
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

An Isabelle Formalization of the

Universe Type System

Diplomarbeit in Informatik

Martin Klebermaß

2

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN

UNIVERSITÄT MÜNCHEN

e e e e
eee eee eee ee

e
e e ee

Lehrstuhl IV
Software & Systems Engineering

An Isabelle Formalization of the

Universe Type System

Diplomarbeit in Informatik

Martin Klebermaß

Aufgabensteller : Prof. Tobias Nipkow
Betreuer : Prof. Peter Müller
Betreuer : Dipl.-Ing. Werner M. Dietl

Abgabedatum : April 11, 2007

4

Ich versichere, dass ich diese Diplomarbeit selbständig verfasst und nur die angegebenen Quellen
und Hilfsmittel verwendet habe.

München, den April 11, 2007

(Martin Klebermaß)

Abstract
Today still very often faulty software is delivered. In contrast to other engineering

tasks no one wonders about that. But there are a lot of areas where faulty software could
generate high costs.
To solve that problem the correctness of software should be guaranteed.
The Universe Type System [11] helps to make this step more simple. It allows to structure
the heap memory into contexts. Those contexts can be used to reason about software.
As the type system will be used to prove the correctness of programs, the type system
itself has to be shown sound.
The goal of this diploma thesis is to formalize the Universe Type System using a Feath-
erweight Java like syntax, extended with field updates. The formalization will be proven
using the theorem prover Isabelle/HOL. It is based on the Isabelle/HOL Featherweight
Java Implementation [5], the paper about generic universe types [3] and the Universe Java
- paper [2]. The proof is separated into a proof of preserving the topology, and a proof of
the encapsulation of the type system.
Using Isabelle/HOL, it was possible to show the type preservation of the semantics, as
well as the owner as modifier property. Also a new interpretation of the universe modifiers
for arrays has been shown sound.

Contents

1 Introduction 13
1.1 Problems of aliasing in object orientation . 13
1.2 Universe Type System . 13

1.2.1 Heap structure . 13
1.2.2 Owner-as-modifier vs Owner-as-dominator . 14
1.2.3 Modifiers . 15
1.2.4 Topological vs. Encapsulation Type System . 16

1.3 Isabelle/HOL . 16
1.4 Type systems and how to prove properties of them . 17

1.4.1 Featherweight Java . 18
1.4.2 Jinja . 18

1.5 Overview . 18

2 Type system 19
2.1 Static checking . 19

2.1.1 Syntax . 19
2.1.2 Viewpoint adaptation . 21
2.1.3 Subtyping . 22
2.1.4 Type rules . 25
2.1.5 Well-formedness rules . 26

2.2 Runtime model . 27
2.2.1 Heap definition . 27
2.2.2 Auxiliary functions for the runtime environment 28
2.2.3 Well typedness of the runtime environment . 29
2.2.4 Bigstep semantics . 30

2.3 Topological proofs . 31
2.3.1 Correct viewpoint adaptation . 32
2.3.2 Type preservation . 32

2.4 Encapsulation system . 33

3 Formalization of arrays 35
3.1 New definition of arrays . 35
3.2 Static checking . 36

3.2.1 Syntax . 36
3.2.2 Viewpoint adaptation . 37
3.2.3 Subtyping . 37
3.2.4 Type system . 39

3.3 Runtime model . 39
3.3.1 Heap definition and well typedness of the environment 39
3.3.2 Bigstep semantics . 40

3.4 Proofs . 40

9

Contents 10

4 Isabelle Formalization 45
4.1 Overview over theory files . 45
4.2 Formalization . 45

4.2.1 Syntax definition . 46
4.2.2 Viewpoint adaptation . 48
4.2.3 Typing relation . 49
4.2.4 Subtyping relation . 50
4.2.5 Static helper functions . 52
4.2.6 Expression typing . 54
4.2.7 Static lemmas . 59
4.2.8 Heap model . 60
4.2.9 Runtime model . 63
4.2.10 Welltypedness definition . 65
4.2.11 Bigstep formalization . 67
4.2.12 Topological typesystem proofs . 70
4.2.13 Encapsulating typing rules . 77
4.2.14 Owner as modifier property . 80

4.3 Problems and the resolution . 83

5 Conclusion 85
5.1 Results . 85
5.2 Future work . 85

A Appendix: Viewpoint adaptation of the ownership modifier 87
A.1 Existing Functions in GUT . 87
A.2 UJ . 88
A.3 Comparison of the methods in both papers . 89

A.3.1 Cases a and b . 89
A.3.2 Cases c and d . 89
A.3.3 Case e . 91

List of Figures

1.1 Structuring the heap . 14
1.2 Owner-as-dominator vs Owner-as-modifier . 15
1.3 Isabelle/HOL - Proof General . 17

2.1 Derivation tree of an expression . 21
2.2 Syntax tree . 22
2.3 Viewpoint adaptation . 23
2.4 Subclassing . 23
2.5 Order of the ownership modifiers . 23
2.6 Subtyping of the universe modifer . 24
2.7 Subtyping . 25
2.8 Typing rules . 26
2.9 Wellformedness rules . 27
2.10 Heap definition . 28
2.11 The dynType function . 29
2.12 Wellformed model . 30
2.13 Bigstep semantics . 31
2.14 Adaptation from a viewpoint . 32
2.15 Adaptation to a viewpoint . 32
2.16 Type safety . 33
2.17 Encapsulation rules . 34
2.18 Owner-as-Modifier property . 34

3.1 Old and new definition of arrays . 36
3.2 Mapping old to new array system . 37
3.3 Transformation rules for array definition . 37
3.4 Syntax extended with arrays . 38
3.5 Viewpoint adaptation with arrays . 38
3.6 Array subtyping rules . 39
3.7 Syntax rules with arrays . 41
3.8 Heap with arrays . 41
3.9 The dynType function for arrays . 42
3.10 Welltyped address . 42
3.11 Bigstep semantics with arrays . 43

11

List of Figures 12

1 Introduction

Reasoning about software is one of the key problems in informatics. Today programming theory and
the possibilities of proving the correctness of software still lack behind practical programming situa-
tions. They either limit the sort of software that could be developed, or it is complicated to prove
the correctness of the program. At least in some areas, where errors in the software programs would
generate a lot of damage or costs, computer checked code has become more and more important.
One argument to introduce object oriented programming was to reduce complexity and to encourage
reusability. The problem with reasoning about software programs is that for each written class the
correctness of some properties have to be shown in every context the class is used.
One part to handle that problem is to use the Universe Type System[10]. Other parts, like invariant
semantics or models are not handled in this paper.

This chapter will make you familiar with related information to understand the formalization.

1.1 Problems of aliasing in object orientation

While reasoning about object-oriented programs aliasing can make the work really complicated.
Aliasing is a part of many programming languages. It gives the possibility of accessing an object
using more than one name. An example would be two variables mapping to the same object. If
the object behind one of those variables is changed, the object behind the other one is changed too
(because it is the same) [6, 11].
This could break invariants during program execution and thus can make reasoning about a program
more complicated If a property is defined for a variable, it has to be guaranteed that this property
is not destroyed by modifying the object using an alias variable that maps to that object.

1.2 Universe Type System

The Universe Type System describes a possibility how to enforce a structure in the heap and to
enforce the owner-as-modifier property for object oriented programming languages [9, 4].

1.2.1 Heap structure

Why should the heap be structured?
In contrast to classes in Java, which have a structure tree for the inheritance, building upon each
other, the object store does not have any order. New objects are just created at a free address.

Instead of having no structure, using the universe type system the objects can be given an own-
ership information, which make it possible to structure the objects. Using this structure and some
restrictions gives one the ability to get control over objects directly owned by an object. In figure 1.1
one can see a model for an unstructured heap and a structured heap. In the case of the structured
heap access will be limited by this structuring information. There will be some limitations like ac-
cess is only allowed inside the structure but not outside. Those restrictions can be divided into two
concepts: Owner-as-modifier and Owner-as-dominator.

13

1 Introduction 14

Figure 1.1: Structuring the heap

1.2.2 Owner-as-modifier vs Owner-as-dominator

In both concepts objects have owners, and in this way the hierarchy is built. The main difference in
the two concepts is the read access to fields. The owner-as-dominator property forbids every access
to an object, even read access. The advantage for that is a complete encapsulation of objects and
what happens inside the object. Thus an object has complete control over the information and the
access to its child objects [1].
Although it is very powerful in the sense of encapsulation, the owner-as-dominator property restricts
the programmer in the way how to implement a software program, reduces the possibility of reusing
objects and blows up the single classes with information not needed.

For this reason the owner-as-modifier property gives the possibility of relaxing access limitations
to only control write access to objects (everyone can read every object) and still gives the possibility
of defining properties for a class as modification of objects can be controlled. With this property a
lot of assertions about a class can be proven once and reused in other classes as assumptions without
proving it in every situation again.
In contrast to the owner-as-dominator property, where all access (even read access) has to be done
with respect to the owner of an object, the owner-as-modifier property gives the possibility of allow-
ing aliasing and thus lets you create more flexible programs.

Figure 1.2 compares both properties.

15 1.2 Universe Type System

Figure 1.2: Owner-as-dominator vs Owner-as-modifier

1.2.3 Modifiers

To achieve those properties the type system has to be extended by a new syntax to give objects an
ownership information. It is done by using the annotations rep, peer and anyu to describe the
ownership relation for the types in expressions and field and method declarations of classes.
The rep annotation is used to describe that the variable is owned by the object in which the decla-
ration is done. A peer modifier means that the variable and the class it is defined in have the same
owner and anyu does not tell anything about the owner. A more specific explanation will be given
during the formalization.
There are different ways to annotate the modifiers in the Java source code:

//Annotation of universe modifiers
class C{

peer S a ; // Java keyword
/∗@ rep @∗/ T b ; // JML specification
/∗@ any @∗/ T c ; // JML specification, requires parsing

}

Besides those three ownership modifiers there are two internally used modifiers called thisu and
unknown. A variable with the thisu ownership modifier is the current viewpoint. The unknown
modifier is used by the adaptation of the viewpoint to represent a modifier that can not be expressed
in the current viewpoint because it is a specific but unknown type. The primary use for the unknown

1 Introduction 16

modifier is during field update and method call.
The underscored ”u” in some modifiers are used to distinguish it from other parts of the formalization,
because the variable name for the current viewpoint is called this and there also exists a runtime
part of the ”any” called anya.
A detailed description of the universe modifiers can be found in an article from Dietl and Müller
about ownership properties in JML [4].

1.2.4 Topological vs. Encapsulation Type System

In this formalization the Universe Type System will be split into two parts. One part is the topological
type system, which guarantees that the object hierarchy is preserved and that an evaluated expression
will result in a heap and an object respecting the expected type as result for the expression, also
called type preservation.
The other part is the encapsulation type system, set on top of the topological one, which enforces
the owner-as-modifier property by the use of pure and encapsulated expressions.

1.3 Isabelle/HOL

Isabelle/HOL is a tool, to assist in proving theorems using Higher Order Logic. It is being developed
by Lawrence C. Paulson (University of Cambridge, UK) and Tobias Nipkow (Technical University
of Munich, Germany). As it allows to introduce new notations, theorems can be written down in
a way not too cryptical for a human to read and to understand and to keep the notations of prior
work in most cases. Besides, there already exists a huge database of theorems and rules for different
problems which can be used in the proofs[13].
Apart from using Isabelle/HOL to show mathematical proofs, it can be used to reason about semantics
of a programming language and to prove interesting properties for this semantics. For this case the
semantics of a programming language can be described in an abstract way in Isabelle/HOL using
inference rules and inductive sets.
Isabelle/HOL is built on top of ML (Meta-Language). The theorem prover is written inside the
ML environment. It is just the small core of Isabelle/HOL, the rest is shown as theorems using the
theorem prover.
Those theorems are written down in a structured way and stored in so called ”.thy” files, containing
a requirement list of other theories, definition of functions, sets and types, and lemmas that have to
be shown.
When a theory file will be proven using the requirements list a dependency tree of theories can be
built with all required theories in it. It is not allowed to have loops in this tree.
There are two ways to work with Isabelle/HOL files. One way is a graphical front-end. It is called
Proof General and is an extension to Emacs (Illustration 1.3). Using the proof general, the state of a
proof can be shown, and during the proof steps you can walk along a proof to see which parts show
what property. It is the normal environment to write down the proofs. The other way is the use of
a command line tool to generate latex and pdf documents. To be able to generate a document out
of a document all lemmas in a theory file have to be shown correct.
To show the correctness of a lemma, either a tactic script can be used, telling Isabelle/HOL in a
”programming”-like way what theories and provers (like a simplifier) have to be applied to the lemma,
or in a more ”mathematical” or structured way using Intelligible Semi-Automated Reasoning (ISAR)
[12]. It depends on the person which way he likes better, normally the structured proofs are more
robust against changes, so for bigger proofs it would be a good idea to use ISAR. Special subgoals
can be shown using tactic scripts.

17 1.4 Type systems and how to prove properties of them

Figure 1.3: Isabelle/HOL - Proof General

1.4 Type systems and how to prove properties of them

A type is a description of the properties of a set of values. In Java, for example, there exist different
types for numbers, strings or for classes.
A type system defines the types and how they are used in a programming language. Depending on
the definition of a type system, properties could be assumed during runtime. Those are enforced
through the type system statically.

// A not well typed assignment
int i=0;
char c=’C’;
i=c; //should be forbidden by the type system

One of those assertions is the type safety, meaning that in a well typed program, when an expression
is evaluated the resulting object has the same or a more specific type then the type that expression
will result by applying the typing rules to it. This is called type preservation. Besides that, a well
typed program will not get stuck during program execution. A type system could also be used to
optimize programs, because a compiler knows how to handle specific variables. For the formalization
of the Universe Type System only the property of the type preservation is of interest. Depending on
the type system other properties can be also enforced, like the owner-as-modifier property.

1 Introduction 18

To guarantee those assertions, the type system has to be proven sound. This can be achieved by the
following steps:

• Formalize the syntax and the typing rules.

• Formalize the semantics of expression evaluation.

• Formalize the assertions. Afterwards show them with respect to the definitions.

1.4.1 Featherweight Java

Featherweight Java [7] is a very small subset of Java using only the basic parts of it. Sometimes it
is called the lambda calculus for object oriented programming. Featherweight Java consists only of
object creation, field read, casting, and method calls. Neither once created objects can be modified,
nor does there exist a sequence of expressions or conditions.
As Featherweight Java does not modify created objects, a reduction semantics without a heap can
be used to express the evaluation of expressions.
It is a good point to start and create a new language containing only the basic features needed to
prove properties about the Universe Type System. Because the interesting part for the Universe Type
system is the modification of objects, an expression for field updates has to be added to Featherweight
Java. Apart from the modification of objects, which could not be done by the reduction semantics,
also the reduction of method calls would not be possible, because there exists no ”rep rep” type.
Thus the heap has to be modeled and a new semantics has to be defined. The result is a relatively
simple programming language, which can be used for the formalization and the proofs.
There is already a formalization of Featherweight Java in Isabelle/HOL, and it can be used as a good
starting point [5].

1.4.2 Jinja

In contrast to Featherweight Java Prof. Tobias Nipkow formalized a very expressive Java subset
called Jinja. There are a lot of aspects of Java implemented. Because it is already formalized in
Isabelle this formalization of the Universe Type System followed the formalization of Jinja in some
parts [8]. I did not decide to use Jinja directly to formalize the Universe Type System because the
expressiveness of Jinja makes it necessary to show a lot of properties besides the core properties.

1.5 Overview

The thesis will be split up into three main parts: in the second chapter the type system will be
described semi-formally. This will be done by first specifying the topological part of the type system,
together with the definition of the adaptation of the viewpoint and the well-typedness of the classes.
Afterwards a heap will be modeled to be able to describe the semantics.
With those definitions the first interesting property, the type preservation, can be described.
Having the topological information it can be extended with some encapsulation rules. They can be
used to describe the owner-as-modifier property.
In chapter three is the description of the extension, the integration of arrays into the type system.
Topological as well as encapsulation parts will be both extended.
The formalization of all those descriptions using Isabelle/HOL is written down in chapter four.
At last a summary of the results will be done in chapter five.
The appendix describes where the adaptation function is derived from.

2 Type system

In this chapter it will be described how the type system will be formalized.
Based on that semi-formal notation the Isabelle formalization should be easier to understand.

Section 2.1 describes the static parts of the topological system. It is extended by a runtime model
in section 2.2. With those information in section 2.3 the main lemmas are introduced.
At last in section 2.4 the type system will be encapsulated to guarantee the owner-as-modifier prop-
erty.

2.1 Static checking

It would take much effort to formalize a parser to generate an abstract structure from source code,
so the abstract structure that is defined will be used directly for the definition of the syntax and the
proofs.

//Wrong syntax
class C wird abgeleitet von D{ // ”wird abgeleitet von” is not a syntax element

...
}

As the type system should prevent you from using a ”wrong”(in the context of this semantics) syntax,
most of the checks on an expression should be done with this abstract structure to prevent errors
that could otherwise happen in the runtime environment. An example would be the assignment of a
string to an integer variable.

//Right syntax but not well formed in the semantics of Java
class C extends C{ // a class cannot extend its own class

...
}

2.1.1 Syntax

The abstract syntax (see Figure 2.2) used in this paper consists of different parts. There exist the
namespaces V arName, MethodName and ClassName for the variables, methods and classes.
Fields and environment variables will have the same namespace.
The type Types consists of an ownership modifier and a class part required to represent the type in
the system.

The first part, the ownership modifier OM , is used to represent the ownership relation of types.
The second part, the class, describes the behavior of an object. That is done like in every other
object oriented language. All classes together are stored in the ClassTable, which is represented by
a partial function mapping ClassNames to class definitions. For each class in a ClassTable there
exists a class definition naming the superclass and a list of fields for the class together with a list
of method definitions. Besides this, the class Object is defined in the ClassTable as the root class

19

2 Type system 20

without any methods or fields.
The list of fields is a list of Types and V arName pairs, telling that the field with the defined name
has a specific type.

A method is specified with different parts. It consists of the method’s signature, containing ar-
gument names and types, a return type and an expression that will be evaluated when the method
is called.

The expression can consist of different parts:

• The Null expression,

• An environment variable, having the variable name as argument,

• A field read, consisting of a target expression and a field name,

• A field update, with an expression for the receiver object, a field name, and an expression for
the object to be assigned,

• A method call, consisting of an expression for the receiver, the method names, and expressions
for all arguments,

• An object creation, with the type of the object as argument,

• A type cast, with the type, the object should be casted to.

Using those expressions a derivation tree can be built which can be used later on for the proofs (see
figure 2.1.

There must be an environment to evaluate the expression to a static type.
The static environment Γs is represented as a partial function mapping variable names to types and
a mapping from the the variable name this to the type of the current viewpoint.

With those declarations a simple abstract syntax is defined (see figure 2.2) which can be used
for the further work.
The syntax used to formalize the type system using Isabelle/HOL will be modified slightly to fit the
requirements for Isabelle/HOL and to simplify the proofs in some cases.
Although the semantics does not have constructors, control flow elements or exceptions, it is still
enough to show the interesting parts of the type system.

The syntax does not describe what a program looks like. For the formalization it is not of in-
terest how to get to an initial environment on which the transitions can be applied on. The only
interesting thing is what a well formed environment is. The definition of a well formed environment
state, as well as a well formed runtime environment will be given later on.
If one wants to formalize a way to get to this initial environment he has to do the following things:
Define a classtable. Then write down the triple classtable, classname and methodname, with the
method having no arguments. By using the classname an initial root object can be created. After-
wards the method will be called in the context of that object.

Lookup functions

To make the inference rules in the formalization easier to read, some functions to look up information
in the class table are required. At least the type of a field f in a class C has to be looked up, and

21 2.1 Static checking

Figure 2.1: Derivation tree of an expression

the signature as well as the body of a method needs to be looked up frequently.
To get the super class of a class the super function will be used.

• fType :: ClassTable× ClassName× V arName → Types

fType is a function to get the type of a field for a specific class. fType is defined recursive so,
it returns the type of the field in the class itself or, if not declared there, it returns the fType
of the superclass.

• mType :: ClassTable× ClassName× MethodName → (Purity, Types, T ypes)
mBody :: ClassTable× ClassName× MethodName → (V arDef,Expr)
The same rules apply to the function mType which returns the signature of a method, con-
taining the Purity, the argument types and the return type and for the function mBody, which
returns the argument names and the expression of a method in a class.
Both of these methods are defined recursively, too, so they will return a method definition
either from the class itself or if not defined there of one of the super-classes.

• super :: ClassTable× ClassName → ClassName
The function super is used to extract the name of the superclass out of the class definition.

2.1.2 Viewpoint adaptation

As the universe modifier represents the ownership of a variable in the context of the current view-
point, when those variables are used in another context by accessing them using field access, method

2 Type system 22

v, f ∈ V arName ::= Set of V arNames|varthis
m ∈ MethodName ::= Set of MethodNames
C,D,E ∈ ClassName ::= Set of ClassNames | object
u ∈ OM ::= peer | rep | anyu | thisu | unknown
w ∈ Purity ::= pure | nonpure
S, T ∈ Types ::= OM ClassName
vDef ∈ V arDef ::= Types V arName
e ∈ Expr ::= null |

V arName |
Expr.V arName |
Expr.V arName = Expr |
Expr.MethodName(Expr) |
new Types |
(Types)Expr

mDef ∈ MethodDef ::= Purity Types MethodName (V arDef) {return Expr}
cDef ∈ ClassDef ::= Class ClassName extends ClassName (V arDef, MethodDef)
CT ∈ ClassTable ::= ClassName → ClassDef
Γs ∈ Envs ::= V arName → Types

Figure 2.2: Syntax tree

invocation or field update, the ownership information has to be adapted to the current viewpoint.
For this reason the infix functionB takes two arguments, the first one as the ownership modifier of
the receiving object and the second one as the ownership modifier of the field in the context of that
class. The information is adapted to the current viewpoint.
When the adaptation can not express all details of the required information (a rep field of a rep
object for example can not be expressed as ”rep rep” object) the universe modifier unknown is used
to express it instead of using the ownership modifier anyu for these cases. unknown in a result with
the adaptation to a viewpoint, which is required in the case of field update or method invocation,
indicates that the adaptation is not allowed.
TheB function has the signature
B :: OM × OM → OM .

Because most of the time the result should be a Types again, the infix function Bt accepts Types

as the second argument and returns a Types with a similar rule. To do the adaptation step, the
ownership modifiers of the arguments are adapted using theB function, and the result together with
the type of the second argument is the resulting type. Bt :: OM × Types → Types

uBt (u’ C) =:: (uBu’) C
The result of a small analysis of different papers with adaptation of the the viewpoint (see Appendix
A) is a lookup table, which can be seen in figure 2.3:

2.1.3 Subtyping

The next step in the formal definition is to define the well typedness of the static system. Well
typedness means that the defined syntax follows some specified rules. Those preconditions about the
syntax should limit the syntax in a way, so that the conclusions, the type preservation and the owner
as modifier property, can be shown.

23 2.1 Static checking

uBu′ peer rep unknown anyu

thisu peer rep unknown anyu

peer peer unknown unknown anyu

rep rep unknown unknown anyu

unknown unknown unknown unknown anyu

anyu unknown unknown unknown anyu

Figure 2.3: Viewpoint adaptation

Because a Types consists of two parts, the ownership modifier and a class, subtyping respects both
parts of a Types. It has to be distinguished between subclassing (the class hierarchy has a certain
order), the order of the ownership modifier and subtyping.

Subclassing

Subclassing is defined like most object-oriented programming languages (See figure 2.4). A class is a
subclass of its superclass [sc-1-super]. Subclassing is reflexive [sc-2-refl] and transitive [sc-3-trans].
As the root class Object has no superclass there is no subclass X with CT ` Object[: X and X is
not Object.

super(CT,C) = D

CT ` C[: D
sc-1-super

CT ` C[: C
sc-2-refl

CT ` C[: D CT ` D[: E

CT ` C[: E
sc-3-trans

Figure 2.4: Subclassing

Order of the universe modifiers

rep≤ anyu
OM-order-1

peer≤ anyu
OM-order-2

thisu≤ peer
OM-order-3

unknown≤ anyu
OM-order-4

u ≤ u′ u′ ≤ u′′

u ≤ u′′ OM-order-trans
u ≤ u

OM-order-refl

Figure 2.5: Order of the ownership modifiers

There exists an order of the universe modifiers (see inference rules 2.5 and the subtyping relation
2.6):

• rep specifies the ownership information of an object more specific than anyu, because rep tells
one that the current viewpoint is the owner of the object and anyu tells you nothing.

2 Type system 24

• The same holds for peer and anyu, with the difference that peer tells you that it has the
same owner as the current viewpoint.

• The current viewpoint has the universe modifier thisu. As peer tells one that an object has
the same owner as the current viewpoint, the current viewpoint must also be of the ownership
modifier peer. Thus thisu must be more specific than peer.

• unknown is a special case. You could say it gives you as much information as anyu, but that is
not exactly true. It tells you at least that the type could not be expressed, so it could possibly
be a specific but unknown owner. Per definition unknown will be declared as more specific
than anyu.

Figure 2.6: Subtyping of the universe modifer

25 2.1 Static checking

Subtyping

As subclassing and the order of the ownership modifiers is specified, subtyping can be defined with
those two declarations. It is a combination of subclassing and the order of the ownership modifiers
and thus a type is a subtype of another type if and only if the class parts of the types are in a
subclassing relation and the ownership modifier parts are in a sub-relation (Figure 2.7).
Subtyping will be used in the expression rules, to allow certain expressions that are more specific to
be well typed. An example can be seen in the following source-code:

//Subtyping example, what is allowed and what is not allowed
Class C extends D {... }
Class D extends E {...}
...
D v;
v=new D() // OK types are equal
v=new C() // OK C is a subtype of D
v=new E() // ERROR, E is a supertype of D

As subclassing and the order of ownership modifier is reflexive and transitive, subtyping is reflexive
and transitive too.

CT ` C[: D u ≤ u′

CT ` u C <: u′ D
st-1-subtype

Figure 2.7: Subtyping

2.1.4 Type rules

For a type system it is required that an expression represents a type. For every characteristic of an
expression there must exist a rule (compare figure 2.8) to get the type of the expression.

• The Null expression does not tell anything about a type, thus it could be any type.

• An environment variable has the type of the variable in the environment.

• A field read has the type of the field adapted to the current viewpoint using the type of the
receiver object.

• A field update has the type of the left handed part, which can be handled like a field read.
The right handed part has to evaluate to a subtype of this type. This subtype is the type of
the field update. To guarantee type safety, there has to be an additional constraint, namely to
forbid the ownership part of the type to be unknown.

• A method call has the type of the return value adapted to the current viewpoint. To be able
to call a method all arguments have to be well typed. For this, the type of each expression for
the arguments has to be a subtype of the corresponding argument type and the ownership part
is not allowed to be unknown. To do this subtype check the type has to be adapted to the
viewpoint of the method.

2 Type system 26

• An object creation has the type of the new object.

• A type cast results in the type an expression is cast to.

Those rules together with a subsumption rule complete the typing rules.
For every well typed expression the typing rules can match to a type. With the aid of the sub-
sumption rule the expression would also match to every more general type. In contrast to Jinja for
example, where in every expression that should allow subtyping it is a direct assumption, using the
subsumption rule the subtyping has to be defined only once. The main reason for the decision for
the subsumption rule was to keep in line with the formalization of generic universe types.

CT ; Γs ` e : T ′ CT ` T ′ <: T

CT ; Γs ` e : T
t-subs

CT ; Γs ` null: T
t-null

CT ; Γs ` v : Γs(v)
t-var

CT ; Γs ` e : u C

CT ; Γs ` e.f : uBt fType(CT,C, f)
t-read

CT ; Γs ` e0 : u0 C0 u0Bt fType(CT,C0, f) = u C
u 6= unknown CT ; Γs ` e1 : u C

CT ; Γs ` e0.f = e1 : u C
t-update

CT ; Γs ` e0 : u0 C0 mType(CT,C0,m) = (w, Ts, T)
uBt Ts = Tsu u0Bt T = Tu

∀up Cp ∈ Tsu.up 6= unknown CT ; Γs ` es : Tsu

CT ; Γs ` e0.m(es) : Tu
t-invk

u ∈ {peer, rep, anyu}
CT ; Γs ` new u C : u C

t-new

CT ; Γs ` e : T ′

CT ; Γs ` (T)e : T
t-cast

Figure 2.8: Typing rules

2.1.5 Well-formedness rules

To guarantee that an expression could be executed in an environment some formal preconditions
have to be specified. An environment with that formal preconditions is called well formed.

It can be defined by splitting up the declaration into parts and express a wellformdness of parts of
the system (See Figure 2.9).
A type T is well formed [t-typing] if the class of the type is in the classtable.
As the type of fields [f-typing] should be preserved during subclassing; if the type of a field is defined
in the superclass it should be the same in the subclass.
The term ”CT,C `m mDef” expresses that mDef is well formed in the class C. To achieve that

27 2.2 Runtime model

C ∈ dom(CT)
CT `t uC

t-typing

CT `t T fType(CT, super(CT,C), f) = S =⇒ S = T

CT,C `f Tf
f-typing

∀T0v ∈ vDef.CT `t T0 CT `t T
Γs = vDef ; this 7−→ (thisu C) CT ; Γs ` e : T

mType(CT, super(CT,C),m) = (w′, vDef ′, T ′)
}

=⇒

w ∈ {Pure, w′}

CT ` vDef ′ <: vDef
CT ` T <: T ′)

CT,C `m w T m (vDef) {return e}
m-typing

∀vDefi ∈ vDef.CT,C `f vDefi

∀mDefi ∈ mDef.CT, C `m mDefi

D ∈ dom(CT)
CT `c Class C extends D (vDef, mDef)

c-typing

CT `c Class Object extends Object ([], [])
c-typing-object

∀C ∈ dom(CT).CT `c CT (C)
` CT

classes-typing

Figure 2.9: Wellformedness rules

every argument has to be well formed , and if the method was already defined in the supertype it
has to have the same signature. Besides this the expression in the method body must be a subtype
of the type of the return value[m-typing].
”CT `c cDef” means that cDef is well formed in the classtable CT . To be well formed every field
and method has to be well formed, and the superclass has to be part of the classtable.
Besides this limitation the definition of Object [c-typing-object] has to have an empty field table
and an empty method table.
A wellformed class table [classes-typing] consists of wellformed classes.

2.2 Runtime model

This section specifies the runtime model for the semantics.
The runtime model describes how the language behaves in the runtime environment containing a
heap and a mapping for the local variables. To do that, the heap will be modeled. There will be
specified what a welltyped runtime environment is and a semantics for executing an expression will
be declared. Together with all the information given the type preservation can be shown.

2.2.1 Heap definition

The heap is an abstract definition of the memory of a computer where the program can allocate
space. To be able to do that, the heap has a mapping from addresses to objects. In the abstract
formalization the heap will be represented by a partial function mapping addresses to objects. Those

2 Type system 28

objects consist of the runtime type and the field-table of an object, which is a partial function mapping
variable names to addresses.
Besides the definition of a heap the runtime environment has to be specified. It is a partial function
mapping variable names to addresses located in the heap.
There are three special addresses in the Universe Type System.
One of them is nulla . It is used in the creation of new objects to map the fields to a valid address.
It is the only address that can be assigned to fields or variables which is not in the heap.
In addition to that in the Universe Type System every object has an owner, which is represented by
an address. A semi-formal definition can be seen in figure 2.10
The second one is anyownera, which is used during the creation of an anyu object, where it represents
the owner address of that object.
Finally to distinguish between the anyownera and an anyu type in a runtime type check, the anya

owner address represents the anyu type in runtime checks.

ι ∈ Addr ::= Set of addresses|nulla
ιo ∈ OwnerAddr ::= Addr|anyownera|anya

T r ∈ Typer ::= OwnerAddr Class
V r ∈ V arr ::= V arName → Addr
Obj ∈ Objectr ::= Typer V arr

h ∈ Heap ::= Addr → Object
Γr ∈ Envr ::= V arr

Figure 2.10: Heap definition

2.2.2 Auxiliary functions for the runtime environment

To define welltypedness and the bigstep semantics in the runtime environment, and to make the
inference rules simpler to read, the following functions are required.

• owner :: Heap× Addr → OwnerAddr
The owner function is used to extract the owner from the heap. It is done by fetching the
object from the heap and reading the owner from the runtime type definition of the object.

• sowner :: Heap× Addr × OwnerAddr → Bool
The set of owners function sowner represents a relation from addresses to owners. It can be
described as a set of the direct owners extended with transitivity. It is required to show the
owner-as-modifier property.

• dynType :: Heap× Addr × Types → Typer

Using dynType a static type can be transformed into a dynamic type. It replaces peer and
thisu with the owner of the current viewpoint, rep with the address of the current viewpoint,
and anyu or unknown with anya. The current viewpoint is the address given to the function
as second parameter (See Figure 2.11).

• aClass :: Heap× Addr → Class
In some definitions the class of an object is required. To reduce the writing work, the aClass
functions gets the class to a corresponding address from the heap.

• ` <:r :: ClassTable× Typer × Typer → Bool
Besides the static subtyping rules there also exists a corresponding counterpart for the runtime

29 2.2 Runtime model

types. To be runtime subtypes, the class part has to be in a subclassing relation. For the
owner-part, on both sides there is the same owner, or in the case of an any type, on the right
handed side the owner is anya.

• , , ` : :: ClassTable× Heap× Addr × Addr × Types → Bool
For the type preservation lemma it is useful to have a definition of as what type an address
(the current viewpoint) sees another address. If you read the definition ”CT, h, ιme ` ι : T” you
could say ”In the heap h, ιme sees ι as static type T”.

• , ` : :: ClassTable× Heap× Envr × Envs → Bool
One of the last things to be done is to describe when a runtime environment fits to a static
environment. It is the case when all variables in the static environment have a counterpart in
the runtime environment: in the case it is not a null-pointer, the type of the object at the result
address should match to the static type. The address for the current-viewpoint is given with
the runtime environment, being the address this is mapping to.

• declareF ields :: Class → V arr

At last there is a function to simplify the step of the object creation. It takes the classname
and as result will return the runtime field definition, where all fields are mapping to the nulla .

dynType(h, ιme, Objectt rep C) = Objectr ιme C
dynType-object-rep

u ∈ {peer, thisu}
dynType(h, ιme, Objectt u C) = Objectr owner(h, ιme) C

dynType-object-peer

u ∈ {unknown, anyu}
dynType(h, ιme, Objectt u C) = Objectr anya C

dynType-object-any

Figure 2.11: The dynType function

2.2.3 Well typedness of the runtime environment

The next step is to define what a well formed runtime environment is (compare with figure 2.12). It
is required to guarantee some preconditions that are needed in the further proofs. The elements of
the runtime environment are:

• The addresses

• The objects

• The heap

• The mapping for local variables

A wellformed address or object [wt-a] consists of valid fields and a valid owner.
A field of an object has a static type T in the class the object has. A field is valid if and only if the
address the field maps to is well formed, and if that address is a subtype of the static type T .

In a well formed heap [wt-h] all addresses are well formed, and the address nulla is not in the

2 Type system 30

domain of the heap.

A well formed environment Γr [wt-env] needs a well formed heap and all elements in Γr have to
be well formed, too.

h(ι) = T r V r owner(h, ι) = ιo ιo ∈ dom(h) ∨ ιo ∈ {nulla, anyownera}
aClass(h, ι) = C

∀(f ιf ∈ V r.CT, h, ι ` ιf : fType(CT,C, f)
CT, h `a ι

wt-a

∀ι ∈ dom(h).CT, h `a ι nulla 6∈ dom(h)
CT `h h

wt-h

CTh ` h ∀(v) ∈ dom(Γr).CT, h `a Γr(v) ∨ Γr(v) = nulla
CT, h `w Γr

wt-env

Figure 2.12: Wellformed model

With those conditions, a valid runtime-environment can be described. They are enough to prove
the adaptation from a viewpoint and the adaptation to a viewpoint, which will be shown later on.

2.2.4 Bigstep semantics

Once a valid state for a program is specified, the execution of a program has to be described. There
are two possibilities. One of them is to define a small-step semantics, where only the state transitions
from one state to the next state are written down. It is called small-step because everyone of those
steps evaluates only a very small part of a complete expression. After a small-step the result will be
a new environment and (if not completed) a new expression that has to be evaluated.
Besides that, there exists the bigstep semantics, where the whole expression is executed as one single
big step. Thus the result is only a new heap and a resulting address.
As proving properties is normally easier with a bigstep semantics and there is no need to show
progress, a bigstep semantics can be used to define how the program execution behaves. For this we
have to define one bigstep for every possible expression type(compare 2.13).
With the evaluation of a bigstep, a derivation tree will be built. That derivation tree can be used to
run a proof on it.
In the case of the specified expressions there exist the following big-steps:

• The null expression where nothing is done, only the null-pointer will be returned

• An environment variable, where the address is read out of the current environment. This is
done by looking up the name in the environment.

• A field read e.f , where the expression is evaluated and afterwards there is done a lookup in the
field-table of the object for f .

• A field update e1.f = e2, where the expressions are evaluated, afterwards the field-table of the
left-handed object is updated.

31 2.3 Topological proofs

• A method call e.m(es), where the expressions are evaluated, afterwards a new environment is
created, the body expression of the method m is fetched and then the bigstep is done over the
expression of the method

• An object creation NewT , to create a new object. Using the type T , a new object is created
in the heap.

• A type cast (T)e, where the expression is evaluated and, after that, the semantics tests if the
resulting object has a subtype of the dynamization of T .

CT ` h, Γr,null h, nulla
os-null

CT ` h, Γr, v h, Γr(v)
os-var

ι 6∈ dom(h)
u 6= any =⇒ h′ = h[ι 7→ (dynType(h, Γr(this), (u C)) declareF ields(C))]

u = any =⇒ h′ = h[ι 7→ (anyownera C) declareF ields(C))]
CT ` h, Γr, new u C h′, addr

os-new

CT ` h, Γr, e h′, ι CT, h,Γr(this) ` ι : T

CT ` h, Γr, (T)e h′, ι
os-cast

CT ` h, Γr, e h′, ιe h′(ιe) = (T r V r) V r(f) = ι

CT ` h, Γr, e.f h′, ι
os-read

CT ` h, Γr, e0 h′, ι0 CT ` h′,Γr, e1 h′′, ι1
h′′(ι0) = T r V r

h′′′ = h′′[ι0 7→ (T r V r[f 7→ ι1])]
CT ` h, Γr, e0.f = e1 h′′′, ι1

os-update

CT ` h, Γr, e0 h′, ι0 CT ` h′,Γr, es h′′, ιs
mBody(CT, aClass(h, ι0),m) = (vs Ts, e1)

Γr
new = [vs[7→]ιs][this7→ ιp]

CT ` h′′,Γr
new, e1 h′′′, ι1

CT ` h, Γr, e0.m(es) h′′′, ι1
os-invoke

Figure 2.13: Bigstep semantics

As already told in the beginning, there is no need for the proofs to initialize a new runtime
environment consisting of a classname, classtable and an expression. So it will not be formalized.
To show it in a nutshell: to create an initial state out of the classname and an expression, a new
object has to be created in the heap using that classname which will be owned by the root owner.
Besides that the environment exists only of the mapping from thisu to the newly created object.
With those information in mind a big-step can be done.

2.3 Topological proofs

In the following section a few theorems will be introduced, and a description how to prove them.
First some lemmas are introduced there that will be used in the later proof. Afterwards the type-
preservation will be specified.

2 Type system 32

2.3.1 Correct viewpoint adaptation

Ownership information is expressed with respect to a viewpoint. When the viewpoint changes, the
ownership information has to be adapted.
On the one side the adaptation from some viewpoint to this is needed. It is done directly by theBt

function for two objects at the addresses ι1 and ι2. There is also the environment Γr where this maps
to the current viewpoint denoted as ιthis. For the definitions it will be assumed that the addresses
are not nulla. The lemma can be seen in figure 2.14.

On the other side the adaptation to a viewpoint is sometimes required, for example in the

CT, h, ιthis ` ι1 : (u C)
CT, h, ι1 ` ι2 : T2

}
=⇒

{
CT, h, ιthis ` ι2 : uBt T2

Figure 2.14: Adaptation from a viewpoint

case of field updates. For those cases there has to be guaranteed that the universe modifier of the
receiver object does not have an unknown universe modifier in the current viewpoint(Look at figure
2.15).

CT, h, ιthis ` ι1 : (u C)
CT, h, ιthis ` ι2 : uBt (u′ D)

u′ 6= unknown

 =⇒
{

CT, h, ι1 ` ι2 : (u′ D)

Figure 2.15: Adaptation to a viewpoint

To proove those lemmas, there has to be done a case distinction by the ownership modifiers of t1
and t2. This will result in 25 cases, some of them take some writing work to prove, but it is not really
too complicated.

2.3.2 Type preservation

Because the semantics is only partially defined and there exist no exceptions, progress can not be
shown. That should not be a problem. The Universe Type System should not modify the property of
a language to guarantee progress for a welltyped program. There already exist many formalizations
of Java that show using properly defined exceptions it is possible to guarantee progress with that
semantics. Thus it could be assumed that the progress property could be easily integrated into the
type system.
Only a weaker definition of type safety will be shown, where in a well typed expression, which is
evaluated with a big step to a state and a result address, the new state is well typed too, and the
address is in the new well formed heap.
This prohibits errors like assigning a character to an integer variable.

It will be expressed by the theorem 2.16:

Using a welltyped classtable and runtime environment fitting to a static environment, and hav-
ing and expressions that results in that static environment in a specific type T than if a bigstep is

33 2.4 Encapsulation system

done with that expression the resulting environment is welltyped and the result address will be a
subtype of the static type T . The type-preservation can be proven by rule induction over the shape

` CT
CT ` h, Γr, e h′, ι

CT, h `w Γr

CT ; Γs ` e : T
CT, h ` Γr : Γs

 =⇒
{

CT, h′ `w Γr

CT, h′,Γr(this) ` ι : T

Figure 2.16: Type safety

of the derivation tree of the bigstep semantics. For the cases fieldread and method invocation the
adaptation from a viewpoint is required, the case fieldupdate and method invocation need the lemma
for the adaptation to a viewpoint.
The complete prove is done using Isabelle, and can be either looked up in the Isabelle sources or in
parts later in the work.

2.4 Encapsulation system

As the type system supports type preservation, the encapsulation of the type system should be now
enforced. To achieve that goal the expression and the classtable have to have some additional limi-
tations.
One of them is the purity of methods.
A method is pure, if it does not modify existing objects in the heap and does only call pure methods.
For inheritance it has to be guaranteed that if a superclass is pure, all the subclasses have to be
pure. As purity checks need to analyze the expression a new writing will be introduced: ”pattern”∈
e means that there is a subexpression of the form of the pattern in the expression e.
To give an example: Exp.Name=Exp ∈ e matches all field updates so the expression er.c(ez.y=ey)
would match because the pattern ”Exp.Name=Exp” matches with the sub-expression ”ez.y=ey”.
To complete the encapsulation of a class, all methods have to be encapsulated being either a pure
method with a pure expression or a normal method with an encapsulated expression. For an encap-
sulated classtable that means that all classes have to follow that encapsulation limitations (see figure
2.17).

Encapsulation

With the purity and encapsulation information the owner-as-modifier property of the type system
can be described (compare with figure 2.18):

The owner-as-modifier property expresses that in an encapsulated expression, where obj is an
object at address ι and the fields of obj in h′ differ from the fields of obj in h, the object obj is
modified. Because of encapsulation this means that the owner of the current viewpoint has to be a
direct or indirect owner of the object obj. It expresses the same as the theorem 5.4 in the GUT paper
(owner-as modifier) property where for the preconditions we can show that for all objects in the heap
either the object is unmodified or the owner of Γr(this) is a transitive owner of the modified object.

2 Type system 34

mType(C,m) = (pure, ts, t) ∀(u C) ∈ ts.u = any

pure(C,m)
pure Function

e1.x = e2 6∈ e
∀e1.m(es) ∈ e.(CT ; Γs ` e1 : u C ∧ pure(C,m))

CT,Γs `p e
pure Expression

∀e1.f = e2 ∈ e.CT ; Γs ` e1 : u C =⇒ u = peer ∨ u = rep
∀e1.m(es) ∈ e. CT ; Γs ` e1 : u C =⇒ u = peer ∨ u = rep ∨ pure(C,m)

CT,Γs `e e
encapsulated Expression

Γs = vDef ; this 7−→ (thisu C)
w = Pure =⇒ CT,Γs `p e
w 6= Pure =⇒ CT,Γs `e e

w 6= Pure ∨ ∀(v(uC)) ∈ vDef. u = any

CT,C `em w T m (vDef) {return e}
encapsulated m-typing

∀ mDefi ∈ mDef.CT, C `em mDefi

CT `e Class C extends D (vDef, mDef)
encapsulated-c-typing

∀ cDef ∈ dom(CT).CT `e cDef

`e CT
classes-typing

Figure 2.17: Encapsulation rules

` CT
`e CT

CT,Γs `e e
CT ` h, Γr, e h′, addr

CT, hw ` Γr

CT ; Γs ` e : T
CT, h ` Γr : Γs

=⇒

∀ι ∈ dom(h).

fields(h, ι) = fields(h′, ι)∨
sowner(h, ι,Γr(this))

Figure 2.18: Owner-as-Modifier property

3 Formalization of arrays

After the complete formalization of the basic type system it is extended by arrays.
This will be done in the following chapter. At first in section 3.1 an array definition is introduced.
In section 3.2 it will be described how to extend the static checking. The same will be done for the
runtime model in section 3.3.

3.1 New definition of arrays

Arrays are a core element in software programs and a universe implementation of arrays is already
integrated into the Java Modeling Language (JML) [4].
To formalize them, there has to be specified how the universe modifiers in the type definitions of
arrays are interpreted.
One way as done in the JML tools is to use two universe modifiers. This former specification of
universe types for arrays will be called old system. For the formalization another interpretation of
the universe types for arrays will be used, which will be called the new system. To understand how
they work i want to give an example:

class Example {
rep peer array[] f ;

}

In the old style system this means the following: the first modifier, the rep tells you that f is owned
by the Example object, the object that is created during runtime out of the Example class. Besides
this, all elements in the array f have a peer owner in relation to the array. Because the array is rep
all elements would also be owned by the Example object.

In concurrence to the old system both ownership modifiers describe in the new system the relation
to the class they are defined in (see figure 3.1 for a better understanding). For the array itself this
does not change the meaning, because it is still owned by the Example object.
But in contrast to the old system, the elements of the array are not owned by the Example object,
but by the owner of the Example object.
To summarize this:
In the old system the modifier for the elements describe the relation to the array, in the new system
to the current viewpoint.
Figure 3.2 will show the relation of the old and the new system. The only case, where the new system
results in loss of information is the case with an anyu array, where all elements of the array have
the same owner as the array. This loss should not be very problematic.

For the formalization it is also allowed to use different universe modifiers in the type definition of the
array elements. An example for that would be the type ”rep array < peer array < rep Class C >>”.
To transform the simple schema into the more complex schema a transformation rule can be used.
It is explained in figure 3.3.

35

3 Formalization of arrays 36

Figure 3.1: Old and new definition of arrays

There are three new expression types required to be formalized:

• Creation of a new array

• Read from an array

• Update of an array

.

3.2 Static checking

3.2.1 Syntax

As arrays should be supported by the language, the syntax has to be extended. The changes have
to be done in the definition of a type, which has to be an inductive definition, an index number for
the arrays, and the extension of the expressions with the three cases (see extended syntax in 3.7).
Besides extending the syntax there is also a new function required which tests, if any of the ownership
modifiers in a type definition T has the value unknown.

37 3.2 Static checking

Old system New system
any any [] f any any [] f

not defined any peer [] f

not defined any rep [] f

peer any [] f peer any [] f

peer peer [] f peer peer [] f

not defined peer rep [] f

rep any [] f rep any [] f

not defined rep peer [] f

rep peer [] f rep rep [] f

any peer [] f any any [] f

Figure 3.2: Mapping old to new array system

u u′ [] Class C =⇒ u array < u′ Class C >
u u′ [] [] Class C =⇒ u array < u′ array < u′ Class C >>
u u′ [] [] [] ClassC =⇒ u array < u′ array < u′ array < u′ Class C >>>
...

Figure 3.3: Transformation rules for array definition

notUnknown :: Types → bool
If it does not have any unknown in its definition, true will be returned, else false will be returned.
It is a recursive function and applies to all Typess. In the prior formalization the type was not defined
inductive and thus the universe modifier can be looked up directly with an equal or unequal.

3.2.2 Viewpoint adaptation

To handle the new definition of Typess, the function for the adaptation of a viewpoint has to be
changed (see rule 3.5).

As seen in the paper about generic universe types, there are some cases where some ownership
modifier in the bounding definitions of the type variables are not allowed during viewpoint adapta-
tion.
There are some equivalent limitations in the specification of arrays. For example the adaptation
peer Bt Arrayt peer <Objectt rep C> should result in a type that can not be expressed in the
current viewpoint, and because of that, it should be forbidden in a method call by the use of the
notUnknown function.
Using the new adaptation function the type would result in
Arrayt (peerB peer) < peerBt (Objectt rep C> or at last
Arrayt (peer) <Objectt unknown C>.
Using notUnknown(Arrayt (peer) <Objectt unknown C>) would result in false.

3.2.3 Subtyping

The subtyping rules for arrays in Java do not guarantee type preservation by the use of static checks.
To make life more easy for the programmer, the subtyping rules for arrays are not too strict and
are handled in a covariant subtyping of the element types. Because of that subtyping behavior, a
runtime check for subtyping has to be done during runtime. That means for normal arrays that the

3 Formalization of arrays 38

n ∈ Index ::= Natural numbers with zero
T ∈ Types ::= OM Class |

Arrayt OM < Types >
vDef ∈ V arDef ::= Types V arName
e ∈ Expr ::= null |

V arName |
Expr.V arName |
Expr.V arName = Expr |
Expr.MethodName(Expr) |
new OM Class |
(Types)Expr|
new Arrayt OM Types Index|
Expr[Index]|
Expr[Index] = Expr

Figure 3.4: Syntax extended with arrays

Bt :: OM × Types → Types

uBt u′ C = (uBu′) C
uBt Arrayt u′ T = Arrayt (uBu′) (uBt T)

Figure 3.5: Viewpoint adaptation with arrays

class-type of arrays has a covariant subtyping.

\\ Example that can not be handled by a static typecheck:
class D extends C {

...
}
class Example{

void mytest(C[] myarray){
myarray[0]=new D; //OK
myarray[1]=new C; // runtime error

}
void runexample(){

D[] newarray= new D[5];
mytest(newarray);

}
}

Transferring that information to the universe types result in two possibilities. Either it restricts the
programmer and limits the subtyping rules in a very strict way to guarantee that the semantics of
array updates does not have to be extended in the Java Virtual Machine (JVM), or (on the other
side) make the subtyping rules for the universe modifier as simple as possible, allowing a covariant
subtyping for the whole type, even for the universe modifiers.
To find out how strict the typing rules would have to be limited, let’s look at the different cases.
Those cases either require a covariant or a contravariant subtyping of the type part of arrays:

• An array should be assigned to a field (o.f = ArrayX);

39 3.3 Runtime model

it should be possible to assign arrays to more ”general” types.
=⇒ Covariant subtyping behavior for array elements

• A method call o.m(ArrayX);
the same as before should apply to that
=⇒ Covariant subtyping behavior for array elements.

• An array update should not destroy the original type of the array;
in java this is guaranteed for the subclassing during runtime.
=⇒ Would require contra-variant subtyping behavior for array elements.

There are the concurrent goals for field updates and method calls on the one side and array updates
on the other side.
Because that would limit the developer and it is not intuitive to write a program with those limita-
tions in mind, covariant subtyping should be used. Problems with the array updates are handled in
the bigstep semantics.
This knowledge in mind results in additional subtyping rules, which can be seen in figure 3.6.

CT ` C[: D u ≤ u′

CT ` Objectt u C <: Objectt u′ D
st-1-subtype-class

ua ≤ u′
a CT ` T <: T ′

CT ` Arrayt ua T <: Arrayt u′
a T

st-1-subtype-array

Figure 3.6: Array subtyping rules

3.2.4 Type system

With the specification of arrays and how the subtyping is done, the new typing rules can be declared
(See figure 3.7).

In most parts they are the same as the previously defined typing rules, except for the following parts:
the comparison that a universe modifier is not unknown was replaced by the function notUnknown
to handle arrays.
The type constructors have been added and additional expression rules where introduced: for the
case of a new array, the result will be the type of that new array. For the case of an array read, the
resulting type will be the type of the elements of the array. At last for the case of an array update,
the type of the elements of the array has to be a supertype to the type of the element that is assigned
to that array.

3.3 Runtime model

3.3.1 Heap definition and well typedness of the environment

Because arrays have a different structure than normal objects and they have to store more typing
information, the heap definition has to be extended. The new definition can be seen in figure 3.8.

There have to be type constructors for the two types object and array, and it has to be differenti-
ated between arrays and objects in the heap store.

3 Formalization of arrays 40

To be able to handle the new runtime subtypes, the definition of the dynType (Figure 3.9) func-
tion and the runtime subtyping rules have to be extended.
The function
getRType :: Heap× Addr → Typer

returns the runtime type of an object, for arrays as well as for normal objects.

Next the well typedness of addresses could be defined. With the extension for arrays it has to be
distinguished between normal objects and arrays for the well typing of an address. While well typing
for addresses that map to a normal object stay the same in most parts, if an adress maps to an array
it has to guarantee, that it has a valid owner (compare the case for normal objects) and all elements
of the arrays have to have a more specific type then the type-definition for the elements in the array.
See figure 3.10 for more details.

The definition for the wellformedness of the heap and the environment can stay the same.

3.3.2 Bigstep semantics

For the part of the bigstep semantics there have changed some things (See Figure 3.11). First of all,
the rule for object creation [os-new-class] has to be limited to class-types only. In the rules for the
field read and update [os-read,os-update] and the method call [os-invoke] the receiver object has to
be a normal object. Besides that, the new rules to handle arrays have to be introduced:

• To read an element from the array [os-array-read] the bigstep semantics does a lookup in the
array-field at the value n. It will result in an address.

• In the case of an array-update [os-array-update] it has to be guaranteed that the array-field is
defined at position n, and that the runtime type of the address is a subtype of the runtime type
of the array elements. If those conditions hold, the array-field could be updated at the position
of n.

• The last possible expression is the creation of a new array [os-new-array]. To create a new
array object the type has to be dynamized. All numbers from zero up to n have to map to the
null-pointer in the array-field. All other numbers are not allowed to be in the domain of the
array-field.

3.4 Proofs

The resulting lemmas will stay the same as in the type system without arrays. The only difference
is the proof itself, because the new definition and semantics have to be used.

41 3.4 Proofs

CT ; Γs ` e : T ′ CT ` T ′ <: T

CT ; Γs ` e : T
t-subs

CT ; Γs ` null: T
t-null

CT ; Γs ` v : Γs(v)
t-var

CT ; Γs ` e : Objectt u C

CT ; Γs ` e.f : uBt fType(CT,C, f)
t-read

CT ; Γs ` e0 : Objectt u0 C0 u0 Bt fType(CT,C0, f) = T
notUnknown(T) CT ; Γs ` e1 : T

CT ; Γs ` e0.f = e1 : T
t-update

CT ; Γs ` e0 : Objectt u0 C0 mType(CT,C0,m) = (w, Ts, T)
uBt Ts = Tsu u0 Bt T = Tu

∀T ∈ Tsu.notUnknown(T) CT ; Γs ` es : Tsu

CT ; Γs ` e0.m(es) : Tu
t-invk

u ∈ {peer, rep, anyu}
CT ; Γs ` new u C : Objectt u C

t-new-class

CT ; Γs ` e : T ′

CT ; Γs ` (T)e : T
t-cast

CT ; Γs ` e : Arrayt u0 T

CT ; Γs ` e[n] : T
t-read-array

CT ; Γs ` e0 : Arrayt u0 T
CT ; Γs ` e1 : T

CT ; Γs ` e0[n] = e1 : T
t-update-array

u0 ∈ {peer, rep, anyu}
CT ; Γs ` new Arrayt u0 T : Arrayt u0 T n

t-new-array

Figure 3.7: Syntax rules with arrays

ι ∈ Addr ::= Integer|nulla
ιo ∈ OwnerAddr ::= Addr|anya|anyownera

T r ∈ Typer ::= OwnerAddr Class|
Arrayr OwnerAddr Typer

V r ∈ V arr ::= V arName → Addr
Ir ∈ Indexr ::= Index → Addr
Obj ∈ Objectr ::= Typer V arr|

Arrayo Typer Indexr

h ∈ Heap ::= Addr → Object
Γr ∈ Envr ::= V arr

Figure 3.8: Heap with arrays

3 Formalization of arrays 42

dynType(h, ιme, T) = Tr

dynType(h, ιme, Arrayt rep Tr) = Arrayr ιme Tr
dynType-array-rep

dynType(h, ιme, T) = Tr u ∈ {peer, this}
dynType(h, ιme, Arrayt u T) = Arrayr owner(h, ιme) Tr

dynType-array-peer

dynType(h, ιme, T) = Tr u=(unknown| anyu)
dynType(h, ιme, Arrayt u T) = Arrayr anya Tr

dynType-array-any

Figure 3.9: The dynType function for arrays

h(ι) = T r V r owner(ι) = ιo ιo ∈ dom(h) ∨ ιo ∈ {nulla, anyownera}
isObject(Obj) aClass(h, ι) = C
∀(f ∈ dom(V r).CT, h, ι ` V r(f) : fType(CT,C, f)

CT, h `a ι
wt-a

h(ι) = Arrayo (Arrayr ιo T) Ir owner(ι) = ιo ιo ∈ dom(h) ∨ ιo ∈ {nulla, anyownera}
∀(n ∈ dom(Ir).CT, h, ι ` Ir(n) : T

CT, h `a ι
wt-a

Figure 3.10: Welltyped address

43 3.4 Proofs

CT ` h, Γr,null h, nulla
os-null

Γr(v) = ι

CT ` h, Γr, v h, ι
os-var

ι 6∈ dom(h)
u 6= any =⇒ h′ = h[ι 7→ Objecto(dynType(h, Γr(this), (ObjecttuC))declareF ields(C))]

u = any =⇒ h′ = h[ι 7→ (anyownera C)declareF ields(C))]
CT ` h, Γr, new u C h′, addr

os-new-class

CT ` h, Γr, e h′, ι CT, h,Γr(this) ` ι : T

CT ` h, Γr, (T)e h′, ι
os-cast

CT ` h, Γr, e h′, ιe h′(ιe) = Objecto(T r V r) V r(f) = ι

CT ` h, Γr, e.f h′, ι
os-read

CT ` h, Γr, e0 h′, ι0 CT ` h′,Γr, e1 h′′, ι1
h′′(ι0) = Objecto(T r V r)

h′′′ = h′′[ι0 7→ Objecto(T r V r[f 7→ ι1])]
CT ` h, Γr, e0.f = e1 h′′′, ι1

os-update

CT ` h, Γr, e0 h′, ι0 CT ` h′,Γr, es h′′, ιs
h′′(ι0 = Objecto (ιo C) V r

mBody(CT, aClass(h, ι0),m) = (vs Ts, e1)
Γr

new = [vs[7→]ιs][this7→ ιp]
CT ` h′′,Γr

new, e1 h′′′, ι1
CT ` h, Γr, e0.m(es) h′′′, ι1

os-invoke

CT ` h, Γr, e h′, ιe
Arrayo T rI = h′(ιe) rI(n) = ι

CT ` h, Γr, e[n] h′, ι
os-read-array

CT ` h, Γr, e0 h′, ι0 CT ` h′,Γr, e1 h′′, ι1
h′′(ι0) = Arrayo (ArrayrιoTr)rI n ∈ dom(rI)

CT ` getRType(h′′, ι1) <: Tr

h′′′ = h′′[ι0 7→ (ArrayoTrrI[n 7→ ι1])]
CT ` h, Γr, e0[n] = e1 h′′′, ι1

os-update-array

ι 6∈ dom(h)
∀i < n.rI(i) = NullP ∀i ≥ n.i /∈ dom(rI)

u 6= any =⇒ h′ = h[ι 7→ Arrayo(dynType(Arrayt u T) rI)]
u = any =⇒ h′ = h[ι 7→ Arrayo (Arrayr anyownera dynType(T) rI)]

CT ` h, Γr, new Arrayt u T n h′, ι
os-new-array

Figure 3.11: Bigstep semantics with arrays

3 Formalization of arrays 44

4 Isabelle Formalization

The following chapter contains the Isabelle/HOL formalization. Section 5.2 is generated using the
isabelle tools.

4.1 Overview over theory files

The formalization of the typesystem is split up into different theory files:

syntaxdef.thy The abstract syntax tree is specified, derived from the Featherweight Java formaliza-
tion.

vpadaptation.thy The viewpoint adaptation is defined.

typingrelation.thy The typingrelation consists of subclassing, relation of the universe modifier and
subtyping.

statichelper.thy Some auxiliary functions for the static part are declared.

exptyping Typing rules for expressions are defined as well as welltypedness of the classtable.

static.thy Different lemmas about the static parts of the typesystem are shown.

heap.thy The heap is modeled. The theory is adapted from the Jinja heap.

runtimehelper.thy Auxiliary functions for the runtime part have to be defined.

weltyped.thy The wellformedness of the runtime environment is defined in a theory.

bigstep.thy An inductive definition of the bigstep semantics has to be written down.

topologicalproofs.thy The proofs about the adapatation of the viewpoint have to be done.

typesafety.thy The type system will be shown type safe.

enctyping.thy For the encapsulation type system some encapsulation rules are specified.

ownerasmodifier.thy The owner-as-modifier property is shown.

The symbols and variable names in the formalization of Isabelle will be in most cases the same as
in the description, only where another notation is required for the proofs they have been changed.

4.2 Formalization

theory syntaxdef imports Main

begin

45

4 Isabelle Formalization 46

4.2.1 Syntax definition

In the very first part of the formalization, the abstract syntax has to be defined using Isabelle types
and definitions.
As there already exists a formalization of Featherweight Java, it follows that definition in many cases.

To represent the names of variables, fields and methods, different types are used. It is simplified by
using natural numbers to represent the names. If one wants to use names instead of natural numbers,
he can introduce a lookup-table mapping names to natural numbers and vice versa.

The

types varName = nat

represent the names for variables and fields.

For methods

types methodName = nat

will be used.

At last for classes

types className = nat

will be used.

The next element is the universe modifier, being a datatype with the different modifiers as possi-
bilities:

datatype OM =
Peer
|Rep
|Any
|This
|Unknown

The

datatype Purity = Pure | NonPure

is required to define functions that are not allowed to modify the heap. They can be called at
every point in the program, and should not break the owner-as-modifier-property. It will be proven
later on.

As normal objects as well as arrays are supported by the typesystem, an inductive type is declared,
being either an object or an array:

datatype uType = sObject OM className
| sArray OM uType

To make the rules and lemmas more readable, there are additional access functions specified.

This will not only be done for the uType but, also for other Isabelle types.

consts utOM :: uType ⇒ OM
primrec

utOM (sObject u C) = u
utOM (sArray u T) = u

consts utClass :: uType ⇒ className

47 4.2 Formalization

primrec
utClass (sObject u C) = C

lemma [iff]:utOM (sObject u C)=u by (simp)
lemma [iff]:utClass (sObject u C)=C by (simp)

The classes in the system have fields. To identify those fields, a name together with the type of
the field has to be stored in the classtable. This is done using a list of

types varDef = varName × uType

pairs in the class definition.

At last there exist functions to access the parts of the pairs, because using fst and snd could be
sometimes quite confusing:

constdefs vdName :: varDef ⇒ varName
vdName T ≡ fst T

constdefs vdType :: varDef ⇒ uType
vdType T ≡ snd T

When possible a simplification can be done for those elements using the following lemmas:

lemma [iff]:vdName (a, b)=a by (simp add :vdName-def)
lemma [iff]:vdType (a, b)=b by (simp add :vdType-def)

As the expressions allow to read variables from an environment, there has to be an appropriate
static definition

types staticEnv = varName ⇀ uType

for the environment.

Constants

In the static environment there exist two constants:

consts
Object :: className
this :: varName

Object is the top level class in the class hierarchy. It has no methods and no fields. Every other
class and even the arrays are derived from that class. Every type in the system is a subclass of
Object.
As there exists a current viewpoint in the typesystem representing the object the program execution
currently is in, the this variable should point to that object. In the static environment it represents
the type of the current viewpoint.

Expressions

As already stated in the beginning, the syntax uses a very small subset of Java, with only a few more
expressions than Featherweight Java. The expression defined here, will be used later on to define the
semantics on top of it. Every methods expression will be a composition of all those single elements.

datatype exp =
Null

| Var varName
| FieldProj exp varName
| FieldUpdate exp varName exp
| MethodInvk exp methodName exp list

4 Isabelle Formalization 48

| New OM className
| Cast uType exp
| NewArray OM uType nat
| ArrayProj exp nat
| ArrayUpdate exp nat exp

One can see that most of the elements have a subexpression as part of their expression. Only a
few of them are terminating expressions.

Methods,Classes and the ClassTable

To define a method there is a whole bunch of information required. To arrange those elements a
record definition is used:
record methodDef =
mPure :: Purity
mReturn :: uType
mName :: methodName
mParams :: varDef list
mBody :: exp

Purity is required only for the encapsulation typesystem. As there should not be kept two separate
method definition tables, one of them only handling the purity of methods, it is already specified in
the beginning. All other parts should not need any further description.

Because classes have fields and methods, they have to define lists of those elements:
record classDef =
cName :: className
cSuper :: className
cFields :: varDef list
cMethods :: methodDef list

An alternative would be using a partially declared function mapping names to the corresponding
records, but it seemed to be more simple to handle those lists.

Last but not least, the classtable is of importance. It is a mapping of classnames to their speci-
fications.
types classTable = className ⇀ classDef

If compared with a Java program, that abstract definition stands for the parsed, but not verified
source code. Parsed because the definition fulfills some formal limitations, for example there is no
expression called ”Throw” defined.
It is not verified, because the expressions do not have to fulfill some required limitations. The
rules would still allow to specify a class Example which extends Example, what should definitely be
forbidden.
end

theory vpadaption imports syntaxdef

begin

4.2.2 Viewpoint adaptation

The viewpoint adaptation is used to adapt the viewpoint of a type to another viewpoint. It is a
functional representation for the prior defined lookup table.

49 4.2 Formalization

constdefs adaptoo :: OM ⇒ OM ⇒ OM (- B - [51 ,51] 50)
x B y ≡ case x of This ⇒ y

| Peer ⇒ (case y of Peer ⇒ Peer | Any ⇒ Any |- ⇒ Unknown)
| Rep ⇒ (case y of Peer ⇒ Rep | Any ⇒ Any |- ⇒ Unknown)
| - ⇒ (case y of Any ⇒ Any |- ⇒ Unknown)

As in most of the cases there will be an adaptation of an universe modifier with a type, there is a
separate infix function for this job:

consts adaptot :: OM ⇒ uType ⇒ uType (- Bt - [51 ,51] 50)
primrec

(x ::OM) Bt sObject u C = sObject (x B u) C
(x ::OM) Bt sArray u T = sArray (x B u) (x Bt T)

There are some special cases, where the adaptation step can be done, although not all of the
parameter information exist:
One of those cases is the Any modifier on the right hand of the adaptation function.

lemma adaptoo-x-ro[iff]: x B Any = Any
lemma adaptot-x-ro[iff]: x Bt sObject Any y = sObject Any y

To help the simplifier work with the adaptation function, and still do not have to unfold the
definition all the time, there exist some more simplification lemmas:

lemma [iff]:This B y = y by (simp add :adaptoo-def)
lemma [iff]:Peer B Peer = Peer by (simp add :adaptoo-def)
lemma [iff]: x B Unknown = Unknownlemma [iff]:Peer B This = Unknown by (simp add :adaptoo-def)
lemma [iff]:Peer B Rep = Unknown by (simp add :adaptoo-def)
lemma [iff]:Rep B Peer = Rep by (simp add :adaptoo-def)
lemma [iff]:Rep B This = Unknown by (simp add :adaptoo-def)
lemma [iff]:Rep B Rep = Unknown by (simp add :adaptoo-def)

At last the notUnknown function is specified, testing an Universe Type for any evidence of an
Unknown modifier. It is required for the typing rules.

consts notUnknown:: uType ⇒ bool
primrec

notUnknown (sObject u C) = (case u of Unknown ⇒ False | - ⇒ True)
notUnknown (sArray u T) = (u 6=Unknown ∧ notUnknown(T))

end

theory typingrelation imports syntaxdef

begin

4.2.3 Typing relation

The internal definition of reflexivity and transitivity in Isabelle is used to describe the reflexive and
transitive closure of subclassing and the order of the universe modifier. Because the typing depends
on the classtable CT, the set is defined with the classtable as parameter.

Subclassing

consts subclassing :: classTable ⇒ (className ∗ className) set
subclassings :: classTable ⇒ (className list ∗ className list) set

4 Isabelle Formalization 50

There is a subclassing relation defined for the direct subclassing of two classes. Besides this, there
is a subclassing relation extended with the reflexive and transitive closure.

syntax
-subclassing :: [classTable, className, className] ⇒ bool (- ` - [:s - [80 ,80 ,80] 80)
-subclassingclos :: [classTable, className, className] ⇒ bool (- ` - [: - [80 ,80 ,80] 80)
-subclassings :: [classTable, className list , className list] ⇒ bool (- `+ - [: - [80 ,80 ,80] 80)
-neg-subclassing :: [classTable, className, className] ⇒ bool (- ` - ¬[: - [80 ,80 ,80] 80)

translations
CT ` C [:s D
 (C , D) ∈ (subclassing CT)
CT ` C [: D
 (C , D) ∈ (subclassing CT)∗

CT `+ Cs [: Ds
 (Cs, Ds) ∈ (subclassings CT)
CT ` C ¬[: D
 (C , D) /∈ (subclassing CT)∗

Subclassing is defined inductive with only the one relation for the direct subclassing.

inductive subclassing CT
intros
sc-1-super : [[CT (C) = Some(CDef); cSuper CDef = D ; C 6= Object]] =⇒ CT ` C [:s D

In some cases lists of classes have to be handled. There exists a subclassing relation for lists.

inductive subclassings CT
intros
— The empty list fits to an emtpy list
ss-nil : CT `+ [] [: []
— For the case of a concatenation of an element and a list, a clear induction rule is defined:
ss-cons : [[CT ` C0 [: D0 ; CT `+ Cs [: Ds]] =⇒ CT `+ (C0#Cs) [: (D0#Ds)

Order of the ownership modifier

Early in the text there was an order of the ownership modifier defined:

consts omorder :: (OM ∗ OM) set
syntax
-omorder :: [OM , OM] ⇒ bool (- <:s - [80 ,80] 80)
-omorderclos :: [OM , OM] ⇒ bool (- <: - [80 ,80] 80)
-omordern :: [OM , OM] ⇒ bool (- ¬<: - [80 ,80] 80)

translations
u1 <:s u2
 (u1 , u2) ∈ omorder
u1 <: u2
 (u1 , u2) ∈ omorderˆ∗
u1 ¬<: u2
 (u1 , u2) /∈ omorderˆ∗

Only the direct dependencies have to be declared in the inductive definition, the reflexivity and
transitivity will be added using the internal definition of Isabelle again:

inductive omorder
intros
om-order-l : Rep <:s Any
om-order-2 : Peer <:s Any
om-order-3 : This <:s Peer
om-order-4 : Unknown <:s Any

4.2.4 Subtyping relation

The subtyping relation is a combination of subclassing and the order of the ownership modifier.
Besides that, there are special rules to handle arrays:

consts subtyping :: classTable ⇒ (uType ∗ uType) set
subtypings :: classTable ⇒ (uType list ∗ uType list) set

51 4.2 Formalization

syntax
-subtyping :: [classTable, uType, uType] ⇒ bool (- ` - <: - [80 ,80 ,80] 80)
-subtypingsingle :: [classTable, uType, uType] ⇒ bool (- ` - <:s - [80 ,80 ,80] 80)
-subtypings :: [classTable, uType list , uType list] ⇒ bool (- `+ - <: - [80 ,80 ,80] 80)
-neg-subtyping :: [classTable, uType, uType] ⇒ bool (- ` - ¬<: - [80 ,80 ,80] 80)

translations
CT ` S <:s T
 (S , T) ∈ (subtyping CT)
CT ` S <: T
 (S , T) ∈ (subtyping CT)∗

CT `+ Ss <: Ts
 (Ss, Ts) ∈ (subtypings CT)
CT ` S ¬<: T
 (S , T) /∈ (subtyping CT)

inductive subtyping CT
intros
— Subtyping of objects is defined straight forward by the classpart and the ownership part:
st-1-subtype : [[CT ` C [: D ; u <: ux]] =⇒ CT ` (sObject u C) <:s (sObject ux D)
— For the case of arrays there exists a special rule handling the subtyping of the type part for one step:
st-2-arraytype : [[CT ` S <:s T]] =⇒ CT ` (sArray u S) <:s (sArray u T)
— The same is done for the universe part:
st-3-arrayom : [[u <:s ux]] =⇒ CT ` (sArray u S) <:s (sArray ux S)
— At last per definition every array type is a subtype of the Object class:
st-4-arrayObj : CT ` sArray u S <:s sObject u Object
inductive subtypings CT
intros
ss-nil : CT `+ [] <: []
ss-cons : [[CT ` S0 <: T0 ; CT `+ Ss <: Ts]] =⇒ CT `+ (S0#Ss) <: (T0#Ts)

Proofs of subtyping of types

Object is the weakest subclass. This can be shown:

lemma [iff]: ¬ CT ` Object [:s C
by fastsimp

The same rule with other words says that if object is on the left side of the subclassing relation,
on the right side there has to be Object, too:

lemma [iff]: (CT ` Object [: C) = (C = Object)

Sometimes the subclassing definition should be unfolded. This is done by the following lemma:

lemma sc-open:CT ` C [:s D =⇒ ∃ CDef . CT (C) = Some(CDef) ∧ cSuper CDef = D ∧ C 6= Object

As there exist only a few universe modifiers and the right handed side of the subtyping relation
for the universe modifiers are known, the variable on the left handed side can be limited to one or
two possibilities:

lemma this-def [iff]:(x <: This) = (x=This)
lemma peer-def [iff]:(x <: Peer) = (x=This ∨ x=Peer)
lemma unknown-def [iff]:(x <: Unknown) = (x=Unknown)
lemma rep-def [iff]:(x <: Rep) = (x=Rep)
end

theory statichelper imports syntaxdef

begin

4 Isabelle Formalization 52

4.2.5 Static helper functions

The lookup function

The lookup function is used to handle lists of elements. There already exists a lemma in Isabelle
to do a lookup on pairs of elements. The newly defined lookup function is required to handle the
records defined in the syntax.
consts lookup :: ′a list ⇒ (′a ⇒ bool) ⇒ ′a option

primrec
lookup [] P = None
lookup (h#t) P = (if P h then Some h else lookup t P)

Variable definition accessors

The following section contains two helper functions for reading of the names and types of variable
definitions (e.g., in field and method parameter declarations). They split varDefs into the two parts
names and types.

Both constdefs are just nicer names for the map functions to be used in the semantics to create
more readable code:
constdefs varDefs-names :: varDef list ⇒ varName list
varDefs-names ≡ map vdName

constdefs varDefs-types :: varDef list ⇒ uType list
varDefs-types ≡ map vdType

Field relation

The field relation describes the relation and the type of fields.

The fields function is defined as an inductive set, and ”returns” all fields defined in a class:
consts fields :: (classTable ∗ className ∗ varDef list) set
syntax
-fields :: [classTable, className, varDef list] ⇒ bool (fields ′(-,- ′) = - [80 ,80 ,80] 80)

translations
fields(CT , C) = Cf
 (CT , C , Cf) ∈ fields
inductive fields
intros
— For the case of the Object class there exist no fields. To specify the definition inductively this case has to
be declared separately:

f-obj :
fields(CT , Object) = []

— In all the other cases the fields of the superclasses are merged with the fields of the class:
f-class:
[[CT (C) = Some(CDef);

cSuper CDef = D ;
cFields CDef = Cf ;
fields(CT , D) = Dg ;
DgCf = Dg @ Cf ;
C 6=Object]]

=⇒ fields(CT , C) = DgCf

Next, the ftype function gets the universe type of a field. To do that, it uses the fields functions.
It either returns the type of the field or None, if the field is not denoted.

53 4.2 Formalization

consts ftype :: (classTable ∗ varName ∗ className ∗ uType option) set
syntax
-ftype :: [classTable, className, varName, uType option] ⇒ bool (ftype ′(-,-,- ′) = - [80 ,80 ,80 ,80] 80)

translations
ftype(CT , C , f) = T
 (CT , f , C , T) ∈ ftype

inductive ftype
intros
ft-definition:

[[fields(CT , C)=myfields;
map-of myfields f =Some(T)]]

=⇒ ftype(CT , C , f) = Some(T)

ft-definition-none:
[[fields(CT , C)=myfields;
map-of myfields f =None]]

=⇒ ftype(CT , C , f) = None

Method functions

In contrast to the informal definition, there is only one mdata function used instead of a mbody and
a mtype function.

consts mdata :: (classTable ∗ methodName ∗ className ∗ methodDef option) set
syntax
-mdata :: [classTable, className, methodName, methodDef option] ⇒ bool (mdata ′(-, -, - ′) = - [80 ,80 ,80 ,80]

80)
translations
mdata(CT , C , m) = mDef
 (CT , m, C , mDef) ∈ mdata

inductive mdata
intros
— In the normal case it will return the methods record declared in the class
mt-class:

[[CT (C) = Some(CDef);
C 6=Object ;
lookup (cMethods CDef) (λmd .(mName md = m)) = Some(mDefo)]]

=⇒ mdata(CT , C , m) = Some(mDefo)
— Only if it is not defined there, it will return the mdata result of the superclass
mt-super :

[[CT (C) = Some (CDef);
C 6=Object ;
lookup (cMethods CDef) (λmd .(mName md = m)) = None;
cSuper CDef = D ;
mdata(CT , D , m) = mDef]]

=⇒ mdata(CT , C , m) = mDef
— At last if no other class can be inspected, the rule for the Object class has to be used. As Object does not
declare any methods it will return None as result.

mt-object :
mdata(CT , Object , m) = None

4 Isabelle Formalization 54

Lemmas adopted from the Featherweight Java formalization

To be able to use the lookup function in the later cases, some properties have to be shown about the
behavior of the lookup function.

Lookup

At the beginning the lookup function was introduced. As one can easily see, the lookup function is
functional:

lemma lookup-functional :
assumes lookup l f = o1
and lookup l f = o2
shows o1 = o2

using prems by(induct l , auto)

Another helpful information we know from the lookup function is, that for the resulting element
the predicate holds.

lemma lookup-true:
lookup l P = Some r =⇒ P r

In contrast to the previous lemma, from the information that lookup will not return a result we
know, that all elements of the array a do not match to the predicate P.

lemma lookup-none:lookup a P = None =⇒ ∀ i < length a. (¬ P (a!i))
theory exptyping imports vpadaption typingrelation statichelper

begin

4.2.6 Expression typing

The following rules describe the typesystem and the typing rules. They limit the expression to fit to
the topological typesystem.

Static definition

The typing and typings relation specify the typing rules for the expressions:

consts
typing :: (classTable ∗ staticEnv ∗ exp ∗ uType) set
typings :: (classTable ∗ staticEnv ∗ exp list ∗ uType list) set

syntax
-typing :: [classTable, staticEnv , exp, uType] ⇒ bool (-, - ` - : - [80 ,80 ,80 ,80] 80)
-typings :: [classTable, staticEnv , exp list , uType] ⇒ bool (-, - `+ - : - [80 ,80 ,80 ,80] 80)

translations
CT , Γ ` e : C
 (CT , Γ, e, C) ∈ typing
CT , Γ `+ es : Cs
 (CT , Γ, es, Cs) ∈ typings

All Isabelle typing rules are derived from the previous rules, which were defined informally. Only
the rules to handle lists of expression are added to the declaration.

inductive typings typing
intros
ts-nil : CT , Γ `+ [] : []
ts-cons :
[[CT , Γ ` e0 : T0 ; CT , Γ `+ es : Ts]]

=⇒ CT , Γ `+ (e0 # es) : (T0 # Ts)

55 4.2 Formalization

t-var :
[[Γ(x) = Some T]] =⇒ CT , Γ ` Var x : T

t-null :
CT , Γ ` Null : T

t-read :
[[CT , Γ ` e0 : sObject u C ;

ftype(CT , C , f) = Some(Ti);
u Bt Ti = Ti-a]]

=⇒ CT , Γ ` FieldProj e0 f : Ti-a

t-update :
[[CT , Γ ` e0 : sObject u C0 ;

ftype(CT , C0 , f)= Some(Ti);
u Bt Ti = Ti-a;
notUnknown(Ti-a);
CT , Γ ` e1 : Ti-a]]

=⇒ CT , Γ ` FieldUpdate e0 f e1 : Ti-a

t-invk :
[[CT , Γ ` e0 : sObject u C ;

mdata(CT , C , m)=Some(mDef);
w=mPure mDef ;
Tsu= varDefs-types(mParams mDef);
Tu=mReturn mDef ;

CT , Γ `+ es : Ts;
u Bt Tu = T ;
map (λtsd . u Bt tsd) Tsu = Ts;
∀ t ∈ (set Ts). notUnknown(t)]]

=⇒ CT , Γ ` MethodInvk e0 m es : T

t-new :
[[u=Peer ∨ u=Rep ∨ u=Any ;
CT (C)=Some(CDef)]]

=⇒ CT , Γ ` New u C : sObject u C

t-cast :
[[CT , Γ ` e : S]]
=⇒ CT , Γ ` Cast T e : T

t-subs:
[[CT , Γ ` e : T ′; CT ` T ′ <: T]]

=⇒ CT , Γ ` e : T

t-newarray :
[[u=Peer ∨ u=Rep ∨ u=Any ;
CT (C)=Some(CDef)]]

=⇒ CT , Γ ` NewArray u T n : sArray u T
t-arrayread :

[[CT , Γ ` e0 : sArray u T ;
utOM T 6=This]]

=⇒ CT , Γ ` ArrayProj e0 n : T
t-arrayupdate :

[[CT , Γ ` e0 : sArray u Ti ;
CT , Γ ` e1 : Ti]]

=⇒ CT , Γ ` ArrayUpdate e0 n e1 : Ti

4 Isabelle Formalization 56

declare typings-typing .intros[intro!]

lemmas typings-typing-induct = typings-typing .induct [split-format (complete)]

Because of the subsumption rule the inductive semantics can not be applied directly in most proofs,
an unfolding rule or generation lemma is required. To prove the lemma the defined limits for the
unification of variables need to be raised, else the prove would fail.

ML〈〈
Unify .search-bound := 40 ;
Unify .trace-bound := 40 ;
〉〉

lemma shows
typings-unfolding-rules:

CT , sEnv `+ es : rTs =⇒ True
and typing-unfolding-rules:
CT , sEnv ` e : T =⇒

(∀ u C . ((e = New u C) −→ (
(u=Peer ∨ u = Rep ∨ u=Any) ∧
C ∈ dom CT) ∧ CT ` (sObject u C) <: T)) ∧

(∀ u Tx n. ((e = NewArray u Tx n) −→ (
(u=Peer ∨ u=Rep ∨ u=Any)) ∧ (CT ` (sArray u Tx) <: T)
)) ∧

((e = Null) −→ (True)) ∧

(∀ x . e=Var x −→ (∃ Ta. (sEnv(x)=Some(Ta) ∧ CT ` Ta <: T))) ∧

(∀ e1 f . e=FieldProj e1 f −→ (∃ u C Ti Ti-a .(CT ,sEnv ` e1 : (sObject u C) ∧ ftype(CT ,C ,f)=Some(Ti)
∧ u Bt Ti = Ti-a ∧ CT ` Ti-a <: T))) ∧

(∀ e0 f e1 . e=FieldUpdate e0 f e1 −→ (∃ u C Ti Ti-a .(CT ,sEnv ` e0 : (sObject u C) ∧ ftype(CT ,C ,f)=Some(Ti)
∧ u Bt Ti = Ti-a ∧ notUnknown(Ti-a) ∧ CT ,sEnv ` e1 : Ti-a ∧ CT ` Ti-a <: T))) ∧

(∀ e0 m es. e=MethodInvk e0 m es −→ (∃ u C Ts mDef Ti .(CT ,sEnv ` e0 : (sObject u C) ∧ mdata(CT ,C ,m)=Some(mDef)
∧

CT ,sEnv `+ es : Ts ∧
u Bt (mReturn mDef) = Ti ∧
map (λtsd . u Bt tsd) (varDefs-types(mParams mDef)) = Ts ∧
(∀ t ∈ (set Ts). notUnknown t) ∧ CT ` Ti <: T))) ∧

(∀ Ti e0 . e=Cast Ti e0 −→ (∃ S . CT ,sEnv ` e0 : S ∧ CT ` Ti <: T)) ∧

(∀ e1 n. e=ArrayProj e1 n −→ (∃ u Ti .(CT ,sEnv ` e1 : (sArray u Ti) ∧ utOM Ti 6= This ∧ CT ` Ti <:
T))) ∧

(∀ e0 e1 n. e=ArrayUpdate e0 n e1 −→ (∃ u Ti .(CT ,sEnv ` e0 : (sArray u Ti) ∧ CT ,sEnv ` e1 : Ti ∧
CT ` Ti <: T)))

57 4.2 Formalization

Static well typing rules

Every universe type used in the classtable has the following two limitations. One of them is that the
class has to be in the classtable. The second one limits the universe modifier to be either Peer, Rep
or Any. This and Unknown are only internal modifiers.
consts t-typing :: (classTable ∗ uType) set

t-typings :: (classTable ∗ uType list) set
syntax
-t-typing :: [classTable, uType] ⇒ bool (- t` - [80 ,80] 80)
-t-typings :: [classTable, uType list] ⇒ bool (- t`+ - [80 ,80] 80)

translations
CT t` T
 (CT , T) ∈ t-typing
CT t`+ T
 (CT , T) ∈ t-typings

inductive t-typing
intros
t-type:

[[C ∈ dom(CT);
u=Any ∨ u=Peer ∨ u=Rep]]

=⇒ CT t` sObject u C
t-type:

[[CT t` T ;
u=Any ∨ u=Peer ∨ u=Rep]]

=⇒ CT t` sArray u T

inductive t-typings
intros
ts-nil :
CT t`+ []

ts-cons :
[[CT t` T ;

CT t`+ Ts]]
=⇒ CT t`+ (T # Ts)

Every class is defined by its fields and methods. Rules to describe the wellformedness of those
parts, would make the work more simple.
For fields the limitations would be that a supertype of a class has to have the same type for a field
or the field should no be allowed to be defined in the superclass.
consts f-typing :: (classTable ∗ className ∗ varDef) set

f-typings :: (classTable ∗ className ∗ varDef list) set
syntax
-f-typing :: [classTable, className, varDef] ⇒ bool (-, - f` - [80 ,80 ,80] 80)
-f-typings :: [classTable, className, varDef list] ⇒ bool (-, - f`+ - [80 ,80 ,80] 80)

translations
CT , C f` v
 (CT , C , v) ∈ f-typing
CT , C f`+ vs
 (CT , C , vs) ∈ f-typings

inductive f-typing
intros
f-type:

[[CT t` (vdType vs);
CT (C)=Some(CDef);
ftype(CT , cSuper CDef , vdName vs)=supert ;
supert=Some(vdType vs) ∨ supert=None]]

=⇒ CT , C f` vs

4 Isabelle Formalization 58

inductive f-typings
intros
ts-nil :
CT , C f`+ []

ts-cons :
[[CT , C f` v ;

CT , C f`+ vs]]
=⇒ CT , C f`+ (v # vs)

In contrast to fields, methods have a much more complicated welltyping definition, as it has to
express the covariance of the return value and the contravariance of parameters.
Even the expression in the method has to follow some formal limitations to match the return value.

consts method-typing :: (classTable ∗ methodDef ∗ className) set
method-typings :: (classTable ∗ methodDef list ∗ className) set

syntax
-method-typing :: [classTable, className, methodDef] ⇒ bool (-, - m` - [80 ,80 ,80] 80)
-method-typings :: [classTable, className, methodDef list] ⇒ bool (-, - m`+ - [80 ,80 ,80] 80)

translations
CT , C m` md
 (CT , md , C) ∈ method-typing
CT , C m`+ mds
 (CT , mds, C) ∈ method-typings

inductive method-typing
intros
m-typing :

[[CT (C) = Some(CDef);
cName CDef = C ;
cSuper CDef = D ;
mName mDef = m;
lookup (cMethods CDef) (λmd .(mName md = m))= Some(mDef);
mBody mDef = e;
mPure mDef = w ;
mParams mDef = vDefs;
mReturn mDef = T ;
varDefs-types vDefs = vDefsT ;
varDefs-names vDefs = vDefsN ;distinct (this#vDefsN);

CT t`+ vDefsT ;
CT t` T ;
∀ mDefD . (mdata(CT , D , m)=Some(mDefD) −→

(((mPure mDefD)=w ∨ w=Pure) ∧
((varDefs-names (mParams mDefD))=vDefsN) ∧
(CT `+ (varDefs-types (mParams mDefD)) <:vDefsT) ∧
CT ` T <: (mReturn mDefD)));

Γ = [vDefsN [7→] vDefsT](this 7→ (sObject This C));
CT , Γ ` e : T]]

=⇒ CT , C m` mDef

inductive method-typings
intros
ms-nil :
CT , C m`+ []

ms-cons :
[[CT , C m` m;

CT , C m`+ ms]]

59 4.2 Formalization

=⇒ CT , C m`+ (m # ms)

Class Typing Relation

At last with all those parts the welltyping of a class and the classtable can be defined.

consts class-typing :: (classTable ∗ classDef) set
syntax
-class-typing :: [classTable, classDef] ⇒ bool (- c` - [80 ,80] 80)

translations
CT c` CDef
 (CT , CDef) ∈ class-typing

In all definitions natural numbers are used to represent the name of the class. To simplify recursive
definitions, it is specified that a subclass has to have a higher number than its superclass. That will
allow to use the order of the natural numbers to aid in defining an relation between classes.
In a class the fields and methods have to follow the limitations named before.

inductive class-typing
intros
t-class: [[cName cDef = C ; C 6= Object ;

cSuper cDef = D ;
D<C ;
cMethods cDef =mDefs;
fields(CT , C)=fDefs;
CT (D)= Some(DDef);
∀ m mDefC . (mdata(CT , C , m)=Some(mDefC)−→ CT ,C m` mDefC);
∀ f ∈ (set fDefs). CT ,C f` f]]

=⇒ CT c` cDef
t-object : [[cMethods cDef =[];

cFields cDef =[];
cSuper cDef =Object ;
cName cDef =Object]]

=⇒ CT c` cDef

In the classtable every class definition has to follow those limitation rules.

consts ct-typing :: classTable set
syntax
-ct-typing :: classTable ⇒ bool (` - 80)

translations
` CT
 CT ∈ ct-typing

inductive ct-typing
intros
ct-all-ok :

[[∀C CDef . CT (C) = Some(CDef) −→ (CT c` CDef ∧ cName CDef =C)]]
=⇒ ` CT

end

theory static imports exptyping

begin

4.2.7 Static lemmas

The fields function will be used later on, and it has to be shown that it is functional.

4 Isabelle Formalization 60

lemma fields-functional :
∧

x y .[[` CT ; fields(CT , C)=x ; fields(CT , C)=y]] =⇒ x=y

Because the fields function is functional, and the ftype function directly relies on that function, it
has to be functional, too:

lemma ftype-functional :[[` CT ; ftype(CT , C , f)=T ; ftype(CT , C , f)=S]] =⇒ T=S

The same that applies to the fields, can also be applied to method definitions. They are functional,
too.

lemma mdata-functional :[[` CT ; mdata(CT , C , m)=Some(x); mdata(CT , C , m)=Some(y)]] =⇒ x=y

Besides unfolding expressions, the method’s definition also has to be unfolded for the case of
method calls. The following lemma will simplify that step.

lemma mdata-unfold :[[` CT ; mdata(CT , C , m)=Some mDef]]
=⇒ CT , [varDefs-names (mParams mDef) [7→] varDefs-types (mParams mDef), this 7→ (sObject This C)]

` mBody mDef : mReturn mDef
∧ distinct(this#varDefs-names(mParams mDef))

Methods will get executed during the bigstep semantics. To do the executing in the sense of the
typing rules, the following lemma describes the typing rule generated from a method.

lemma mdata-exec:[[` CT ; mdata(CT , C , m)=Some mDef]]
=⇒ CT , [varDefs-names (mParams mDef) [7→] varDefs-types (mParams mDef), this 7→ (sObject This C)]
` mBody mDef : mReturn mDef

As types of parameters in methods are contravariant, the resulting limitations have to be integrated
into the proofs.

lemma mdata-subclass:[[CT ` C [: D ; ` CT ; mdata(CT , C , m)=Some mDef ; mdata(CT , D , m)=Some
mDefa]]

=⇒ CT ` mReturn mDef <: mReturn mDefa
∧ varDefs-names (mParams mDefa)=varDefs-names (mParams mDef)
∧ CT `+ varDefs-types(mParams mDefa) <: varDefs-types(mParams mDef)

Those have been some rules to handle method data.
At last the handling of lists of expressions should be simplified. Because in the typing rules there is
no state that changes during the rule application, the order of evaluation of the expressions does not
matter. With that information, the typing rules of expression lists can be written down in a more
simple way.
That was done to keep the typing rules in line with the other inductive definitions, and to possibly
be able to integrate some state into the typing rules later on.

lemma typing-SomeD :
∧

elist . CT , sEnv `+ elist : Ts =⇒ ∀ e ∈ set elist . ∃ T . (CT , sEnv ` e : T)
end

theory heap imports syntaxdef statichelper vpadaption begin

4.2.8 Heap model

To reason about a program with heap updates, a heap has to be defined. The formalization of the
heap is derived from the formalization of Jinja. As the Universe Type System integrates an owner,
the heap model has to extend the type definition.

types Addr = nat
types OwnerAddr = Addr

There exist three special addresses.

consts

61 4.2 Formalization

NullP :: Addr
AnyAd :: Addr
AnyOwner ::Addr

The nullpointer NullP, which maps nowhere, is used to define an empty address. The anyaddress
AnyAd is used in the typing rules with the transformation from the any universe type to an address.
Besides those two there exists an AnyOwner, the owner for objects that are created with the Any
modifier. The distinction between AnyAd and AnyOwner is required to allow the subtyping rule for
runtime types to be as expressive as the subtyping rule for static types.

Elements in the heap can either be normal objects or arrays. Like the representation in the static
types, there has to be a differentiation in the runtime types:

datatype rType = rObject OwnerAddr className
| rArray OwnerAddr rType

To reach the parts of the types more easy in the later rules, the functions rtOwner, rtClass and
rtType are defined.

consts rtOwner :: rType ⇒ OwnerAddr
primrec

rtOwner (rObject addr C) = addr
rtOwner (rArray addr T) = addr

consts rtClass :: rType ⇒ className
primrec

rtClass (rObject addr C) = C
consts rtType :: rType ⇒ rType
primrec

rtType (rArray addr T)=T

Again, the simplifier should know how to handle those rules:

lemma [iff]:rtOwner (rObject addr C)=addr by (simp)
lemma [iff]:rtClass (rObject addr C)=C by (simp)
lemma [iff]:rtOwner (rArray addr T)=addr by (simp)
lemma [iff]:rtType (rArray addr T)=T by (simp)

Object definition in the heap

The definition of a heap object is a main goal of the heap formalization. It is separated into the two
cases normal objects and arrays.

types
fields = varName ⇀ Addr — field name, addr
arrayL = nat ⇀ Addr
rEnv = varName ⇀ Addr — name of variable in runtime environment, addr

datatype obj = oObject rType fields | — class instance with class name and fields
oArray rType arrayL

The function oType is used to access the type definition part of an object in the heap:

consts oType :: obj ⇒ rType
primrec

oType (oObject rT fs) = rT
oType (oArray rT aL) = rT

consts oFields :: obj ⇒ fields
primrec

oFields (oObject rT fs)= fs

4 Isabelle Formalization 62

To create a new object in the heap, the fieldmap has to be initialized. To do this, the field definition
list will be taken, and as a result the fieldmap will be generated.

constdefs
init-fields :: (varName) list ⇒ fields
init-fields ≡ map-of ◦ map (λ(F). (F ,NullP))
init-varDef :: (varDef) list ⇒ fields
init-varDef x ≡ init-fields (varDefs-names x)

Heap

The heap itself is represented as a partial function mapping addresses to objects.

types heap = Addr ⇀ obj

To create a new object on that heap, a free address is required. It will be fetched using the function
new-Addr.

constdefs
new-Addr :: heap ⇒ Addr option
new-Addr h ≡ if ∃ a. h a = None then Some(SOME a. h a = None) else None

As a result we are now able to update the heap and do a heap extension hext. This heap extension
will limit the sort of updates in a way that the type of an object in the heap is not allowed to be
modified.

constdefs
hext :: heap ⇒ heap ⇒ bool (- E - [51 ,51] 50)
h E h ′ ≡ (∀ a C fs. h a = Some(oObject C fs) −→ (∃ fs ′. h ′ a = Some(oObject C fs ′)))

∧ (∀ a C fs. h a = Some(oArray C fs) −→ (∃ fs ′. h ′ a = Some(oArray C fs ′)))

At last the function aClass is defined, as it is required more often for the later used rules.

constdefs aClass ::heap ⇒ Addr ⇒ className
aClass h addr ≡ rtClass (oType (the (h addr)))

Heap extension (E) lemmas

With the definition of a heap, and how it could be extended, some lemmas can now be proven using
those information.

The very first one is a direct result from the allocation of a new address. As it is not allowed to
override an existing object in the heap, the old heap will map to no object in the new address.

lemma new-Addr-SomeD :
new-Addr h = Some a =⇒ h a = None

To prove the heap extension for the bigstep semantics, an introduction rule will be required.

lemma hextI :
[[∀ a C fs. h a = Some(oObject C fs) −→ (∃ fs ′. h ′ a = Some(oObject C fs ′));
∀ a C fs. h a = Some(oArray C fs) −→ (∃ fs ′. h ′ a = Some(oArray C fs ′))]]

=⇒ h E h ′

The next lemmas handle the direct results known from a heap extension. If there is an object with
a specific type T on the heap, the type will stay the same in the extended heap.

lemma hext-objD : [[h E h ′; h a = Some(oObject T fs)]] =⇒ ∃ fs ′. h ′ a = Some(oObject T fs ′)
lemma hext-arrayD : [[h E h ′; h a = Some(oArray T fs)]] =⇒ ∃ fs ′. h ′ a = Some(oArray T fs ′)

With the definition of the heap, it can be shown that the heap extension is reflexive and transitive.

63 4.2 Formalization

lemma hext-refl [iff]: h E h
lemma hext-trans: [[h E h ′; h ′ E h ′′]] =⇒ h E h ′′

The following two lemmas describe how the heap is extended exactly, to create a new object on
the heap and to update an object on the heap.

lemma hext-new [simp]: h a = None =⇒ h E h(a 7→x)
lemma hext-upd-obj : h a = Some (oObject C fs) =⇒ h E h(a 7→(oObject C fs ′))

end

theory runtimehelper imports vpadaption typingrelation statichelper heap

begin

4.2.9 Runtime model

Owner relation

To get the owner of an object from the heap, the owner function takes the heap and an address as
parameter, and the result will be the address of the owner.

constdefs owner ::heap ⇒ Addr ⇒ OwnerAddr
owner h addr ≡ rtOwner (oType (the (h addr)))

For the owner as modifier property, not only the direct owner is required, but all the owners of
the owner, too. To define this relation an inductive set of owners is used, which will be extended by
transitivity.

consts sowner :: heap ⇒ (Addr ∗ OwnerAddr) set
inductive sowner h
intros
owner-nullp:[[h addr=Some x]] =⇒ (addr , owner h addr) ∈ (sowner h)

To reduce the writing work in the lemmas for the owner-as-modifier property, the owner is this
relation is used for simplicity.

constdefs owner-is-this ::heap ⇒ fields ⇒ Addr ⇒ bool
owner-is-this h rEnv addr ≡

if ((addr ,owner h (the (rEnv this))) ∈ (sowner h)ˆ+) then True
else False

Type dynamization and runtime subtyping

To define a runtime subtyping static types have to be dynamized. For the universe modifiers the
corresponding address will be looked up using the dynOM function.

constdefs dynOM :: heap ⇒ Addr ⇒ OM ⇒ Addr
dynOM h addr-this u ≡

if (u=Peer ∨ u=This) then (owner h addr-this)
else if (u=Rep) then addr-this
else AnyAd

Together with the dynOM function, the dynType function can dynamize the type recursively.

consts dynType :: heap ⇒ Addr ⇒ uType ⇒ rType
primrec

dynType h addr-this (sObject u C) = rObject (dynOM h addr-this u) C
dynType h addr-this (sArray u T) = rArray (dynOM h addr-this u) (dynType h addr-this T)

4 Isabelle Formalization 64

As dynamization should be done by the simplifier, the following lemmas help to unfold the functions
where possible, and still keep a nice structure in the theory files.

lemma [iff]:dynType h addr (sObject Rep C)=(rObject addr C) by(simp add :dynOM-def)
lemma [iff]:dynType h addr (sObject Peer C)=(rObject (owner h addr) C) by(simp add :dynOM-def)
lemma [iff]:dynType h addr (sObject This C)=(rObject (owner h addr) C) by(simp add :dynOM-def)
lemma [iff]:dynType h addr (sObject Any C)=(rObject AnyAd C) by(simp add :dynOM-def)
lemma [iff]:dynType h addr (sObject Unknown C)=(rObject AnyAd C) by(simp add :dynOM-def)

The dynamization is not directly required for the runtime subtyping, but as types have to be
compared during runtime, too, they are both needed later on.

consts rtsubs :: classTable ⇒ (rType ∗ rType) set
syntax
-rtsubt :: [classTable, rType, rType] ⇒ bool (- ` - <:r - [80 ,80 ,80] 80)

translations
CT ` rS <:r rT
 (rS , rT) ∈ (rtsubs CT)

In comparison to the static subtyping, runtime subtyping is really simple. The class parts of the
types have to be in a subclassing relation. Only the owner-part has to have a separate handling,
where on both sides either the owner is equal, or on the right side the owner is the AnyAd. Although
static and runtime subtyping are comparable in many cases, there exists no bijective function to
transform one representation into the other one.

inductive rtsubs CT
intros
rtsubsarray : [[CT ` rS <:r rT ; a=b ∨ b=AnyAd]] =⇒ CT ` rArray a rS <:r rArray b rT
rtsubsob: [[a=b ∨ b=AnyAd ; CT ` rC [: rD]] =⇒ CT ` rObject a rC <:r rObject b rD
rtsubsmix : [[a=b ∨ b=AnyAd]] =⇒ CT ` rArray a rS <:r rObject b Object

The runtime subtyping can now be used, to express the static type of an address with respect to
a viewpoint.

consts ftypeOK :: (classTable ∗ heap ∗ Addr ∗ Addr ∗ uType) set
syntax
-ftypeOK :: [classTable, heap, Addr , Addr , uType] ⇒ bool (-, -, - ` - : - [80 ,80 ,80 ,80] 80)

translations
CT , h, me ` addr : T
 (CT , h, me, addr , T) ∈ ftypeOK

In words you can say to that relation: On the heap ”h”, ”me” sees ”addr” as type ”T”.

inductive ftypeOK
intros
Tcomp:

[[h addr=Some(Obj);
CT ` (oType Obj) <:r dynType h me T ;
utOM T=This −→ me=addr]]

=⇒ CT , h, me ` addr : T
Tcompnull : CT , h ,me ` NullP : T

consts ftypesOK :: (classTable ∗ heap ∗ Addr ∗ Addr list ∗ uType list) set
syntax
-ftypesOK :: [classTable, heap, Addr , Addr list , uType list] ⇒ bool (-, -, - `+ - : - [80 ,80 ,80 ,80] 80)

translations
CT , h, me `+ addr : T
 (CT , h, me, addr , T) ∈ ftypesOK

inductive ftypesOK
intros
Tnil :
CT , h, me `+ [] : []

Tcons: [[CT , h, me ` addr : t ; CT , h, me `+ addrs : ts]] =⇒ CT , h, me `+ (addr#addrs) : (t#ts)

65 4.2 Formalization

Another issue, which can be handled by type dynamization is the matching of a runtime environ-
ment to a static environment.

consts rEnvtosEnv :: (classTable ∗ heap ∗ rEnv ∗ staticEnv) set
syntax
-rEnvtosEnv :: [classTable, heap, rEnv , staticEnv] ⇒ bool (-, - ` - : - [80 ,80 ,80 ,80] 80)

translations
CT , h ` mrEnv : msEnv
 (CT , h, mrEnv , msEnv) ∈ rEnvtosEnv

inductive rEnvtosEnv
intros
rtosrEnvtosEnv :

[[mrEnv this= Some(adthis);
∀ name addr . (mrEnv(name)=Some(addr) −→

(addr = NullP −→ (∃ T .(msEnv name=Some(T)))) ∧
(addr 6= NullP −→ (∃ T .(msEnv name=Some(T) ∧

CT , h, adthis ` addr : T))))]]
=⇒ CT , h ` mrEnv : msEnv

Resulting lemmas

As subtyping does not modify the heap, it can be written down in an alternative way, much better
usable for proving other lemmas.

lemma allsubtyping :
∧

addrs. CT , h2 , me `+ addrs : Ts-s=⇒∀ i< length Ts-s. CT , h2 , me ` addrs!i :
Ts-s!i

At last the information from the heap extensions can be combined with the information from the
set of owners to show that all owner sets in the old heap are also sets of the extended heap.

lemma hextkeepowner :[[h E hf ; h a=Some(oObject x y)]] =⇒ (a, b) ∈ (sowner hf)=((a, b) ∈ (sowner h))
end

theory welltyped imports static runtimehelper

begin

4.2.10 Welltypedness definition

The definition of a well typed runtime environment is a complex issue. To simplify the definition it
is split up into the parts of the environment.

The first part is the welltypedness of an address in the heap.
An address could either map to an object, an array or be the nullpointer. In the case of an object,
the fields of that object have to be subtypes of the type defined by the class. The field-T relation
will guarantee that:

constdefs field-T ::classTable ⇒ heap ⇒ Addr ⇒ fields ⇒className ⇒ varName ⇒ uType ⇒ bool
field-T CT h addr myFields C fname T≡
(∃ faddr .

(myFields fname=Some(faddr) ∧
(∃ ob. h faddr = Some(ob) ∨ faddr=NullP) ∧
(CT , h, addr ` faddr : T)))

A well typed address is not defined recursive for its fields to simplify the definition of the function.
It can be done, because there is no need to directly declare that the addresses stored in the fields of

4 Isabelle Formalization 66

an object are well typed.
It will result from the information that they are either a nullpointer or they are in the domain of the
heap. All other information can be found in the definition of a well formed heap. For the runtime
type of the object there are a few limitations, too. First of all, the owner of the objects has to follow
some rules. Besides that, there are some more limitations, depending if it is an array or a normal
object:

constdefs wta :: classTable ⇒ heap ⇒ Addr ⇒ bool (-,- a` - [80 ,80 ,80] 80)
(CT , h a` addr) ≡

(addr 6=NullP −→ ((
∃ oT owneraddr myFields C CDef .(

Some(oObject oT myFields)=h addr ∧
rtClass oT=C ∧ is-objectT (oT) ∧
owneraddr 6= addr ∧
(owner h addr = owneraddr) ∧
((∃ ownerObj . (h owneraddr=Some(ownerObj) ∧ is-object(ownerObj))) ∨ (owneraddr=NullP) ∨

(owneraddr=AnyOwner)) ∧
CT (C)=Some(CDef) ∧
(∀ fname T . ftype(CT , C , fname)=Some(T) −→ (field-T CT h addr myFields C fname T)))) ∨ (

∃ u T owneraddr myFields .(
Some(oArray (rArray u T) myFields)=h(addr) ∧
(∀ n addr . myFields n=Some(addr) −→ (addr=NullP ∨ (∃ oB . (h addr=Some(oB) ∧

CT ` (oType oB) <:r T)))) ∧
owneraddr 6= addr ∧
(owner h addr = owneraddr) ∧
((∃ ownerObj . (h owneraddr=Some(ownerObj) ∧ is-object(ownerObj))) ∨ (owneraddr=NullP) ∨

(owneraddr=AnyOwner))))))

consts well-typed-addrs :: (classTable ∗ Addr list ∗ heap) set
syntax
-well-typed-addrs :: [classTable, heap, Addr list] ⇒ bool (-, - a`+ - [80 ,80 ,80] 80)

translations
CT , h a`+ addrs
 (CT , addrs, h) ∈ well-typed-addrs

inductive well-typed-addrs
intros
wta-nil : CT , h a`+ []
wta-cons: [[CT , h a`+ addrs; CT , h a` addr]] =⇒ CT , h a`+ (addr#addrs)

The definition of a well typed address is required for the definition of the wellformedness of the
heap. All addresses that are in the domain of the heap have to be well typed. A second limitation is
that the addresses AnyOwner,NullP and AnyAd are not allowed to be in the domain of the heap.

consts well-typed-heap :: (classTable ∗ heap) set
syntax
-well-typed-heap :: [classTable, heap] ⇒ bool (- h` - [80 ,80] 80)

translations
CT h` h
 (CT , h) ∈ well-typed-heap

inductive well-typed-heap
intros
wth:[[∀ addr obj . (h addr=Some(obj)) −→ (CT , h a` addr);

h AnyOwner=None;
h NullP=None;
h AnyAd =None]]

=⇒ CT h` h

At last a welltyped environment guarantees a welltyped heap, a welltyped classtable, and that the
runtime environment maps only to valid addresses.

67 4.2 Formalization

consts well-typed-env :: (classTable ∗ heap ∗ rEnv) set
syntax
-well-typed-env :: [classTable, heap, rEnv] ⇒ bool (-, - w` - [80 ,80] 80)

translations
CT , h w` Env
 (CT , h, Env) ∈ well-typed-env

inductive well-typed-env
intros
wte:[[` CT ;

CT h` h;
∀ name addr . rEnv name=Some(addr) −→ (CT , h a` addr);
rEnv this 6=Some(NullP);
h (the (rEnv this))=Some(oObject rT rf);
rEnv this 6=None]]

=⇒ CT , h w` rEnv

Extending a wellformed environment

The definition of the heap extension together with the definition of welltypedness result in some new
lemmas which can be derived from them.

The first one is the extension of a dynType definition. It does not require the whole information
of a welltyped environment, but as that information will be given later on, the whole definition will
be taken as assumption.

lemma hext-dyntype:
∧

Tr . [[hEhf ; CT , h w` Env ; dynType h y Ts=Tr ; h y=Some (Ob)]] =⇒dynType hf y
Ts=Tr

The next information that can be derived from those assumptions is that a runtime environment
fitting to a static environment will also fit to each other after the heap is extended

lemma hextkeepEnv :[[CT , h w` rEnv ; h E h ′; CT , h ` rEnv : sEnv]] =⇒ CT , h ′ ` rEnv : sEnv

From that information, and the information about a welltyped heap after an extension, you can
prove that the new environment is well typed, too.

lemma wtehext :[[CT , h w` rEnv ; hEhf ; CT h` hf]] =⇒ CT , hf w` rEnv

It is also known, that the current viewpoint is defined in the heap:

lemma wte-this:CT , h w` Env =⇒ ∃ ob. h(the (Env this))=Some(ob)

end

theory bigstep imports welltyped begin

4.2.11 Bigstep formalization

The bigstep formalization will be done using an inductively defined set. Both the definition for
executing a single expression as well as executing multiple expressions have to be declared together.
Most of the rules just follow the informal definition of the bigstep semantics. Only in a few cases
they are written down in a more complicated way to allow Isabelle to use the rules more easily.

consts bigstep :: (classTable ∗ heap ∗ rEnv ∗ exp ∗ heap ∗ Addr) set
syntax
-bigstep :: [classTable, heap, rEnv , exp, heap, Addr] ⇒ bool (- ` -, -, - -, - [80 ,80 ,80] 80)

4 Isabelle Formalization 68

translations
CT ` h, Env , e h ′, addr
 (CT , h, Env , e, h ′, addr) ∈ bigstep

consts bigsteps :: (classTable ∗ heap ∗ rEnv ∗ exp list ∗ heap ∗ Addr list) set
syntax
-bigsteps :: [classTable,heap, rEnv , exp list , heap, Addr list] ⇒ bool (- ` -, -, - + -, - [80 ,80 ,80] 80)

translations
CT ` h, Env , e + h ′, addr
 (CT , h, Env , e, h ′, addr) ∈ bigsteps

inductive bigstep bigsteps
intros

os-nil : CT ` h, Env , [] + h, []

os-cons:
[[CT ` h, Env , e0 h1 , addr ;

CT ` h1 , Env , es + hf , addrs]]
=⇒ CT ` h, Env , e0#es + hf , addr#addrs

os-null :
CT ` h, Env , Null h, NullP

os-var :
[[Env vn=Some(addr)]]
=⇒ CT ` h, Env , Var vn h, addr

os-read :
[[CT ` h, Env , e hf , addr-e;
hf addr-e =Some(oObject T eField);
addr-e 6=NullP ;
eField f =Some(addr)]]

=⇒ CT ` h, Env , FieldProj e f hf , addr

os-new :
[[new-Addr h=Some(addr);

addr 6=NullP ;
addr 6=AnyAd ;
addr 6=AnyOwner ;
Env this=Some(myself);
h myself =Some(myselfo);
(u=Peer ∨ u=Rep) −→ dynType h myself (sObject u C) = mType;
u=Any −→ rObject AnyOwner C=mType;
is-objectT (mType);
CT (C) = Some(CDef);
fields(CT , C)=myFields;
init-varDef myFields=obFields;
h(addr 7→(oObject mType obFields))=hf

]] =⇒ CT ` h, Env , New u C hf , addr

os-cast :

69 4.2 Formalization

[[Env this=Some(myself);
hf myself =Some(oObject msType msFields);
CT ` h, Env , e hf , addr ;
CT , hf , the (Env this) ` addr : T]]

=⇒ CT ` h, Env , Cast T e hf , addr

os-upd :
[[CT ` h, Env , e1 h1 , obaddr ;

CT ` h1 , Env , e2 h2 , addr ;
obaddr 6= NullP ;
h2 obaddr=Some(oObject obType Fields);
h2 (obaddr 7→(oObject obType (Fields(f 7→addr))))=hf]]

=⇒ CT ` h, Env , FieldUpdate e1 f e2 hf , addr

os-invk :
[[CT ` h, Env , e h1 , paddr ;

CT ` h1 , Env , elist + h2 , addrs;
paddr 6= NullP ;
h2 paddr=Some(oObject rt fs);
mdata(CT , aClass h2 paddr , m)=Some(mDef);
mBody mDef =e1 ;
mParams mDef =vDefs;
varDefs-names vDefs = xs;
[xs[7→]addrs](this 7→paddr)=newEnv ;
CT ` h2 , newEnv , e1 hf , addr]]

=⇒ CT ` h, Env , MethodInvk e m elist hf , addr
os-newarray :

[[new-Addr h =Some(addr) ;
addr 6=NullP ;
addr 6=AnyAd ;
addr 6=AnyOwner ;
Env this=Some(myself);
h myself =Some(myselfo);
(u=Peer ∨ u=Rep) −→dynType h myself (sArray u T) = mType;
u=Any −→ rArray AnyOwner (dynType h myself T)=mType;
is-arrayT (mType);
∀ i< n . (myArray i=Some(NullP));
∀ i ≥ n .(myArray i=None);
h(addr 7→(oArray mType myArray))=hf

]] =⇒ CT ` h, Env , NewArray u T n hf , addr

os-arrayread :
[[CT ` h, Env , e hf , addr-e;
hf addr-e=Some(oArray T eField);
addr-e 6=NullP ;
eField n=Some(addr)]]

=⇒ CT ` h, Env , ArrayProj e n hf , addr
os-arrayupd :

[[CT ` h, Env , e1 h1 , obaddr ;
CT ` h1 , Env , e2 h2 , addr ;
obaddr 6= NullP ;
h2 obaddr=Some(oArray (rArray own rT) Fields);
n ∈ dom(Fields);

4 Isabelle Formalization 70

∀ ob . (h2 addr=Some(ob) −→ CT ` (oType ob) <:r rT);
h2 (obaddr 7→(oArray (rArray own rT) (Fields(n 7→addr))))=hf]]

=⇒ CT ` h, Env , ArrayUpdate e1 n e2 hf , addr

Some first results can be extracted from the bigstep semantics. One of them says that a bigstep
will result in a new heap that extends the old heap.

lemma bigstephext :CT ` h, Env , e1 h1 , obaddr =⇒ h E h1

The same also could be said for the bigstep of multiple expressions.

lemma bigstepshext :CT ` h, Env , e1 + h1 , obaddr =⇒ h E h1

Another interesting result is the welltypedness of a new environment, created with the result from
a bigstep over a list of expressions. This will be required to prove the case of method invocation.

lemma wte-new-env :[[
CT ,h2 w` Env ;
[xs [7→] addrs, this 7→ paddr] = newEnv ;
paddr 6= NullP ;
h2 paddr=Some (oObject rT rf);
CT ` h1 , Env , elist + h2 , addrs;
CT , h2 , the (Env this) `+ addrs : Ts-s;
CT , h1 , the (Env this) ` paddr : T-e]]

=⇒ CT , h2 w` newEnv
end

theory topologicalproofs imports welltyped

begin

4.2.12 Topological typesystem proofs

The proofs for the viewpoint adaption in the topological typesystem will show, that the static defi-
nition of a viewpoint adaption does fit to the runtime definition of a viewpoint adaption.

To prove the whole viewpoint adaption, there are different sub-lemmas to prove.

The first one, simple and, if one knows the definition for the runtime typing rule, it is clear to
show that an address that has the static universe modifier ”This” has to have the same address as
the current viewpoint.

lemma thistypethis:[[CT , hf , addre ` addr : (sObject This C); addr 6=NullP]] =⇒addre=addr

In the next step the relation of two type dynamization for an address addr and a viewpoint paddr
will be shown.

lemma adapt-from-dynType:
∧

addr .
[[CT , hf , paddr ` addr : sObject u-Te C-te;
addr 6=NullP]]
=⇒ CT ` dynType hf addr T-u <:r dynType hf paddr (u-Te Bt T-u)

Another lemma required to prove the viewpoint adaption sound is the transitivity of runtime types.

lemma dynType-trans:
∧

a b. [[
CT ` a <:r b;
CT ` b <:r c]]

=⇒ CT ` a <:r c
— Again an induction

71 4.2 Formalization

apply (induct c)
— will be used.

Ultimately, it can be shown that the viewpoint adaption is sound using the defined rules and the
heap definition

lemma adapt-from-vpT :
∧

addr . [[
CT , hf , addr-e ` addr : T-u;
CT , hf , the (Env this) ` addr-e : sObject u-Te C-te;

addr-e 6= NullP]]
=⇒ CT , hf , the (Env this) ` addr : (u-Te Bt T-u)

— The proof can be done most of the time straightforward with the use of case distinctions like
apply (case-tac u-Te,simp-all)

— and
apply (case-tac OM ,simp-all)

— .

The next step will be the integration of subtyping and its relation from static to runtime subtyping.
If there is a type T and a supertype T-e, and if there exists a runtime-subtyping relation of some
runtime type to a dynamization of the static type T-e, the runtime subtyping-relation from that
runtime type to a dynamization of the static type T is also true.

lemma st-dynType:
∧

T-e x . [[addr-e 6= NullP ; CT ` T-e <: T ; CT ` x <:r dynType hf addr-e T-e
]]
=⇒ CT ` x <:r dynType hf addr-e T

— To prove that property, an induction is done over
apply (induct T)
— resulting in a case for arrays, and a case for normal objects.

This can then be used in another way using the ftype relation for subtypes, saying, that if an
address addr-e sees another address addr as type T-e, it can see the address also as any supertype of
T.

lemma adapt-subtype:[[
addr-e 6=NullP ;
CT , hf , addr-e ` addr : T-e;

CT ` T-e <: T]]
=⇒ CT , hf , addr-e ` addr : T

Now the final lemma for the adaption from a viewpoint can be shown using the adapt-from-vpT
and the adapt-subtype lemma:

lemma adapt-from-vp: assumes
this-notnull :the (Env this)6= NullP and
addre-addr-T-u:CT , hf , addr-e ` addr : T-u and
this-addre-uC :CT , hf , the (Env this) ` addr-e : sObject u C and
addre-notnull :addr-e 6= NullP and
T-u-oo-Tu:CT ` (u Bt T-u) <: T shows
CT , hf , the (Env this) ` addr : T

proof −
from this-notnull addre-addr-T-u this-addre-uC addre-notnull

have adapt-f-vpT :CT ,hf ,the (Env this) ` addr : (u Bt T-u)
by(erule-tac u-Te=u and C-te=C in adapt-from-vpT ,simp-all)

from this-notnull adapt-f-vpT T-u-oo-Tu show ?thesis
by(simp-all add :adapt-subtype)

qed

The next part will be the proof to adapt a type to a viewpoint.
To prove that the following lemma is required as a runtime-subtyping relation:

4 Isabelle Formalization 72

lemma adapt-to-dynType:
∧

addr . [[
owner hf paddr 6=AnyAd ;paddr 6=AnyAd ;
CT ,hf ,paddr ` addr : sObject u-Te C-te;addr 6=NullP ;

notUnknown (u-Te Bt T-u)
]]

=⇒ CT ` dynType hf paddr (u-Te Bt T-u) <:r dynType hf addr T-u
— The proof does an induction over the type T-u
proof (induct T-u)
— The rest can be done by an induction over the universe modifiers together with the limitations from the
notUnknown function.
qed

Using the previous information all together, the adaption to a viewpoint can be proven very simply.
As a result the following lemma can be used further on:
lemma adapt-to-vp:[[
CT , hf , paddr ` obaddr : sObject u-Te C-Te;
CT , hf , paddr ` addr :(u-Te Bt Ti);
owner hf paddr 6= AnyAd ;
paddr 6=AnyAd ;
obaddr 6= NullP ;
T-e=sObject u-Te C-T ;
obaddr 6=AnyAd ;
notUnknown (u-Te Bt Ti)]]

=⇒ CT , hf , obaddr ` addr : Ti

At last the same lemma will be provided for lists of addresses, which is required in the case of
method invocation for the adaption of the parameters.
lemma adapt-to-vps:

∧
Ts-s Tsu. [[

obaddr 6=AnyAd ;
owner hf paddr 6=AnyAd ;
paddr 6=AnyAd ;
T-e1=sObject u-Te C-Te;
CT , hf , paddr ` obaddr : T-e1 ;
CT , hf , paddr `+ addrs : Ts-s;
∀ i <length Tsu. (utOM T-e1 Bt Tsu!i)=Ts-s!i ;
obaddr 6= NullP ;
length addrs=length Tsu;
∀ x ∈ set Ts-s . notUnknown(x)]]

=⇒ CT , hf , obaddr `+ addrs : Tsu

end
theory typesafety imports bigstep topologicalproofs begin

ML〈〈
Unify .search-bound := 40 ;
Unify .trace-bound := 40 ;
〉〉

In the previous theory files all the information required to prove the typesafety is specified. Together
with the proofs about the topology now the type preservation can be proven: To apply the induction
rule derived from the bigstep semantics, the type preservation has to have a special form. The bigstep
itself will be used as the only direct assumption. From this assumption it can be concluded that with
the declared preconditions for the welltyping the type preservation can be shown:

As the bigstep semantics has to handle single expressions as well as lists of expressions, both cases
have to be proven together.

73 4.2 Formalization

lemma shows bigstep-well-typingX :
((CT ` h, rEnv , e h3 , addr)
=⇒ (

∧
T sEnv . [[(CT , h w` rEnv);

(CT , sEnv ` e : T) ;
(CT , h ` rEnv : sEnv)]]

=⇒ (CT , h3 w` rEnv) ∧
CT , h3 , the (rEnv this) ` addr : T))

and bigsteps-well-typingX :
(CT ` h, rEnv , es + h2 , addrs
=⇒ (

∧
Ts sEnv . [[(CT , h w` rEnv);

(CT , sEnv `+ es : Ts) ;
(CT , h ` rEnv : sEnv)]]

=⇒ ((CT , h2 w` rEnv) ∧
CT , h2 , the (rEnv this) `+ addrs : Ts)))

— The proof will run with an induction over the bigstep semantic:
proof (induct rule:bigstep-bigsteps-induct)
— The
case (os-nil CT Env h Ts sEnv)
— is simple to show, as it does not change the heap and just result in an empty list of addresses. next
case (os-cons CT Env addr addrs e0 es h h1 hf Ts sEnv) thus ?case proof −
— To prove the type preservation for a list of expressions sound is not too complicated either, as the required
information will be generated in most parts by the induction step . qed

next
— As Null is a very simple expression, there has not much to be done to prove it typesafe.
case (os-null CT Env h T sEnv) thus ?case

by (simp add :Tcompnull)
next

— The last really simple case is the expression to read a variable from the environment.
case (os-var CT Env addr h vn Ts sEnv) thus ?case done

next
— It is not too complicated to prove the cast expression to preserve the type, as there is a typecheck done

during the bigstep.
case (os-cast CT Env Tc addr e h hf ThisFields ThisType ThisAddr T sEnv)

— The next cases are much more difficult to prove.
The first one shows, that a new object on the heap keeps all the information.
case (os-new C CDef CT Env addr h hf mType myFields thisAddr ThisOb EmptyField u NewType sEnv) thus
?case proof −

— The first step is to show that the created object will match to the statically defined type.
from x15 NWisnC x12 x11 hext x6 x15 addrnot0 env-this hf-this addrnotthis NewPeer NewRep x13 def-addr

have typeswell :CT , hf , the (Env this) ` addr : NewType
— Afterwards it has to be shown that the new address is welltyped in the resulting heap.

from x15 x2 h-this x6 x6a x1 def-addr x8 x9 x10 x12 addrnot0 addrnotany2 OMisPeerorRep NewRep NewPeer
NewAny addrnotthis addrnotany hf-addr hf-this h-this t-resolv have wta-addr : CT ,hf a` addr apply −

— With all those information the type preservation in the case of the new expression can be shown.
qed

next
— In the next step the case of fieldreads will be proven sound.
case (os-read CT Env To addr addr-e e eField f h hf T sEnv) thus ?case proof −
— Using the induction lemma will result in the following assumptions for the proofs:

have x1 :CT ` h, Env , e hf , addr-e
and x2 :

∧
sEnv T .

[[CT , h w` Env ; CT ,sEnv ` e : T ; CT , h ` Env : sEnv]]
=⇒ CT , hf w` Env ∧ CT , hf , the (Env this) ` addr-e : T

and x10 :hf addr-e = Some(oObject To eField)

4 Isabelle Formalization 74

and x5 :eField f = Some addr
and x6 :CT , h w` Env
and x7 :CT , sEnv ` FieldProj e f : T
and x8 :CT , h ` Env : sEnv .

— The assumption x7 has to be unfolded.
from T-xtemp2 have T-x :CT , sEnv ` e : sObject u C and T-u-def :ftype(CT , C , f) = Some T-u

and T-OM-def :(CT ` ((u) Bt T-u) <: T)
by auto

— It can by seen easily from the assumptions that the resulting heap is welltyped.
from T-x x6 x8 x2 have wte-hf :CT , hf w` Env and addr-e-T :CT , hf , the (Env this) ` addr-e : sObject

u C
by (simp, blast)
— The next step is to prove the type of the addr sound:

from x10 wte-hf T-u-def addr-e-T addr-e-typed x3 x4 x5 have addr-e-addr-T-u:CT , hf , addr-e ` addr :
T-u

— Using the viewpoint adaption together with the unfolded typing rule, the type of the result addr from
the viewpoint of this can be shown.

from addr-e-addr-T-u T-u-def addr-e-T x3 T-OM-def x6 have addr-T :CT , hf , the (Env this) ` addr : T
— The welltypedness of the resulting heap together with the type of the result address will show the

case.
from wte-hf addr-T show ?case by simp
qed
next

— In some parts the proof for the fieldupdate follows the same way as the fieldread, but not always. Where
in the fieldread the complicated part was to proof the result address being a subtype of the expected type, the
difficulty in the case of the fieldupdate is to show that the heap is well typed.
case (os-upd CT Env Fields addr e1 e2 f h h1 h2 hf obType obaddr T sEnv) thus ?case proof −

— Again a lot of assumptions are generated from the induction, which can be used for the proof later on:
have x1 :CT ` h, Env , e1 h1 , obaddr
and x2 :

∧
T . [[CT , h w` Env ; CT , sEnv ` e1 : T ; CT , h ` Env : sEnv]]

=⇒ CT , h1 w` Env ∧ CT , h1 , the (Env this) ` obaddr : T
and x3 :CT ` h1 , Env , e2 h2 , addr
and x4 :

∧
T . [[CT ,h1 w` Env ; CT , sEnv ` e2 : T ; CT , h1 ` Env : sEnv]]

=⇒ CT , h2 w` Env ∧ CT , h2 , the (Env this) ` addr : T
and x6 :h2 obaddr = Some (oObject obType Fields)
and x8 :h2 (obaddr 7→ (oObject obType (Fields(f 7→ addr)))) = hf
and x9 :CT , h w` Env
and x10 :CT , sEnv ` FieldUpdate e1 f e2 : T
and x11 :CT , h ` Env : sEnv .

— After the assumptions are applied to the two bigsteps to use the resulting information, the type of
obaddr can be shown in the resulting heap hf.

from obaddr-T1 wte-h1 wte-h2 x1 x3 x6 x8 x5 have hf-obaddr-T1 :CT , hf , the (Env this) ` obaddr :
sObject u-Te C-Te
— Now that information can be used to easily show the type of addr,

from x6 wte-h2 x8 h2-addr-T hext-hf have hf-addr-T-x :CT , hf , the (Env this) ` addr : u-Te Bt Ti
— which will result in the type preservation

from T-unfold hf-addr-T-x wte-h2 x8 x10 hf-addr-T have hf-addr-T2 :CT , hf , the (Env this) ` addr : T
— by the use of some transformations.

— As the object at address obaddr is updated, the last step to do is to show that it is a welltyped address
from hext-hf T-unfold ob-not-any hf-ob-addr-Ti hf-obaddr-T1 wta-h2-obaddr wte-h2 x8 x6 have wta-hf-obaddr :CT ,

hf a` obaddr
— as that information is required to show the resulting environment welltyped:
from wta-hf-obaddr wte-h2 x8 x5 hext ob-not-any have wte-hf :CT , hf w` Env next

— Besides the expressions for arrays, the last one and to prove the most difficult one is the method invocation.

75 4.2 Formalization

case (os-invk CT Env addr addrs e e1 elist fs h h1 h2 hf m mDef newEnv paddr rt vDefs xs T sEnv) thus
?case proof −
— Using the induction rule will result in a lot of new assumptions

have x1 :CT ` h, Env , e h1 , paddr
and x2 :

∧
sEnv T . [[CT , h w` Env ; CT , sEnv ` e : T ; CT , h ` Env : sEnv]]

=⇒ CT , h1 w` Env ∧ CT , h1 , the (Env this) ` paddr : T
and x3 :CT ` h1 , Env , elist + h2 , addrs
and x4 :

∧
sEnv Ts. [[CT , h1 w` Env ; length elist = length Ts;

length Ts = length addrs; CT , sEnv `+ elist : Ts;
CT , h1 ` Env : sEnv]]

=⇒ CT , h2 w` Env ∧ CT , h2 , the (Env this) `+ addrs : Ts
and x5 :paddr 6= NullP
and x6 :mdata(CT , aClass h2 paddr , m)=Some(mDef)
and x6a:mBody mDef =e1
and x6b:mParams mDef =vDefs
and x6c:varDefs-names vDefs=xs
and x7 :[xs [7→] addrs, this 7→ paddr] = newEnv
and x8 :CT ` h2 , newEnv , e1 hf , addr
and x9 :

∧
sEnv T . [[CT , h2 w` newEnv ; CT , sEnv ` e1 : T ;

CT , h2 ` newEnv : sEnv]]
=⇒ CT , hf w` newEnv ∧

CT , hf , the (newEnv this) ` addr : T
and x10 :CT , h w` Env
and x11 :CT , sEnv ` MethodInvk e m elist : T
and x12 :CT , h ` Env : sEnv
and x13 :h2 paddr=Some (oObject rt fs) . — which have to be unfolded partially:

from Temp-unfold obtain mDefa u C w Tsu Tu Ts-s where T-unfoldu:(CT , sEnv ` e : sObject u C) ∧
mdata(CT , C , m)=Some(mDefa) ∧ w=mPure mDefa ∧ Tsu=varDefs-types (mParams mDefa) ∧ Tu=mReturn
mDefa ∧ (CT , sEnv `+ elist : Ts-s) ∧

(CT ` (u Bt Tu) <: T) ∧ (map (λtsd . u Bt tsd) Tsu=Ts-s) ∧ (∀ t ∈ (set Ts-s).notUnknown(t))
— Besides some trivial proofs, the first information that has to be shown is the welltyping of the created

environment,
from mapSomeD ftypesOK-SomeD wte-h2 x7 x5 x3 x13 h2-addrs-Ts h1-paddr-T-e have wte-h2-new :CT , h2

w` newEnv — and the type of the address paddr:
from x13 wte-h1 h1-paddr-T-e x3 have h2-paddr-T-e:CT , h2 , the (Env this) ` paddr : sObject u C
— Using the unfolding and the adaption lemmas it is a non trivial step to prove that the created runtime

environment fits to the environment required for the method call:
from x13 distinct-xs newsEnv-def3 wte-h2-new wte-h2 h2-addrs-Ts x7 h2-paddr-T-e T-unfold x5 Tsu-Tss

length-addrs-Ts length-elist-addrs length-xs-addrs have newsEnv-def :CT , h2 ` newEnv : newsEnv
— As a result the static type of the methods expression can be shown
from distinct-xs newsEnv-def x6 x6a x6b x6c T-unfold h2-paddr-T-e wte-h2 x13 Tsu-Tss newsEnv-def3 x5

have e1-Tu:CT , newsEnv ` e1 : Tu
— which will be used to show the type of the resulting address:
from hf-paddr-T-e wte-h1 hf-addr-T-new x5 x7 T-unfold x3 x8 have hf-addr-T :CT , hf , the (Env this) `

addr : T
— At last with all those information it is not too difficult to prove the resulting environment welltyped,

from wte-hf-new wte-h2 x8 have wte-hf :CT , hf w` Env — as that could be used to show the whole case
from wte-hf hf-addr-T show ?case by simp
qed
next

— Now, as all the expression types for normal objects have been shown, the remaining three cases introduced
for arrays have to be proven typesafe.

To prove a newly created array typesafe can be done in the same way as a new normal object:
case (os-newarray CT Env Tx addr h hf mType myArray myself myselfo n u Tarray sEnv) thus ?case proof

4 Isabelle Formalization 76

− — Using the assumptions generated by the induction it is not too complicated to show
from wte-hf res2 show CT , hf w` Env ∧ CT , hf , the (Env this) ` addr : Tarray by simp
qed
next

— As the new alternative definition of arrays does not require a viewpoint adaption in contrast to the old
declaration, there is no adaption step required, which makes the proofs much simpler.
case (os-arrayread CT Env Ta addr addr-e e eField h hf n T sEnv) thus ?case proof −

— Using the assumptions resulting from the induction it is not too tricky to show the case typesafe:
from wte-hf addr-Ti x7-TiTa x7-Tithis show CT , hf w` Env ∧ CT , hf , the (Env this) ` addr : T

next
— At last the update of an array has to be shown. Because a runtime typecheck is done in the bigstep

semantics, it is not too complicated to prove that again:
case (os-arrayupd CT Env Fields addr e1 e2 h h1 h2 hf n obaddr own rT T sEnv) thus ?case proof −

— Using the assumptions it takes only a few steps to show the intermediate heap is welltyped and the
type of the address is typesafe.

from h1-env wte-h1 e2-T x4 have wte-h2 :CT , h2 w` Env and addr-Ti :CT , h2 , the (Env this) ` addr
: Ti by auto

— Using that information it is easy to show the resulting heap welltyped,
from hf-wta-obaddr x6 x8 wte-h2 have wte-hf :CT , hf w` Env
— and the resulting address preserving the type:
from hf-addr-Ti Ti-T wte-hf have hf-addr-T : CT , hf , the (Env this) ` addr : T

qed

Now, having the type preservation proven with this strange looking lemma, it can be transformed
into a nicer representation:

lemma shows bigstep-well-typing :
[[CT ` h, rEnv , e hf , addr ;
CT , h w` rEnv ;
CT , sEnv ` e : T ;
CT , h ` rEnv : sEnv]]

=⇒ CT , hf w` rEnv ∧
CT , hf , the (rEnv this) ` addr : T

by (simp add : bigstep-well-typingX)

lemma shows bigsteps-well-typing :
[[CT ` h, rEnv , es + h2 , addrs;
CT , h w` rEnv ;
CT , sEnv `+ es : Ts;
CT , h ` rEnv : sEnv]]

=⇒ CT , h2 w` rEnv ∧
CT , h2 , the (rEnv this) `+ addrs : Ts

by (simp add :bigsteps-well-typingX)

end

theory enctyping imports statichelper exptyping

begin

77 4.2 Formalization

4.2.13 Encapsulating typing rules

Two sorts of typing rules are required to encapsulate expressions: one sort for pure expressions and
one for encapsulated expressions will be defined.

The goal of the pure typing rules is to limit the expressions to such ones that do not modify the
heap.

This can be done by forbidding field and array updates and only by allowing to call pure methods.
nonpure methods are not allowed to call.

consts
puretyping :: (classTable ∗ staticEnv ∗ exp) set
puretypings :: (classTable ∗ staticEnv ∗ exp list) set

syntax
-ptyping :: [classTable, staticEnv , exp list] ⇒ bool (-, - p` - [80 ,80 ,80] 80)
-ptypings :: [classTable, staticEnv , exp list] ⇒ bool (-, - p`+ - [80 ,80 ,80] 80)

translations
CT , Γ p` e
 (CT , Γ, e) ∈ puretyping
CT , Γ p`+ es
 (CT , Γ, es) ∈ puretypings

inductive puretypings puretyping
intros
ts-nil : CT ,Γ p`+ []

ts-cons :
[[CT , Γ p` e0 ; CT , Γ p`+ es]]

=⇒ CT , Γ p`+ (e0 # es)

t-var :
CT , Γ p` Var x

t-null :
CT , Γ p` Null

t-fieldProj :
[[CT , Γ p` e0]]
=⇒ CT , Γ p` FieldProj e0 f

t-invk :
[[CT , Γ ` e0 : (sObject u C);

mdata(CT , C , m)=Some(mDef);
mPure mDef =Pure;

CT , Γ p` e0 ;
CT , Γ p`+ es]]

=⇒ CT , Γ p` MethodInvk e0 m es

t-new :
CT , Γ p` New u C

t-newarray :CT , Γ p` NewArray u T n
t-cast :

[[CT , Γ p` e]]
=⇒ CT , Γ p` Cast T e

t-arrayread :
[[CT , Γ p` e0]]
=⇒ CT , Γ p` ArrayProj e0 n

4 Isabelle Formalization 78

In comparison to the pure definition, an encapsulated expression allows to update fields and arrays.
This update is only allowed if the universe type of the receiver object is either Peer or Rep.

consts
enctyping :: (classTable ∗ staticEnv ∗ exp) set
enctypings :: (classTable ∗ staticEnv ∗ exp list) set

syntax
-etyping :: [classTable, staticEnv , exp list] ⇒ bool (-, - e` - [80 ,80 ,80] 80)
-etypings :: [classTable, staticEnv , exp list] ⇒ bool (-, - e`+ - [80 ,80 ,80] 80)

translations
CT , Γ e` e
 (CT , Γ, e) ∈ enctyping
CT , Γ e`+ es
 (CT , Γ, es) ∈ enctypings

inductive enctypings enctyping
intros
e-ts-nil : CT , Γ e`+ []

e-ts-cons :
[[CT , Γ e` e0 ; CT , Γ e`+ es]]

=⇒ CT , Γ e`+ (e0 # es)

e-t-var :
CT , Γ e` Var x

e-t-null :
CT , Γ e` Null

e-t-fieldProj :
[[CT , Γ e` e0]]
=⇒ CT , Γ e` FieldProj e0 f

e-t-fieldUpdate :
[[CT , Γ e` e0 ;

CT , Γ ` e0 : sObject u C ;
u=Peer ∨ u=Rep;
CT , Γ e` e1]]

=⇒ CT , Γ e` FieldUpdate e0 f e1

e-t-invk :
[[CT , Γ ` e0 : (sObject u C);

mdata(CT , C , m)=Some(mDef);
w=mPure mDef ;

w=Pure ∨ u=Peer ∨ u=Rep;
CT , Γ e` e0 ;
CT , Γ e`+ es]]

=⇒ CT , Γ e` MethodInvk e0 m es

e-t-new :
CT , Γ e` New u C

e-t-newarray :
CT , Γ e` NewArray u T n

e-t-cast :
[[CT , Γ e` e]]
=⇒ CT , Γ e` Cast T e

e-t-arrayread :
[[CT , Γ e` e0]]

79 4.2 Formalization

=⇒ CT , Γ e` ArrayProj e0 n
e-t-arrayupdate :

[[CT , Γ e` e0 ;
CT , Γ ` e0 : sArray u T ;
u=Peer ∨ u=Rep;
CT , Γ e` e1]]

=⇒ CT , Γ e` ArrayUpdate e0 n e1

As purity of a method is defined in the classtable, there have to be some definitions what an
encapsulated method is:

consts method-typing-enc :: (classTable ∗ methodDef ∗ className) set
syntax
-method-typing-enc :: [classTable, className,methodDef] ⇒ bool (-, - m`e - [80 ,80 ,80] 80)

translations
CT , C m`e md
 (CT , md , C) ∈ method-typing-enc

inductive method-typing-enc
intros
m-typing-enc:

[[CT (C) = Some(CDef);
cName CDef = C ;
mBody mDef = e;
mPure mDef = w ;
mParams mDef =vDefs;
w=NonPure ∨ (∀ vDef ∈ set vDefs . (utOM (vdType vDef)=Any));
varDefs-types vDefs = vDefsT ;
varDefs-names vDefs = vDefsN ;
Γ = (map-upds empty vDefsN vDefsT)(this 7→ (sObject This C));
w=Pure −→CT , Γ p` e;
w=NonPure −→ CT , Γ e` e]]

=⇒ CT , C m`e mDef

Also the encapsulation of a class has to be specified.

consts class-typing-enc :: (classTable ∗ classDef) set
syntax
-class-typing-enc :: [classTable, classDef] ⇒ bool (- e` - [80 ,80] 80)

translations
CT e` CDef
 (CT , CDef) ∈ class-typing-enc

inductive class-typing-enc
intros
t-class:

[[cName cDef = C ;
cSuper cDef = D ;
cMethods cDef =mDefs;
cFields cDef = fDefs;
∀ m mDefD . (mdata(CT , D , m)=Some(mDefD)−→ (∃ mDefC . (mdata(CT , C , m)=Some(mDefC) ∧

CT , C m`e mDefC)));
∀ m ∈ (set mDefs). CT , C m`e m]]

=⇒ CT e` cDef

At last the encapsulation of a classtable will be defined.

consts ct-typing-enc :: classTable set
syntax
-ct-typing-enc :: classTable ⇒ bool (e` - 80)

translations

4 Isabelle Formalization 80

e` CT
 CT ∈ ct-typing-enc
inductive ct-typing-enc
intros
ct-all-ok :

[[∀C CDef . CT (C) = Some(CDef) −→ (CT e` CDef)]]
=⇒ e` CT

end

theory ownerasmodifier imports typesafety enctyping begin

4.2.14 Owner as modifier property

Like already seen in the proof to show the typesystem typesafe, there has to be used an alternative
view on the lemmas.

Before proing the owner as modifier property, it has to be shown that pure expressions do not
modify existing objects in the heap.

lemma shows bigstep-pureX :
((CT ` h, rEnv , e h3 , addr) =⇒ (

∧
sEnv .

[[CT , sEnv p` e;
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv ;
∃ T . CT , sEnv ` e:T]]

=⇒ (∀ a x . h a=Some(x) −→ (h a =h3 a))))
and bigsteps-pureX :

(CT ` h, rEnv , es + h2 , addrs =⇒ (
∧

sEnv .
[[∀ e ∈ set es. (CT , sEnv p` e ∧ (∃ T . CT , sEnv ` e : T));
e` CT ;
CT , h w` rEnv ;
CT ,h ` rEnv : sEnv]]

=⇒ (∀ a x . h a=Some(x) −→ (h a=h2 a))))
— The proof will run by induction over the bigstep semantics.
proof (induct rule:bigstep-bigsteps-induct)
— Most of the cases are very simple to prove. Only to show the purity for pure methods that are called is not
as simple as one might think.
case (os-invk CT Env addr addrs e e1 elist fs h h1 h2 hf m mDef newEnv paddr rt vDefs xs sEnv) thus ?case
proof −
— Using the induction will result in a lot of assumptions:

have x1 :CT ` h, Env , e h1 , paddr
and x2 :

∧
sEnv . [[CT , sEnv p` e; e` CT ; CT , h w` Env ; CT , h ` Env : sEnv ; ∃ T . CT , sEnv ` e : T]]

=⇒ ∀ a x . h a = Some x −→ h a = h1 a
and x3 :CT ` h1 , Env , elist + h2 , addrs
and x4 :

∧
sEnv . [[∀ e∈set elist . (CT , sEnv p` e ∧ (∃ T . (CT , sEnv ` e : T))) ; e` CT ; CT , h1 w` Env ;

CT , h1 ` Env : sEnv]]
=⇒ ∀ a x . h1 a = Some x −→ h1 a = h2 a

and x5 :paddr 6= NullP
and x6 :mdata(CT , aClass h2 paddr , m)=Some mDef
and x6a:mBody mDef =e1
and x6b:mParams mDef =vDefs
and x6c:varDefs-names vDefs =xs
and x7 :[xs [7→] addrs, this 7→ paddr] = newEnv

81 4.2 Formalization

and x8 :CT ` h2 , newEnv , e1 hf , addr
and x9 :

∧
sEnv . [[CT , sEnv p` e1 ; e` CT ; CT , h2 w` newEnv ; CT , h2 ` newEnv : sEnv ; ∃ T . CT ,

sEnv ` e1 : T]]
=⇒ ∀ a x . h2 a = Some x −→ h2 a = hf a

and x10 :CT , sEnv p` MethodInvk e m elist
and x11 :e` CT
and x12 :CT , h w` Env
and x13 :CT , h ` Env : sEnv
and x14 :∃T . CT , sEnv ` MethodInvk e m elist : T
and x15 :h2 paddr=Some(oObject rt fs) .

— Using these assumptions it is simple to show the purity property for the bigstep from h to h1
from x2 x10-unfold x11 x12 x13 have x2-res:∀ a x . h a = Some x −→ h a = h1 a by blast
— and from h1 to h2

from x4 x11 h1-paddr-T-e elist-enc h1-sEnv have x4-res:∀ a x . h1 a = Some x −→ h1 a = h2 a by auto
— With the help of unfolding rules and some proofs to show that the created runtime environments fits the

static environment, it can be shown that the objects in h2 stay the same in hf:
from mdefencopen x9 x11 h2-wte-newenv newEnvtonewsEnv mdefamdef mdefUnfold have x9-res:∀ a x . h2 a
= Some x −→ h2 a = hf a

— Those three goals will lead to the final information that a method call does not modify the heap.
from x2-res x4-res x9-res have x-res:∀ a x . h a=Some x −→ h a = hf a qed

To give a more readable view of the lemma a transformation will be done:

lemma shows bigstep-pure:
[[CT ` h, rEnv , e hf , addr ;
CT , sEnv p` e;
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv ;
∃ T . CT , sEnv ` e : T]]

=⇒ ∀ a x . (h a=Some(x) −→ h a=hf a)
by (rule bigstep-pureX , simp-all)

lemma shows bisteps-pure:
[[CT ` h,rEnv ,es + hf ,addrs;
∀ e ∈ set es. (CT , sEnv p` e ∧ (∃ T . CT ,sEnv ` e : T));
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv]]

=⇒ ∀ a x . (h a=Some(x) −→ h a=hf a)
by (rule bigsteps-pureX , simp-all)

Having that information about purity, the owner-as-modifier property can be shown.

lemma shows bigstep-owner-as-modifierX :
((CT ` h, rEnv , e h3 , addr) =⇒ (

∧
sEnv .

[[CT , sEnv e` e;
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv ;
∃ T . CT , sEnv ` e:T]]

=⇒ ((∀ a x . h a=Some(x) −→ (h a=h3 a) ∨ (owner-is-this h rEnv a)))))
and bigsteps-owner-as-modifierX :

(CT ` h, rEnv , es + h2 , addrs =⇒ (
∧

sEnv .
[[∀ e ∈ set es. (CT , sEnv e` e ∧ (∃ T . CT ,sEnv ` e : T));
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv]]

4 Isabelle Formalization 82

=⇒ ((∀ a x . h a=Some(x) −→ (h a=h2 a ∨ (owner-is-this h rEnv a))))))
— As all the proofs before, it will run with an induction over the bigstep semantics.
proof (induct rule:bigstep-bigsteps-induct)
— To show the case
case (os-upd CT Env Fields addr e1 e2 f h h1 h2 hf oa obaddr sEnv) thus ?case
— is not too complicated, and will be left out here.
— The case for the method call can be done in nearly the same way as for the purity proof.
case (os-invk CT Env addr addrs e e1 elist fs h h1 h2 hf m mDef newEnv paddr rt vDefs xs sEnv) thus ?case
proof −
— The main difference is that there has to be a distinction between either being owned by the current viewpoint
or keeping the heap untouched.
from x2 x10-unfold x11 x12 x13 have x2-res:∀ a x . h a = Some x −→ h a = h1 a ∨ owner-is-this h Env a
by blast — At last there has to be done a distinction between a nonpure method
from mdefencopenpure mdefencopennpure x9 x11 h2-wte-newenv newEnvtonewsEnv mdefUnfold x8 have
x9-resnp:mPure mDef = NonPure =⇒ ∀ a x . h2 a = Some x −→ h2 a = hf a ∨ owner-is-this h2 newEnv a
— and a pure method:
from mdefencopenpure mdefencopennpure x9 x11 h2-wte-newenv newEnvtonewsEnv mdefUnfold x8 have
x9-resp:mPure mDef = Pure =⇒ ∀ a x . h2 a = Some x −→ h2 a = hf a
— To show that an update of an array element does not destroy the owner as modifier property
case (os-arrayupd CT Env Fields addr e1 e2 h h1 h2 hf n obaddr own rT sEnv) thus ?case proof −

— the most difficult part is to show that the array is owned by the current viewpoint:
from wte-h1 wte-h2 x3 x5 uX-def x6 have owner-is-this:owner-is-this h2 Env obaddr
qed

At last a more readable presentation of the owner as modifier property will be proven.

lemma shows bigstep-owner-as-modifier :
[[CT ` h, rEnv , e hf , addr ;
CT , sEnv e` e;
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv ;
∃ T . CT , sEnv ` e:T]]

=⇒ (∀ a x . h(a)=Some(x) −→ (h a=hf a ∨ ((a, owner h (the (rEnv this))) ∈ (sowner h)ˆ+)))
apply (drule bigstep-owner-as-modifierX ,simp-all add :owner-is-this-def)
apply clarify
apply (erule-tac x=a in allE ,erule-tac x=x in allE ,clarsimp)
done

lemma shows bisteps-owner-as-modifier :
[[CT ` h, rEnv , es + hf , addrs;
∀ e ∈ set es. (CT , sEnv e` e ∧ (∃ T . CT ,sEnv ` e : T));
e` CT ;
CT , h w` rEnv ;
CT , h ` rEnv : sEnv]]

=⇒ ((∀ a x . h a=Some(x) −→ (h a=hf a ∨ ((a, owner h (the (rEnv this))) ∈ (sowner h)ˆ+))))
apply (drule bigsteps-owner-as-modifierX ,simp-all add :owner-is-this-def)
apply clarify
apply (erule-tac x=a in allE ,erule-tac x=x in allE ,clarsimp)
done

end

83 4.3 Problems and the resolution

4.3 Problems and the resolution

During the formalization using Isabelle/HOL, there have been different problems. To make life more
easy for someone extending the formalization, and to understand why some things have been done
in a specific way, the following aspects should show the biggest problems and how they have been
resolved:

• Subsumption rule: As the subsumption rule in typing definition gives you more than one
possible type for most of the expressions , the automatically generated unfolding rules in Is-
abelle/HOL could not be used. Instead there had to be defined an unfolding lemma, which was
a little bit tricky to prove. The unfolding lemma is used to unfold a typing expression to get
the different parts of that typing expression form the definition of the typing. For example in
the case of an environment read ”CT,Γs ` V ar v : T” will result in a lookup for the type of v
in the static environment ”Γs(v) = T ′” and a subtyping relation from T ′ to T ”CT ` T ′ <: T”.

• Induction over the semantics: To apply the induction rules that are generated by the inductive
definition of the bigstep semantics, was complicated. The lemmas had to be written down in a
special way to apply the induction on them. With the result, a better looking lemma can be
shown easily.

• Unification of variables: The lemmas about type safety and the owner as modifier property
have quite a lot of variables. Together with the induction rule the quantity exceeded the
default limitations for the unification. The internal limits had to be raised to a higher number.
Afterwards the unification did work.

• Type dynamization: With the differentiation between topological and encapsulation typesys-
tem, and the possibility of creating objects with the anyu modifier, to be able to do a runtime
subtyping there has to be differentiated between anya and the anyownera. Without that dif-
ferentiation there have been cases where it was not possible to differentiate between peer and
anyu during the proofs of viewpoint adaptation.

4 Isabelle Formalization 84

5 Conclusion

The goal of this diploma thesis was to formalize the Universe Type System with the help of Is-
abelle/HOL. That was done successfully.

5.1 Results

Looking at the formalization of the Universe Type System the following conclusions can be drawn:

• It is possible to split up the type system into two parts: a topological one and an encapsulation
one. With the topological type system the type safety can be shown and most parts of the
formalization are done. The encapsulation limitations are required only to limit the type system
in a way, to be able to show the owner-as-modifier property.

• The formalization confirms the proofs done by pen and paper. There has been found only a
small imprecision during the definition of the runtime subtyping rules, which has been resolved
by the differentiation of anya and anyownera.

• The new specification of arrays, and how they are handled, has been shown sound with respect
to the typesystem.

At last some figures about the amount of the formalization:

• The formalization consists of about 6700 lines.

• 180 lemmas have been proven.

• The whole formalization takes about eight and a half minutes to proof on a macbook.

5.2 Future work

This formalization can be a good basis to settle other parts on top of it or extend it:

• One of the interesting things would be the extension with generic universe types. As generics are
one of the current research areas surrounding universes, a computer proved formalization of the
type system would be quite helpful. A useful preparation for generics was the implementation
of arrays.

• As the formalization was done with a very small subset of Java, it would be interesting to
extend that subset. As there already exists a formalization of a huge part of Java called Jinja,
a good starting point would be merging both formalizations.

• At last there are some properties not formalized in this paper. Extending it with a small
step semantics and a proof of progress would finalize the type safety proof. Besides the proof
of progress, using the encapsulation type system it would be great to formalize the framing
conditions that result from the type system.

85

5 Conclusion 86

A Appendix: Viewpoint adaptation of the
ownership modifier

Because the ownership modifier depends on the viewpoint, when changing the viewpoint the owner-
ship modifier of a variable has to be adapted to the new viewpoint.

There are alternative possibilities to do the viewpoint adaptation.
Two different ways are used in the paper about generic universe types and the paper about universe
java. To be sure both of them do the same, they are compared in the next section. As result a new
infix functionBwill be defined, combining the two functions into one single function using the OM
unknown.

A.1 Existing Functions in GUT

The B Function It takes two arguments u and u’ with u’ the ownership part of a field in the
viewpoint of a variable with the ownership part u.

TheB function has the signature OM x OM -> OM
uBu’ = u”
uBu’ peer rep anyu

thisu peer rep anyu

peer peer anyu anyu

rep rep anyu anyu

anyu anyu anyu anyu

Note: On the right side of the B function there can not be thisu because thisu is not allowed
in field or variable definitions.

TheB function is used in the following inference rules and does the following things there:

1. WFM-1
Check if a pure method has only arguments of type anyu.

2. WFT-2
Used for the type check of the generic types , so not needed for a type system without generics

3. GT-READ
Adapt the OM of field to the local view o.f => oB f

4. GT-Upd
Adapt type of field to local view o.f => oB f besides this the right handed expression has to
have the OM of f adapted to the local viewpoint.

5. GT-Invk
Adapt argument OM to local view and check if they fit to the expression result types.
Adapt return value OM to local view.

87

A Appendix: Viewpoint adaptation of the ownership modifier 88

.
.
.

The RP function It takes two arguments u and u’ with u’ the ownership part of a field in the
viewpoint of a variable with the ownership part u.

The rp function has the signature OM x OM -> bool
rp(u,u’)=bool
rp(o,o’) peer rep anyu

thisu true true true
peer true false true
rep true false true
anyu true false true

Note: The real rp function is a little bit different and accepts a list of types as input.
Note: the real rp functions checks for every type in the list if it evaluates to true.

The rp() function is used in:

1. GT-Upd
Check if the OM of the variable has the correct OM in the view of the receiving variable e.g.
o1.f=o2 here f has a OM depending on the view of o1. What has to be done is to transform o2
into the view of o1 and check if it is a subtype of f’s type.

2. GT-Invk
Check if the arguments of the method m have the correct OM in the view of the receiving
Variable o1.
E.g. o1.m(o2) here o1 has a method m, where its first argument has an ownership modifier
depending on the view of o1. What has to be done is to transform o2 into the view of o1 and
check if it is a subtype of the type of the parameter.

A.2 UJ

The lookup tables for the ⊕ and 	 operators can be found in the UJ paper.

What does the ⊕ operator?

1. Field e.f
Adapt the type of f to the local view.

2. Call e.m(x)
Adapt the return value of m to the local view

3. tfield e.f
see ”Field e.f”

4. tcall e.m(x)
see ”Call e.m(x)”

89 A.3 Comparison of the methods in both papers

5. tframe
Adapt the return value when returning from a call (not needed with big step semantics so far
I can see).

What does the 	 operator

1. Assign o1.f=o2
Adapt the type of o2 to the viewpoint of o1 and check if it is a subtype and return this value.
Besides this, the return value has the type of o2.

2. Call o1.m(o2)
note: o1 has a method m with an argument of type t Adapt the OM of o2 to the viewpoint of
o1. Then it is checked if the adapted type is a subtype of the type t.

3. tassign
see ”Assign”

4. tcall
see ”Call”

A.3 Comparison of the methods in both papers

There are five positions where the OM of a variable has to be adapted because of the change of
viewpoint:
a) Field Read
b) Return Values
c) Field Updates
d) Method arguments of non-pure functions
e) Method arguments of pure functions
The field read and the return value can be analyzed together, because both of them adapt the type
of a field or variable to the current viewpoint.

The field updates and the method arguments of non-pure methods can be analyzed together, too,
because both of them adapt the type of a field or variable in the current viewpoint to the viewpoint
of the Receiving Variable.

A.3.1 Cases a and b

In both cases there is a variable o1 and a field f or a return value f which has to be adapted to the
current viewpoint. o1 has the OM u and f has the OM u’.
In the GUT paper theB function is used with uBu’ to adapt the viewpoint in the cases a and b.
In the UJ paper the ⊕ operator is used with u ⊕ u’ to adapt the viewpoint in the cases a and b.
By comparing the result table of both of them it is easy to see that both of them return the same
values when called with the same values u and u’. So it is easy to understand that both of them do
the same and are used in the cases a and b in the same way.

A.3.2 Cases c and d

In both cases there is a variable o1 a field or argument f and a variable o2 which is assigned to f.
o1 has the OM u, f has the OM u’ and o2 has the OM u”. The only difference in both cases is the

A Appendix: Viewpoint adaptation of the ownership modifier 90

handling when o1 has the OM anyu. In the case of a field update this is not allowed. In the case of
method parameters this is only allowed if the method is pure. In the case of method parameters of
non-pure methods this is not allowed.
Because there are only a limited number of OM combinations possible to adapt o2 to the viewpoint of
the Receiving Variable o1 and then to be a subtype of f, the following table shows which combinations
of u and u’ require which OM for u”.
The entries in the table FU with false value are the cases where no OM exists in the current view-
point, such that it can be adapted to the viewpoint of u and be a subtype of f. With this table the
function FU(u,u’) can be defined. To show the equality of the OM adaptation checks in both papers,
the methods in the papers are compared with the function FU(u,u’).

FU(u,u’) peer rep any
this peer rep any
peer peer false any
rep rep false any

Some notes:
As Rep variables of a Peer variable are Any variables in the current viewpoint, there exists no coun-
terpart in the current viewpoint.
As Rep variables of a Rep variable are Any variables in the current viewpoint, there exists no coun-
terpart in the current viewpoint.
As Peer variables of a Rep variable are Rep variables in the current viewpoint, the counterpart in
the current viewpoint are Rep variables.
As Peer variables of a Peer variable are Peer variables in the current viewpoint, the counterpart in
the current viewpoint are Peer variables.

In the GUT paper two things are done in cases c and d. First the rp function is used with the OM
of o1 and the type of f to test if the update is allowed. If it is allowed, then the type of f is adapted
to the current viewpoint with theB function. Those two steps together should result in using the
function FU(u,u’).
Comparing rp with FU, it can be seen that for every combination u and u’ where rp is false, FU is
false, too, and vice versa.
This means that the first step in the GUT paper can be done with both functions rp and FU. Com-
paringBwith FU in the cases where the combination of u and u’ returns an OM in the function FU,
it can be seen that both functions return the same values.
So the combination of rp andBdoes the same as the function FU in the cases c and d.

Have a look at the 	 operator in the UJ Paper: This operator adapts the OM of a variable in
the current viewpointto the viewpoint of a variable o1 (u”	 u = u’), The comparison of 	 with the
function is not as easy as in the GUT paper.

The following lookup table LT(u,u’) should help comparing them. It looks for every combination
of u and u’, in which u” is allowed such that u”	 u = u’.
With that precondition we know that u is not allowed to be of OM Any and u’ is not allowed to be
of OM This.
In those cases where no u” exists for a combination of u and u’, the lookup table should return false,
meaning this combination is not possible.

LT(u,u’) peer rep any
this peer rep any
peer peer false any
rep rep false any

91 A.3 Comparison of the methods in both papers

Because FU(u,u’)=LT(u,u’) for every combination of u and u’ both are equal. So using FU(u,u’)
results in the same checks for viewpoint adaptation as using 	. So they do the same in the context
of viewpoint adaptation checks for the cases c and d. Thus rp andBdoes the same as 	 in the cases
c and d.

A.3.3 Case e

In a pure method m every parameter has to have the OM Any. As every variable with OM t and Class
X is a subtype of a variable of OM Any and class X, there has to be done no viewpoint adaptation
checks.

A Appendix: Viewpoint adaptation of the ownership modifier 92

Bibliography

[1] D. Clarke. Object Ownership & Containment. PhD thesis, University of New South Wales, 2001.

[2] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, and P. Müller. UJ: Type Soundness
for Universe Types. In development, 2007.

[3] W. Dietl, S. Drossopoulou, and P. Müller. Formalization of Generic Universe Types. Technical
Report 532, ETH Zurich, 2006.

[4] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology
(JOT), 4(8):5–32, October 2005.

[5] J. N. Foster and D. Vytiniotis. A theory of Featherweight Java in Isabelle/HOL. In G. Klein,
T. Nipkow, and L. Paulson, editors, The Archive of Formal Proofs. http://afp.sf.net, Apr.
2006.

[6] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva Convention on the
treatment of object aliasing. OOPS Messenger, 3(2):11–16, 1992.

[7] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, 2001.

[8] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual machine
and compiler. Technical Report 0400001T.1, National ICT Australia, Sydney, Mar. 2004.

[9] P. Müller. Modular Specification and Verification of Object-Oriented Programs. PhD thesis,
FernUniversität Hagen, 2001.

[10] P. Müller. Reasoning about object structures using ownership. In B. Meyer and J. Woodcock,
editors, Verified Software: Theories, Tools, Experiments, Lecture Notes in Computer Science.
Springer-Verlag, 2007. To appear.

[11] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency control.
Technical Report 279, Fernuniversität Hagen, 2001.

[12] T. Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors, Types for
Proofs and Programs (TYPES 2002), volume 2646 of LNCS, pages 259–278. Springer, 2003.

[13] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002. http://www.in.tum.de/~nipkow/LNCS2283/.

93

http://afp.sf.net
http://www.in.tum.de/~nipkow/LNCS2283/

	Introduction
	Problems of aliasing in object orientation
	Universe Type System
	Heap structure
	Owner-as-modifier vs Owner-as-dominator
	Modifiers
	Topological vs. Encapsulation Type System

	Isabelle/HOL
	Type systems and how to prove properties of them
	Featherweight Java
	Jinja

	Overview

	Type system
	Static checking
	Syntax
	Viewpoint adaptation
	Subtyping
	Type rules
	Well-formedness rules

	Runtime model
	Heap definition
	Auxiliary functions for the runtime environment
	Well typedness of the runtime environment
	Bigstep semantics

	Topological proofs
	Correct viewpoint adaptation
	Type preservation

	Encapsulation system

	Formalization of arrays
	New definition of arrays
	Static checking
	Syntax
	Viewpoint adaptation
	Subtyping
	Type system

	Runtime model
	Heap definition and well typedness of the environment
	Bigstep semantics

	Proofs

	Isabelle Formalization
	Overview over theory files
	Formalization
	Syntax definition
	Viewpoint adaptation
	Typing relation
	Subtyping relation
	Static helper functions
	Expression typing
	Static lemmas
	Heap model
	Runtime model
	Welltypedness definition
	Bigstep formalization
	Topological typesystem proofs
	Encapsulating typing rules
	Owner as modifier property

	Problems and the resolution

	Conclusion
	Results
	Future work

	Appendix: Viewpoint adaptation of the ownership modifier
	Existing Functions in GUT
	UJ
	Comparison of the methods in both papers
	Cases a and b
	Cases c and d
	Case e

