �rst. In order to check the later we are treating parameter b

3.1 Static type system 35

as a virtual �eld of parameter a, which again is handled as a virtual �eld of the receiver expression
since its path starts with a leading this. The viewpoint adaptation performed by subst will then
replace the this in this.peer by the universe of the actual receiver expression and the a in a.rep
by the universe of the actual argument corresponding to parameter a.

Consider the invocation of method foo on line 12 where both, the receiver and the actual
argument for parameter a, are values and therefore have a stable universe. The invocations of
subst for this call are as follows:

• for parameter a: subst(this.peer C, (c C, this)) = (this.rep C, true)

• for parameter b: subst(a.rep Object, (d C, a), (c C, this)) = (d.rep Object, true)

The expected universe for argument a is computed to be c.peer which is simpli�ed to this.rep
and the expected universe for argument b is d.rep. Both of them are computed without loss of
information and therefore qualify for assignments. Since the actual arguments are subtypes of
their respective expected type, it is thus safe to allow this method call.

Now consider the second invocation of foo on line 13. For this invocation only the receiver
has a stable universe. The invocations of subst for this call are as follows:

• for parameter a: subst(this.peer C, (c C, this)) = (this.rep C, true)

• for parameter b:
subst(a.rep Object, (this.rep C, a), (c C, this)) = (this.rep.rep Object, false)

Since the universe of parameter a is depending only on the receiver, its expected argument type is
the same as for the previous invocation. The expected universe for argument b on the other hand
is computed to be this.rep.rep which is not exact enough to allow this method call. The loss of
precision is detected by the assignable predicate. It correctly denies the possibility of matching
the context for parameter b from the viewpoint of the caller. In order to do this it is called with the
universe of the actual argument of a as receiver universe and this.rep, the universe of parameter
b with start value a replaced by this as �eld universe: assignable(this.rep, this.rep) = false.
Replacing a by this in b's path is the crucial step in pretending b is a virtual �eld of a, respectively
the argument for parameter a. Intuitively it is not possible to identify the exact context of a rep
�eld if the receiver object, which this.rep is relative to, is not uniquely identi�ed. A workaround
which allows to perform the call to foo with these arguments would be to introduce a temporary
local value referring to the same object as z.

3.1.6 Computing loose paths

loosen :: UPath → Univ

loosen(p.f.c) =

 u.c if u 6= unknown, any
u otherwise if |c| = 0
unknown otherwise

where uf is the universe declared for �eld f
and u = subst1(uf , (p, this)) ↓1

loosen(s.c) =

 us.c if us 6= unknown, any
us otherwise if |c| = 0
unknown otherwise

where us is the universe declared for local variable or value s

Figure 3.9: Computing loose paths.
Figure 3.9 presents the function loosen, which essentially substitutes the last �eld selection by

the declared universe of the �eld. The �rst rule computes this substitution and the second replaces

36 3 Path-dependent Universe Types

the start value by its declared universe. loosen is a lossy operation and every universe computed
using loosen is a �supertype� of the initial path, since it describes a family of contexts including
the originally described one. See Section 3.1.8 for more information about subtyping on paths.

Note that even though the composition of a universe with a sequence of contexts might result
in a path that could be further simpli�ed we are not doing this here. The reason behind this is
that the path simpli�cation function simplify uses loosen to eliminate path aliasing and in order
to avoid in�nite loops due to these functions mutually calling each other, we are not simplifying
the composition here. We are instead simplifying the result of each use of loosen outside simplify
at the call site.

3.1.7 Path simpli�cation

simplify :: Univ → Univ

simplify(u) =

 simplify(simplify1(u)) if simplify1 is de�ned on u
simplify(simplify2(u)) otherwise if simplify2 is de�ned on u
u otherwise

simplify1 :: UPath → UPath
simplify1(p.peer.peer.c) = p.peer.c
simplify1(p.peer.up.c) = p.up.c
simplify1(p.peer.ups.c) = p.ups.c
simplify1(p.rep.peer.c) = p.rep.c
simplify1(p.rep.up.c) = p.peer.c
simplify1(id.owner.peer.c) = id.up.c
simplify1(id.owner.rep.c) = id.peer.c
simplify1(p.up.peer.c) = p.up.c
simplify1(p.ups.peer.c) = p.ups.c
simplify1(p.reps.peer.c) = p.reps.c

simplify1(p.ups.up.c) = p.up.ups.c
simplify1(p.reps.rep.c) = p.rep.reps.c

simplify1(p.ups.ups.c) = p.up.ups.c
simplify1(p.reps.reps.c) = p.rep.reps.c

simplify2 :: UPath → UPath
simplify2(p) = simplify1(loosen(p))

Figure 3.10: Simplifying loose paths.
The simplify function depicted in Figure 3.10 is used to normalize sequences of context mod-

i�ers and is de�ned in terms of two helper functions. The �rst, simplify1, simpli�es sequences of
context modi�ers where the �rst block of simpli�cations mostly takes advantage of the fact that
the peer modi�er stands for �the same context as�. This means that a peer modi�er in a path
does denote the context identi�ed by its path pre�x. The following explanations are assuming
that p equals this and no additional modi�ers are given, i.e. |c| = 0. The extension to other,
more elaborate, p and additional context modi�ers is straightforward. For better understanding
of the simpli�cations take a look at Figures 2.9 and 2.10 in Section 2.6.1 where the meaning of
the context modi�ers and the virtual owner �eld are illustrated.

More than one peer modi�ers in a row can, for obvious reasons, be replaced by just one.
Furthermore since up designates the context containing the owner of the current object and because
the current objects peers are owned by the same object, the peer modi�er is redundant for the
second case as well. The same holds for the third case. Also objects which are peer to a rep

3.1 Static type system 37

object are simply rep themselves. The context encompassing a rep object is the current context
peer. Addressing the peers of the current objects owner can be done by simply using up. The
objects owned by the current objects owner are the current object and its peers. The up reference
already includes all objects in the context of the current objects owner. And �nally a trailing peer
modi�er does not change the contexts identi�ed by an ups or reps modi�er.

The second block of rules takes care of the ordering and the third normalizes sequences of ups
and reps. These normalization and ordering rules help maintaining compatibility of equivalent
types and keeping the type system tidy.

simplify2, the second helper function, tries to apply simplify1 to its loosened argument. This
reduces the aliasing problems induced by path-dependent universes as explained in Section 2.6.7,
and thus forms an important part of our system. If simplify1 is de�ned for the loosened path,
the loosened path component was redundant and the application of loosen and simplify1 returns
a path equivalent to p. If it is not de�ned, simplify2 is not de�ned for p and nothing will happen.

3.1.8 Subtyping

<: :: Type× Type → bool
u0 C0 <: u1 C1 ⇔ C0 <:SC C1 ∧ u0 <:u u1where <:SC is the default subtype relation on Scala types

<:u :: Univ × Univ → bool
unknown <:u any

u <:u unknown if u 6= any
p.rep <:u p.reps

p.rep.reps <:u p.reps
p.up <:u p.ups

p.up.ups <:u p.ups
id <:u id.peer

id.owner <:u id.up
u <:u simplify(loosen(u))

simplify(u) <:u u
u <:u u′′ if u <:u u′ ∧ u′ <:u u′′

p.c <:u simplify(p′.c) if p <:u p′

Figure 3.11: Subtyping.
A Universe type is a subtype (<:) of another Universe type if the respective Scala types are

subtypes in the sense of the default Scala subtype relation <:SC , and the ownership modi�ers are
subtypes as de�ned by the subtype relation on universes <:u. For the universe subtype relation,unknown is a subtype of any and any universe, except any, is a subtype of unknown. Sequences of
rep modi�ers can be covered by the more general reps modi�er. The same holds for sequences of
up modi�ers and ups. Some stable path id is a specialization and therefore a subtype of id.peer.
Along the same lines id.owner is a subtype of the more general id.up. Furthermore any universe
u is a subtype of the universe computed by applying loosen and simplify to it. An example type
hierarchy illustrating this rule can be seen in Section 2.6.8.

Subtyping on universes is of course re�exive and transitive. Where re�exivity is contained in
the rule that simplify(u) is a subtype of u. And �nally if two paths are subtypes, the paths
generated by selecting the same sequence of context modi�ers on them are subtypes as well. A
straightforward example of this last rule would be that from this <:u this.peer follows that
this.rep <:u this.peer.rep. Along the same lines it can also be shown that id.peer is a subtype
of id.up.rep. Since id.owner <:u id.up one can conclude that id.owner.rep <:u id.up.rep and
by using that simplify(u) <:u u it follows that id.peer <:u id.owner.rep and therefore also
id.peer <:u id.up.rep.

38 3 Path-dependent Universe Types

3.1.9 Type rules
The type rules can be found in Figure 3.12. The judgement Γ ` e : T expresses that expression e
is well typed with type T in environment Γ.

Subsumption :

Γ ` e0 : T
T <: T ′

Γ ` e0 : T ′ New :
isExact(u) ∨ u = any

Γ ` new T : T

LocalRead :
s ∈ dom(Γ)
Γ ` s : Γ(s)

V arWrite :

x ∈ dom(Γ)
Γ ` e : Γ(x)

Γ ` x := e : Γ(x)

FieldRead :

Γ ` e0 : T0

fType(C0, f) = T1

select(T0, f, T1) = (Tres,)
Γ ` e0.f : Tres

FieldWrite :

Γ ` e0 : T0

fType(C0, f) = T1

f.mutable
select(T0, f, T1) = (Tres, true)

Γ ` e2 : Tres

Γ ` e0.f := e2 : Tres

Invoc :

Γ ` e0 : T0

mType(C0,m) = Tret m(Tp x)
Γ ` e2 : T2

∀i : subst(Tpi, (T0, this), T2 x) = (Tai, true)
∀i : T2i <: Tai

subst(Tret, (T0, this), T2 x) = (Tres,)
Γ ` e0.m(e2) : Tres

Figure 3.12: Type rules.
Expressions typed with T can, according to the Subsumption rule, also be typed with T 's

supertypes. Object creation (New) is only allowed for exact paths and any, where creating an
object with an any modi�er can be used as a means of creating shared objects that are not part
of a speci�c context. This is very useful when using objects that possibly expose their peers or
mess with them, which can be prevented by putting such objects into an anonymous context.

Values and variables are typed by a lookup in the type environment (LocalRead). Assignments
to variables (V arWrite) are straightforward. FieldRead uses the select function to determine the
resulting path. Since it is not of interest to us, we do not give a de�nition of the fType function
used to lookup the declared type of a �eld. Its meaning should be clear nevertheless. Field updates
are covered by the FieldWrite rule. The resulting type is computed in the same way as for �eld
reads. Additionally the �eld has to be mutable and the second part of substs return value has
to be true, otherwise type information got lost during the viewpoint adaptation and the update
would break type safety. Finally method invocations (Invoc) can be typed like a sequence of �eld
updates with the parameters being virtual �elds updated on the receiver, as described in Section
3.1.5.

The rules for casts and the null reference are straightforward and would not provide any
substantial contributions to the presented type system. They are therefore not listed.

Initialization of local values and immutable �elds can be covered by handling them like an
assignment to a local variable or a �eld write respectively.

3.2 Parameterized types
This section extends our system to parameterized types. In order to do this we need to extend the
syntax and rede�ne the environment mapping function Γ as well as the select and subst functions

3.2 Parameterized types 39

used for the viewpoint adaptations. Furthermore we also need to adapt the subtyping operator
<:. All other functions are only concerned with universes and are therefore not in�uenced by the
extension to parameterized types. Finally we do not need to update the type rules since they are
already expressive enough to cover the extended system.

3.2.1 Syntax

T ∈ Type ::= NType | TV arId
N ∈ NType ::= Univ SType[Type]
C ∈ SType ::= non-parameterized Scala type conforming to scala.AnyRef
X ∈ TV arId ::= type variable

Figure 3.13: Syntax extension for parameterized types.

Figure 3.13 extends the syntax of our type system to parameterized types. SType is explic-
itly restricted to non-parameterized Scala types now and the newly introduced NType sort then
denotes non-variable types with ownership annotation. The type parameters for a parameterized
type can again be non-variable types or type variables (TV arId). The Type sort is therefore
extended to subsume both, non-variable types and type variables.

Naming conventions We use again static properties to cover Scala's variance annotations for
parameterized types. If X.cov equals true, type variable X is declared covariant and if X.cont
equals true, it is declared contravariant. Otherwise if neither X.cov nor X.cont are true, the
type variable is declared invariant. Of course at most one of X.cov and X.cont can be true for a
particular type variable.

3.2.2 Type mapping and auxiliary functions

Γ :: Start → Type
Γ(a) = a T with T being the declared type of value a
Γ(x) = declared Type T of variable x
Γ(X) = upper bound N of type variable X

Figure 3.14: The environment mapping function for parameterized types.

Figure 3.14 shows the adapted environment mapping function Γ. Values, including the this
reference, are mapped to their declared NType or type variable annotated with the identi�er of
the value and variables to their declared type. Finally type variables are mapped to their upper
bound which defaults to any scala.AnyRef.

setMain :: NType× Univ → NType
setMain(u C[T], u0) = u0 C[T]

Figure 3.15: The auxiliary function setMain.

We use the auxiliary function setMain depicted in Figure 3.15 to modify the main modi�er of
a parameterized type.

40 3 Path-dependent Universe Types

select :: NType× Field× Type → Type× bool
select(T0, f, Tf) = res

isStable(u0)∧ !f.mutable : res = (setMain(Ttmp, u0.f), false)
otherwise : res = (Ttmp, btmp)where (Ttmp, btmp) = subst(Tf , (T0, this)),

Tf is the declared Type of f ,
and f is a �eld selection on some expression of Type T0

Figure 3.16: Field selection for parameterized types

3.2.3 Field selections
Field selections in the presence of parameterized types always need a viewpoint adaptation to
make sure all type arguments are updated to relate to the changed viewpoint. For the case of a
stable receiver universe and the selected �eld being immutable, the main modi�er of the viewpoint
adapted �eld type is set to be the concatenation of the receiver universe and the �eld identi�er.
In any other case the result is simply the viewpoint adapted �eld type.

Note that the �rst parameter for select is required to be a non-variable type, since �eld selec-
tions require the universe of the receiver to be known.

3.2.4 Viewpoint adaptation

subst :: Type× Type× V al → Type× bool

subst(X, (uT CT [TT], this), T x) =
{

(TTX
, true) if TTX

↓1 6= unknown
(TTX

, false) otherwise
where X ∈ dom(CT) and TTX

is at the corresponding position
subst(u0 C[T0], T x) = res = (u1 C[Tr], br)where (u1, b1) = subst1(u0, u x)
∀i : (T2i, b2i) = subst(T0i, T x)

∀i : (Tri, bri) =

 (T2i, false) if !b2i ∧Xi.cov
(setMain(T2i, unknown), false) if !b2i∧!Xi.cov
(T2i, true) otherwise

where Xi is the type variable at position i
br = b1 ∧

∧
∀i

bri

Figure 3.17: Viewpoint adaptation for parameterized types.
The extended subst function shown in Figure 3.17 performs the adaptations of possibly param-

eterized types with regards to another type. The �rst rule is responsible for replacing occurrences
of type variables by the actual type arguments at the corresponding position. If the main modi�er
of the replacement is unknown, assignments can not be allowed since the unknown modi�er encodes
a speci�c yet unknown context that is impossible to match statically. Note that if type variable X
is not in the domain of CT this is a violation of type well-formedness and will be forbidden by the
well-formedness checks to be developed in future work.

The viewpoint adaptation for parameterized types is performed by �rst adapting the main
modi�er using the previously de�ned function subst1 and then recursively adapting the type
arguments. As a next step the main modi�ers of type arguments which have lost information
during the viewpoint adaptation are set to unknown unless the type variable at the corresponding
position is de�ned to be covariant. In this case it is safe to keep the widened type. Finally the
resulting type is assembled and the assignable �ags for all type parameters and the main modi�er
are collected and passed on.

3.3 Runtime Types for Scala 41

3.2.5 Subtyping

<: :: Type× Type → bool
u0 C[T0] <: u1 C[T1] ⇔ u0 <:u u1 ∧ ∀i : (

(Xi.cov ∧ T0i <: T1i)∨
(Xi.cont ∧ T1i <: T0i)∨
(T0i <:arg T1i))where Xi is the type variable at position i

X <: Γ(X)
X <: X

Figure 3.18: Subtyping for types.
Two parameterized types are subtypes (<:) if their Scala classes are both the same, their main

modi�ers are subtypes and the type arguments are related according to the respective variance
annotation. If a type variable is declared co- or contravariant, the actual type argument has to
obey this relation. If it is declared invariant we can still allow a limited form of covariance similar
to the one presented for Generic Universe Types [8]. In particular limited covariance for invariant
type arguments (<:arg) allows element types to be subtypes of their respective type with unknown
as main modi�er. To protect type safety, <:arg is de�ned recursively.

<:arg:: Type× Type → bool
u C[T0] <:arg unknown C[T1] ⇔ ∀i : T0i <:arg T1i

u C[T0] <:arg u C[T1] ⇔ ∀i : T0i <:arg T1i

Figure 3.19: Limited covariant subtyping for invariant type arguments.
The subtyping relation for types also ensures that a type variable X is a subtype of itself and

its upper bound Γ(X).

3.3 Runtime Types for Scala
Polymorphism and the substitution principle make it impossible to statically type check every-
thing. Therefore modern object-oriented languages provide a runtime environment which allows
programmers to retain type safety while performing statically unsafe operations like for example
downcasts.

We refer to the Java target platform for the considerations regarding runtime types. The
extension to the .net platform is expected not to introduce any further requirements for Universe
runtime types.

3.3.1 Runtime checks in Java
The Java Language Speci�cation [26] lists �ve places, where the actual class of a referenced
object a�ects program execution in a manner, that cannot be deduced from the static type of
the expression:

1. Method invocation,
2. the instanceof operator,
3. casts of reference types,
4. assignment to an array component of reference type and
5. exception handling.

42 3 Path-dependent Universe Types

3.3.2 Runtime checks in the Universe type system
The extended types of the Universe type system have no in�uence on the dynamic checks needed
for method invocation and exception handling. Method invocation does not need to be handled,
because the Universe types do not introduce di�erent methods and therefore do not in�uence
dynamic method binding. And exception handling does not change, since exceptions are best
caught and forwarded using any references which do not restrict passing. When adhering to
the owner-as-modi�er discipline this means that exceptions are not modi�able. But we consider
modi�cation of exceptions to be bad practice anyway and suggest to avoid it in favor of wrapping.

More insight on exceptions in ownership type systems is found in [9].

The instanceof operator and casts of reference types A motivational example for having
runtime checks for casts and the instanceof operator3 would be the cast of an unknown or any
reference to a rep reference by its owner. The typecase matches in Scala's pattern matching
are another example. However, we claim that path-dependent types should reduce the need for
downcasts by a considerable amount. Together with parameterized types it should be possible to
almost always avoid the use of such statically unsafe operations.

Note also that the checks are only necessary if the ownership modi�er changes. If only the
Scala class changes the universe check would be super�cial.

Assignment to an array component of reference type The Java Language Speci�cation
states that type-checking rules allow the array type T[] to be treated as a subtype of S[] if T is
a subtype of S, but this requires a run-time check for assignment to an array component, similar
to the check performed for a cast. Otherwise it would be possible to use a reference of type S[]
to put an object of type S into an array of type T[] which would obviously break type safety.

While arrays in Scala are not covariant it is still possible to explicitly upcast a reference of type
Array[T] to Array[S] if T <: S. We do, however, think that this should be avoided and have no
intentions of supporting this with regards to Universe types. We therefore statically forbid such
casts of array types if the element modi�er changes.

3.3.3 Runtime representation of path-dependent Universe types
In our understanding, path-dependent types are mainly a static feature. This means for the main
modi�ers we identi�ed no need for special or adapted runtime types re�ecting the paths at runtime.
We even believe it is not feasible, since path-dependency is an attribute of the reference and not the
object. Since the same object can be referred to via many di�erent paths, it would be impractical
to store this information in the runtime type. We believe it su�ces to have a virtual owner �eld
referencing an objects owner. This should also make it possible to compute the relation of any
two objects at runtime if necessary.

For parameterized types we additionally need to store the path for the type arguments. This
is necessary since storing only the owner is not expressive enough. For example for a collection
of type this.peer List[this.rep.rep Object] the elements can have di�erent owners, namely
all objects owned by this.

3.3.4 Proposed implementation for the Universe runtime checks
In the following we brie�y sketch how the runtime checks can be implemented. We are basing our
considerations on our earlier work on runtime checks for Universe Java.[25]

Object creation The Universe runtime checks for Java used a global hash table to register all
objects, at their point of creation, and store the ownership information in the form of a reference
to the owner object. Since Java has been released under the terms of the General Public Licence

3Scala uses the prede�ned functions isInstanceOf and asInstanceOf to perform type checks and casts.

3.4 Additional restrictions to enforce encapsulation 43

(GNU GPL) in the meantime, a modi�cation of java.lang.Object, to add support for the owner
�eld, or the Java virtual machine (JVM), might be considerable. With regards to performance,
such a solution would be preferable but all of these options have to be carefully evaluated for an
actual implementation of the Universe runtime checks for Scala.
Casts (asInstanceOf) and isInstanceOf The basic idea for casts and isInstanceOf is to
compare the stable pre�x of the target path with the object being checked or casted. In the
example depicted by Figure 3.20 the check involves a comparison of the owner of value a with the
current this reference.

0 val a : any C = new this.rep C
// ...

val c : this .rep C =
5 a.asInstanceof[this.rep C]

0 val a : any C = new this.rep C
// ...if (a.owner != this)throw new ClassCastExceptionval c : this .rep C =

5 a.asInstanceof[this.rep C]

Figure 3.20: Sketch of the general idea for the implementation of runtime checks for Scala.
If the modi�er of c were peer, the check would simply compare both owners (i.e. a.owner ==

this.owner) and if it were up, a.owner would be compared to this.owner.owner. Additional
modi�ers and combinations of modi�ers can be covered along the same lines and are therefore not
discussed here.

3.4 Additional restrictions to enforce encapsulation
In order to enforce the owner-as-modi�er discipline again, we only need to adjust the type rules for
object creation, assignments to �elds, and method invocations. Generally it can only be permitted
to modify an object if it is reachable through a this.peer or this.rep reference.

isModifiable :: Univ → bool
isModifiable(this.c) = (c = peer) ∨ (c = rep)

Figure 3.21: The isModifiable predicate de�nes the universes that qualify a reference for modi-
�cation when adhering to the owner-as-modi�er discipline.

The adapted rules enforce this for assignments to �elds and invocation of impure methods by
restricting the receiver using the isModifiable predicate from Figure 3.21. Creation of objects
has also to be restricted in order to prevent an object from tainting other contexts by injecting
objects.

Note that for pure methods, i.e. side-e�ect free methods, the universe of the receiver is not
restricted. We are again using a static boolean property to indicate side-e�ect free methods. If
m.pure equals true, method m is side-e�ect free.

44 3 Path-dependent Universe Types

New :
isModifiable(u) ∨ u = any

Γ ` new T : T
FieldWrite :

Γ ` e0 : T0

isModifiable(u0)
fType(C0, f) = T1

f.mutable
select(T0, f, T1) = (Tres, true)

Γ ` e2 : Tres

Γ ` e0.f := e2 : Tres

Invoc :

Γ ` e0 : T0

isModifiable(u0) ∨m.pure
mType(C0,m) = Tret m(Tp x)

Γ ` e2 : T2

∀i : subst(Tpi, (T0, this), T2 x) = (Tai, true)
∀i : T2i <: Tai

subst(Tret, (T0, this), T2 x) = (Tres,)
Γ ` e0.m(e2) : Tres

Figure 3.22: Adapted type rules enforcing the owner-as-modi�er discipline.

Chapter 4

Discussion

In this chapter we are discussing the type system developed in Section 3. We also present a
prototype implementation of the type checker and use it to visualize the typing process for a
number of examples.

4.1 Prototype implementation
To test our design and experiment with di�erent options for some of the problems we had to solve,
we decided to implement a prototype version of the type checker. Of course we used Scala to
do this and it turned out that the functional elements in Scala made it very easy to transfer the
functions and predicates of the formalization to actual Scala code. Especially pattern matching
was very helpful. And thanks to object-orientation we could easily map the sorts our syntax de�nes
to classes, subclasses and singleton objects. For example it enabled us to de�ne the predicates and
functions as methods of the class of their respective �rst parameter. Polymorphism and dynamic
method binding then helped us to de�ne the functionality at the appropriate place. In other
words we used dynamic method binding to do the matching on the �rst parameter and pattern
matching for the rest. For example the subst1 cases with the �rst argument being unknown or any
are de�ned in the Univ class and the cases involving paths in the more speci�c UPath class that
extends Univ.

We used di�erent classes depending on the number of type arguments to represent parameter-
ized types, which makes sure all type arguments are speci�ed upon instantiation. We also use this
technique for methods. Supplying a wrong number of arguments will therefore raise a compile
time error. And of course the implementation prints the warning messages we suggested in Section
2.6.5 in case the normalization of a path is lossy.

The source code of the prototype implementation can be found in Appendix C. The implemen-
tation consists of four main �les: universes.scala contains the classes from Figure 3.1 and the
functions de�ned on universes. The classes from Figure 3.13 and the functions de�ned on types
are found in types.scala. The other two �les contain helper functions and classes.

4.1.1 Notation
For loose paths with no �eld selections we could actually have used Scala's implicit coercion
functions to get a notation identical to the one used in the report. Using the same notation for all
paths was, however, a core requirement for the prototype implementation. We therefore decided
to use in�x methods to mimic the look and feel of the default notation. See Figure 4.1 for an
example.

45

46 4 Discussion

0 class Dataclass List[+X]
val l : this .rep List[any Data]

Notation used in the report.

0 val Data = Class("Data")val List = Class("List", "+X")
val l = This◦Rep ## List(Any ## Data)
Notation used by the prototype implementation.

Figure 4.1: Example showing the notation used by the prototype implementation.

4.1.2 Experiences with Scala
During the work on the prototype implementation we learned to know the beauty of several other
Scala features by practical experience. We were impressed by the power given to the language
by several small constructs. For example implicit de�nitions are an incredible tool, allowing
programmers, amongst other things, to add methods to existing classes. Also pattern matching
[11] proved to be incredibly helpful. Generally the concepts borrowed from functional languages,
like higher-order functions, function passing, and anonymous functions, make it a joy to write
Scala code. And of course there are several other comfort features like the local type inference
[22], the in�x notation for methods, and last but not least the freedom of not having to end each
line with a semicolon.

4.1.3 Test suite
Along with the prototype implementation we have also developed a test suite to ensure the se-
mantics of the prototype implementation were not altered during refactorings and adjustments.

4.2 Examples
This section presents some examples and investigates the typing process using the prototype
implementation. In order to ensure the examples compile with the standard Scala compiler, we
were using inline comments for the Universe annotations.

4.2.1 Field selection

0 class D {var g = new this.rep Object
}
class C {

5 var f = new this.peer D
}
object client extends Application {var c = new this.peer C

10
c.f = new this.peer D
c.f.g = new this.peer.rep Object // compile time error

}

Figure 4.2: A �eld selection.

4.2 Examples 47

Figure 4.3 shows the typing of a nested �eld selection expression c.f.g. The Scala code
corresponding to this example is depicted in Figure 4.2. The viewpoint adapted type of expression
c.f is computed to be this.peer (see the �rst typing block) and the resulting type for the
expression c.f.g is this.peer.rep and assignments are not allowed, since assignable correctly
forbids assignments to rep �elds on mutable receivers (as can be seen in the second block).
select(this.peer C, f, this.peer D) = res
| calculating (Ttmp, btmp) ...
| subst(this.peer D, {(this.peer C,this)}) = res
| | calculating (u1, b1) ...
| | subst1(this.peer, {(this.peer,this)}) = res
| | | assignable(this.peer, this.peer) = true
| | |res = (this.peer,true)
| | (u1, b1) = (this.peer,true)
| |res = (this.peer D,true)
| (Ttmp, btmp) = (this.peer D,true)
|res = (this.peer D,true)

select(this.peer D, g, this.rep Object) = res
| calculating (Ttmp, btmp) ...
| subst(this.rep Object, {(this.peer D,this)}) = res
| | calculating (u1, b1) ...
| | subst1(this.rep, {(this.peer,this)}) = res
| | | assignable(this.peer, this.rep) = false
| | |res = (this.peer.rep,false)
| | (u1, b1) = (this.peer.rep,false)
| |res = (this.peer.rep Object,false)
| (Ttmp, btmp) = (this.peer.rep Object,false)
|res = (this.peer.rep Object,false)

Figure 4.3: The typing process for the �eld selection in Figure 4.2.

48 4 Discussion

4.2.2 Method calls
The example for a method with dependent parameters has already been discussed in Section 3.1.5.
The typing process in Figure 4.5 shows that the assignable predicate is only used when the subst
function is replacing the start value of a path with a path that is not stable. The �rst block in
Figure 4.5 represents the computation of the expected types for the arguments of the �rst function
call (line 13 in Figure 4.4) and the second block the second call (line 14).

0 class C {val x = new this.rep Object
def foo (a : this .peer C , b : a.rep Object) = {

// ...
5 }
}
object client extends Application {val c = new this.rep C

10 val d = new this.rep Cvar z = new this.rep C
c.foo(d, d.x)
c.foo(z, z.x) // compile time error

15 }

Figure 4.4: The method example from Figure 3.8 where parameter b depends on parameter a.

4.2 Examples 49

subst(this.peer C, {(c C,this)}) = res
| calculating (u1, b1) ...
| subst1(this.peer, {(c,this)}) = res
| |res = (this.rep,true)
| (u1, b1) = (this.rep,true)
|res = (this.rep C,true)

subst(a.rep Object, {(d C,a), (c C,this)}) = res
| calculating (u1, b1) ...
| subst1(a.rep, {(d,a), (c,this)}) = res
| |res = (d.rep,true)
| (u1, b1) = (d.rep,true)
|res = (d.rep Object,true)

subst(this.peer C, {(c C,this)}) = res
| calculating (u1, b1) ...
| subst1(this.peer, {(c,this)}) = res
| |res = (this.rep,true)
| (u1, b1) = (this.rep,true)
|res = (this.rep C,true)

subst(a.rep Object, {(this.rep C,a), (c C,this)}) = res
| calculating (u1, b1) ...
| subst1(a.rep, {(this.rep,a), (c,this)}) = res
| | assignable(this.rep, this.rep) = false
| |res = (this.rep.rep,false)
| (u1, b1) = (this.rep.rep,false)
|res = (this.rep.rep Object,false)

Figure 4.5: The typing process for the method example in Figure 4.4.

50 4 Discussion

4.2.3 Parameterized types

0 class IDclass Dataclass Iter[X] (start: X) {var current: X = start
}

5 class Node[K , V] (k : K , v : V) {var key: K = _var value: V = _
}class Map[K , V] (k : K , v : V) {

10 var node = new this.rep Node[K, V] (k , v)var iter = new this.peer Iter[this.rep Node[K , V]] (node)
}
object client extends Application {

15 var id = new this.rep IDvar data: any Data = new this.rep Datavar map = new this.rep Map[this .rep ID , any Data] (id , data)
var i = map.iter

20 map.iter = i // compile time error
var n : any Node[this .rep ID , any Data] = map.node
n = i.current
map.node = n // compile time error

25 i.current = n // compile time error
id = n.key
data = n.value
n.key = id // compile time error

30 n.value = data // compile time error
}

Figure 4.6: Map example.
Figure 4.6 presents a simpli�ed version of the map example from GUT [8]. The client uses a

�eld selection instead of a method call to get a reference to map's iterator and the Iter class is
parameterized with only one type argument.

The typing of the �eld selection expression map.iter (line 19) is depicted by Figure 4.7. The
select function (Figure 3.16) invokes subst (Figure 3.17) to adapt the type of the iter �eld to the
viewpoint of the client object. The subst function then uses subst1 (Figure 3.6) to adapt the
main modi�er of the �eld (peer) with regards to the main modi�er of map (rep). The resulting
main modi�er (u1) is again this.rep and the boolean �ag b1, indicates that the adaptation was
lossless.

The next step computes T2, the viewpoint adaptation of the type argument of the iterator
(here this.rep Node[K, V]). The adaptation of the main modi�er for the only type argument
is computed along the same lines as before and yields this.rep.rep. Then the type variables K
and V are replaced by their corresponding arguments. The intermediate type (T2) for the type
argument of map.iter is this.rep.rep Node[this.rep ID, any Data]. Since the computation
of the main modi�er this.rep.rep was lossy, it is set to unknown and the �nal type (Tres)for the �eld selection is this.rep Iter[unknown Node[this.rep ID, any Data]]. The type of
this expression in GUT would be any Iter[any Node[this.rep ID, any Data]]. Notice the
di�erent main modi�ers. While in GUT the main modi�er has to be set to any to ensure type

4.2 Examples 51

select(this.rep Map[this.rep ID, any Data], iter,
| this.peer Iter[this.rep Node[K, V]]) = res
| calculating (Ttmp, btmp) ...
| subst(this.peer Iter[this.rep Node[K, V]],
| | {(this.rep Map[this.rep ID, any Data],this)}) = res
| | calculating (u1, b1) ...
| | subst1(this.peer, {(this.rep,this)}) = res
| | | assignable(this.rep, this.peer) = true
| | |res = (this.rep,true)
| | (u1, b1) = (this.rep,true)
| | calculating T2 ...
| | subst(this.rep Node[K, V],
| | | {(this.rep Map[this.rep ID, any Data],this)}) = res
| | | calculating (u1, b1) ...
| | | subst1(this.rep, {(this.rep,this)}) = res
| | | | assignable(this.rep, this.rep) = false
| | | |res = (this.rep.rep,false)
| | | (u1, b1) = (this.rep.rep,false)
| | | calculating T2 ...
| | | subst(K, {(this.rep Map[this.rep ID, any Data],this)}) =
| | | (this.rep ID,true)
| | | subst(V, {(this.rep Map[this.rep ID, any Data],this)}) =
| | | (any Data,true)
| | | T2 = {(this.rep ID,true), (any Data,true)}
| | | Tres = {(this.rep ID,true), (any Data,true)}
| | |res = (this.rep.rep Node[this.rep ID, any Data],false)
| | T2 = {(this.rep.rep Node[this.rep ID, any Data],false)}
| | Tres = {(unknown Node[this.rep ID, any Data],false)}
| |res = (this.rep Iter[unknown Node[this.rep ID, any Data]],false)
| (Ttmp, btmp) = (this.rep Iter[unknown Node[this.rep ID, any Data]],false)
|res = (this.rep Iter[unknown Node[this.rep ID, any Data]],false)

Figure 4.7: Visualization of the typing process for the expression map.iter in the Map example
from Figure 4.6.

52 4 Discussion

safety, the unknown modi�er allows us to keep the more precise this.rep. But since the boolean
part of the result is false (due to the unknown modi�er for the type argument), it is impossible
to use the expression map.iter as left-hand side for an assignment.
select(this.rep Map[this.rep ID, any Data], node, this.rep Node[K, V]) = res
| calculating (Ttmp, btmp) ...
| subst(this.rep Node[K, V],
| | {(this.rep Map[this.rep ID, any Data],this)}) = res
| | calculating (u1, b1) ...
| | subst1(this.rep, {(this.rep,this)}) = res
| | | assignable(this.rep, this.rep) = false
| | |res = (this.rep.rep,false)
| | (u1, b1) = (this.rep.rep,false)
| | calculating T2 ...
| | subst(K, {(this.rep Map[this.rep ID, any Data],this)}) =
| | (this.rep ID,true)
| | subst(V, {(this.rep Map[this.rep ID, any Data],this)}) =
| | (any Data,true)
| | T2 = {(this.rep ID,true), (any Data,true)}
| | Tres = {(this.rep ID,true), (any Data,true)}
| |res = (this.rep.rep Node[this.rep ID, any Data],false)
| (Ttmp, btmp) = (this.rep.rep Node[this.rep ID, any Data],false)
|res = (this.rep.rep Node[this.rep ID, any Data],false)

select(this.rep Iter[unknown Node[this.rep ID, any Data]], current, X) = res
| calculating (Ttmp, btmp) ...
| subst(X, {(this.rep Iter[unknown Node[this.rep ID, any Data]],this)}) =
| (unknown Node[this.rep ID, any Data],false)
| (Ttmp, btmp) = (unknown Node[this.rep ID, any Data],false)
|res = (unknown Node[this.rep ID, any Data],false)

Figure 4.8: Visualization of the typing process for the expressions map.node and i.current in
the Map example from Figure 4.6.

The typing for the expression map.node is very similar (Figure 4.8, the �rst block), while
for the expression i.current the unknown modi�er is propagated (Figure 4.8, the second block).
Both expressions can be referenced by a variable of type any Node[this.rep ID, any Data], as
indicated on lines 22 and 23 in Figure 4.6. Assignments to map.node are disallowed since the main
modi�er for the resulting expression, this.rep.rep, is not precise enough. And assignments to
i.current are disallowed since the main modi�er is unknown.

Consider now the �eld selections on lines 27 and 28 in Figure 4.6. The resulting types for these
selections (Figure 4.9) are computed by simply substituting the corresponding type argument
for the type variables. Since this step is lossless, assignments to these �elds could be allowed.
They are, however, forbidden by the owner-as-modi�er discipline, since the main modi�er for
the receiver n, which is any, does not allow �eld modi�cations. With regards to the ownership
topology, assignments would be safe.

Finally for completeness, Figure 4.10 de�nes the map reference as an immutable value, as
opposed to the mutable variable used in Figure 4.6. The resulting type for map.iter is then the
more precise this.rep Iter[map.rep Node[this.rep ID, any Data]] as the typing process in
Figure 4.11 shows. This allows to update the iter �eld of map, as line 6 indicates.

4.2 Examples 53

select(this.rep.rep Node[this.rep ID, any Data], key, K) = res
| calculating (Ttmp, btmp) ...
| subst(K, {(this.rep.rep Node[this.rep ID, any Data],this)}) =
| (this.rep ID,true)
| (Ttmp, btmp) = (this.rep ID,true)
|res = (this.rep ID,true)

select(this.rep.rep Node[this.rep ID, any Data], value, V) = res
| calculating (Ttmp, btmp) ...
| subst(V, {(this.rep.rep Node[this.rep ID, any Data],this)}) =
| (any Data,true)
| (Ttmp, btmp) = (any Data,true)
|res = (any Data,true)

Figure 4.9: Visualization of the typing process for the expressions n.key and n.value in the Map
example from Figure 4.6.

0 object client extends Application {var id = new this.rep IDvar data: any Data = new this.rep Dataval map = new this.rep Map[this .rep ID , any Data] (id , data)
5 var i = map.iter

map.iter = i // ok
}

Figure 4.10: Map example with the map reference being immutable.

54 4 Discussion

select(map Map[this.rep ID, any Data], iter,
| this.peer Iter[this.rep Node[K, V]]) = res
| calculating (Ttmp, btmp) ...
| subst(this.peer Iter[this.rep Node[K, V]],
| | {(map Map[this.rep ID, any Data],this)}) = res
| | calculating (u1, b1) ...
| | subst1(this.peer, {(map,this)}) = res
| | |res = (this.rep,true)
| | (u1, b1) = (this.rep,true)
| | calculating T2 ...
| | subst(this.rep Node[K, V],
| | | {(map Map[this.rep ID, any Data],this)}) = res
| | | calculating (u1, b1) ...
| | | subst1(this.rep, {(map,this)}) = res
| | | |res = (map.rep,true)
| | | (u1, b1) = (map.rep,true)
| | | calculating T2 ...
| | | subst(K, {(map Map[this.rep ID, any Data],this)}) =
| | | (this.rep ID,true)
| | | subst(V, {(map Map[this.rep ID, any Data],this)}) =
| | | (any Data,true)
| | | T2 = {(this.rep ID,true), (any Data,true)}
| | | Tres = {(this.rep ID,true), (any Data,true)}
| | |res = (map.rep Node[this.rep ID, any Data],true)
| | T2 = {(map.rep Node[this.rep ID, any Data],true)}
| | Tres = {(map.rep Node[this.rep ID, any Data],true)}
| |res = (this.rep Iter[map.rep Node[this.rep ID, any Data]],true)
| (Ttmp, btmp) = (this.rep Iter[map.rep Node[this.rep ID, any Data]],true)
|res = (this.rep Iter[map.rep Node[this.rep ID, any Data]],true)

Figure 4.11: Visualization of the typing process for the expression map.iter with immutable map
reference as in the example in Figure 4.10.

4.3 First-class functions 55

4.3 First-class functions
Scala supports the concept of �rst-class functions, i.e. functions that may be passed as parameters
or returned as results. Functions taking other functions as parameters or returning them as results
are called higher-order functions.

The type of a function in Scala is denoted by (T1, . . . , Tn) => U where the Ti represent the
argument types and U the result type. These function types are shorthands for the class types
Functionn[T1, . . . , Tn, U] that de�ne apply methods. The presence of such an apply method in a
class allows to apply an instance of this class to a matching parameter list in Scala. Figure 4.12
presents a small example.

0 class fun extends Function1[Object, String] {def apply (o: Object): String = o.toString
}
// ...

5 val f : (Object => String) = new fun
f(new Object)

Figure 4.12: Applying objects.
Higher-order functions in Scala are therefore functions taking parameters of a Functionn type

or returning results of such a type. Anonymous functions are passed by wrapping their body in
an anonymous Functionn instance and class methods can be mapped to Functionn instances as
well through Eta-expansion (Scala Language Speci�cation [18], Section 6.24.5).

The Universe types for functions is obtained by annotating the Functionn types and can be
directly applied to the shorthands as well. For example the type this.peer Function1[this.rep
Object, any String] translates to this.peer (this.rep Object => any String).

The default value for the main modi�er is this.peer for anonymous functions and p.peer for
a function mapping a member method of an object instance reachable through path p. This allows
function passing to retain as much of its expressiveness as possible. Since a function that has been
created by mapping a member method, can have side-e�ects on the instance of the class containing
the method, it is not safe to use any as main modi�er and assume purity for the apply methods
of functions. Similarly for anonymous functions which can have e�ects on non-local values as well.

There is, however, still room for improvements regarding the handling of anonymous functions.
Examples include explicit purity annotation for anonymous functions, to be able to map them to
subtypes of the existing Functionn types with pure apply methods. Also pure member methods
should be mapped to such pure functions as well.

4.4 Summary
The static precision of the Universe type system is clearly pro�ting from path-dependent types.
For instance they allow us to read rep �elds on receivers other than this without having to resort
to any to type the resulting expression. If the receiver for such a �eld selection is immutable
then the resulting expression will have a type with an exact path indicating where this object is
obtained from. This for example helps identifying the collection an iterator is working on and
allows to avoid casts when passing the object back to its owner for modi�cations.

A great deal of �exibility is also owed to the loose paths which for example allow to use the
same iterator variable for all collections owned by peers of this and only those.

Path-dependent Universe Types also allow to de�ne more �exible encapsulation policies. For
example it is possible to allow an object to create instances in the context of another object. The
abstract factory pattern is an example where [16] identi�ed the need for such object creations in
foreign contexts. Path-dependent types would allow a factory to provide a method, which, when

56 4 Discussion

called from an object o with a reference to o itself as argument would then create the products
directly in o's context and return a reference to it. Additional rules would have to ensure that
only the owner of a context can allow other objects to create objects in its context. For example
by annotating the parameter of the create method of the factory and only allowing this as value
for the corresponding argument.

Regarding parameterized types we believe that the variance annotations for type parameters as
used by Scala present a much more elegant way of dealing with subtyping for parameterized types
than the wildcard concept used by Java. Practical usage of co- and contravariant parameterized
Universe types will, however, have to be evaluated with case studies or real world applications.

Chapter 5

Related Work

Erik Ernst builds on dependent types to take polymorphism to the multi-object level. Family
Polymorphism [12] allows to declare and manage relations between several classes polymorphically.
A number of classes is grouped to a family by means of a family object. The relation of the
dependent classes to the identity of this family object guarantees type safety in the sense that
classes of di�erent families are not mixed. This is in some sense very similar to the idea behind
ownership type systems. The main di�erence is that only inner classes of the class of the family
object qualify for families, while ownership systems generally do not apply such restrictions.

With Higher-order Hierarchies [13] he then takes the concept of class families to the next level
by investigating inheritance for entire object structures.

Similarly Igarashi and Viroli [15] use relative path types to preserve relationships between
members inside a class family through extension. They adopt they idea of exact types to improve
static type safety and add support for controlling the mixing of class families in a safe way. Class
families in their FJpath calculus are therefore not strictly coupled to nesting anymore.

The idea of exact and inexact types is in many ways similar to our stable, exact and loose
paths. Depending on the receiver type unsafe operations can be statically forbidden. In their
case, for example, a method taking a relative parameter can only be called if the receiver is exact.
Along the same lines we can only allow method calls if the parameter context, as seen by the
receiver, can be matched with an actual argument object relative to the viewpoint of the caller
for all parameters.

Simple Loose Ownership Domains [23] simplify Ownership Domains [1] by reducing the number
of domains and hardwiring the access permissions between domains. They are then introducing
loose domains which are very similar to our loose paths. For instance they allow to overcome the
Ownership Domains restriction of accesses to foreign public domains having to go through a �nal
reference to the object owning the accessed domain.

Tribe [5] supports path types depending on both classes and objects. It can therefore distin-
guish objects from di�erent instances of a family and is not limited to class based families. With
its out reference it partly adopts the concept of topological type systems, which we are basing
our work on. Compared to earlier approaches this reduces the need to pass family objects and
for example lets the system support method arguments depending on each other, which we also
support. As one might expect the designers of Tribe were facing some problems with regards to
type compatibility of types which are not syntactically equivalent, just like we did.

Another work by Clarke and Drossopoulou [4] uses e�ects shapes to describe collections of
contexts. Our loose paths allow us to do similar things. Their band shape can be obtained by
concatenating a number of rep modi�ers and the under shape corresponds to the reps modi�er,
possibly pre�xed with a sequence of rep modi�ers. The shapes they used support numbering to
indicate the level or starting level of a shape. We do not have a similar construct in our language,
since we believe long modi�er sequences will be rarely used in real world programs. However, it
is just syntactic sugar and can easily be added if there is a demand. Then again our up and ups
modi�ers also allow us to have band shapes with negative indices and something like an above

57

58 5 Related Work

shape that includes the contexts of an objects transitive owners.
Besides shapes they also provide support for creation time ownership transfer similar to the

one we are presenting. Yet another way to approach this would be using uniqueness. Takano [27]
investigated this problem and presented an application of uniqueness and ownership transfer to
the Universe Type System.

Cunningham et al. [7] use Universes and paths to statically identify race conditions in multi-
threaded programs. We believe that having inherent support for paths in the type system can
only improve such approaches.

Chapter 6

Conclusion

In this chapter we summarize the contributions of our system and give an outlook to possible
directions for future work.

6.1 Contribution
We have presented a �rst formalization for a type system combining ownership and alias control in
the form of the owner-as-modi�er discipline with path-dependent types and type genericity. The
increased precision introduced by the path-dependent Universe Types make room for investigating
even more �exible approaches for encapsulation policies to control aliasing.

6.2 Implementing path-dependent Universe Types
It would be interesting to have an actual implementation of our type system. Possibilities include,
amongst other, integration into the main Scala compiler. It is, however, not limited to Scala or
Scala based projects. While we have based our type system on Scala, path-dependent Universe
types are in fact not depending on any Scala speci�c feature. Therefore the main part of the
type system could easily be applied to other languages such as Java or C#. Only the extension
to parameterized types presented in Section 3.2 is linked to speci�c Scala features, namely the
support for variance annotations. It should thus be possible to implement our type system as
an extension of the existing Universe compiler in the MultiJava project1 or use a pluggable type
system for Java like the one described by Andreae et al. [2]. The later, however, would require
annotations not to be limited to declarations. Instead we would need to be able to annotate
types. There are actually e�orts in the Java community process to adjust the scope of annotations
accordingly.

Scala already supports type annotations to some extent and recent work on pluggable type
systems for the Scala compiler makes an implementation of the Universe type system for Scala very
attractive. There are chances that the prototype implementation can be mapped to a compiler
plugin with a reasonable e�ort. Pluggable Universe Types for Scala would also ease the usage of
the system, since the support for pluggable types is most likely being integrated into the standard
Scala compiler.

6.3 Future Work
Besides completing our system to a complete formal speci�cation with type safety proof, we are
thinking about further extending the expressiveness of our loose paths by adding some form of
class dependent types. The Tribe [5] calculus for example already supports this.

1http://multijava.sourceforge.net/
59

http://multijava.sourceforge.net/

60 6 Conclusion

Inspired by Ownership Domains [1] we are also thinking about introducing support for arbitrary
universes. This would allow objects to de�ne several distinct representation contexts as opposed
to the single rep context that is supported now. It would however require to have the context
modi�ers quali�ed by the class they are de�ned in. This would then extend the expressiveness of
reference types to not only de�ne context and class of an object but also the contexts and classes
of objects on the path. In other words it would bundle related objects to some kind of families and
all in all lead in a direction similar to what can be done with variant path types [15] for example.

0 class Object {rep : Universe
}
class C {

5 data: Universe
f : this .data E

}
class E {

10 store: Universe
x : this .store C
g : this .store#C.data E

}

Figure 6.1: Pseudocode to illustrate the idea of arbitrary universes.
In pseudocode this could look somewhat like the example in Figure 6.1. As a follow-up it

would maybe be interesting to be able to de�ne di�erent rights on the user-de�ned universes to
allow a more �ne grained control of actions on and with objects. Again Ownership Domains [1]
supports this already to some extent. Yet introducing access control based on universes leaves much
room for experiments with �exible encapsulation policies for ownership type systems. Examples
include permitting objects to have write access on their entire transitive representation this.reps
instead of only the �rst level this.rep. Or by allowing write access to this.ups an �emulation�
of Ownership Types [3] could be established. Also one could restrict the passing of rep objects by
never allowing them to be assigned or passed as any references and many more. Control of such
features can be achieved in di�erent ways. One being compiler switches, another one annotations
or even by using a pluggable type system [2].

Finally the relation of the unknown and any modi�ers are not satisfying yet, which we want
to improve and we also need to further investigate the possibilities for the choice of a context for
singleton objects.

Appendix A

The assignable function

This appendix is concerned with the assignable function (Figure 3.7) used for the viewpoint
adaptation performed by subst (Figure 3.6) to type �eld selections (Section 3.1.4) and method
calls (Section 3.1.5). Since method calls can be seen as a special case of �eld selections, we are
explaining it for �eld selections here and leave the application to method calls to the reader.

0 class C {val f : ?? Objectvar g : ?? Object
}

5 val a : ?? Cvar b : ?? C

Figure A.1: Code snippet to discuss �eld selections.
Consider Figure A.1 for the declaration of a class C with two �elds of unspeci�ed universe and

two references to instantiations of the class. We will now discuss all four combinations of �eld
selections possible for this example code and explain what universes are admissible in order to get
a combined universe which does not loose any information. For this the universes marked with
question marks in the source code are ranging over UPath. The unknown and any universes are
not of interest since their handling is trivial. In order to simplify the explanations we restrict the
�eld paths to all valid paths obtained by combining the start value this with a sequence of one
or more context modi�ers. We are discussing the extension to more elaborate �eld paths after the
main discussion. The receiver path can, without loss of generality, be seen as a stable pre�x p
followed by a sequence of one or more context modi�ers.

Accessing �elds on an immutable receiver The case of both, receiver and �eld being im-
mutable is obviously not very interesting since it does not involve a viewpoint adaptation and
therefore does not have to be handled by assignable. If only the �eld is mutable it is a very
similar case. The resulting universe is then a simple combination of the stable receiver path and
the �eld path and does not loose any information either.

Accessing �elds on a mutable receiver If the receiver is mutable it does not matter whether
the �eld is mutable or not. Of course immutable �elds cannot be assigned, even if assignable
returns true. But the resulting universe is computed exactly the same way.

The general idea is as follows: we cannot be certain about the identity of the receiver object,
but the �eld universe is relative to this receiver object. So in order to match the context identi�ed
by the combined universe of �eld and receiver, we need to eliminate that uncertainty. In other

61

62 A The assignable function

words: if the �eld universe does not depend on the exact identity of the receiver but only on the
context the receiver is part of, the viewpoint adaptation can be lossless and we might be able to
reach this context with a path starting from p.
receiver path (b) �eld path (g) combined path (b.g)
p.peer this.peer.rep p.peer.rep

this.up.up .rep p.up.up .rep
this.ups.rep p.ups.rep

p.rep this.peer.rep p.rep.rep
this.up.up .rep p.peer.rep or p.up .rep
this.ups.rep p.rep.ups.rep

p.up this.peer.rep p.up.rep
this.up.up .rep p.up.up.up .rep
this.ups.rep p.up.ups.rep

p.reps - -
p.ups - -

Figure A.2: Admissible �eld paths for mutable receivers: simple cases.
Figure A.2 lists the admissible �eld paths for the �ve most basic receiver paths and also shows

the respective combined path. If the receiver path contains a reps or ups modi�er, it is impossible
to know the exact context of the receiver and there is no admissible �eld path. All of the other
three cases can be covered with the same three �eld paths. Namely if the �eld path starts with a
peer modi�er, the �eld just relates to the the context of the receiver, not the receiver itself. If it
starts with an up or ups modi�er, it depends on the context of the receiver's owner. It cannot start
with rep or reps since these modi�ers relate to the receiver object. If it starts with up, it may
be followed by a sequence of up modi�ers where the last element may be an ups modi�er. And
all three �eld paths may end with a sequence of rep modi�ers, where again the last element may
be a reps modi�er. Note that according to the path simpli�cation rules further peer modi�ers
would be redundant as would be an up or ups modi�er following the peer modi�er in the �rst
�eld path.
receiver path (b) �eld path (g) combined path (b.g)
p.up.upx this.peer.rep p.up.upx .rep

this.up.upz.rep p.up.up.upx+z.rep
this.ups.rep p.up.upx.ups.rep

p.peer.rep.repx this.up.upy.rep p.peer.rep or p.up.upy−1.rep
p.rep.rep.repx this.up.upy.rep p.rep.rep or p.peer.rep or p.up.upy−2.rep
p.up.upz.rep.repx this.up.upy.rep p.up.upz+y−x.rep

Figure A.3: Admissible �eld paths for mutable receivers: complex cases. x, y, and z indicate the
cardinality of the modi�er sequence and y ≥ x.

Figure A.3 is listing the more complex cases. For the case of the receiver path being a sequence
of up modi�ers, the argumentation goes along the same lines as for the simple cases above. And
if the receiver path ends with a sequence of length x of rep modi�ers, the �eld path has to start
with at least x up modi�ers in order to identify a context that can also be reached from p without
loss of precision.

Special cases There are two special cases for mutable receivers which are not covered so far.
First if the �eld path is depending on a singleton object rather than the receiver object, the
transformation yields the �eld path again and thus does not loose any information. This case is
already covered by subst1 and therefore does not have to be handled here.

63

Second if for example the path of �eld g depends on another �eld of the same object, for
example f, the viewpoint adaptation will be lossy. For mutable receivers we can not preserve
such dependencies, unless the path of the last �eld in the dependency chain does not depend on
the current object this but on some singleton object. Keep in mind that path normalization
eliminates trivial dependencies like for example �eld g being peer to �eld f. Since this case is
already covered by subst1 as well, the limitation of the �eld paths having to consist of this and
a sequence of context modi�ers for the cases covered by assignable is reasonable.

64 A The assignable function

Appendix B

Predicate and Function Overview

In the following we list the signatures of the predicates and functions used by our type system
and brie�y explain the meaning of the parameters. The intention of this chapter is to support the
understanding of some function de�nition or type rule by reducing the need to look up de�nitions
of other functions used in this type rule or function.
Γ :: Start → Type

Γ(s) = T
s : start value/variable
T : type of s

normalize :: SUniv → Univ
normalize(suniv) = u
suniv : user speci�ed (degenerated) universe annotation
u : normalized universe

B.1 Functions concerned with universes
isStable :: Univ → bool

isStable(u) = b
u : universe
b : true if u is stable, false otherwise

isExact :: Univ → bool
isExact(u) = b
u : universe
b : true if u is exact, false otherwise

subst1 :: Univ × Univ × V al → Univ × bool
subst1(u0, u x) = (ures, bres)
u0 : universe of the expression that needs to be adapted to a di�erent viewpoint
u x : sequence of pairs de�ning the viewpoints

where ui is the declared universe of value xi

ures : resulting universe of the substitution
bres : true if type information got preserved and assignments are safe

assignable :: Univ × Univ → bool
assignable(u0, u1) = b
u0 : universe of the reciever expression
u1 : universe of the �eld
b : true if assignments to a �eld annotated with u1on a reciever with universe u0 can be permitted

65

66 B Predicate and Function Overview

loosen :: UPath → Univ
loosen(p) = ures

p : path
ures : p with last component of stable pre�x loosened

simplify :: Univ → Univ
simplify(u) = ures

u : universe
ures : the most simple universe describing the exact same universe

or set of universes as u

simplify1 :: UPath → UPath
simplify1(p) = pres

p : path
pres : p with one redundant context modi�er less

simplify2 :: UPath → UPath
simplify2(p) = pres

p : path
pres : p with the last (redundant) �eld selection removed

isModifieable :: Univ → bool
isModifieable(u) = b
u : universe
b : true if u is modi�eable when adhering to the owner-as-modi�er discipline

B.2 Functions concerned with types
setMain :: NType× Univ → NType

setMain(N,u) = Nres

N : non-variable type
u : universe
Nres : N with the main modi�er set to u

select :: NType× Field× Type → Type× bool
select(T0, f, T1) = (Tres, bres)
T0 : declared type of the reciever expression
f : �eld identi�er
T1 : declared type of the �eld
Tres : combined type of the �eld selection
bres : true if type information got preserved and assignments are safe

subst :: Type× Type× V al → Type× bool
subst(T, Tx x) = (Tres, bres)
T : full type of the expression that needs to be adapted to a di�erent viewpoint
Tx x : sequence of pairs de�ning the viewpoints where Txi is the declared type of value xi

Tres : resulting type of the substitution
bres : true if type information got preserved and assignments are safe

B.3 Subtyping
<:u :: Univ × Univ → bool

u0 <:u b = b
u0, u1 : universes
b : true if u0 is a subtype of u1, false otherwise

B.3 Subtyping 67

<: :: Type× Type → bool
T0 <: T1 = b
T0, T1 : types
b : true if T0 is a subtype of T1, false otherwise

<:arg:: Type× Type → bool
T0 <:arg T1 = b
T0, T1 : types
b : true if T0 is a subtype of T1 according to the limited covariant subtyping for

typearguments,false otherwise

68 B Predicate and Function Overview

Appendix C

Prototype implementation

C.1 universes.scala

0 package universes.formalizator;
import Coercions.Iterator2Stringimport scala.collection.immutable.EmptyMap

5 /∗∗
∗ Base class for universes .
∗
∗ @author Daniel Schregenberger
∗/

10 abstract class Univ {
/∗∗
∗ Construct a new path by appending f to the list of �eld selections
∗ for this path.
∗

15 ∗ @param _f the �eld to append.
∗
∗ @return the new path
∗
∗ @throws error if this is not a path (but unknown or any) or the path

20 ∗ already contains a context sequence.
∗/def ◦ (_f : Field): UPath = error("cannot append field to '" + this + "'")
/∗∗

25 ∗ Construct a new path by appending c to the list of contexts for this
∗ path.
∗
∗ @param _c the context to append.
∗

30 ∗ @return the new path
∗
∗ @throws error if this is not a path (but unknown or any).
∗/def ◦ (_c : Context): UPath =

35 error("cannot append context to '" + this + "'")
/∗∗
∗ Construct a new path by appending f to the list of �eld selections

69

70 C Prototype implementation

∗ for this path.
40 ∗ Alias for ◦ .

∗
∗ @param _f the �eld to append.
∗
∗ @return the new path

45 ∗
∗ @throws error if this is not a path (but unknown or any) or the path
∗ already contains a context sequence.
∗/def + (_f: Field) = this◦_f

50
/∗∗
∗ Construct a new path by appending c to the list of contexts for this
∗ path.
∗ Alias for ◦ .

55 ∗
∗ @param _c the context to append.
∗
∗ @return the new path
∗

60 ∗ @throws error if this is not a path (but unknown or any).
∗/def + (_c: Context) = this◦_c
/∗∗

65 ∗ Construct a Universe type by annotating i with this universe.
∗
∗ @param i the type to annotate.
∗
∗ @return the Universe type with normalize(this) as universe.

70 ∗/def ## (i: Instance) = new NType(this.normalize, i.clazz, i.typeParams)
/∗∗
∗ Construct a Universe type by annotating i with this universe.

75 ∗ Does not normalize the universe but only simpli�es it .
∗ Used to generate degenerate types for the testcases
∗ (for expected results).
∗
∗ @param i the type to annotate.

80 ∗
∗ @return the Universe type with normalize(this) as universe.
∗/def ### (i: Instance) = new NType(this.simplify, i.clazz, i.typeParams)

85 /∗∗
∗ Construct a Universe type by annotating i with this universe.
∗ Alias for ##.
∗
∗ @param i the type to annotate.

90 ∗
∗ @return the Universe type with normalize(this) as universe.
∗/def ++ (i: Instance) = this ## i

95 /∗∗
∗ Construct a Universe type by annotating i with this universe.

C.1 universes.scala 71

∗ Does not normalize the universe but only simpli�es it .
∗ Used to generate degenerate types for the testcases
∗ (for expected results).

100 ∗ Alias for ###.
∗
∗ @param i the type to annotate.
∗
∗ @return the Universe type with normalize(this) as universe.

105 ∗/def +++ (i: Instance) = this ### i
/∗∗
∗ Indicates if the path is stable .

110 ∗
∗ @return true if the path is stable , false otherwise.
∗/def isStable = false

115 /∗∗
∗ Indicates if the path is exact .
∗
∗ @return true if the path is exact , false otherwise.
∗/

120 def isExact = false
/∗∗
∗ Normalizes paths and rejects invalid universes .
∗

125 ∗ @return the normalized path.
∗
∗ @throws error if path is invalid .
∗/def normalize : Univ = normalize(true)

130
/∗∗
∗ Normalizes paths and rejects invalid universes .
∗ Issues a warning when the normalization was lossy.
∗ For internal use.

135 ∗
∗ @param toplevel indicates if the current recursion is at
∗ the toplevel (helps reduce amount of warnings).
∗
∗ @return the normalized path.

140 ∗
∗ @throws error if path is invalid .
∗/def normalize (toplevel: boolean) = this

145 /∗∗
∗ Performs viewpoint adaptation of a universe with regards
∗ to another universe . The start value of this path will be
∗ replaced by the universe in the matching pair of the
∗ viewpoint list .

150 ∗
∗ @param viewpoints List of universe−value pair representing
∗ the viewpoint(s).
∗
∗ @return the viewpoint adapted universe.

72 C Prototype implementation

155 ∗
∗ @throws error if more than one value matches.
∗/def subst1 (viewpoints: List[(Univ, Val)]) = (this , true)

160 /∗∗
∗ Checks if the context (or set of contexts) described by u
∗ as seen from viewpoint ' this ' can be described with the
∗ same exactness from the viewpoint of this path.
∗ Used for example to check assignments to �elds on mutable

165 ∗ recievers .
∗
∗ Assumes paths are valid / normalized.
∗
∗ @param u the universe of the �eld

170 ∗
∗ @return true if the combined context does not loose any
∗ information, false otherwise.
∗/def assignable (u: Univ) = true

175
/∗∗
∗ Simpli�es paths by removing redundant context modi�ers ,
∗ ordering and normalizing the context modi�er sequence
∗ and removing path aliasing by trying to apply loosen

180 ∗ and simplify the result . If the result of loosen cannot
∗ be simpli�ed it is undone, otherwise an equivalent but
∗ simpler path is found.
∗
∗ @return the most simple universe or path equivalent to this .

185 ∗/def simplify = this
/∗∗
∗ The subtyping operator for universes .

190 ∗
∗ @param u the universe to test for being supertype of this .
∗
∗ @return true if this <: u, false otherwise.
∗/

195 def <:< (u: Univ) = (u == Any) || (u == Unknown) || (this == u)
}

/∗∗
200 ∗ The 'unknown' universe.

∗
∗ @author Daniel Schregenberger
∗/object Unknown extends Univ {

205 /∗∗ String representation (== 'unknown'). ∗/override def toString() = "unknown"
}

210 /∗∗
∗ The 'any' universe.
∗

C.1 universes.scala 73

∗ @author Daniel Schregenberger
∗/

215 object Any extends Univ {
/∗∗ String representation (== 'any'). ∗/override def toString() = "any"
override def <:<(u: Univ) = (u == Any)

220 }

/∗∗
∗ Class for universe paths .

225 ∗
∗ @param s the start value/variable .
∗ @param f list of �eld selections with f .head being the �rst
∗ (the selection on s).
∗ @param c list of contexts with same ordering.

230 ∗
∗ @author Daniel Schregenberger
∗/�nal case class UPath(s: Start, f : List[Field], c : List[Context]) extends Univ {

/∗∗
235 ∗ Alternative constructor .

∗
∗ @param _s the start value/variable .
∗ @param _f a �eld selection .
∗ @param _c a context.

240 ∗/def this (_s : Start, _f : Field, _c : Context) =this (_s , _f :: Nil, _c :: Nil)
/∗∗

245 ∗ Convert to string in the form: s. f .c
∗
∗ @result the String representation of the path.
∗/override def toString = (c foldLeft ("" +

250 (f foldLeft s.toString) {(x, y) => x + "." + y})
) {(x , y) => x + "." + y}

/∗ see Univ for documentation or use the generated ScalaDoc ∗/
255 override def ◦ (_f : Field) = this.c match {case Nil => new UPath(s, f ::: (_f :: Nil), Nil).simplifycase _ => error("cannot append field to path with contexts")

}
/∗ see Univ for documentation or use the generated ScalaDoc ∗/

260 override def ◦ (_c : Context) = new UPath(s, f, c ::: (_c :: Nil)).simplify
/∗ see Univ for documentation or use the generated ScalaDoc ∗/override def isStable = s match {case Val(_,_) => (c == Nil) && !f.exists(_.isMutable)

265 case _ => false
}
/∗ see Univ for documentation or use the generated ScalaDoc ∗/override def isExact = (c.length == 1) && new UPath(s, f, Nil).isStable

270

74 C Prototype implementation

/∗ see Univ for documentation or use the generated ScalaDoc ∗/override def normalize (toplevel: boolean) = {if (s == null) {if (c == Nil) {
275 if (f == Nil) {new UPath(This, Nil, Peer :: Nil)

} else
error("Invalid universe −− " +
" at least one of s, f or c must be specified.")

280 } elsenew UPath(This, f, c).normalize(toplevel)
} else {if (c == Nil) {

error("Invalid universe: " + this +
285 " −− user specified paths must end with a context modifier.")

} else {if (new UPath(s, f, Nil).isStable)this .simplifyelse {
290 val res = this.loosen.simplify.normalize(false)if (toplevel)

logger.warn("normalizing '" + this + "' to '" + res + "'")
res

}
295 }

}
}
/∗ see Univ for documentation or use the generated ScalaDoc ∗/

300 override def subst1 (viewpoints: List[(Univ, Val)]) = {
(viewpoints filter {_._2 == s}) match {case Nil => (this.simplify, true)case (ui , xi) :: Nil => {

logger("subst1(" + this + ", " +
305 Iterator2String(viewpoints.elements) + ") = res").++(" | ")val res = (ui match {case Unknown => (Unknown, false)case Any => (Unknown, false)case path: UPath => {
310 if (path.isStable)

(new UPath(path.s, path.f ::: f , c).simplify, true)else if ((this .f == Nil))
(new UPath(path.s, path.f, path.c ::: c).simplify,

path.assignable(new UPath(This, Nil, c).simplify))
315 else

(this .loosen.simplify.subst1(viewpoints)._1, false)
}

})
logger.−−("res = " + res).−−

320 res
} case _ => error("more than one matching value for viewpoint adaptation")

}
}

325
/∗ see Univ for documentation or use the generated ScalaDoc ∗/override def assignable (fieldUniv: Univ) = {

/∗∗

C.1 universes.scala 75

∗ Checks if a context modi�er sequence contains only rep
330 ∗ modi�ers and at most one reps modi�er at the end.

∗
∗ @param seq the context modi�er seqence to check.
∗
∗ @return true if seq contains only rep modi�ers and at

335 ∗ most one reps modi�er at the end. false otherwise.
∗/def isRepSequence (seq: List[Context]) = seq.reverse match {case Nil => truecase Rep :: tail => tail.forall(_ == Rep)

340 case Reps :: tail => tail.forall(_ == Rep)case _ => false
}
// assignable (p.ups(.c)∗, _) and assignable(p.reps (.c)∗, _)

345 val res = !c.contains(Ups) && !c.contains(Reps) &&new UPath(s, f, Nil).isStable && (fieldUniv match {
/∗ assignable (p.c(.up)∗, this .peer) ∗/case UPath(This, Nil, Peer :: Nil) =>

((c.length == 1) || c.forall(_ == Up))
350 /∗ assignable (p.c(.up)∗, this .peer (. rep)∗) ∗/case UPath(This, Nil, Peer :: tail) =>

((c.length == 1) ||
c.forall(_ == Up)) && isRepSequence(tail)case UPath(This, Nil, fieldContexts) =>

355 (c.reverse, fieldContexts) match {
/∗ assignable (p.peer , this .up(.c)∗) ∗/case (Peer :: Nil, Up :: _) => true
/∗ assignable (p.peer , this .ups(.c)∗) ∗/case (Peer :: Nil, Ups :: _) => true

360 /∗ assignable (p.rep , this .up(.c)∗) ∗/case (Rep :: Nil, Up :: _) => true
/∗ assignable (p(.up)∗.rep , this (.up)+(.rep)∗) ∗/case (Rep :: t , Up :: tt) =>

(t.length == 1) ||
365 (t.forall(_ == Up) && isRepSequence(tt)) ||new UPath(s, f, t.reverse).assignable(new UPath(This, Nil, tt))

/∗ assignable (p.rep , this .ups(.c)∗) ∗/case (Rep :: Nil, Ups :: _) => true
370 /∗ assignable (p(.up)∗.rep , this .ups(.rep)∗) ∗/case (Rep :: t , Ups :: tt) =>

(t.length == 1) ||
(t.forall(_ == Up) && isRepSequence(tt)) ||new UPath(s, f, t.reverse).assignable(

375 new UPath(This, Nil, tt))
/∗ assignable (p(.up)+, this .up(.c)∗) ∗/case (Up :: t , Up :: _) => t.forall(_ == Up)
/∗ assignable (p(.up)+, this .ups(.c)∗) ∗/case (Up :: t , Ups :: _) => t.forall(_ == Up)

380 case _ => false
}

})
logger.++.apply("assignable(" + this + ", " + fieldUniv + ") = " + res).−−
res

385 }

76 C Prototype implementation

/∗∗
∗ Replace the last �eld selection by the universe of the �eld .
∗ The result is a supertype of the original path.

390 ∗ If there are no more �eld selections , replace start value (!= this)
∗ with its universe.
∗
∗ @return the loosened path.
∗/

395 def loosen = {if (f.length > 0) {
f.last.getType match {case n : NType => {

n.univ.subst1((new UPath(s, f.init, Nil), This) :: Nil)._1 match {
400 case Unknown => Unknowncase Any => if (c.length > 0) Unknown else Anycase UPath(fieldS, fieldF, fieldC) =>new UPath(fieldS, fieldF, fieldC ::: c)

}
405 } case _ => this

}
} else { s.getType match {case n : NType => n.univ match {

410 case Unknown => Unknowncase Any => if (c.length > 0) Unknown else Anycase UPath(startS, Nil, startC) =>new UPath(startS, Nil, startC ::: c)
}

415 case _ => this
}

}
}

420 /∗ see Univ for documentation or use the generated ScalaDoc ∗/override def simplify = {
/∗∗
∗ Simpli�es sequences of context modi�ers by removing
∗ redundant ones, ordering and normalizing them.

425 ∗
∗ @param l sequence of context modi�ers in reverse order
∗ (for more e�cient recursions).
∗
∗ @return the simpli�ed context modi�er sequence.

430 ∗ In reverse order as well .
∗/def simplify1 (l: List[Context]) : List[Context] = l match {case Peer :: Peer :: p => Peer :: pcase Up :: Peer :: p => Up :: p

435 case Ups :: Peer :: p => Ups :: pcase Peer :: Rep :: p => Rep :: pcase Up :: Rep :: p => Peer :: pcase Peer :: Up :: p => Up :: pcase Peer :: Ups :: p => Ups :: p
440 case Peer :: Reps :: p => Reps :: p

case Up :: Ups :: p => Ups :: Up :: pcase Rep :: Reps :: p => Reps :: Rep :: p

C.1 universes.scala 77

445 case Ups :: Ups :: p => Ups :: Up :: pcase Reps :: Reps :: p => Reps :: Rep :: p
case (c : Context) :: tail => c :: simplify1(tail)case x => x

450 }
/∗
∗ Applies simplify1 until the result equals the inputand also
∗ simpli�es the cases involving the owner �eld and the �rst context .

455 ∗
∗ @param path the path to simplify .
∗
∗ @return the simpli�ed path.
∗/

460 def simplify11 (path: UPath) : UPath = {var old: List[Context] = Nilvar cres = path.c.reversewhile (cres != old) {
old = cres

465 cres = simplify1(cres)
}
cres = cres.reverse
if ((path.f != Nil) && (cres != Nil) && (path.f.last == Owner)) {

470 cres.head match {case Peer => simplify11(new UPath(path.s, path.f.init,
(Up :: Nil) ::: cres.tail))case Rep => simplify11(new UPath(path.s, path.f.init,
(Peer :: Nil) ::: cres.tail))

475 case _ => new UPath(path.s, path.f, cres)
}

} elsenew UPath(path.s, path.f, cres)
}

480
/∗∗
∗ Simpli�es paths by removing path aliasing . It does so
∗ by trying to apply loosen and simplify the result . If
∗ the result of loosen cannot be simpli�ed it is undone,

485 ∗ otherwise an equivalent but simpler path is found.
∗
∗ @param path the path to simplify .
∗
∗ @return the most simple universe or path equivalent to

490 ∗ the argument.
∗/def simplify2 (path: UPath) : UPath = {

path.loosen match {case p : UPath => {
495 val res = simplify11(p)if (p != res)

simplify2(res)else
path

500 } case _ => path
}

78 C Prototype implementation

}
505 simplify2(simplify11(this))

}
/∗ see Univ for documentation or use the generated ScalaDoc ∗/override def <:< (u: Univ) = u match {

510 case p : UPath => this <:< pcase Any => truecase Unknown => truecase _ => false
}

515
/∗∗
∗ The subtyping operator for paths . Tries super.<:<(u: Univ) �rst .
∗ Then calculates all direct supertypes of this . If one of these
∗ equals path we are �nished . Otherwise try x <:< path for each

520 ∗ x in the list of direct supertypes .
∗
∗ @param path the path to test for being supertype of this .
∗
∗ @return true if this <: path , false otherwise.

525 ∗/def <:< (path: UPath) : boolean = super.<:<(path) || {
/∗∗
∗ Calculate next supertype for sequences of context modi�ers
∗ containing at least one rep modi�er .

530 ∗
∗ @param l sequence of context modi�ers in reverse order
∗ (for more e�cient recursions).
∗
∗ @return the possibly modi�ed context modi�er sequence.

535 ∗ In reverse order as well .
∗/def rep2reps (l: List[Context]) : List[Context] = l match {case Rep :: p => Reps :: pcase Reps :: Rep :: p => Reps :: p

540 case (c : Context) :: tail => c :: rep2reps(tail)case x => x
}
/∗∗

545 ∗ Calculate next supertype for sequences of context modi�ers
∗ containing at least one up modi�er.
∗
∗ @param l sequence of context modi�ers in reverse order
∗ (for more e�cient recursions).

550 ∗
∗ @return the possibly modi�ed context modi�er sequence.
∗ In reverse order as well .
∗/def up2ups (l: List[Context]) : List[Context] = l match {

555 case Up :: p => Ups :: pcase Ups :: Up :: p => Ups :: pcase (c : Context) :: tail => c :: up2ups(tail)case x => x
}

560

C.1 universes.scala 79

/∗ id <: id .peer ∗/var l : List[Univ] = new UPath(s, f, Peer :: c).simplify :: Nilif (l.head == this)
l = Nil

565
/∗
∗ id .peer <: id .up.rep
∗
∗ This follows from simplify (u) <: u but

570 ∗ since I 'm unsure how to implement it I'm
∗ doing this explicitly . It 's the most important
∗ case.
∗
∗ TODO

575 ∗/
c match {case Peer :: p => l = new UPath(s, f, Up :: Rep :: p).simplify :: lcase _ => ()
}

580
/∗ id .owner <: id.up ∗/
f.reverse match {case Owner :: tail => l = new UPath(s, f.init, Up :: c).simplify :: lcase _ =>

585 }
/∗ p.rep <: p.reps && p.rep.reps <: p.reps ∗/var cres = rep2reps(c.reverse).reverseif (cres != c)

590 l = new UPath(s, f, cres) :: l
/∗ p.up <: p.ups && p.up.ups <: p.ups ∗/
cres = up2ups(c.reverse).reverseif (cres != c)

595 l = new UPath(s, f, cres) :: l
/∗ p <: simplify (loosen(p)) ∗/var tmp = this.loosen.simplifyif (tmp != this)

600 l = tmp :: l
/∗ eliminate duplicates (regain some e�ciency) ∗/
l = l.removeDuplicates

605 /∗ u <: u '' if u <: u' && u' <: u'' ∗/
l.contains(path) || l.exists(_ <:< path) || {

/∗ p.c <: p '. c if p <: p' ∗/var t : List[Context] = Nilvar c1 = c.reverse
610 var c2 = path.c.reversewhile ((c1 != Nil) && (c2 != Nil) && (c1.head == c2.head)) {

t = c1.head :: t
c1 = c1.tail
c2 = c2.tail

615 }
(t != Nil) && (new UPath(s, f, c1.reverse) <:<new UPath(path.s, path.f, c2.reverse))

}

80 C Prototype implementation

}
620 }

/∗∗
∗ Base class for start values/ variables .

625 ∗
∗ @param id the identi�er of the value/variable .
∗ @param _type the type of the value/variable .
∗
∗ @author Daniel Schregenberger

630 ∗/abstract class Start (id: String, _type: Type) {
/∗∗ String representation (== id). ∗/override def toString = id

635 /∗∗ Getter for the type of the identi�er . ∗/def getType = _type
/∗∗
∗ Construct a new path by selecting f on this .

640 ∗
∗ @param f the �eld to select .
∗
∗ @return the generated path
∗/

645 def ◦ (f : Field) = new UPath(this, f :: Nil, Nil)
/∗∗
∗ Construct a new path by selecting c on this .
∗

650 ∗ @param c the context to select .
∗
∗ @return the generated path
∗/def ◦ (c : Context) = new UPath(this, Nil, c :: Nil)

655
/∗∗
∗ Construct a new path by selecting f on this .
∗ Alias for ◦ .
∗

660 ∗ @param f the �eld to select .
∗
∗ @return the generated path
∗/def + (f : Field) = this◦f

665
/∗∗
∗ Construct a new path by selecting c on this .
∗ Alias for ◦ .
∗

670 ∗ @param c the context to select .
∗
∗ @return the generated path
∗/def + (c : Context) = this◦c

675 }

C.1 universes.scala 81

/∗∗
∗ Class representing local values .
∗ Also used to represent method parameters and this.

680 ∗
∗ @param id the identi�er of the value .
∗ @param _type the type of the value .
∗
∗ @author Daniel Schregenberger

685 ∗/case class Val (id : String, _type: Type) extends Start(id, _type)
/∗∗ Object representing the ' this ' reference .. ∗/object This extends Val("this", null) {

690 /∗∗ The type of this loops to itself . ∗/override def getType = new NType(new UPath(this, Nil, Nil),new Class0("this"), new EmptyMap[TVarId, Type])
}

695 /∗∗
∗ Convenience object to create method parameters.
∗ Applying Param actually creates a Val object but it
∗ helps indicating that a value is supposed to be used
∗ as method parameter.

700 ∗
∗ @author Daniel Schregenberger
∗/object Param {

/∗∗
705 ∗ Create value to be used as method parameter.

∗
∗ @param id the identi�er of the parameter.
∗ @param _type the type of the parameter.
∗/

710 def apply (id: String, _type: Type) = Val(id, _type)
}
/∗∗
∗ Class representing local variables .

715 ∗ Also used to represent method parameters and this.
∗
∗ @param id the identi�er of the variables .
∗ @param _type the type of the variables .
∗

720 ∗ @author Daniel Schregenberger
∗/�nal case class Var (id : String, _type: Type) extends Start(id, _type)
/∗∗

725 ∗ Base class for �elds .
∗
∗ @param id the identi�er of the �eld .
∗ @param _type the type of the �eld .
∗ @param _mutable whether the �eld is mutable or not.

730 ∗
∗ @author Daniel Schregenberger
∗/abstract class Field (id: String, _type: Type, _mutable: boolean) {

/∗∗ String representation (== id). ∗/

82 C Prototype implementation

735 override def toString = id
/∗∗ Getter for the type of the identi�er . ∗/def getType = _type

740 /∗∗ Getter for the mutable �ag . ∗/def isMutable = _mutable
/∗∗
∗ Construct a new path by selecting f on this .

745 ∗
∗ @param f the �eld to select .
∗
∗ @return the new path
∗

750 ∗ @throws error is the type of this �eld is a type variable .
∗/def ◦ (f : Field) = _type match {case n : NType => This◦this◦fcase _ => error("type variable dependency!")

755 }
/∗∗
∗ Construct a new path by selecting c on this .
∗

760 ∗ @param c the context to select .
∗
∗ @return the new path
∗
∗ @throws error is the type of this �eld is a type variable .

765 ∗/def ◦ (c : Context): Univ = _type match {case n : NType => new UPath(This, this, c)case _ => error("type variable dependency!")
}

770
/∗∗
∗ Construct a new path by selecting f on this .
∗ Alias for ◦ .
∗

775 ∗ @param f the �eld to select .
∗
∗ @return the new path
∗
∗ @throws error is the type of this �eld is a type variable .

780 ∗/def + (f : Field): Univ = this◦f
/∗∗
∗ Construct a new path by selecting c on this .

785 ∗ Alias for ◦ .
∗
∗ @param c the context to select .
∗
∗ @return the new path

790 ∗
∗ @throws error is the type of this �eld is a type variable .
∗/

C.1 universes.scala 83

def + (c : Context): Univ = this◦c
}

795
/∗∗
∗ Class representing immutable �elds .
∗
∗ @param id the identi�er of the variables .

800 ∗ @param _type the type of the variables .
∗
∗ @author Daniel Schregenberger
∗/�nal case class ValField (id: String, _type: Type) extends Field(id, _type, false)

805
/∗∗
∗ Class representing mutable �elds .
∗
∗ @param id the identi�er of the variables .

810 ∗ @param _type the type of the variables .
∗
∗ @author Daniel Schregenberger
∗/�nal case class VarField (id: String, _type: Type) extends Field(id, _type, true)

815
/∗∗
∗ Object representing the (virtual) owner �eld .
∗
∗ @param id the identi�er of the variables .

820 ∗ @param _type the type of the variables .
∗
∗ @author Daniel Schregenberger
∗/object Owner extends Field("owner", new NType(This◦Up, Object,

825 new EmptyMap[TVarId, Type]), false)

/∗∗
∗ Base class for context modi�ers .

830 ∗
∗ @param name the name of the context.
∗
∗ @author Daniel Schregenberger
∗/

835 abstract class Context (name: String) {
/∗∗ String representation (== name). ∗/override def toString = name

}
840 /∗∗ The peer context modi�er . ∗/object Peer extends Context("peer")

/∗∗ The rep context modi�er . ∗/object Rep extends Context("rep")
/∗∗ The up context modi�er . ∗/

845 object Up extends Context("up")
/∗∗ The reps context modi�er . ∗/object Reps extends Context("reps")
/∗∗ The ups context modi�er . ∗/object Ups extends Context("ups")

84 C Prototype implementation

C.2 types.scala

0 package universes.formalizator;
import Coercions.Iterator2Stringimport scala.collection.immutable.EmptyMap

5 /∗∗
∗ Base class for types .
∗
∗ @author Daniel Schregenberger
∗/

10 abstract class Type {
/∗∗
∗ Performs viewpoint adaptation of a type with regards to another type .
∗ Also does the substitution of types for the corresponding type variables
∗ Uses Univ.subst1 to perform viewpoint adaptatiosn of universe with

15 ∗ regards to other universes .
∗
∗ @param viewpoints List of universe−value pair representing the
∗ viewpoint(s).

∗
20 ∗ @return the viewpoint adapted type .

∗
∗ @throws error if more than one value matches for the viewpoint
∗ adaptation of universes .
∗ @see universes. formalizator .Univ.subst1

25 ∗/def subst (viewpoints: List[(Type, Val)]) : (Type, boolean)
/∗∗
∗ Convert this type to a NType.

30 ∗ Also contains the environment mapping function Gamma for type variables:
∗ Type variables (TVarId) are replaced by their upper bound.
∗ Use with care .
∗
∗ @return the NType representing this type .

35 ∗/def toNType = this match {case n : NType => ncase v : TVarId => {
logger.warn("inserting upper bound " + v.uBound +

40 " for type variable " + v)
v.uBound

}
}

45 /∗∗
∗ The subtyping operator for types .
∗
∗ @param t the type to test for being supertype of this .
∗

50 ∗ @return true if this <: t , false otherwise.
∗/def <:<(t: Type) : boolean
/∗∗

55 ∗ Limited covariant subtyping for type arguments.

C.2 types.scala 85

∗
∗ @param t the type to test (with limited covariance)
∗ for being supertype of this .
∗

60 ∗ @return true if this <:_arg t, false otherwise.
∗/def arg_<:< (t: Type) : boolean

}
65 /∗∗

∗ Class representing type variables .
∗
∗ @param id the identi�er of the variable .
∗ @param cov �ag indicating whether the variable is covariant .

70 ∗ @param cont �ag indicating whether the variable is contravariant .
∗ @param uBound fthe upper bound of the variable.
∗
∗ @throws error if both cov and cont are true .
∗/

75 �nal case class TVarId (id: String, cov: boolean, cont: boolean,
uBound: NType) extends Type {if (cov && cont)
error("type variable " + id +

" cannot be covariant and contravariante at once!")
80

/∗∗
∗ String representation in Scala notation:
∗ identi�er pre�xed by '+' or '−'.
∗ depending on the variance of the variable .

85 ∗/override def toString = if (cov) "+" + id else if (cont) "−" + id else id
/∗ see Type for documentation or use the generated ScalaDoc ∗/def subst (viewpoints: List[(Type, Val)]) = {

90 val res = viewpoints.filter { _._2 == This } match {case (n : NType, _) :: Nil =>if (n.typeParams.contains(this)) {
n.typeParams(this) match {case n : NType => (n, n.univ != Unknown)

95 case v => {
logger.warn("resolving type variable " + this +

" to type variable " + v)
(v , true)

}
100 }

} else {
logger.warn("unresolved type variable " + this)

(this , true)
}

105 case _ => {
logger.warn("unresolved type variable " + this)

(this , true)
}

}
110 logger("subst(" + this + ", " +

Iterator2String(viewpoints.elements) + ") = " + res)
res

}

86 C Prototype implementation

115 /∗ see Type for documentation or use the generated ScalaDoc ∗/def <:< (t: Type) = this == t
/∗ see Type for documentation or use the generated ScalaDoc ∗/def arg_<:< (t: Type) : boolean = t == this

120 }
/∗∗
∗ Class representing NTypes, ie . parameterized types with main modi�er.
∗

125 ∗ @param univ the main modi�er for this type .
∗ @param clazz the (Scala) class of this type .
∗ @param typeParams the type parameters for this type .
∗ Since we do not have real types
∗ (and a full featured real typesystem)

130 ∗ it is a map of variables to types .
∗/case class NType (univ: Univ, clazz: Class,

typeParams: Map[TVarId, Type]) extends Type {
/∗∗

135 ∗ String representation of the form: univ clazz [parameters]
∗/override def toString = univ + " " + clazz.getName + {if (! typeParams.isEmpty)

"[" + (typeParams.values foldLeft "") {
140 (x , y) => x + {if (x != "") ", " + y else y}} + "]"else

""
}

145 /∗∗
∗ Function to set the main modi�er of a type .
∗
∗ @param u the new main modi�er.
∗

150 ∗ @return new NType with main modi�er u but the same class
∗ and type parameters as this one.
∗/def setMain (u: Univ) = new NType(u, clazz, typeParams)

155 /∗∗
∗ Typing �eld selections .
∗
∗ @param f the �eld to select on this as reciever .
∗

160 ∗ @return the combined type for the selection .
∗/def select (f: Field) = {

logger("select(" + this + ", " + f + ", " + f.getType + ") = res").++(" | ")
logger("calculating (Ttmp, btmp) ...").++

165 val (t1 , bt) = f.getType.subst(List((this, This)))
logger.−−("(Ttmp, btmp) = " + (t1, bt))
val res = univ match {case p : UPath => {

170 if (p.isStable && !f.isMutable) {
(t1.toNType.setMain(new UPath(p.s,

C.2 types.scala 87

p.f ::: (f :: Nil), Nil)), false)
} else

(t1 , bt)
175 } case _ => (t1, bt)

}
logger.−−("res = " + res).−−
res

180 }
/∗ see Type for documentation or use the generated ScalaDoc ∗/def subst (viewpoints: List[(Type, Val)]) = {

logger("subst(" + this + ", " +
185 Iterator2String(viewpoints.elements) + ") = res").++(" | ")

logger("calculating (u1, b1) ...").++val (u1 , b1) = univ.subst1(
viewpoints.map(pi => (pi._1.toNType.univ, pi._2)))

logger.−−("(u1, b1) = " + (u1, b1))
190 if (! typeParams.isEmpty)

logger("calculating T2 ...").++val T2 = typeParams.transform((Xi, Ti) => Ti.subst(viewpoints))val Tr = T2.transform((Xi, Ti) => {
195 if (Ti._2)

Tielse {if (Xi.cov)
Ti

200 else
(Ti._1.toNType.setMain(Unknown), false)

}
})val res = (new NType(u1, clazz, Tr.transform(

205 (Xi , Ti) => Ti._1)), b1 && Tr.values.forall(_._2))
if (! typeParams.isEmpty) {

logger.−−("T2 = " + Iterator2String(T2.values))
logger("Tres = " + Iterator2String(Tr.values))

210 }
logger.−−("res = " + res).−−
res

}
215 /∗ see Type for documentation or use the generated ScalaDoc ∗/def <:<(t: Type) = t match {case n : NType => this <:< ncase _ => false

}
220

/∗∗
∗ The subtyping operator for NTypes.
∗
∗ @param t the NType to test for being supertype of this .

225 ∗
∗ @return true if this <: t , false otherwise.
∗/def <:< (t: NType) : boolean = (univ <:< t.univ) &&

(clazz <:< t.clazz) &&

88 C Prototype implementation

230 typeParams.forall(x => x match {case (v , p) => {val (l , r) = (p , t.typeParams(v))if (v.cov)
(l <:< r)

235 else if (v.cont)
(r <:< l)else
l arg_<:< r

}
240 })

/∗ see Type for documentation or use the generated ScalaDoc ∗/def arg_<:< (t: Type) : boolean = t match {case n : NType => this arg_<:< n
245 case _ => false

}
/∗∗
∗ Limited covariant subtyping for type arguments.

250 ∗
∗ @param t the type to test (with limited covariance)
∗ for being supertype of this .
∗
∗ @return true if this <:_arg t, false otherwise.

255 ∗/def arg_<:< (t: NType) : boolean = t.univ match {case Unknown => (clazz == t.clazz) &&
typeParams.forall(x => x match {case (v , p) => p arg_<:< t.typeParams(v)

260 })case u1 => (univ == u1) && (clazz == t.clazz) &&
typeParams.forall(x => x match {case (v , p) => p arg_<:< t.typeParams(v)

})
265 }

}
/∗∗ The Unit type. Used for methods that do not return anything. ∗/object Unit extends NType(new UPath(Val("unit", null), Nil, Nil),

270 new Class0("unit"), new EmptyMap[TVarId, Type]) {override def toString = "unit"
}
/∗∗ Object used to create classes . ∗/

275 object Class extends Object with coercions {
/∗∗
∗ Creates a new Class with no type parameters (Class0).
∗
∗ @param name the name of the class.

280 ∗
∗ @return new Class0 object.
∗/def apply (name: String) = new Class0(name)

285 /∗∗
∗ Creates a new Class with one type parameter (Class1).
∗

C.2 types.scala 89

∗ @param name the name of the class.
∗ @param a the name of the �rst type variable (with

290 ∗ variance annotation).
∗
∗ @return new Class1 object.
∗/def apply (name: String, a : String) = new Class1(name, a)

295
/∗∗
∗ Creates a new Class with two type parameters (Class2).
∗
∗ @param name the name of the class.

300 ∗ @param a the name of the �rst type variable (with
∗ variance annotation).
∗ @param b the name of the second type variable (with
∗ variance annotation).

∗
305 ∗ @return new Class2 object.

∗/def apply (name: String, a : String, b : String) = new Class2(name, a, b)
}

310 /∗∗
∗ Abstract class representing classes .
∗ We are using di�erent subclasses depending on the number of
∗ type parameters for actual classes . This has the bene�t that a
∗ compile time error is raised if a wrong number of type arguments

315 ∗ is speci�ed .
∗
∗ @param name the name of the class.
∗/abstract class Class (name: String) {

320 /∗∗
∗ Reference to the superclass .
∗ Defaults to this since it is impossible to reference the Object
∗ class as it inherits from this class .
∗ But it is set to Object for all other classes .

325 ∗/var superclass = this
/∗∗ Getter for the name. ∗/def getName = name

330 override def toString = getName
/∗∗
∗ The subclassing operator .

335 ∗ We only support subclassing for non−parameterized types so far.
∗
∗ @param c the class to test for being superclass of this .
∗
∗ @return true if this == c.

340 ∗/def <:< (c: Class) = (this == c)
}
/∗∗

345 ∗ Class representing classes with no type parameters.

90 C Prototype implementation

∗
∗ @param name the name of the class.
∗/class Class0 (name: String) extends Class(name) {

350 /∗∗ Create the instance once and cache it . ∗/val instance = new Instance(this)
superclass = Object

355 /∗∗
∗ The extends clause for our system.
∗ We only support subclassing for non−parameterized types so far.
∗
∗ @param c the instance of the super class .

360 ∗
∗ @return this with updated superclass .
∗/def _extends (c: Class0) = {

superclass = c
365 this

}
/∗∗
∗ Get the Instance of this class .

370 ∗
∗ @return the Instance of this class .
∗/def apply() = instance

375 /∗∗
∗ The subclassing operator for non−parameterized types.
∗
∗ @param c the class to test for being superclass of this .
∗

380 ∗ @return true if this is a subclass of c.
∗/override def <:< (c: Class) = (c == this) || (c == Object) ||

(superclass <:< c)
}

385
/∗∗
∗ Class representing classes with one type parameter.
∗
∗ @param name the name of the class.

390 ∗ @param a the �rst type variable .
∗/�nal class Class1 (name: String, a: TVarId) extends Class(name) {

/∗∗
∗ Creates a new Instance of this class by binding the type parameters.

395 ∗
∗ @param Ta the Type for the �rst type variable .
∗
∗ @return new Instance of this class .
∗/

400 def apply (Ta: Type) = new Instance(this, Map(a −> Ta))
}
/∗∗

C.2 types.scala 91

∗ Class representing classes with two type parameter.
405 ∗

∗ @param name the name of the class.
∗ @param a the �rst type variable .
∗ @param b the second type variable .
∗/

410 �nal class Class2 (name: String, a: TVarId, b : TVarId) extends Class(name) {
/∗∗
∗ Creates a new Instance of this class by binding the type parameters.
∗
∗ @param Ta the Type for the �rst type variable .

415 ∗ @param Tb the Type for the second type variable .
∗
∗ @return new Instance of this class .
∗/def apply (Ta: Type, Tb : Type) = new Instance(this, Map(a −> Ta, b −> Tb))

420 }
/∗∗
∗ This class represents classes that have all their type parameters bound
∗ to some Type. It is only needed as intermediate result before it is

425 ∗ combined with a universe to form a full NType.
∗ Having this intermediate type makes sure no type arguments are forgotten
∗ when adding the ownership modi�er (universe).
∗
∗ @param clazz the (Scala) class for this instance .

430 ∗ @param typeParams the type parameters for this instance .
∗
∗ @see Univ.##
∗ @see NType
∗/

435 case class Instance (clazz: Class, typeParams: Map[TVarId, Type]) {
/∗∗
∗ Alternative constructor for type−parameterless classes
∗
∗ @param clazz the (Scala) class for this instance .

440 ∗/def this (clazz: Class) = this(clazz, new EmptyMap[TVarId, Type])
}
/∗∗

445 ∗ This object is our representation of the root class for
∗ all classes (ie . java. lang.Object).
∗/object Object extends Class("Object") {

/∗∗ Create the instance once and cache it . ∗/
450 val instance = new Instance(this)

/∗∗
∗ Get the Instance of this class .
∗

455 ∗ @return the Instance of this class .
∗/def apply() = instance

}

92 C Prototype implementation

C.3 misc.scala

0 package universes.formalizator;
/∗∗
∗ This trait contains various coercions which help to to write
∗ expressions for our system in a more natural way and reduce

5 ∗ the typing overhead for programers.
∗ Just mix it into classes using the system.
∗/trait coercions {

/∗∗
10 ∗ Convert start value to NType.

∗ This is essentially the environment mapping function Gamma.
∗
∗ @param s the start value to map.
∗

15 ∗ @return the NType for the start value .
∗/implicit def Start2NType (s: Start): NType = s match {case x : Var => x.getType.toNTypecase a : Val => new NType(new UPath(a, Nil, Nil),

20 a.getType.toNType.clazz, a.getType.toNType.typeParams)
}
/∗∗
∗ Convert a String to a type variable .

25 ∗ Accepts variance annotations (T, +T, −T) and returns
∗ the type variable with the respective variance.
∗ Also allows to just write "T" when a type variable is
∗ used as type for a �eld for example.
∗

30 ∗ @param x the String to convert .
∗
∗ @return type variable with the given variance.
∗/implicit def String2TVarId (x: String): TVarId = x(0) match {

35 case '+' =>new TVarId(x.substring(1, x.length), true, false , Any ## Object)case '−' =>new TVarId(x.substring(1, x.length), false , true , Any ## Object)case _ => new TVarId(x, false, false , Any ## Object)
40 }

/∗∗
∗ Converts a context to a UPath by pre�xing it with This.
∗ Allows to use the shorter form Peer instead of This◦Peer.

45 ∗
∗ @param c the context to convert .
∗
∗ @return a path consisting of start value this and context c.
∗/

50 implicit def Context2Univ (c: Context) = new UPath(This, Nil, c :: Nil)
/∗∗
∗ Get the instance for a class with no type arguments.
∗ For convenience, without this function one would have

55 ∗ to write C() to get the instance of class C.

C.3 misc.scala 93

∗
∗ @param c the class to convert .
∗
∗ @return instance of this class .

60 ∗/implicit def Class02Instance (c: Class0) = c.instance
/∗∗
∗ Get the instance for the Object class .

65 ∗ For convenience, without this function one would have
∗ to write Object() to get the instance .
∗
∗ @param o reference to the Object singleton object
∗

70 ∗ @return instance of Object.
∗/implicit def Object2Instance (o: Object.type) = Object.instance
/∗∗

75 ∗ Get the invocation for a method with no arguments.
∗ For convenience, without this function one would have
∗ to write m() to get the invocation of a parameterless
∗ method m.
∗

80 ∗ @param m the method to convert.
∗
∗ @return instance of this class .
∗/implicit def Method02Invocation (m: Method0) = m.invocation

85
/∗∗
∗ Provides a compact String representation for Lists etc .
∗ The default representation for Lists "List (1, 2, 3)" may be
∗ confusing since we have examples with classes named "List".

90 ∗
∗ @param i the collection to convert .
∗
∗ @return compact representation
∗/

95 def Iterator2String[A] (i: Iterator[A]) = "{" + ("" /: i) (
(x , y) => x + {if (x != "") ", " + y else y}) + "}"

}
/∗∗

100 ∗ Object used to allow importing only selected coercions functions .
∗/object Coercions extends coercions
/∗∗ Object used to create methods. ∗/

105 object Method {
/∗∗
∗ Creates a new method with no parameters.
∗
∗ @param name the name of the class.

110 ∗
∗ @return new method.
∗/def apply (name: String, ret: Type) = new Method0(name, ret)

94 C Prototype implementation

115 /∗∗
∗ Creates a new method with one parameter.
∗
∗ @param name the name of the class.
∗ @param p1 the �rst parameter.

120 ∗
∗ @return new method.
∗/def apply (name: String, p1: Val, ret: Type) =new Method1(name, p1 :: Nil, ret)

125
/∗∗
∗ Creates a new method with two parameters.
∗
∗ @param name the name of the class.

130 ∗ @param p1 the �rst parameter.
∗ @param p2 the second parameter.
∗
∗ @return new method.
∗/

135 def apply (name: String, p1: Val, p2 : Val, ret: Type) =new Method2(name, p1 :: p2 :: Nil, ret)
/∗∗
∗ Creates a new method with three parameters.

140 ∗
∗ @param name the name of the class.
∗ @param p1 the �rst parameter.
∗ @param p2 the second parameter.
∗ @param p2 the third parameter.

145 ∗
∗ @return new method.
∗/def apply (name: String, p1: Val, p2 : Val, p3 : Val, ret: Type) =new Method3(name, p1 :: p2 :: p3 :: Nil, ret)

150 }
/∗∗
∗ Abstract class representing methods (method signatures).
∗ We are using di�erent subclasses depending on the number of

155 ∗ parameters. This has the bene�t that a compile time error is
∗ raised if a wrong number of arguments is speci�ed .
∗
∗ @param name the name of the method.
∗ @param params the parameter list.

160 ∗ @param ret the type of the return value . Use Unit if the method
∗ has no return value .

∗/abstract class Method (name: String, params: List[Val], ret: Type) {
/∗∗

165 ∗ Returns the method signature: def name (p1: T1, p2: T2): ret
∗
∗ @return the method signature.
∗/override def toString = "def " + name + (params foldLeft "(") {

170 (x , y) => x + {if (x != "(") ", " else ""} + y + ": " + y.getType } +
"): " + ret

C.3 misc.scala 95

}
/∗∗

175 ∗ Class representing methods with no parameters.
∗
∗ @param name the name of the method.
∗ @param ret the type of the return value . Use Unit if the method
∗ has no return value .

180 ∗/class Method0 (name: String, ret: Type) extends Method(name, Nil, ret) {
/∗∗ Create the invocation once and cache it . ∗/val invocation = new MethodInvocation(name, Nil, ret)

185 /∗∗
∗ Get the Invocation of this method.
∗
∗ @return the Invocation of this method.
∗/

190 def apply() = invocation
}
/∗∗
∗ Class representing methods with one parameter.

195 ∗
∗ @param name the name of the method.
∗ @param params the parameter list.
∗ @param ret the type of the return value . Use Unit if the method
∗ has no return value .

200 ∗/class Method1 (name: String, params: List[Val], ret: Type) extends
Method(name, params, ret) {

/∗∗
∗ Create an Invocation of this method.

205 ∗
∗ @param Ta the type of the �rst argument.
∗
∗ @return the Invocation of this method.
∗/

210 def apply(Ta: Type) = new MethodInvocation(name, (Ta :: Nil) zip params, ret)
}
/∗∗
∗ Class representing methods with two parameters.

215 ∗
∗ @param name the name of the method.
∗ @param params the parameter list.
∗ @param ret the type of the return value . Use Unit if the method
∗ has no return value .

220 ∗/class Method2 (name: String, params: List[Val], ret: Type) extends
Method(name, params, ret) {

/∗∗
∗ Create an Invocation of this method.

225 ∗
∗ @param Ta the type of the �rst argument.
∗ @param Tb the type of the second argument.
∗
∗ @return the Invocation of this method.

96 C Prototype implementation

230 ∗/def apply(Ta: Type, Tb : Type) =new MethodInvocation(name, (Ta :: Tb :: Nil) zip params, ret)
}

235 /∗∗
∗ Class representing methods with three parameters.
∗
∗ @param name the name of the method.
∗ @param params the parameter list.

240 ∗ @param ret the type of the return value . Use Unit if the method
∗ has no return value .

∗/class Method3 (name: String, params: List[Val], ret: Type) extends
Method(name, params, ret) {

245 /∗∗
∗ Create an Invocation of this method.
∗
∗ @param Ta the type of the �rst argument.
∗ @param Tb the type of the second argument.

250 ∗ @param Tc the type of the third argument.
∗
∗ @return the Invocation of this method.
∗/def apply(Ta: Type, Tb : Type, Tc : Type) =

255 new MethodInvocation(name, (Ta :: Tb :: Tc :: Nil) zip params, ret)
}
/∗∗
∗ This class represents method invocations.

260 ∗ In other words it represents the call to a method where
∗ all argument types are speci�ed .
∗
∗ @param name the name of the method.
∗ @param args the argument/parameter list.

265 ∗ @param ret the type of the return value . Use Unit if the method
∗ has no return value .

∗/case class MethodInvocation (name: String, args: List[(Type, Val)], ret: Type) {
/∗∗

270 ∗ Returns a "signature" of the method call : name (T1, T2)
∗
∗ @return the invocation signature .
∗/override def toString = name + (args foldLeft "(") {

275 (x , y) => x + {if (x != "(") ", " else ""} + y._1} + ")"
}

C.4 logger.scala 97

C.4 logger.scala

0 package universes.formalizator;
import scala.util.logging._
/∗∗

5 ∗ A simple logger object used to collect and print (or suppress)
∗ debug messages, log messages and warnings.
∗
∗ Debug messages are intended to be used to debug the implementation.
∗ Log messages are usefull to monitor the process of typing a certain

10 ∗ expression .
∗ Warnings are used to warn about lossy simpli�cations of paths and
∗ similar things .
∗/object logger extends logger {

15 /∗∗ Flag indicating whether debug messages are printed . Default : false . ∗/private var doDebug = false
/∗∗ Flag indicating whether log messages are printed . Default : false . ∗/private var doLog = false
/∗∗ Flag indicating whether warnings are printed . Default : true . ∗/

20 private var doWarn = true
/∗∗
∗ Flag used to reset the logger when printing somewhere else
∗ (testcase progress indication for example).

25 ∗ The next message printed by the logger will be preceded by a newline
∗ to make sure the output does not look too messed up.
∗/private var tainted = false

30 /∗∗ Toggle the debug �ag . ∗/def toggleDebugging () = doDebug = !doDebug
/∗∗ Toggle the log �ag . ∗/def toggleLogging () = doLog = !doLog
/∗∗ Toggle the warning �ag . ∗/

35 def toggleWarnings () = doWarn = !doWarn
/∗∗ Set the tainted �ag . ∗/def taint () = tainted = true

40 /∗∗
∗ Takes care of cleaning the output if tainted .
∗ (Prints a newline if tainted .)
∗/def init () = {

45 if (tainted)
Console.println

tainted = false
}

50 override def debug(m: => String) = {if (doDebug) {
init()
Console.println("DEBUG: " + m)

}
55 }

98 C Prototype implementation

override def log(m: => String) = {if (doLog) {
init()
Console.println(m)

60 }
}override def warn(m: => String) = {if (doWarn) {

init()
65 Console.println("WARNING: " + m)

}
}

}
70 /∗∗

∗ Basic functionality of the logger .
∗/trait logger {

/∗∗ Indentation pre�x for log messages. ∗/
75 private var n = ""

/∗∗
∗ Increase indentation by two spaces .
∗

80 ∗ @return this which allows to nest calls to the logger .
∗/def ++ : logger = ++(" ")
/∗∗

85 ∗ Increase indentation by a String .
∗
∗ @param s indentation string to add.
∗
∗ @return this which allows to nest calls to the logger .

90 ∗/def ++ (s: String) = { n += s; this }
/∗∗
∗ Decrease indentation by two characters .

95 ∗
∗ @return this which allows to nest calls to the logger .
∗/def −− = { n = n.substring(0, n.length − 2); this }

100 /∗∗
∗ Function used to print debug messages.
∗
∗ @param m parameterless function evaluating to String .
∗ Only evaluated if the message is really printed .

105 ∗/def debug (m: => String) = {}
/∗∗
∗ Function used to print log messages.

110 ∗
∗ @param m parameterless function evaluating to String .
∗ Only evaluated if the message is really printed .
∗/

C.4 logger.scala 99

def log (m: => String) = {}
115

/∗∗
∗ Function used to print warnings.
∗
∗ @param m parameterless function evaluating to String .

120 ∗ Only evaluated if the message is really printed .
∗/def warn (m: => String) = {}
/∗∗

125 ∗ Applying the logger will print the message pre�xed by the
∗ indentation String n.
∗
∗ @param m log message.
∗

130 ∗ @return this which allows to nest calls to the logger .
∗/def apply (m: String) = { log(n + m); this }

}

100 C Prototype implementation

Bibliography

[1] Jonathan Aldrich and Craig Chambers. Ownership domains: Separating aliasing policy from
mechanism. In Martin Odersky, editor, European Conference on Object-Oriented Program-
ming (ECOOP), volume 3086, pages 1�25. Springer-Verlag, 2004.

[2] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework for im-
plementing pluggable type systems. SIGPLAN Not., 41(10):57�74, October 2006.

[3] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object
encapsulation. In ACM Symposium on Principles of Programming Languages (POPL), New
Orleans, Louisiana, January 2003.

[4] Dave Clarke and Sophia Drossopoulou. Ownership, Encapsulation and the Disjointness of
Types and E�ects. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA'02), pages 292�310, Seattle,
Washington, USA, November 2002. ACM Press.

[5] Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. Tribe: a simple
virtual class calculus. In AOSD '07: Proceedings of the 6th international conference on Aspect-
oriented software development, pages 121�134, New York, NY, USA, 2007. ACM Press.

[6] Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A core calculus for
Scala type checking. In Proceedings of MFCS, Springer LNCS, September 2006.

[7] Dave Cunningham, Sophia Drossopoulou, Susan Eisenbach, Werner Dietl, and Peter Müller.
Universes for race safety. January 2007.

[8] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types. In Erik Ernst,
editor, European Conference on Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science. Springer-Verlag, 2007. To appear.

[9] Werner Dietl and Peter Müller. Exceptions in ownership type systems. In Erik Poll, editor,
Formal Techniques for Java-like Programs, pages 49�54, 2004.

[10] Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology (JOT), 4(8):5�32, October 2005.

[11] Burak Emir, Martin Odersky, and John Williams. Matching Objects with Patterns. Technical
report, 2006.

[12] Erik Ernst. Family polymorphism. In Proceedings of the European Conference on Object-
Oriented Programming, pages 303�326, Budapest, Hungary, 2001.

[13] Erik Ernst. Higher-order hierarchies. In Luca Cardelli, editor, Proceedings ECOOP 2003,
LNCS 2743, pages 303�329, Heidelberg, Germany, July 2003. Springer-Verlag.

[14] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In POPL
'06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 270�282, New York, NY, USA, 2006. ACM Press.

101

102 BIBLIOGRAPHY

[15] Atsushi Igarashi and Mirko Viroli. Variant path types for scalable extensibility. In FOOL/-
WOOD '07 � International Workshop on Foundations and Developments of Object-Oriented
Languages, Nice, France Proceedings, January 2007.

[16] Stefan Nägeli. Ownership in design patterns. Master's thesis, March 2006.
[17] Martin Odersky. Scala by example.

http://www.scala-lang.org/docu/files/ScalaByExample.pdf, June 2007.
[18] Martin Odersky. The Scala Language Speci�cation, version 2.4.

http://www.scala-lang.org/docu/files/ScalaReference.pdf, February 2007.
[19] Martin Odersky and al. An overview of the scala programming language. Technical Report

IC/2004/64, EPFL Lausanne, Switzerland, 2004.
[20] Martin Odersky, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak Emir, Sean

McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Lex Spoon, and Matthias Zenger. An
introduction to Scala.
http://scala.epfl.ch/docu/files/ScalaIntro.pdf, July 2006.

[21] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A Nominal Theory
of Objects with Dependent Types. In Proc. ECOOP 2003, Springer LNCS 2743, July 2003.

[22] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored Local Type Inference. In
POPL, 2001.

[23] Jan Schäfer and Arnd Poetzsch-He�ter. Simple loose ownership domains. Technical Report
348/06, Department of Computer Science, University of Kaiserslautern, March 2006.

[24] Michel Schinz. A Scala tutorial for Java programmers.
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf, June 2007.

[25] Daniel Schregenberger. Runtime checks for the Universe type system, 2004. Semester thesis.
[26] Sun Microsystems, Inc. The Java language speci�cation.

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html.
[27] Yoshimi Takano. Implementing uniqueness and ownership transfer in the Universe type sys-

tem. Master's thesis, March 2007.

http://www.scala-lang.org/docu/files/ScalaByExample.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://scala.epfl.ch/docu/files/ScalaIntro.pdf
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

	1 Introduction
	1.1 Universe Types
	1.1.1 Ownership
	1.1.2 Ownership modifiers
	1.1.3 Subtyping for ownership modifiers
	1.1.4 Aliasing control
	1.1.5 Generic Universe Types

	1.2 Scala
	1.2.1 Why Scala?
	1.2.2 Short introduction to the Scala syntax

	1.3 Notation and naming conventions
	1.4 Outline

	2 Informal Overview
	2.1 Path-dependent types
	2.2 Universe Types are viewpoint-dependent
	2.3 Path-dependent types in Scala
	2.4 Viewpoint adaptation
	2.4.1 Viewpoint adaptation in Generic Universe Types
	2.4.2 Separating encapsulation and topology

	2.5 Limited covariance for parameterized types
	2.6 Main concepts
	2.6.1 Additional ownership modifiers
	2.6.2 Paths
	2.6.3 Different forms of path types
	2.6.4 Viewpoint adaptation for path-dependent Universe types
	2.6.5 Paths containing mutable fields
	2.6.6 Path normalization and conventions
	2.6.7 Path aliasing
	2.6.8 Subtyping
	2.6.9 Methods with dependent parameters
	2.6.10 Parameterized types
	2.6.11 Visibility

	3 Path-dependent Universe Types
	3.1 Static type system
	3.1.1 Syntax
	3.1.2 Classifying path types
	3.1.3 Type mapping and path normalization
	3.1.4 Field selections
	3.1.5 Checking method calls
	3.1.6 Computing loose paths
	3.1.7 Path simplification
	3.1.8 Subtyping
	3.1.9 Type rules

	3.2 Parameterized types
	3.2.1 Syntax
	3.2.2 Type mapping and auxiliary functions
	3.2.3 Field selections
	3.2.4 Viewpoint adaptation
	3.2.5 Subtyping

	3.3 Runtime Types for Scala
	3.3.1 Runtime checks in Java
	3.3.2 Runtime checks in the Universe type system
	3.3.3 Runtime representation of path-dependent Universe types
	3.3.4 Proposed implementation for the Universe runtime checks

	3.4 Additional restrictions to enforce encapsulation

	4 Discussion
	4.1 Prototype implementation
	4.1.1 Notation
	4.1.2 Experiences with Scala
	4.1.3 Test suite

	4.2 Examples
	4.2.1 Field selection
	4.2.2 Method calls
	4.2.3 Parameterized types

	4.3 First-class functions
	4.4 Summary

	5 Related Work
	6 Conclusion
	6.1 Contribution
	6.2 Implementing path-dependent Universe Types
	6.3 Future Work

	A The assignable function
	B Predicate and Function Overview
	B.1 Functions concerned with universes
	B.2 Functions concerned with types
	B.3 Subtyping

	C Prototype implementation
	C.1 universes.scala
	C.2 types.scala
	C.3 misc.scala
	C.4 logger.scala

