
Static Universe Type Inference

Nathalie Kellenberger

Master Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

September 30, 2005

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

The Universe type system gives programmers the possibility to specify ownership information in
Java source code and enforces a stricter runtime behavior that eases reasoning about software.
These additional type modifiers have to be provided by the programmer. Adding these modifiers
to an already existing large program can be a big effort. We developed an architecture that infers
the Universe type annotations by static code analysis. As a proof of concept the architecture was
implemented and successfully applied to real Java programs. This report covers every aspect of
the information gathering and processing needed to perform this task.

3

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Introduction to the Universe Type System . 7

1.2.1 Aliasing . 7
1.2.2 Universe Type System . 8

1.3 Prolog Introduction . 9
1.3.1 Logic Programming . 9
1.3.2 Prolog Syntax . 10
1.3.3 Backtracking . 12
1.3.4 Limits of the Prolog Language . 13
1.3.5 Prolog System . 13

1.4 Goal . 14
1.5 Outline . 14

2 Architecture 15
2.1 Overview of the Parts of the Architecture . 16

2.1.1 Generation of Constraints out of the Syntax Tree 16
2.1.2 Finding Solutions considering Heuristics . 17
2.1.3 Generation of the XML Output . 17
2.1.4 Benefits . 17

2.2 Introductory Example . 18
2.3 Rejected Designs . 20

2.3.1 Type relations as facts . 20
2.3.2 No separate Prolog Program . 20
2.3.3 Prolog used as more than a Solver . 21
2.3.4 One Query for all Expressions . 21

2.4 Detailed Description of the Architecture . 21
2.4.1 Constraints Generator . 21
2.4.2 Solver Database . 30
2.4.3 Prolog Variable Naming . 41
2.4.4 Conflicts . 44
2.4.5 Optimizations . 51
2.4.6 Heuristics . 52

3 Implementation 57
3.1 Static Inference Tool . 57

3.1.1 Main . 58
3.1.2 Configuration . 59
3.1.3 Name Generator . 59
3.1.4 Annotation Reader . 60
3.1.5 Constraints Generator . 60
3.1.6 Inquirer . 62
3.1.7 JPL Prolog Query . 63
3.1.8 Annotation Writer . 63
3.1.9 Helper Class . 64

3.2 Solver and Heuristics . 64
3.2.1 Solver Database Selection . 64

5

6 CONTENTS

3.2.2 Optimisations . 66
3.2.3 Heuristics . 69

3.3 Configuration . 71
3.4 Usage . 72
3.5 Used Tools . 74

3.5.1 Reading and Writing XML . 74
3.5.2 Retroweaver Tool . 74

4 Results and Conclusion 77
4.1 Examples . 77

4.1.1 Iterator . 77
4.1.2 Producer Consumer . 81
4.1.3 Tree . 82
4.1.4 Linked List . 84
4.1.5 Lottery . 88
4.1.6 Golf Driver . 91
4.1.7 Conclusion . 92

4.2 Complexity . 92
4.3 Comparison to Runtime Inference . 93
4.4 Future Work . 94

4.4.1 Inner Classes . 94
4.4.2 Testing . 94
4.4.3 User Interaction . 94

4.5 Conclusion . 95

A Examples 99
A.1 Iterator Example . 99

A.1.1 query Node.pl . 99
A.1.2 query LinkedList.pl . 99
A.1.3 query Iter.pl . 100
A.1.4 query.pl . 100
A.1.5 Output by the Prolog System . 100

A.2 Tree Iterator Example . 101
A.2.1 Statistics . 101
A.2.2 Average . 101
A.2.3 Sum . 101
A.2.4 SumAndSubtract . 102
A.2.5 Checker . 102
A.2.6 Collection . 102
A.2.7 Iterator . 102
A.2.8 ArrayCollection . 103
A.2.9 ArrayIterator . 103
A.2.10 SortedTreeNode . 104
A.2.11 SortedTree . 104
A.2.12 TreeIterator . 105
A.2.13 InorderTreeIterator . 105
A.2.14 PostorderTreeIterator . 106
A.2.15 Test . 106

B Prolog Program 109
B.1 rules.pl . 109
B.2 conflict.pl . 116

Chapter 1

Introduction

1.1 Motivation

Each reference in a program allows a write access to the appropriate object. If a reference to a
whole data-structure can be gained, the built structure can be destroyed. The Java programming
language covers objects only by visibility, which still allows to gain a write access over a reference
returned by a method. The Universe type system [1] can be applied to Java programs to protect
compact designed structures.

The goal of this project is to infer the Universe types of a given program by statically analyzing
all type relations with Prolog.

1.2 Introduction to the Universe Type System

1.2.1 Aliasing

Whenever we have more than one reference, that points to an object, we are talking about aliasing.
All references in a program have the same rights on the object they point to. If aliasing is not
controlled, it is hard to reason about the behavior of a program.

Representation Exposure

Representation Exposure is the main problem, which occurs with aliasing. A client can gain access
to data-structures or values of a program and is therefore allowed to change and destroy them.
The representation of an object or a whole structure is not fully encapsulated, but leaks.

class Person {
Address adr;

public void set(Address a) {
this .adr = a;

}

public Address get() {
return this .adr;

}
}

//in another class
Person p = new Person();
p. set(new Address()); // anyone can change the address of a person
Address a = p.get (); // anyone can get a reference to the address field

7

8 1 Introduction

In the example anyone can change the address of a person. If we are administrating a database
of addresses, it cannot be allowed, that a client can change any address in the database.

We can also get a reference to the internally stored address object of a person with a call to
the get() method. This reference is package private and no client should be allowed to use this
reference to change the address of an arbitrary person. Clients should only read addresses of other
persons but not change them.

1.2.2 Universe Type System

The Universe type system was created to prevent aliasing. It divides the object store in so called
universes. Each object can only belong to exactly one universe and the universes themselves are
hierarchical structured. Objects can be in the same universe or in the inner universe of another
object and therefore belong to this object.

The Universe type system controls references across universe boundaries. There is no write
access allowed over a reference, which points into another universe. Write access is only allowed
to objects of the same universe or to an universe, which is owned by the object. The Universe
type system guarantees the following invariant [1]:

If object X holds a direct reference to object Y then either

1. X and Y belong to the same universe, or

2. X is the owner of Y, or

3. the reference is read-only.

The Universe type system realizes this invariant with the following three type modifiers:

1. peer
This modifier is used to denote, that references are peer to each other, meaning they point
to objects, which lie in the same context.

2. rep
This modifier is used to create a new universe, which belongs to another object. The object
itself lies in this inner context and cannot be changed from outside but only over the owner
of the universe.

3. readonly
This modifier designates references, which point to an arbitrary context. It is only possible
to read from another universe than the own. A readonly reference can never change the
object it points to.

To prevent our address database from changes of clients, we would have to apply the Universe
type system in the following way:

class Person {
rep Address adr;

public void set(rep Address a) {
this .adr = a;

}

public pure rep Address get() {
return this .adr;

}
}

//in another class
peer Person p = new peer Person();
p. set(new rep Address()); // not possible anymore
readonly Address a = p.get (); // can only read but not write

1.3 Prolog Introduction 9

In the example we can change the address of a person anymore, because a person owns its
address and only the person itself is allowed to change it. The get() method will now always
return a readonly reference, when not invoked on the this object. Therefore a person is only allowed
to read the address of another person.

rep <: [p] * par(set) => rep <: peer * rep <: readonly
[p] * ret(get) <: [a] => peer * rep <: readonly

The combination of the Universe type of the target with the Universe type of the formal pa-
rameter of the method set results in readonly. The Universe type of the argument is rep and a
subtype of readonly. The method call of the set method is not legal, because we are not allowed
to invoke a non-pure method with rep parameters on any other target than the this object.
The combination of the Universe type of the target with the return type of the get() method also
results in readonly. We assign the return type of the method call to a readonly reference. Like this
the subtype relation of the assignment is fulfilled.

The type rules of the Universe type system are showed in detail later, when discussing their
modelling in the Prolog system.

Pure Methods

Another construct of the Universe type system are pure methods. Pure methods are not allowed
to change any existing objects and can only call other pure methods. Therefore it is safe to invoke
a pure method on a readonly reference, because the purity of the method assures, that the object
will not be changed by the method. It would be too restrictive to forbid the calling of any method
on readonly references.

An example of a pure method is the Object.equals(Object o) method, which only compares
two objects.

1.3 Prolog Introduction

In this master thesis the programming language Prolog and the SWI Prolog system is used. For
those who do not know about logic programming, we give a short introduction here.

1.3.1 Logic Programming

A Prolog program is composed of facts and rules, which model the problem, one wants to solve
and build a Prolog database. By asking a question to this database, one can get none, one ore
several solutions.

The facts in a prolog program describe the basic set of the formulated problem. What we want
to get in a solution, has to be written as a constant in a fact. A fact is the last step in a prolog
program.

Prolog rules describe relations and are mostly recursive. Rules try to apply themselves as long
as a fact can be found, which gives the solution of the rule.

To run a Prolog program, one has to ask a question to the created database. The Prolog
system searches as long in the database and applies rules and facts until a solution is found or all
applying facts and rules are visited. If a solution is found, one can enforce the system to backtrack
until all possible solutions are found.

To answer a Prolog query, the Prolog system uses unification, which is a kind of pattern match-
ing. All Prolog variables in a query return a constant of the created database in a solution. While
the Prolog system looks for a solution, a Prolog variable is initialized with a constant and keeps

10 1 Introduction

this value as long as this solution is rejected by the system, because not all parts of the query can
be fulfilled.

The order of the Prolog facts and rules is important because the Prolog system always tries
out the first fact or rule.

1.3.2 Prolog Syntax

Constants

Constants in facts are part of the solution set. Every variable returns a constant in a solution.
Constants can be: Names starting with a small letter, strings or numbers. Strings in Prolog are
enclosed by apostrophes.

alfred, ’Have fun’, 8

Variables

Prolog variables are used in queries and rules and must start with a capital letter:

Variable, Var1, N, Give_me_a_solution

Logical Operators

In Prolog the following logical operators are often used:

logical operator meaning
, logical conjunction
; logical disjunction
:- logical implication
not negation
== equality
\== inequality

A -> B;C if A then B else C

Facts

Facts are the smallest part of a Prolog program and are used as a fact of the design or to end
recursion:

father(alfred, ben). alfred is the father of ben
father(alfred, mary).
father(john, anna).
father(arthur, alfred).

The name of the fact is father and the Prolog system saves the fact as a binary father/2
fact, meaning it has two parameters.

Rules

A rule is used to model a relation and has a head and a body. In the body of the rule one can call
the same or other rules, facts, write to files or execute arithmetical expressions.

grandfather(X, Y) :- father(X, Z), father(Z, Y).

1.3 Prolog Introduction 11

Queries

A query can consist of one or more calls to rules or facts and contains Prolog variables and
constants.

Query Answer of the system
?- father(alfred, ben). Yes
?- father(ben, alfred). No
?- father(X, mary). X = alfred
?- grandfather(X, Y). X = arthur Y = alfred
?- father(X, Z), father(Z, Y). X = arthur Y = alfred

With the semicolon one enforces the system to backtrack:

?- father(alfred, X). X = ben ; X = mary.

Arithmetic Expressions

Arithmetic expressions are also possible in Prolog. Prolog does not use the assignment operator
for arithmetic expressions, but the keyword ”is”:

N is 5*3

File Handling

Prolog rules can write to files as a side effect, for example to store a solution. But one has to
be careful with file writing in rules. If the Prolog system reaches a rule and writes part of a
solution to a file, it can happen, that the rule is not fulfilled for the whole query and the system
backtracks and returns another solution. But the false solution has been already written to the file.

Lists

Lists are a very useful data-structure in Prolog especially for the combination of results in recur-
sion. The list itself is defined as a recursive data-structure:

List -> []
List -> [Element | List]

The recursive definition of the list is one possibility to display a list and traverse it in a recursive
rule.

[a, b, c, d] can be written as [a, b, c, d | []] or
[a, b, c | [d]] or
[a, b | [c, d]] or
[a | [b, c, d]]

If one wants to traverse a list, one detaches the first element of the list and applies the rule to
the tail of the list. For example to check if an element is contained in a list:

member(X, [X|List).
member(X, [Element|List]) :- member(X, List).

The list is traversed as long as the first element of the list is not the element we are looking
for.

12 1 Introduction

1.3.3 Backtracking

We show how backtracking in Prolog works with the following example query to the database
presented before.

?- father(X, Y), grandfather(X, Z).

father(alfred, ben). X = alfred, Y = ben.
grandfather(alfred, Z) :- father(alfred, A), father(A, Z).
father(alfred, ben). A = ben.
father(ben, Z). no.
father(alfred, mary). A = mary.
father(mary, Z). no.

father(alfred, mary). X = alfred, Y = mary.
grandfather(alfred, Z) :- father(alfred, A), father(A, Z).
father(alfred, ben). A = ben.
father(ben, Z). no.
father(alfred, mary). A = mary.
father(mary, Z). no.

father(john, anna). X = john, Y = anna.
grandfather(john, Z) :- father(alfred, A), father(A, Z).
father(john, anna). A = anna.
father(anna, Z). no.

father(arthur, alfred). X = arthur, Y = alfred.
grandfather(arthur, Z) :- father(alfred, A), father(A, Z).
father(arthur, alfred). A = alfred.
father(alfred, ben). Z = ben.

;
father(alfred, mary). Z = mary.

The Prolog system tries to fulfill the first part of the query and checks, if the found solution also
works for the second part. The first fact of the database is used as a solution and the grandfather
rule is called with this solution. The first solution is no possible solution, because ben and mary
do not have children in our database. The second tried solution leads to the same problem. The
last solution does finally work out and leads to the two possible solutions.

The order of the facts and rules in the database is important, because the first rule or fact is
always tried out first for a solution. If the fact father(arthur, alfred) would have been written
on the top in the database, all possible solutions would have been found in the first step and no
backtracking would have been needed.

A query is always asked top down and therefore the order of the facts to call in a query is
also important, because backtracking starts the other way around. When we change our query
to ?- grandfather(X, Z), father(X, Y). we would also avoid some backtracking, because the
second part of the query is implicitly part of the grandfather rule and therefore always fulfilled if
the grandfather rule is fulfilled.

?- grandfather(X, Z), father(X, Y).

grandfather(X, Z) :- father(X, A), father(A, Z).
father(alfred, ben). X = alfred, A = ben.
father(ben, Z). no.
father(alfred, mary). X = alfred, A = mary.
father(mary, Z). no.

grandfather(X, Z) :- father(X, A), father(A, Z).

1.3 Prolog Introduction 13

father(john, anna). X = john, A = anna.
father(anna, Z). no.

grandfather(X, Z) :- father(X, A), father(A, Z).
father(arthur, alfred). X = arthur, A = alfred.
father(alfred, ben). Z = ben.
father(arthur, Y). Y = alfred.

1.3.4 Limits of the Prolog Language

Some things, which are normal to use in other programming languages are not suitable for Prolog.
A global counter for example could be implemented, but one has to cheat the Prolog system to
enforce that. Accustomed expressions like the following cannot be used in Prolog:

n = n+1; in Prolog N is N+1 does not work

Once a Prolog variable was initialized with a value, it sticks to it and cannot be assigned an-
other one. A simple counter - not a global one! - can be implemented by using recursion:

count(0).
count(N) :- count(M), N is M + 1.

If we enforce the system to backtrack, the counter moves on:

?- count(X). X = 0 ; X = 1 ; X = 2 ; X = 3 ; X = 4

In the Prolog language one has to use rules instead of methods or functions. But a rule has no
return type. If one needs to return a value, this is just another parameter of the rule, which will
be instantiated with the solution of the rule. Because of this the composition of rules is not possible.

Prolog rules are not transitive. If a transitive behavior is wished, the user has to implement
each relation by himself.

smaller(x, y).
smaller(y, z).

When asking the query ?- smaller(X, Y). the Prolog system would only reply with

X = x, Y = y ; X = y, Y = z

For the third solution can be found by the Prolog system, it has to be given as an additional
fact by the programmer:

smaller(x, z).

1.3.5 Prolog System

The choice of the Prolog system gives us some advantages as well as some disadvantages and we
have to consider them both in our design.

The great advantage of the Prolog system is, that it can find all solutions of a given problem.
One can formulate a given problem into Prolog rules and the system applies them as long as one
solution - or none, if there exists none - is found. By enforcing the system to backtrack, one can
get all possible solutions. A Prolog program always terminates and so the user knows, if there is
one, several or none solution to his stated problem. This is the reason, why the Prolog system has
been chosen for our solution.

14 1 Introduction

But we have to deal with some disadvantages of the system as well. Prolog variable and file
names have to be in a certain form, that they will be accepted by the system. The grouping of
rules cannot be arbitrarily and the order of them might become important.

Because of the way the Prolog system works, some design steps are already given. All the used
rules; like the rules of the Universe type system and the type relations of a given Java program,
have to be represented by Prolog rules. Rules of the same type - meaning rules with the same
name and number of parameters - have to be in the same file and we have to have a look at the
order of them. The Prolog system always tries out the first rule of a list of rules to find a solution.
This gives some of the structure of our Prolog program.

1.4 Goal

The goal of this project is to develop and implement a modular architecture, which annotates a
regular Java program with the Universe type system statically. This is called static type inference.
The implemented architecture should be able to extract all necessary type relations by analyzing
the syntax tree of each class of a program. These type relations should be written in a way, the
Prolog program of the architecture can use them to find all possible annotation solutions. By
applying heuristics to a specific set of found solutions, we should be able to display the approxi-
mative best solution. The incorporation of the annotation into the original Java program is not
part of this project. This is done in the semester project of Marco Meyer [10].

It is also not part of this project to be able to determine pure methods. It is task of the user
to specify, if a method has side effects or not and cannot be detected by static inference.

1.5 Outline

First we discuss the developed architecture in chapter 2. In chapter 3 we show some implementa-
tion details and how the static inference tool is used. In the last chapter we present the results of
this project.

Chapter 2

Architecture

In this chapter we describe the modular architecture, that we developed to infer Universe types.
The architecture is composed of three main parts:

1. Constraints Generator

2. Solver (with heuristics)

3. Solution Writer

All type relations of a given program are statically extracted out of the syntax tree and written
as constraints. These can be used by a solver to infer the needed Universe types. Some heuristics
have to be applied, to find the approximative best annotation solution in reasonable time. This
solution is then written in an XML format, which can be used to annotate the original program.

For this project, we chose the Prolog system as the solver system. All details are discussed
with regards to the Prolog system. Though the implementation of our design allows to use another
system for the solver.

First we give an overview over the single parts of the architecture in 2.1 and show the func-
tionality on a small example in 2.2. We discuss the designs, which were rejected in 2.3. At the
end of this chapter in 2.4 we discuss our developed architecture in detail.

15

16 2 Architecture

2.1 Overview of the Parts of the Architecture

Figure 2.1: The steps of the architecture

We have the following predefined inputs:

• all classes of a Java program

• purities of all methods

• already annotated variables

Variables can be annotated directly in the original program or the annotation can be given in
a separate XML file like the purities of the methods. These inputs suffice to determine all possible
annotation solutions for a given program.

2.1.1 Generation of Constraints out of the Syntax Tree

We want to annotate a given program with the Universe type system. Therefore we have to extract
all type relations of the original program. The Universe type system is a conservative extension
of the Java type system. We still have the same type relations of expressions as usual, for ex-
ample, that the right-hand side of an assignment needs to be subtype or equal to the left-hand side.

All type relations can be gained by traversing the syntax trees of all classes. We use the JML
compiler to compile and type-check the given Java source and parse all used libraries. The JML
compiler also grant us access to the syntax tree of a class. We need a way, to write down all type
relations, so that they can be used for type inference. The most common way is to use a kind of
abstract syntax tree representation. But we do not have to model each part of the syntax tree.
We only design the relevant parts, which have type restrictions. All type relations of the syntax
tree are then written down in the form of the designed constraints.

2.1 Overview of the Parts of the Architecture 17

We designed the constraints in a way, they can be used by the Prolog system. But the design
should still be usable for other solver systems. There is a Prolog rule for each expression writ-
ten in a separate Prolog program. All these rules apply Universe type rules to Java expressions
and build the Universe type rule database. A call to a rule is generated for each expression of
the syntax tree as a constraint. By stringing all generated constraints together, we get a query
to the Prolog database of Universe type rules. The query is fulfilled if and only if we receive a
possible annotation for all variables as the solution. Otherwise it is not fulfilled and the query fails.

The generation step of the architecture is written in Java and takes several XML and Java files
as an input and has several Prolog files as an output. We generate a query rule for each class,
which asks all generated constraints to the database. The query head contains all variables and the
body contains all generated constraints. The queries of all classes are combined in a global query
rule, which calls all queries of all classes. Like this we can reuse generated constraints of a single
class, when annotating the class in another context. When we ask the global query to the Pro-
log system, the Prolog database gives us all possible solutions to annotate the original Java source.

2.1.2 Finding Solutions considering Heuristics

The solver system is used to infer the Universe types of a program. We ask the global query to
the solver and get in return a set of all possible annotation solutions. The query to the system is
simply the head of the global query rule, which does nothing else than call all generated constraints.

Normally the query to the Prolog system would compute a great amount of solutions or in
the case of partly annotated programs maybe not even a single one. To reduce the number of the
solutions to exactly one, we apply several heuristics to all possible solutions or a subset of found
solutions. We traverse a list of solutions and apply a heuristic rule to each. The solution, which
fulfills all heuristics, will be returned at the end.

For the consideration of partly annotated programs and to get a greater amount of solutions,
we have to track down type conflicts in expressions and resolve them by type casts. This can be
done by allowing less restrictive type relations within the solver database.

This part of the architecture is done in Prolog and in Java. We need a Java plug-in to call
a Prolog query within Java code. The Prolog database of the Universe type rules is written in a
separate file and loaded with the generated constraints into the Prolog system. All together form
a Prolog database, which can evaluate the global query. The Java plug-in allows to iterate over
all possible annotation solutions and to apply heuristics to each of them.

2.1.3 Generation of the XML Output

After the call of our query, we get one possible annotation solution by applying heuristics to
a subset of solutions found by the Prolog system. The solution is then written to a separate
XML file by traversing all syntax trees again. When traversing all syntax trees again, we have
all the information we need, to write down the annotation of all variables to the XML output.
During this second traversal of the syntax trees we can also resolve conflicts found by the solver.
We check each expression again for conflicting types and write down an additional cast if necessary.

The user can choose, if he wants to generate one XML solution file for all compiled classes or
for each class a separate one. One solution XML file for each class could be useful by reusing this
solution in a query for a partly annotated program.

2.1.4 Benefits

The approach of our solution is to strictly separate the constraints generator, the type inference
and the solution writing part of the design. All fixed actions like the traversal of the syntax tree
and the reading and writing of XML files are written in Java. Once written they should not

18 2 Architecture

need much of a change afterwards. The abstract syntax tree representation of Java expressions in
Prolog does not change and so the generation step stays the same.

The benefit of our solution is, that later changes to the Universe type system can be applied
easily. If we do not change the design of the constraints, we still can change the database, which
is applied to the constraints and apply more restrictions, less or even new ones. The Prolog sys-
tem can also be exchanged by another solver system. It is also simple to apply other heuristics or
add some more extensions, because these parts of the architecture are fully configurable by the user.

2.2 Introductory Example

We want to illustrate the single steps of our architecture on a simple example before going into
detail.

Figure 2.2: Steps of the architecture for a simple example

We get a simple input Java program with just one single class we want to annotate:

class Person {
Address adr;

void set(Address a) {
this .adr = a;

}

Address get() {
return this .adr;

}
}

First of all we traverse the syntax tree of the class and look at every single expression. We
generate a call to a related Prolog rule for every expression, which looks like an abstract view of
the expression itself. The following expressions will generate a call to a rule:

• Address adr;
field declaration of a non-static field
field_declaration(none,[Person_adr])

2.2 Introductory Example 19

Figure 2.3: Syntax tree of the simple example

• public void set(Address a)
parameter declaration of a non-pure and non-static method
parameter_declaration(none,none,[Person_set_a])

• this.adr = a;
assignment with a field access on the left-hand side
assignment([[this],[Person_adr]],[[Person_set_a]])
the field access is done within the assignment rule and is displayed in the head of the rule
as a list of the appended variables
[this], [Person_adr]

• public Address get()
method declaration of a non-pure and non-static method
method_declaration(none,none,[Person_get_Return])
the method declaration rule is only used for the declaration of the return type

• return this.adr;
return statement with a field access
return_statement([Person_get_Return],[[this],[Person_adr]])

If we add up all these calls to the rules of the Prolog database, we can build a query rule. The
query head contains all variables of the query body.

query_Person(Person_adr, Person_set_a, Person_get_Return) :-
field_declaration(none,[Person_adr]),
parameter_declaration(none,none,[Person_set_a]),
assignment([[this],[Person_adr]],[[Person_set_a]]),
method_declaration(none,none,[Person_get_Return]),
return_statement([Person_get_Return],[[this],[Person_adr]]).

The head of the query rule is used to execute the query. If we ask the query head to the Prolog
database, we will get a first solution for all the variables in the query head:

?- query_Person(Person_adr, Person_set_a, Person_get_Return).

And the system replies with:

Person_adr = readonly
Person_set_a = rep
Person_get_Return = readonly

20 2 Architecture

2.3 Rejected Designs

The following designs were rejected during the design step of the project. We present them shortly
in this section to show the development of the architecture and to emphasize once more the ben-
efits of our design.

2.3.1 Type relations as facts

One approach was to design the constraints in a way they contain all the necessary information
of an expression of the syntax tree. The constraint would be written as Prolog fact to a file.
A separate Prolog program, which contains the Universe type rules, would then use these facts
and produce a solution. The facts would contain all variables from the original Java program as
constants.

First it seemed a good approach to just write down all the type relations as facts and handle
them later by an additional Prolog program. Later it did not seem to us like the Prolog way of
handling a problem. Prolog only needs to evaluate the type relations given by a program. Prolog
does not need to care for names or types of variables. These are only needed for writing the
solution in the XML format. We just feed the Prolog system with an abstract form of all type
relations, which gives us the solution. Therefore it seems better to model the Universe type rules
in Prolog and query the system with the type relations out of the syntax tree. We generate no
facts but a query to the type relations, which should give the correct answer as a solution.

In the introductory example this approach might have generated Prolog facts like the following:

field(address, name_adr, type_Address).
method(name_set, returntype(void, type_void),

[parameter(address, name_a, type_Address)]).
assignment(field_access(this, name_adr), name_a).
method(name_get, returntype(address, type_Address), []).
return(field_access(this, name_adr)).

2.3.2 No separate Prolog Program

As one of the first approaches we generated one rule for each expression of the syntax tree. All rule
heads for a class were then connected to a bigger solution rule, the solution query for one class.
We also had to connect all solution query heads to a global query. The global query returns the
solution for all variables from all classes. The single rules, which are generated for each expression,
apply directly all used type rules for the expression; like combination and sub-typing, which are
the only predefined rules.

The great benefit of the separate Prolog program is, that we can later change the type rules
of the Universe type system and the generation out of the syntax tree does not change. By using
a separate Prolog program we do not generate the type relation for an expression, but generate a
call to a predefined rule, which can be changed anytime. It is even possible to write a whole new
Prolog program for all constraints.

In the introductory example this approach might have generated Prolog rules like the following:

constraint1(P_adr, P_set_a) :- combination(this, P_adr, Result),
subtype(P_set_a, Result).

constraint2(P_adr, P_get_Return) :- combination(this, P_adr, Result),
subtype(Result, P_get_Return).

constraintPerson(P_adr, P_set_a, P_get_Return) :- constraint1(P_adr, P_set_a),
constraint2(P_adr, P_get_Return).

2.4 Detailed Description of the Architecture 21

2.3.3 Prolog used as more than a Solver

From the architectural point of the design a first approach was to decouple Prolog from Java. The
front of our inference tool would then be written and executed in Java and the tail in Prolog. We
would read in the annotations of already annotated classes and the purities of all methods in Java.
This information would have been used while generating constraints out of the syntax tree. Then
the Java part of the tool is over.

The Prolog part of the program can be called from the Prolog system and will directly apply
heuristics and write the solution in the XML format. The applying of heuristics and the writing of
the solution in the XML format is possible in Prolog, but not very nice. Prolog has the possibility
to write to files, but we would have to generate some extra information out of the syntax tree and
generate more complex queries.

The Java programming language is much more qualified for reading and writing XML, and we
can save all necessary information in Java data-structures like hash-tables. Therefore we decided
to integrate the Prolog part of the tool into the Java part. We use a Java interface to the Prolog
system and call the Prolog query within the Java code. The flow still remains linear, but the two
parts are connected together. They still can be used independently.

2.3.4 One Query for all Expressions

If we write just one big query, which contains all calls to Prolog rules, we do not have to connect
the generated queries to a global one. All the same we decided to generate a query for each class.
Like this we do not have to generate the query for a class again, if it already has been generated.
We do have to connect the queries of all compiled classes to a global query, but we might reuse
queries of already compiled classes.

2.4 Detailed Description of the Architecture

2.4.1 Constraints Generator

In this section we want to explain more precisely, how the constraints are generated out of the
syntax tree. We show for each expression, what constraints will be generated and how they look
like. With the aid of some examples we hope to visualize the generation step of the architecture.

For the conversion of Java variable names into Prolog variable names in the examples in this
section, we use the following naming conventions:

A a; generates the prolog variable name [V_a]
A[] a; generates the prolog variable name [V_a, V_a_El]

Variable ”a” of type ”A” is in the class ”V”. We do not distinguish between fields and local
variables, so that the names in the examples do not get too long.

We encapsulate each Prolog variable in a list, because we have two different representations of
simple references and array references. An array reference needs two Universe types. With the list
representation for all references, we do not have to write each Prolog rule in the database twice:
once for references and once for arrays.

The following short names are used additionally:

• MPurity
acts as a placeholder for the purity of the called method in the examples and is pure or none

• [MRet]
Prolog variable name for the method return type in the examples

22 2 Architecture

• [MPar]
Prolog variable name for a formal parameter of a method in the examples

To annotate a given Java program, we have to extract all type relations from the syntax
tree. We have to store each type relation in a constraint, that is used in the type inference step.
For human debuggers a constraint should still resemble the original expression. The design of the
constraints must be as general, that it is still useful, when all other steps of the architecture change.

Each designed constraint is used as the head of a Prolog rule. When generating constraints,
we actually build calls to the appropriate Prolog rules. The design of the constraints needs to be
fixed, so the generation step of the architecture needs no changes in the future. That is why we
explain the generation step first and the Prolog database afterwards.

We chose as design of the constraints an abstract syntax tree representation. We do not use all
existing expressions of a program, but only those, who are useful for the type inference; meaning
those, that restrict types of variables.

Therefore we design a constraint for each of the following expressions:

• field declaration

• local variable declaration

• method declaration

• object creation

• return statement

• method call

• assignment

• equality and relational operators

• cast

• static call

Other expressions - like conditionals or loops for example - are not needed, because they do
not give additional type information but only use the mentioned expressions.

Simple Reference

For every reference in a Java program a Prolog variable is generated. The Prolog variable contains
the Universe type of the appropriate reference.

c is reference generates [V_c]

Array references and the this reference are a bit special and will be discussed next.

Array Reference

Arrays are a bit special, because they need two Universe types: one for the array reference and
one for the array elements - if they are references too. We generate for every array two Prolog
variables: one for the array reference and one for the array elements respectively.

c is array reference generates [V_c, V_c_El]

Arrays, which contain primitive types, are handled like simple references and only the array
reference is generated:

c is array reference generates [V_c]

2.4 Detailed Description of the Architecture 23

this Reference

Whenever we reach a this object, we generate the following:

this generates [this]

If later a this reference can be of type readonly again, we just generate [this, readonly] when
necessary and would have to change some of the other rules, which are used - like the combination
rule for example.

The usage of super generates also [this], because there is no difference between super and
this in the Universe type system.

Null and Primitive Types

The null reference generates the Prolog constant [null].

If we hit a primitive type we write the Prolog constant [primitive].

Field and Array Access

field_access_right(FieldList, ResultingType)
field_access_left(FieldList, ResultingType)

FieldList is the list of all Prolog variables of the field access and ResultingType is the re-
sulting Universe type of the field access. We need to distinguish between field accesses on the
right-hand and on the left-hand side of an assignment. Field accesses on the left-hand side of
an assignment are updating field accesses and more restricted than those on the right-hand side.
The field access rule is normally only used implicitly within other predefined rules of the Prolog
database as for example the assignment rule. We do generate the field access only as a list of the
Prolog variables in the call to this rule then. But we need to generate a call to the field access rule
if we are in a primitive assignment with field accesses in the operands of an addition for example.

For a chain of field accesses we produce a list of Prolog variables.

a.b.c.d generates [V_a], [V_b], [V_c], [V_d]

a.f = ... f simple reference generates [V_a], [V_f]
a.f = ... f primitive type generates [V_a], [primitive]
a.f = ... f array reference generates [V_a], [V_f, V_f_El]
this.f = ... f simple reference generates [this], [V_f]

An array access is exactly done in the same way as a field access to a simple reference:

a[8] = ... generates [V_a], [V_a_El]

An array access to an array, which contains primitive types and no references, is done the
following way:

a[8] = ... generates [V_a], [primitive]

The access to the length field of the array class is ignored, because it is a primitive field and
always allowed to call. We will therefore generate nothing for the following expression:

a.length

24 2 Architecture

Field Declaration

field_declaration(FieldModifier, [Field])
field_declaration(FieldModifier, [FieldArray, FieldArrayElement])

FieldModifier is static or none. Field represents the Prolog variable for a field.

For every reference field declaration we generate a call to the field_declaration rule, where
we generate a Prolog variable for the reference.

static C c; generates field_declaration(static, [V_c]),
C c; generates field_declaration(none, [V_c]),
C[] c; generates field_declaration(none, [V_c, V_c_El]),

We call the field_declaration rule with the identifier static instead of none for static fields.

Local Variable Declaration

local_variable_declaration(MethodModifier, [Local])
local_variable_declaration(MethodModifier, [LocalArray, LocalArrayElement])

MethodModifier is static or none and represents the modifier of the method. Local represents
the Prolog variable for a local variable.

For every variable declaration we generate a call to the local_variable_declaration rule,
where we generate a Prolog variable for the reference and tell the rule, if the variable is declared
in a static method or not.

Assume for this example that we are in a static method:

C c; generates local_variable_declaration(static, [V_c]),
C[] c; generates local_variable_declaration(static, [V_c, V_c_El]),

Assume for the next example that we are not in a static method:

C c; generates local_variable_declaration(none, [V_c]),
C[] c; generates local_variable_declaration(none, [V_c, V_c_El]),

Method and Parameter Declaration

method_declaration(MethodPurity, MethodModifier, [ReturnType])
method_declaration(MethodPurity, MethodModifier,

[ReturnTypeArray, ReturnTypeArrayElement])

MethodPurity is pure or none and MethodModifier is static, public or none. ReturnType
represents the Prolog variable for the return type of a method.

Method declarations of methods with no reference return type only use the
parameter_declaration rule. If the method has not even parameters, no rule at all is used for
the method declaration.

parameter_declaration(MethodPurity, MethodModifier, [Parameter])
parameter_declaration(MethodPurity, MethodModifier,

[ParameterArray, ParameterArrayElement])

MethodPurity is pure or none and MethodModifier is static, constructor, public or none.
Parameter represents the Prolog variable for a parameter.

We generate a call to the method_declaration rule for a method signature, if the method has
a reference return type and a call to the parameter_declaration rule for each of the parameters
of a method:

2.4 Detailed Description of the Architecture 25

/*@ pure @*/ static Node foo(Node n) method_declaration(pure, static, [MRet]),
parameter_declaration(pure, static, [V_n]),

public /*@ pure @*/ Node foo(Node[] n) method_declaration(pure, public, [MRet]),
parameter_declaration(pure, public,

[V_n, V_n_El]),

public /*@ pure @*/ V(Node n, Object e) parameter_declaration(pure, constructor,
[V_n]),

parameter_declaration(pure, constructor,
[V_e]),

public static Node foo(Node n) method_declaration(none, static, [MRet]),
parameter_declaration(none, static, [V_n]),

Node foo(Node n) method_declaration(none, none, [MRet]),
parameter_declaration(none, none, [V_n]),

public V(Object e) parameter_declaration(none, constructor,
[V_e]),

We have to tell the method_declaration and the parameter_declaration rule if we are in a
pure, static or public method or a constructor.

The name of the method is not needed in the Prolog query, although it is generated while
traversing the syntax tree. If we hit a method declaration, we generate the Prolog variable for the
method name and use it to look up the given purity of a method in a hashtable. The method name
is implicitly used in the query within the Prolog variable names for parameters and local variables.

Object Creation

new([Variable])

Variable represents the Prolog variable for the newly created object.

new([Array,Array_El])

Array represents the Prolog variable for the newly created array reference and Array_El rep-
resents the Prolog variable for the array elements.

For every object creation we produce a Prolog variable and a call to the new rule with this
variable.

new Node() generates new([V_New1]),
new Node[5] generates new([V_New1, V_New1_El]),

Return Statement

return_statement(ReturnType, ExpressionList)

ReturnType represents the Prolog variable for the return type and can be a simple or an array
reference. ExpressionList contains all Prolog variables from the return statement.

The return type of the method is set by a call to the return_statement rule for each return
statement in a method. We ignore the return statements if a method returns a primitive type.

return a; generates return_statement([MRet], [[V_a]]),
return a.b.c; generates return_statement([MRet], [[V_a], [V_b], [V_c]]),

26 2 Architecture

return a[0]; generates return_statement([MRet], [[V_a], [V_a_El]]),
return a; a is array return_statement([MRet, MRet_El], [[V_a, V_a_El]]),

Method Call

method_call_parameters_left(FieldList, ParList, FormalParList, MethodPurity)
method_call_parameters_right(FieldList, ParList, FormalParList, MethodPurity)

These rule heads are designed for a method call on the left-hand and on the right-hand side of
an assignment. FieldList contains the target, ParList contains all arguments, FormalParList
contains all formal parameters and MethodPurity represents the method purity of the called
method - it can be pure or none.

Each method call generates a call to the method_call_parameters_right or
method_call_parameters_left rule, depending on where the method call appears. If the method
call is on the right-hand side of an assignment or not in an assignment at all, we call the first one.
Only when the method call is on the left-hand side of an assignment, we call the second one.

a.b.m(x, y); generates method_call_parameters_right([[V_a], [V_b]],
[[[V_x]],[[V_y]]],
[[MPar1], [MPar2]], MPurity),

It is possible, that field accesses appear in the argument of a method call. Field accesses are
represented as a list of the involved Prolog variables. This converts the single argument in a list
and turns the whole list of arguments, which is given to the rule, into a nested list.

b.m(a.f); generates method_call_parameters_right([[V_b]],
[[[V_a], [V_f]]],
[[MPar]], MPurity),

The formal return type of a method call is always used within an assignment or a field access.
We generate the Prolog variable for the formal return type and integrate it in the appropriate list
of the assignment or field access. We will present some examples for this case next.

Assignment

For each assignment we generate a call to the assignment rule:

assignment(LeftList, RightList)

LeftList contains all variables of the left-hand side of an assignment and RightList all vari-
ables on the right-hand side.

The left-hand side of the assignment is given as a list and the right-hand side as well. In the
simplest case these lists consist of one element. This is in an assignment of two references. As soon
as we have field or array accesses or method calls, we will have a longer list of Prolog variables for
the assignment.

There exist the following kinds of assignments:

a = b; assignment([[V_a]],[[V_b]]),

C a = new C(); new([V_New1]),
assignment([[V_a]],[[V_New1]]),

a.f = b.g.h; assignment([[V_a],[V_f]],[[V_b],[V_g],[V_h]]),

a = this.f; assignment([[V_a]], [[this],[V_f]]),

2.4 Detailed Description of the Architecture 27

a = this.m(e); assignment([[V_a]], [[this],[MRet]]),
method_call_parameters_right([[this]],[[[V_e]]],

[[MPar]],MPurity),

a.f.m(e).g = b.m(e).h; assignment([[V_a],[V_f],[MRet],[V_g]],
[[V_b],[MRet],[V_h]]),
method_call_parameters_left([[V_a],[V_f]],[[[V_e]]],

[[MPar]],MPurity),
method_call_parameters_right([[V_b]],[[[V_e]]],

[[MPar]],MPurity),

b = (new A()).m(e); new([V_New1]),
assignment([[V_b]], [[V_New1],[MRet]]),
method_call_parameters_right([[V_New1]],[[[V_e]]],

[[MPar]],MPurity),

C[] a = new C[5]; new([V_New1,V_New1_El]),
assignment([[V_a,V_a_El]], [[V_New1,V_New1_El]]),

a[0] = b[4]; assignment([[V_a],[V_a_El]], [[V_b],[V_b_El]]),

a[0].f = b[1].m(e).g; assignment([[V_a],[V_a_El],[V_f]],
[[V_b],[V_b_El],[MRet],[V_g]]),

method_call_parameters_right([[V_b], [V_b_El]],[[[V_e]]],
[[MPar]],MPurity),

Assignment with Primitive Types

Assignments with primitive types are handled a little bit differently. If we have an expression
with primitive types, we might have method calls, field and array accesses as well. But additionally
there might be other operations like division, multiplication, addition and more.

We show the generation of primitive assignments on the following example:

a[0].f = b[1].m(e).g + this.f;

assignment([[V_a],[V_a_El],[primitive]], [[primitive]]),
field_access_right([[V_b], [V_b_El], [MRet], [primitive]], [primitive]),
field_access_right([[this], [primitive]], [primitive]),
method_call_parameters_right([[V_b], [V_b_El]],[[[V_e]]], [[MPar]], MPurity),

For the left-hand side of the assignment we generate the normal call to the assignment rule,
but ignore the right-hand side of the assignment and generate instead a simple primitive type. For
each part of the right-hand side of the assignment we generate a call to the field_access_right
rule, where the type of the field access is always primitive. For the primitive field, which is ac-
cessed, no Prolog variable name is written, but also the constant primitive.

Equality and Relational Operators

boolean_expression(LeftList, RightList)

This rule is used for boolean expressions like equality or relational operators. LeftList and
RightList are the same as in the assignment rule.

28 2 Architecture

For every equality or relational operator, which contains references, we have a call to the
boolean_expression rule:

boolean_expression(LeftList,RightList)

The generation is done analogous to the generation of assignments.

n == m generates boolean_expression([[V_n]],[[V_m]]),
n.next != m.next; generates boolean_expression([[V_n],[V_next]],

[[V_m],[V_next]]),

Cast

cast_left(MethodModifier, CastType, Expression)
cast_right(MethodModifier, CastType, Expression)

These rules are used for a cast of an expression. CastType is the Universe type of the cast and
Expression contains all variables of the expression to cast. MethodModifier is static or none and
represents the modifier of the method.

Assume for this example that we are in a static method:

d = (C) b; generates cast_right(static, [V_C1], [[V_b]]),
assignment([[V_d]], [[V_C1]]),

Assume for the next example that we are in a non-static method:

d = (C[]) b.f.g; generates cast_right(none, [V_C2, V_C2_El],
[[V_b], [V_f], [V_g, V_g_El]]),

assignment([[V_d, V_d_El]],
[[V_C2, V_C2_El]]),

(C) d = (C) ((B) b).f; generates cast_left(none, [V_C3], [[V_d]]),
cast_right(none, [V_B1], [[V_b]]),
cast_right(none, [V_C4], [[V_B1], [V_f]]),
assignment([[V_C3]], [[V_C4]]),

The first modifier of the rule designates, if the cast is in a static or non-static method.

Static Target

static_target(MethodModifier, [Type])

MethodModifier is static or none and represents the modifier of the method. Type represents
the Prolog variable for a type of a static method call or field access.

For each type of a static target we generate a call to the static_target rule, where we gen-
erate a Prolog variable for the type of the static call and tell the rule if the static call is within a
static method or not.

Assume for this example that we are in a static method:

c = T.f; generates static_target(static, [V_T1]),
assignment([[V_c]], [[V_T1], [V_f]]),

Assume for the next example that we are in a non-static method:

c = T.m(a); generates static_target(none, [V_T2]),
assignment([[V_c]], [[V_T2], [MRet]]),
method_call_right([[V_T2]], [[[V_a]]],
[[MPar]], none),

2.4 Detailed Description of the Architecture 29

The first modifier of the static_target rule designates if the static call is in a static or non-
static method.

Loops and Conditional

With all loops like for- and while-loops and conditionals like if statements we are proceeding the
same way: we do not generate an additional constraint, but all assignment, equality and relational
operator parts of the statement.

if(a.elem < b.elem) generates boolean_expression([[V_a], [V_elem]],
{ [[V_b], [V_elem]]),

a.elem = b.elem; assignment([[V_a], [V_elem]],
} [[V_b], [V_elem]]),

Composed Statements

We have the possibility to combine several expressions together:

Iter i = list1.first, Iter j = list2.first;

We just generate all rule calls for the single expressions within the composed statement.

local_variable_declaration(none, [V_i]),
assignment([[V_i]], [[V_list1], [V_first]]),
local_variable_declaration(none, [V_j]),
assignment([[V_j]], [[V_list2], [V_first]]),

Composed Assignments

In Java we have the possibility to compose assignments. We split up a composed assignment like
this is done in the syntax tree and handle each assignment on its own, using the other side of the
composed assignment we have done before.

a = b = c; generates assignment([[V_b]], [[V_c]]),
assignment([[V_a]], [[V_b]]),

a = b.f = c; generates assignment([[V_b], [V_f]], [[V_c]]),
assignment([[V_a]], [[V_b], [V_f]]),

Exceptions

The Exception object in a catch- or throw-clause is set to readonly by default, because an exception
can be thrown in any context and the exception object is normally given to an arbitrary context.
Exception objects do not have to be annotated and no call to a Prolog rule is generated for a
throws, throw or catch statement. When an exception object is used in an expression, we just
generate [readonly] instead of a Prolog variable for the exception object.

Strings

Strings are a special case of references in the Java language, because they can be initialized
without an invocation of new:

String s = "Hello World";

30 2 Architecture

In the Universe type system, Strings are always readonly and all methods of the String class
are pure. Therefore we generate for each String the constant [readonly]. For String arrays the
array elements are always readonly, but the array reference will generate a Prolog variable name
like a normal array reference does.

In JDK 1.5 wrapper classes like Integer can also be initialized with directly assigning a value.
It will be likely that all wrapper classes will behave the same like the String class in the future
and will be always readonly with all class methods set to pure. Therefore we might generate more
readonly constants for instances of wrapper classes in the future. By now all wrapper classes except
for the String class are handled like normal references.

The query rule

We generate a query rule for each class of a program to annotate. The head of the query contains
all variables used in the body. The body of the query rule is built by stringing all the generated
constraints of a class together. When asking the query head to the Prolog system, all constraints
in the query body are called. We want to remind you, that a constraint denotes a call to an exist-
ing Prolog rule of the Prolog database. The query rule is just used to combine all calls of one class.

We talk about the order of the rule calls in the query body later, when discussing heuristics
and performance in section 3.2.

Method Purity

The purity of a method, pure or none, is given in an external XML file. When reading in the XML
file in Java, we generate a Prolog variable for the purity of the method - have a look at section
2.4.3 - and save the method purity in a hashtable, where the Prolog variable is the key of the
hashtable entry and the purity becomes the value. The generated Prolog variable name is unique
and therefore used as the key.
Whenever we reach a method call or declaration while traversing the syntax tree, we generate the
Prolog variable name for the called or declared method and look up the method’s purity in the
hashtable. The purity is directly written to the generated method call or declaration rule and
the Prolog variable for the method is only used for looking up the purity in the hashtable. The
variable itself is not used in the Prolog query.

Overridden Methods

The Universe type annotations of parameters and of the return type in overridden methods have
to be the same as in the superclass. For parameters and the return type of overridden methods
we generate not an own Prolog variable name, but the Prolog variable name of the superclass or
interface. Like this we use the same annotation as in the superclass or interface, if the superclass
or interface has to be annotated too. Otherwise it would be best to give the annotation of the
superclass or interface as direct input.

2.4.2 Solver Database

In this section we go into more detail of the Prolog design and do not discuss just the head of the
rules, but look a bit deeper in the body of a predefined rule. We describe how the body of the
presented rules could be implemented; meaning what conditions should be fulfilled and present
another few rules, which are used to model the Universe type system or help implement a part of
a rule.

2.4 Detailed Description of the Architecture 31

Simple Universe Type

Universe type rule

The Universe type system uses three modifiers: rep, readonly and peer.

• rep is used to indicate, that an object is in the inner context of another object, that it is
owned by another object. A rep field for example is owned by the instance of the class
the field is declared in. rep objects can only be changed by their owner and are therefore
protected by their owner.

• The peer type denotes, that objects are in the same context. All references to objects in the
same context are allowed to change their objects.

• The readonly modifier was designed to cross context boundaries. It is not allowed to change
an object of another context, but still possible to read it.

Realization in Prolog

All used types are modeled as Prolog constants and become a possible solution for a question
to the Prolog database. We created two kind of types: Universe types and normal types. But only
the simple universe types, which are described next, are possible solutions of a generated query.
The other types are used to model the Java type system, so every possible expression, which uses
references, will work.

All type facts are only used within other Prolog rules and never generated out of the syntax
tree. They are only used to model the Universe type system.

universe([rep]).
universe([readonly]).
universe([peer]).

Array Universe Type

Universe type rule

Array references are annotated with two Universe modifiers: one for the array reference and
one for the array elements. Array elements can never be of type rep. Array elements of type rep
would be owned by the array reference and could never be changed.

Realization in Prolog

universe([rep, peer]).
universe([rep, readonly]).
universe([readonly, readonly]).
universe([readonly, peer]).
universe([peer, readonly]).
universe([peer, peer]).

All Universe types are modeled as facts with the name universe. Arrays need two Universe
types, if they contain references and the second type must not be rep.

32 2 Architecture

this Reference

Universe type rule

The actual instance of a class is allowed to change its own representation. It is allowed to
update all of its fields and to invoke all of its own methods.

• v = this.f;
[this] * [f] <: [v]

• this.f = e;
[e] <: [this] * [f]

• v = this.m(e);
[e] <: [this] * par(m), [this] * res(m) <: [v]

The this object is always of type peer.

Realization in Prolog

type([this]).

The identifier this is used to indicate, that we are looking at a this object. We need this
identifier, because there is a special combination rule for a field access over the this object - have a
look at the discussion of the combination rule. The this reference can be only of type peer right now.

Types

Universe type rule

All Universe modifiers denote an extension to the type of the annotated reference.

S <: T <=> rep S <: rep T S and T are Java types
S <: T <=> peer S <: peer T
S <: T <=> readonly S <: readonly T

Realization in Prolog

type(X) :- universe(X).
type([primitive]).
type([null]).

Every Universe type is also a simple type. This is needed, because expressions like assignments
can mix these two types, if we have for example a field access to a primitive type or assign the
null reference to a reference.

These are also the two reasons, why other types like the Universe types are modeled at all.
Primitive types are needed, because we can have an updating field access to a primitive type,
where we have to assure, that the accessing object is not readonly.

The null constant is used, because we have to check assignments with null for the same reason:

a = null;
a.f = null;

2.4 Detailed Description of the Architecture 33

The first assignment need not to be checked, but in the second assignment, we have a field
access and so the accessing object must not be readonly. Therefore we check all assignments with
references in it.

Like this the constant null and primitive are possible solutions of a Prolog query. They will
not occur, because we call additional Prolog rules for references, which request all Prolog variables
used in the query to be of a Universe type.

Subtypes

Universe type rule

rep <: readonly
peer <: readonly
null <: rep
null <: peer

The readonly Universe type is a super type of the other two. Like this we can cover any object
of any context with a readonly reference and recover it only with a type cast.

Realization in Prolog

subtype_notequal([rep], [readonly]).
subtype_notequal([peer], [readonly]).

The array reference needs a special treatment, because we need to save two annotations for one
reference. Therefore we connect the two corresponding Prolog variables in a Prolog list. There
are similar subtype rules for array references like for example the following:

subtype_notequal([rep, readonly], [readonly, readonly]).

The null object is a subtype of all universe types. We have to add this subtype relation, because
null is a reference and used in assignments, equalities and relational operators with references we
have to annotate.

subtype_notequal([null], X) :- universe(X).
subtype_notequal([null], [this]).

Universe type X is subtype or equal to Y. This rule is used in the assignment,
boolean_expression, return_statement and the method_call_parameters_left rule.

subtype_equal([X], [Y]) :- subtype_notequal(X, Y).
subtype_equal(X, X) :- type(X).

The this reference is of Universe type peer and has therefore to be equal to the simple type
peer and is also a subtype of readonly. Because we designed the Universe type for this in a special
way, we have to add the following relations:

subtype_notequal([this], [readonly]).
subtype_equal([this],[peer]).
subtype_equal([peer], [this]).

34 2 Architecture

Combination

Universe type rule

The type combination of two Universe types follows the following rules:

* peer rep readonly boolean int null
peer peer readonly readonly boolean int null
rep rep readonly readonly boolean int null
readonly readonly readonly readonly boolean int null

The type combination is used in field accesses and method calls.

Realization in Prolog

combination([X], [Y], [Z]) for example combination([rep], [peer], [rep]).

combination([X], [primitive], [primitive]) :- universe([X]).
combination([X], [A, A_El], [XA, A_El]) :- combination([X], [A], [XA]).

Universe type X combined with Universe type Y is of Universe type Z. This rule is used by the
field_access_right and field_access_left rule. The combination of a Universe type with a
primitive type is always a primitive type again. The combination of a simple Universe type with
an array Universe type is an array Universe type again, where the combination is only between
the references. The array elements keep their Universe type. Universe Type XA is the resulting
type of the combination of X and A.

Normally the combination of peer and rep is readonly, but if the field access occurs over the
this reference, it is rep again. This is the reason, why we created an own Universe type for the
this reference. It is the only way to distinguish between a normal combination and the one with
the this reference.

combination([this], [rep], [rep]).

This applies also for array references:

combination([this], [rep, peer], [rep, peer]).
combination([this], [rep, readonly], [rep, readonly]).

Field and Array Accesses

Universe type rule

Each field access is a combination of the types of the target and the field. Updating field
accesses on the left-hand side of an assignment are only allowed on rep or peer references, because
a readonly reference cannot change the representation of the object it points to. A rep field can
only be changed by its owner. No updating field access on a rep field is allowed over another
reference than this.

• v = w.f;
[w] * [f] <: [v]
[f] = rep => [w] = readonly

• v.f = e;
[e] <: [v] * [f]

2.4 Detailed Description of the Architecture 35

[v] != readonly, [f] != rep

Realization in Prolog

field_access_right([H], Res) :- type(H), Res = H.
field_access_right([H1, H2|T], Res) :-

type(H1), type(H2),
combination(H1, H2, HRes),
field_access_right([HRes|T], Res).

This rule is used for field and array accesses on the right-hand side of an assignment, or if they
are not in an assignment at all. The rule executes a sequence of combinations - meaning recursive
calls to the combination rule.
It is called in the assignment, method_call_parameters_right, method_call_parameters_left,
return_statement and split_right rule.

field_access_left([H], Res) :- type(H), Res = H.
field_access_left([H1, H2|T], Res) :-

type(H1), H1 \== [this], H1 \== [readonly],
type(H2), H2 \== [rep],
combination(H1, H2, HRes),
field_access_left([HRes|T], Res).

field_access_left([[this], H2|T], Res) :-
type(H2),
combination([this], H2, HRes),
field_access_left([HRes|T], Res).

This rule does the same on the left-hand side of an assignment, where a field or array access
over a readonly reference is not allowed.

Field Declaration

Universe type rule

A static field is accessible for all instances of a class and cannot be owned by an object. There-
fore Static fields cannot become rep in the Universe type system.

Realization in Prolog

field_declaration(static, [Field]) :- universe(Field), Field \== rep.
field_declaration(static, [FieldArray, FieldArrayEl]) :-

universe([FieldArray, FieldArrayEl]), FieldArray \== rep.
field_declaration(none, Field) :- universe(Field).

Assigns a Universe type to a field, whereby static fields must not be of type rep.

Local Variable Declaration

Universe type rule

Static methods are not invoked on an object. Therefore they cannot be owned by an object
and cannot contain any rep object.

36 2 Architecture

Realization in Prolog

local_variable_declaration(static, [Local]) :- universe([Local]), Local \== rep.
local_variable_declaration(static, [LocalArray, LocalArrayEl]) :- ...
local_variable_declaration(none, Local) :- ...

This rule assigns a Universe type to a local variable, whereby local variables of static methods
must not be of type rep.

Method and Parameter Declaration

Universe type rule

• Pure methods are not allowed to change the representation of the target. All parameters
have to be readonly. The return type can be of any Universe type, because we are still
allowed to return a newly created object by a pure method.

• Public methods are not liked to contain rep parameters. They are written to get information
from another context.

Realization in Prolog

We distinguish between pure, static and public methods. Static methods must not have return
types of type rep. The return type of a pure method can be of all of the three types. We could
for example create a new object and return it. But new objects can only be created by pure
constructors.

method_declaration(pure, static, [ReturnType]) :-
universe([ReturnType]), ReturnType \== rep.

method_declaration(pure, public, [ReturnType]) :-
universe([ReturnType]), ReturnType \== rep.

method_declaration(pure, none, [ReturnType]) :-
universe([ReturnType]).

method_declaration(none, static, [ReturnType]) :- ...
method_declaration(none, public, [ReturnType]) :- ...
method_declaration(none, none, [ReturnType]) :- ...

There are similar rules for array return types of public or static methods.

method_declaration(MethodPurity, MethodModifier,
[ReturnTypeArray, ReturnTypeArrayEl]) :- ...

If a method has no return type or returns a primitive type, we do not use this rule and use
only the parameter_declaration rule.

Parameters of pure methods can only be readonly and parameters of static or public meth-
ods must not be rep, therefore we have to distinguish parameters of pure, static or public methods.

parameter_declaration(pure, _, [Parameter]) :- Parameter = readonly.
parameter_declaration(pure, _, [ParameterArray, ParameterArrayEl]) :-

ParameterArray = readonly, universe([ParameterArray, ParameterArrayEl]).
parameter_declaration(none, static, [Parameter]) :- ...
parameter_declaration(none, public, [Parameter]) :- ...

2.4 Detailed Description of the Architecture 37

method_parameter_declaration(none, none, Parameter) :- universe(Parameter).

The rules for parameters of static or public methods are the same as the rules for return types.
There are similar rules for array parameters of static or public methods.

parameter_declaration(MethodPurity, MethodModifier,
[ParameterArray, ParameterArrayEl]) :- ...

Object Creation

Universe type rule

v = new TS(); TS <: [v], TS != readonly

Whenever we create a new object, we must specify in which context the object has to be allo-
cated. It is not allowed to create an object of type readonly, otherwise we would never be allowed
to write on this object.

Realization in Prolog

We wrote a rule for the creation of references, because newly created references cannot be of
type readonly.

new(static, [Variable]) :-
universe([Variable]), Variable \== readonly, Variable \== rep.

new(none, [Variable]) :-
universe([Variable]), Variable \== readonly.

The creation of arrays needs a similar rule.

new(static, [Array,Array_El]) :-
universe([Array, ArrayEl]), Array \== readonly, Array \== rep.

new(none, [Array,Array_El]) :-
universe([Array, ArrayEl]), Array \== readonly.

Return Statement

Universe type rule

[return statement] <: [return type]

The resulting type of the return statement has to be subtype or equal to the return type.

Realization in Prolog

For return statements the return_statement rule is used. It evaluates ExpressionList, which
is a subtype of the return type of the method. ReturnType can be a simple Universe type or an
array Universe type.

return_statement(ReturnType, ExpressionList) :-
field_access_right(ExpressionList, ExpressionType),
subtype_equal(ExpressionType, ReturnType).

38 2 Architecture

Because we are only generating constraints for reference return types, a return expression can
only be composed of a single reference, a field or array access, a method call or a combination
of the last three. These are always represented as a list in our design and therefore the return
expression is always a list too, but maybe with only one element.

Method Call

Universe type rule

v = w.m(e);
[e] <: [w] * par(m), [w] * res(m) <: [v]

We have to look at the resulting type of the combination with the target.

• m is not a pure method
par(m) != rep, res(m) != rep, [w] != readonly

• m is a pure method
res(m) = rep => [w] = readonly

• m invoked on this
no restrictions

Realization in Prolog

method_call_parameters_left(FieldList, ParList, FormalParList, none) :-
field_access_left(FieldList, FieldType),
split_left(ParList, ParameterList),
parameters(FieldType, ParameterList, MethParList, none).

method_call_parameters_left(FieldList, ParList, FormalParList, pure) :-
field_access_left(FieldList, FieldType),
FieldType \== [readonly],
split_left(ParList, ParameterList),
parameters(FieldType, ParameterList, MethParList, pure).

The rule for method calls on the right-hand side of an assignment works analogous.

method_call_parameters_right(FieldList, ParList, FormalParList, none) :- ...
method_call_parameters_right(FieldList, ParList, FormalParList, pure) :- ...

These two rules combine the type of the parameters for a method call on the left-hand side or
the right-hand side of an assignment. The type of the target given in FieldList is combined with
the type of each formal parameter. The type of the argument has to be a subtype of the result of
the combination.

The method_call_parameters_left and method_call_parameters_right rules are the other
two rules, which require the purity of a method beside the method_declaration and
parameter_declaration rules. They need to know the purity of the called method, because on
readonly references it is only allowed to call pure methods.

These rules only build the universe types for the parameters of a called method. The return
type is implicitly built within an assignment (look at section 2.4.1). If the method call is not in
an assignment, the method has no return type or it is not used. In either case we just ignore the
return type.

The two rules for a method call use several internal rules to fulfill the conditions stated above:

2.4 Detailed Description of the Architecture 39

• split_left(ArgumentList, ResultList)
This rule splits up a list of arguments of a method call on the left-hand side of an assignment.
The rule checks, if each argument is again a list, means the given argument is a field access.
The rule builds the combination of the types and appends it to the resulting argument list.
ResultList is a single list, whereby ArgumentList is a nested list. The rule is called by the
rule method_call_parameters_left.

• split_right(ArgumentList, FormalParameterList, ResultList)
This rule does the same thing as the split_left rule but within a method call on the
right-hand side of an assignment. It is called within the method_call_parameters_right
rule.

• parameters(FieldType, ParList, FormalParList, MethodPurity)
This rule builds up the Universe types of the arguments. FieldType is the Universe type of
the target. The rule is called by the method_call_parameters_left and
method_call_parameters_right rule.

Assignment

Universe type rule

v = w; [w] <: [v]

The right-hand side of an assignment is subtype or equal to the left-hand side.

Realization in Prolog

assignment(LeftList, RightList) :-
field_access_left(LeftList, LeftRes),
field_access_right(RightList, RightRes),
subtype_equal(RightRes, LeftRes).

Field and array accesses on the left-hand side are written in LeftList and field and array
accesses on the right-hand side in RightList. The rule executes the field and array accesses on
both sides and assigns the resulting subtype of the right-hand side to the left-hand side.

Equality and Relational Operators

Universe type rule

v == w; [w] <: [v] or [v] <: [w]

One side has to be subtype or equal to the other side. It does not matter, on which side the
subtype is written.

Realization in Prolog

boolean_expression(LeftList, RightList) :-
field_access_left(LeftList, LeftRes),
field_access_right(RightList, RightRes),
subtype_equal(RightRes, LeftRes).

boolean_expression(LeftList, RightList) :-
field_access_left(LeftList, LeftRes),
field_access_right(RightList, RightRes),

40 2 Architecture

subtype_notequal(LeftRes, RightRes).

This rule is used for boolean expressions like equality or relational operators and works quite
similar like the assignment rule. But the resulting type of the right-hand side can be a subtype of
the left-hand side and the other way around.

Cast

Universe type rule

v = (TS) e; TS <: [v], TS <: [e]

The type of a cast must be subtype or equal to the resulting type of the expression to cast.

Realization in Prolog

In static methods the usage of rep is not allowed and therefore also no cast to rep is allowed.
We denote for each cast, if it is used in a static or non-static method.

cast_left(static, [CastType], Expression) :-
universe([CastType]), CastType \== rep,
field_access_left(Expression, ExpressionType),
subtype_notequal([CastType], ExpressionType).

cast_left(none, [CastType], Expression) :- ...
cast_right(static, [CastType], Expression) :- ...
cast_right(none, [CastType], Expression) :- ...

We can have a cast of an expression on the left-hand or the right-hand side of an assignment.
Field and array accesses of the cast expression are written in Expression as a list. CastType is
either the same as, a subtype or supertype of the resulting type of Expression, because we can
cast an expression. The three cases are tried out in exactly this order.

There exists similar rules for array cast types.

cast_left(none, [CastType, CastTypeEl], Expression) :- ...
cast_right(static, [CastType, CastTypeEl], Expression) :- ...

Static Target

Universe type rule

A static target can be of all of the three Universe types.

Realization in Prolog

static_target(static, [Type]) :- universe([Type]), Type \== rep.
static_call_target(none, [Type]) :- universe([Type]).

The Prolog variable for static calls is only used in expressions, but it needs an additional rule
call to assure, that in static methods no static target becomes ever rep.

2.4 Detailed Description of the Architecture 41

2.4.3 Prolog Variable Naming

Each Prolog variable represents a Universe type. If we call a Prolog rule, we receive for each
Prolog variable the Universe type, for which the rule is satisfied.

The Prolog rules are used to design the type relations in a program. Each variable of the
original Java program is mapped to a Prolog variable with a unique name. We use some naming
rules for variables to attain this. But there are some limits set by the Prolog system itself. The
following rules must be fulfilled:

• names of files must start with a small letter

• names of variables must start with a capital letter

• names of constants must start with a small letter

• names of rules must start with a small letter

There are always ways to get a name unique, but names should not get too long because of
clearness. So the names have to be:

• unique

• resembling the original variable name

• as short as possible

Naming of Variables

Variable names are not global, they are only unique in their scope of visibility. In Prolog this scope
is different. Variables are only visible in one single rule, so you can reuse the same variable name
for as much rules as you like. But how can we draw the dependencies we need? If we always name
the same variable in a constraint rule the same way, this will have no effect in Prolog. In Prolog
it is a different variable in every rule, although it has the same name. But the naming might be a
good idea for ourselves and in the automatic generation of constraints. If we use the same name
for a variable in every constraint, we can reuse this name in the finding of the solution - the head
of a query.

Now we will have a look at the generation of variable names and how to make them unique.
The uniqueness of a name can be achieved if we add each scope name to the single variable name.
This results in the following rules for the naming of variables:

Variable := Prefix Binder Packagename Binder Classname Binder ClassTail.
Binder := ’_’.
Prefix := ’L’.
Packagename := name of the package, replace ’.’ with Binder.
Classname := name of the class.
ClassTail := Fieldname | Newname | Typename | Castname

| Methodname [Binder MethodTail].
Fieldname := name of the field [Arrayname].
Methodname := name of the method.
MethodTail := "Return" [Arrayname] | "FormalParameter" Binder Number [Arrayname]

| Typename | Castname | Varname.
Varname := "Local" Binder Localname Number [Arrayname] | Newname.
Localname := name of the local variable.
Newname := "New" Number [Arrayname].
Typename := "Type" Number.
Castname := "Cast" Number [Arrayname].
Arrayname := Binder "El".
Number := 1 | 2 | 3 | ...

42 2 Architecture

The naming of arrays is a bit special. When declaring an array, we have to give two Universe
types: one for the array reference and one for the array elements. Because of this we always need
two variables for each array.

Now we have to look at the limits the Prolog system sets us. As we mentioned, variable names
have to start with a capital letter. Normally class names in Java also start with a capital letter,
because this is like an implicit naming rule under programmers. But - and this is important - they
do not need to! It would not be nice just to assume, that every programmer does so. There are
two solutions for this problem: One can turn the first letter in a capital letter for every class or
one can add another identifier to the beginning of the variable name. We add the Prefix ’L’ to all
our names, so all variable names always start with a capital letter.

We get the following kinds of variable names with this rules:

• L Packagename Classname Fieldname
variables for class fields

• L Packagename Classname Fieldname El
variables for elements of array class fields

• L Packagename Classname Methodname
variables for the methods purity which can only be pure or none

• L Packagename Classname Methodname Return
variables for the return type of methods

• L Packagename Classname Methodname Return El
variables for the related array elements of the return type of methods

• L Packagename Classname Methodname FormalParameter1
variables for parameters of a method

• L Packagename Classname Methodname FormalParameter1 El
variables for the related array elements of the array reference parameter

• L Packagename Classname Methodname Type1
variables for types in static method calls or static field accesses

• L Packagename Classname Methodname Cast1
variables for cast expressions

• L Packagename Classname Methodname Cast1 El
variables for the related array elements of cast expressions

• L Packagename Classname Methodname Local Varname1
variables for local variables of a method

• L Packagename Classname Methodname Local Varname1 El
variables for local array elements

• L Packagename Classname Methodname New1
variables for the type before a new expression when a local object is created

• L Packagename Classname Methodname New1 El
additional variables for the type before a new expression when a local array is created

Conflicts in Naming

Method Overloading

The naming conflict for variables is solved by the naming rules above. But this could still
generated the same name for two different variables because of method overloading. It is allowed

2.4 Detailed Description of the Architecture 43

in Java to have two or more methods with the same name; they just have to differ from each other
by the number or type of the parameters. To avoid the naming conflicts given by overloading,
we can add the differentiating factor of the single methods. The drawback of this is of course,
that the names get long again. We just could number the single method names, but this would
decrease the clarity of the names. So we decided for the longer ones:

Methodname := Returntype Binder MName TypeOfParams.
MName := name of the method.
TypeOfParams := {Binder Type}.
Type := type of the parameter (package and class name).

We always have to apply these longer names, because method overloading could occur in sub-
classes and we do not know if there exists method overloading in a subclass when we compile a class.

Inner Classes

Another conflict with Naming may occur when using nested classes. We just add all class
names to the Prolog variable name to get a unique name again:

Variable := Prefix Binder Packagename Binder Classes Binder ClassTail.
Classes := Classname {Binder Classname}
Classname := name of the class.

For variables of a nested class the Prolog names just contain two or more class names.

Uniqueness

The generation of Prolog variable names for each variable leads to the following problem:

Variables with the same name but in different blocks generate the same Prolog variable name.

We can avoid this by adding a block counter to every generated Prolog name for local variables.
But then we would have to change the XML annotation format. We must be able to generate a
Prolog variable name for variables, which are annotated in an XML input file.
Another possibility is to change the definition of the index of a variable. In the syntax tree the
index of the two iterator variables in the example is the same, because they are in blocks of the
same level.

public String foo(Vector v , Vector u) {
for(Iterator iterator = v. iterator (); iterator .hasNext ;) {

Object o = iterator .next ();
//do something with variable o

}
for(Iterator iterator = u. iterator (); iterator .hasNext ;) {

iterator .next (). remove();
}

}

The two iterator variables in the example generate the same Prolog variable name, although
they are two independent variables. This will give the generated Prolog variable more restrictions,
which is not correct.

Programmers should always use a new name for each variable, to avoid this problem. If you
use unique names in your program, unique Prolog variable names will always be generated. Later
this case may be handled by more detailed XML support.

44 2 Architecture

2.4.4 Conflicts

In simple programs without pure methods, there is always a solution without conflicts. In the
worst case, there is just one solution and all variables are mapped to peer. The search for solutions
does terminate and has at least one solution. Unfortunately mapping all variables to peer is like
using no annotations at all.

As soon as we are using pure methods and partly annotated programs, we have to look at
conflicts, because then it can happen, that an assignment or method call will not work anymore.

There are two possibilities to trace Universe type conflicts of the original source:

1. The user adds casts to all points in the original source, where a conflict may occur

2. The type inference part traces conflicts automatically

If the user adds no casts to the original source and the type inference part traces no conflicts,
there are only those annotation solutions found, which work out for all type relations. The found
annotation solution is always compilable and runnable.

The user can control conflicts by adding casts to the original source. We have three possibilities
to annotate a cast, which was inserted by the user:

1. cast to the resulting type of the expression to cast
This is like we would not add a cast at all.

2. cast to a super type of the expression to cast

3. cast to a subtype of the expression to cast

If the user adds a cast to an expression, he allows more possibilities to annotate this expression.
Like this the user is concerned about possible Universe type conflicts in his program. But we also
want to automate this step. We always get better solutions, if the user adds some hints into his
program code, by adding some annotations, that are desired and adding some casts, where conflicts
should be allowed. But we must also allow the static inference tool to trace conflicts automatically.
This might be useful to users, who want to analyze a program, they have not written themselves
or to compare annotations found automatically with annotations found manually.

A conflict occurs for example in one of the following situations:

/*@ pure @*/ void foo(T b) { b gets readonly, because parameters of
pure methods have to be readonly

/*@ rep @*/ T a; a is already annotated by the user with rep
a = b; try to assign readonly to rep => conflict

}

/*@ readonly @*/ T a; a is annotated by the user with readonly
T b = a; b gets readonly, because a is readonly
b.m(); if method m is not pure => conflict

A cast can be allowed in these situations, but we do not know, if it will actually work at
runtime. The compiler allows a cast in such situations and prints a warning, that the cast may
fail at runtime. There is a runtime error message, if the cast does not work.

Partly annotated Programs

A program, which uses external classes, has three possibilities to use them in the type inference
step:

2.4 Detailed Description of the Architecture 45

1. Annotate the external classes together with the program
We annotate all classes - the classes of the program and the external classes - with our
architecture. We generate constraints for the program and the external classes and call all
queries within the global query. Like this all variables are annotated by our architecture,
also the variables of the external classes.

2. Use the already found annotation solution for the external classes
In the second case, we read in the found solution of the external classes and use them as fixed
values for the generation of the constraints of the program to annotate. All annotations are
stored in a hashtable with their respective Prolog variable name.
Whenever we reach a variable of the external class in the traversal of the syntax tree, we
look up the already given annotation of this variable and write it to the current constraint.
The Prolog variable is then only used for looking up the annotation and not used anymore
in the constraints. No query is generated for the external classes.

3. Use a part of the found annotation solution for the external classes
In this case we proceed in the same way as in the second case, but we generate a query of
each of the external classes. The queries of the external classes contain some constraints
with no variables, but only fixed annotation values. Like this the already given annotation
solution is verified once more.

The user also has the possibility to add annotations directly into the code of his program.
During the traversal of the syntax tree, when generating the constraints, the inserted annotations
are visited and also entered into the hashtable with the appropriate Prolog name for the variable.
The Prolog variable name is then also not used in the constraints, but directly the given annotation.

In the following example the user annotated variable o with readonly, because he only wants
to allow a read access over this reference. The annotation of the variable is stored in the hashtable
and directly written to the generated assignment and local_variable_declaration constraints.

/*@ readonly @*/ Object o = a.b; the user annotated variable o
assignment([[readonly]], [[V_a], [V_b]]), no Prolog variable name is used for o

in the generated constraints
local_variable_declaration(none, [readonly]), the declaration rule is needed, because

the user might have annotated wrongly

Additional temporary Universe Types

Conflicts are integrated in the Prolog part and can be solved by an additional cast. We implement
conflicts in an additional Prolog program. If our query does not return any solution, we have to
apply casts to get a solution. To achieve this, we extend our Prolog type facts by two new type
facts:

universe([conflict_rep]).
universe([conflict_peer]).

These new types correspond to the Universe type readonly, but will be handled by the Prolog
program like rep and peer. Updating field accesses and method calls of non-pure methods are
allowed on them.

The constant conflict_rep in the annotation solution found by the Prolog system is used to
show, that we need a cast to rep somewhere. We have to traverse the syntax tree again and check
each expression, where a variable was annotated by Prolog with one of the additional conflict types.
Whenever we reach a variable, which was annotated by the Prolog system with conflict_rep or
conflict_peer, we write the annotation readonly to the output for this variable. We write an
additional cast to the annotation output for each expression the variable is used in if necessary.

The new type conflict_rep is equal to rep and readonly, conflict_peer to peer and readonly.
Whenever we assign conflict_rep to rep and conflict_peer to peer, we are doing a cast. The

46 2 Architecture

Figure 2.4: Type relations of the new types

type conflict_rep behaves like rep in the combination and conflict_peer like peer. Like this
all assignments, field and array accesses and method calls can still work.

subtype_equal([conflict_rep], [rep]).
subtype_equal([conflict_rep], [readonly]).
subtype_equal([conflict_peer], [readonly]).
subtype_equal([conflict_peer], [peer]).
subtype_equal([conflict_peer], [this]).
subtype_equal([rep], [conflict_rep]).
subtype_equal([readonly], [conflict_rep]).
subtype_equal([readonly], [conflict_peer]).
subtype_equal([peer], [conflict_peer]).
subtype_equal([this], [conflict_peer]).

The combination rules do not change much. A combination with readonly still results in read-
only. If the result of a combination would normally become rep or peer, it will still do so.

combination([conflict_rep], [rep], [readonly]).
combination([conflict_peer], [rep], [readonly]).
combination([conflict_rep], [readonly], [readonly]).
combination([conflict_peer], [readonly], [readonly]).
combination([conflict_rep], [peer], [rep]).
combination([conflict_peer], [peer], [peer]).
combination([conflict_rep], [conflict_rep], [readonly]).
combination([conflict_rep], [conflict_peer], [rep]).
combination([conflict_peer], [conflict_rep], [readonly]).
combination([conflict_peer], [conflict_peer], [peer]).
combination([conflict_rep], [primitive], [primitive]).
combination([conflict_peer], [primitive], [primitive]).

In order that fields can also become conflict_rep or conflict_peer the following rules were
added to the Prolog program.

combination([rep], [conflict_rep], [readonly]).
combination([rep], [conflict_peer], [rep]).
combination([readonly], [conflict_rep], [readonly]).
combination([readonly], [conflict_peer], [readonly]).
combination([peer], [conflict_rep], [readonly]).

2.4 Detailed Description of the Architecture 47

combination([peer], [conflict_peer], [peer]).
combination([this], [conflict_rep], [rep]).
combination([this], [conflict_peer], [peer]).

Because of the arrangement of these facts in the file they are saved, the solution conflict_rep
or conflict_peer is only used, when all other universe types do not work out. The Prolog system
tries out these types as a solution before backtracking. When a call to a Prolog rule does not work
out for any of the Universe types, the Prolog system tries out conflict_rep and conflict_peer
and returns it as one possible solution for the respective Prolog variable. If we force the Prolog
system to backtrack, another solution with none of these two types can be found, if there is one.
The facts with the constant conflict_rep and conflict_peer have to be the last in the chain of
the other facts, so they will be the last possible solution to try before backtracking.

We have to add similar universe, subtype_equal and combination rules for array types to
become conflict_rep or conflict_peer. Have a look at section B.1 in the appendix to see the
additional rules for array types.

There are some more restrictions, which have to be added to some rules of the Prolog program:

1. parameters of pure methods can become conflict_rep or conflict_peer.

2. variables of static methods cannot be of type conflict_rep, because we are not allowed to
cast a variable to rep in a static method.

3. There is no need for types in a static target to get conflict_rep or conflict_peer, be-
cause we would never cast a static target. Casts and newly created objects cannot get
conflict_rep or conflict_peer for the same reason.

We show on the following example, how conflicts are traced and inserted. Variable a is already
annotated by the user with rep and field f with peer. The two parameters have to become readonly
in the annotation solution written to the output, because they are parameters of a pure method.

/*@ pure @*/ void foo(T b, T c) { b and c get readonly
/*@ rep @*/ T a; a is already annotated by the user with rep
a = b; try to assign readonly to rep => conflict
a = b.f; f is annotated by the user with type peer
b = c; } c is readonly

In this example, the Prolog system tries variable b to become readonly, because it is the
parameter of a pure method. This will not work out, because of the first assignment to the
rep variable a. We are not allowed to assign a variable of type readonly to a variable of type rep.
Therefore the only annotation solution the Prolog system finds for variable b is conflict_rep and
we need to add a cast to the first assignment in the method. Let us look at the fully annotated
example:

/*@ pure @*/ void foo(/*@ readonly @*/ T b, /*@ readonly @*/ T c) {
/*@ rep @*/ T a;
a = (/*@ rep @*/ T) b;
a = ((/*@ rep @*/ T) b).f;
b = c; }

In the second assignment we also need a cast, because we have a variable of type conflict_rep
used in a combination on the right-hand side and the resulting type of the left-hand side is rep.
In the last assignment no cast is needed, because we are assigning a variable of type readonly to
a variable of type conflict_peer.

We show at which point a cast has to be inserted on the following examples:

48 2 Architecture

Code Annotation found by
Prolog

Annotation
written to the
output

Annotation inserted in the code

a = b; V_a=peer,
V_b=conflict_peer

[a]=peer,
[b]=readonly;

a = (/*@ peer @*/ T) b;

a = b.f; V_a=peer,
V_b=conflict_peer,
V_f=peer

[a]=peer,
[b]=readonly,
[f]=peer

a = ((/*@ peer @*/ T) b).f;

c = d.e; V_c=rep, V_d=rep,
V_e=conflict_peer

[c]=rep,
[d]=rep,
[e]=readonly

c = (/*@ rep @*/ T) d.e;

a.h = b.h; V_a=peer,
V_b=conflict_peer,
V_h=readonly

[a]=peer,
[b]=readonly,
[h]=readonly

a.h = b.h;

a.h = b; V_a=peer,
V_b=conflict_peer,
V_h=readonly

[a]=peer,
[b]=readonly,
[h]=readonly

a.h = b;

Variable b needs to be casted in the first two assignments to peer, because it is assigned to peer.
Whenever a field is annotated with conflict_rep or conflict_peer by Prolog, we have to write
a cast to the resulting type of the combination as this is done for the field f.
In the last two examples we do not have a conflict, because the right-hand side is already a subtype
of the left-hand side and we need not to cast variable b this time.

Drawback

The given annotations in a partly annotated program are definite values in the Prolog part. There-
fore we cannot find casts of already annotated variables. If a variable is annotated as readonly, it
will stay readonly in the whole Prolog program and can never be changed into conflict_rep or
conflict_peer.

Let us assume for the next example, that the variable annotated is annotated by the user with
readonly and that the variable free is annotated by the static inference tool with peer, because it
needs to call a non-pure method somewhere.

readonly A annotated = new peer A();
peer A free = new peer A();
free = free.changeObject();
free = annotated;

Although the last assignment is legal, if we add a cast to annotated, the Prolog program will
not find it. For the Prolog program the variable annotated is always readonly and can never get
conflict_peer, which would indicate a cast.

But the user can add a cast by himself to the annotation variable in this expression and then
the solver will find a solution with the type peer of the cast in this expression.

free = (A) annotated;

If we want to allow a conflict on an already annotated variable, we have to mark the conflict
with a cast in an expression by hand. The static inference tool cannot find out a conflict for an
already annotated variable yet.

Resolution of the temporary Types

The user can decide, if he wants the static inference tool to trace conflicts automatically by se-
lecting the Prolog database, which implements the two additional conflict types. By traversing

2.4 Detailed Description of the Architecture 49

the syntax tree again we can resolve each conflict, the Prolog system finds and write an additional
cast to the annotation output.

We designed a new cast tag for our XML annotation format to insert an additional cast:

<addcast line="8" type="Object" modifier="rep" identifier="element" index="0"/>
8: ... = ... (/*@ rep @*/ Object) element ...;

We have to add a cast to the expression on line 8, where we cast the first occurrence of variable
element to the type /*@ rep @*/ Object. The index designates the occurrence of the variable
in the expression. If there is more than one usage of the variable in an expression, we can figure
out with the index of the variable, which occurrence of the variable needs a cast.

After receiving a solution with conflicts, we have to traverse the syntax tree again and check
all expressions, which contain variables of type conflict_rep and conflict_peer. For each of
the following expressions we have to check if a cast is necessary and if so, write one to the XML
solution file.

1. variable initialization
Node n = list.first.getNewNode().next;
When we declare a rep or peer variable, it is possible, that the initialization is a conflict,
because one of the variables used within is of type conflict_rep or conflict_peer.

2. assignment
n.prev = list.first.getNewNode().next;

• Updating field access on the left-hand side
If we have an updating field access over a variable of type conflict_rep or
conflict_peer, we also need a cast to have a valid annotation. This is the case if any
object, which accesses a field on the left-hand side of an assignment is of one of the
conflict types. The last field of the chain of field accesses is allowed to be readonly,
conflict_rep or conflict_peer.

• right-hand side is super type of left-hand side
Whenever the right-hand side of an assignment contains a variable of a conflict type, the
resulting type of the right-hand side would become readonly. If the left-hand side of the
assignment is of type rep or peer, we need to cast each variable of type conflict_rep
or conflict_peer in the right-hand side.

3. return statement
return list.first.getNewNode().next;
A return statement is like a variable initialization. If the return type is neither readonly,
conflict_rep nor conflict_peer we need to cast each conflict_rep and conflict_peer
variable in the return statement.

4. method call
list.first.setNode(n);

• target object
The target of a non-pure method is not allowed to be readonly, because a readonly
reference can only access pure methods. Therefore we must cast each conflict_rep or
conflict_peer reference in the target of a call to a non-pure method.

• formal parameter
The type of the argument has to be a subtype of the combination of the type of the
target and the formal parameter. If the combination of the target and the formal pa-
rameter results in type peer or rep, we must cast an argument of type conflict_rep
or conflict_peer.
When the argument and the formal parameter are conflict_rep or conflict_peer,
there is no problem, because the formal parameter will become readonly and a combi-
nation with the type of the target and readonly results in readonly again.
conflict_rep <: [target] * conflict_rep

50 2 Architecture

5. constructor call in object creation
Node n = new Node(list.first);
We have to check all conflict_rep or conflict_peer objects of the argument, if the com-
bination of the Universe type of the newly created object and the Universe type of the formal
parameter is rep or peer.

6. cast
Element e = (Element) list.first.getElement((Element) n.elem);
The expression of a cast cannot contain any variables of type conflict_rep or conflict_peer.
The cast already casts the expression to a type, that is useful for the expression the cast is
in. Therefore we do not need to look at cast expressions.

7. instanceof
n.elem instanceof Elem
We do not do anything for the instanceof expression. Therefore we always look at the
instance of the static type of a variable or expression.

To get the resulting type of each part of an expression, we have to combine the Universe types
of the single parts of the expression as we have done in the Prolog part. We combine the Universe
types of each part of the following expressions:

• field access
[object] * [field]

• array access
[array reference] * [array element]

• method call
[target] * [formal parameter]
[target] * [return type]

• constructor call in object creation
[object creation type] * [formal parameter]

For each expression we store all variable and method names in a map with their respective oc-
currence in the expression. Whenever we reach a variable of type conflict_rep or conflict_peer,
we check, if an additional cast is needed for the expression and write one to the output. We save
the actual Universe type of the subpart of the expression, we are in and write a cast to the com-
bination of this type with the type of the variable.

We show how this works on the following two examples. The first example is an assignment
with a chain of field accesses on the right-hand side. The type relations of the Universe types of all
variables is shown next. We assumed a possible annotation solution found by the Prolog system
for the assignment, where variable a and b become rep, c and d are conflict_peer and variable
e is peer. Whenever we have a combination with conflict_rep or conflict_peer, we need to
write a cast to the resulting type of the combination. Therefore we have to cast the field access
b.c and b.c.d to rep in the first example. These two casts are denoted with an additional cast
tag for the two variables c and d. At the end the original expression with the inserted casts is
shown.

1. a = b.c.d.e;
[a] :> [b] * [c] * [d] * [e]
rep :> rep * conflict_peer * conflict_peer * peer
rep :> rep * [c] * [d] * [e]
rep :> rep * conflict_peer * [d] * [e]
<addcast line="0" type="A" modifier="rep" variable="c" index="0"/>
rep :> rep * [d] * [e]
rep :> rep * conflict_peer * [e]
<addcast line="0" type="A" modifier="rep" variable="d" index="0"/>
rep :> rep * [e]
rep :> rep * peer
a = ((/*@ rep @*/ A) ((/*@ rep @*/ A) b.c).d).e;

2.4 Detailed Description of the Architecture 51

2. b.m(c.d);
[b] * [formal parameter of m] :> [c] * [d]
rep * peer :> conflict_rep * peer
rep :> conflict_rep * [d]
<addcast line="1" type="A" modifier="rep" variable="c" index="0"/>
rep :> rep * peer
b.m(((/*@ rep @*/ A) c).d);

In the second example, we violate the subtype relation with the type of the argument and need
to cast variable c to rep.

Universe types of formal parameters and return types of methods, which are not part of the
program to annotate, must be given with the annotation input to the static inference tool. We
cannot determine the Universe types of methods of external classes. They can only be used by
the actual program. Therefore they must be given with the annotation input and cannot become
conflict_rep or conflict_peer, because they denote fixed values to the Prolog part of the tool.

2.4.5 Optimizations

As we explained in the Prolog introduction in 1.3, the order of rules is important. The right order
of the rules in a query may save a lot of backtracking and is therefore a gain in performance. The
more backtracking is needed to find a possible solution, the more time the search for a solution
needs. We have two points in the static inference tool, where we have to decide about the order
of rules.

1. Order of the rule calls in a query body
Different order of the rule calls changes the order of the possible solutions and possibly saves
backtracking. The Prolog system evaluates rule calls in top down order. Therefore the first
rule call keeps its first initialization as long as possible, because this is the point reached last
in backtracking.

2. Order of several queries asked together
The order of the single queries called within the global query body may also change the order
of the possible solutions and save backtracking.

Order of the Rule Calls

The order of the rule calls in the body of a Prolog rule is important. The Prolog system evaluates
the rule calls top down. If the last rule call cannot be fulfilled, the system backtracks as long, as a
solution is found or all solutions are tried. Therefore it is useful to start with more restrictive rule
calls first. A bad order of the rule calls is mainly a loss in performance. With reordering rules, we
do not necessarily get better solutions first.

The following example shows the constraints, which were generated for the introductory ex-
ample in section 2.2. We provide two possible orders of the generated constraints.

field_declaration(none, [P_adr]), assignment([[this], [P_adr]],
parameter_declaration(none, public, [[P_set_a]]),

[P_set_a]), return_statement([[P_get_Return],
assignment([[this], [P_adr]], [[this], [P_adr]]).

[[P_set_a]]), field_declaration(none, [P_adr]),
method_declaration(none, none, parameter_declaration(none, public,

[P_get_Return]), [P_set_a]),
return_statement([[P_get_Return], method_declaration(none, none,

[[this], [P_adr]]). [P_get_Return]),

52 2 Architecture

The left order is just the way the syntax tree is visited. But the declaration rules mean no
real type restrictions for the variables. Therefore the right order of the rules is better, because we
execute the expression rules first. Expression rules do apply the Universe type system to the used
variables. The more expressions we have with all declared variables, the better annotations we
can get. The declaration rules only tell us, if the found solution is valid in this special declaration
environment. For example in static methods no usage of rep variables is allowed.

We have to consider, that the first rule call is the last, which is reached while backtracking.
For example we can have a list of field declaration rule calls in our query. The system will try to
keep the first field rep as long as possible. It will first set all other fields to peer until it tries out
a solution with the first field readonly or even peer and all other fields rep or readonly. Therefore
the order of the rule calls can also change the order of the possible solutions.

Order of the Queries

The solution found for the first query, initializes all variables of the first query with a possible
value. These values are used in all other queries as fixed values for the same variables. The Prolog
system tries out all possible solutions for all other variables, which are not used in the first query.
If no variation does succeed, the solution of the first query is rejected and the system checks if the
next found solution for the first query works out for all others.

The order of the single queries in the global query body is therefore also important. If we start
for example with all small classes first and the big main class is asked at the end, it will most
surely not be fulfilled with the first allocation and the Prolog system has to backtrack all small
queries several times.

In general it is a good approach, to start with classes, which restrict the used variables of the
program more than the other classes. Look also at dependencies of the single classes and start
rather with big classes than with small.

Have a look at the examples in section 4.1 to see, which order was preferred in some examples.
In the examples we usually ordered the queries of the single classes by their usage. The query of
a class, which uses another class, is called before the query of the used class.

2.4.6 Heuristics

Not all annotation solutions, which are possible, are of interest for the user. But the solver of our
architecture can find all possible solutions. We have to find the approximative best solution of all
possible solutions.

A solution, which maps all variables to peer is only interesting, when it is the only solution
the system finds. Then we would like to understand, why this is the only solution and what we
have to change in the program, that there are other solutions. Normally we are not interested in
solutions, which set all objects into the same context, this is like not adding any annotations at all.

The user has some preferences, how the best annotation for a problem should look like. The
first solution the solver returns, need not fulfill all these preferences.

We have to decide at how many solutions we look at most to find the best solution and which
properties must be fulfilled for a best solution. The maximum number of solutions we want to
look at, depends on the size of the program, the computer we use and on the time we want to
wait for a solution.

1. Check a set of solutions
It can be time consuming to look at all possible solutions the Prolog system finds to find
one solution, which fulfills all preferences of the user.

2.4 Detailed Description of the Architecture 53

2. Estimate a solution
We decide, what properties the best solution must fulfill and decide for each solution of a
set, if it is among the best ones.

We need to look at at least two possible solutions - and of course more than two if we like to
- and compare them. We have to compare a set of solutions, picking the one, which fulfills the
conditions we like to have; like that we want to get solutions with more rep and readonly than
peer. This could be done in Prolog but is not very nice. We would have to force the Prolog system
to give us only a set of all possible solutions. It is easy in Prolog to get all possible solutions, but
this would slow down our system a lot and might not even succeed.

The Java interface to Prolog can get an iterator with the query we ask to the Prolog system
and the next element is just the next solution the system would return. We get a number of
solutions and visit them within our Java code, to pick the best solution of this set, because the
first solution need not be the best one.

while(have not visited allowed maximum number of solutions) {
solution = get next possible solution;
if(solution fulfills all wished properties) {

return solution;
}

}

Check a set of solutions

There are the following possible approaches to visit a set of solutions:

1. check only one solution at once

2. check more than one solution at once

3. check all possible solutions at once

4. check at most n solutions

5. check at most all possible solutions

To find a good solution of all possible solutions, we have to check all solutions. But this can
be a great loss in performance for big programs or might not even succeed in time. We can decide
at how many solutions to look at in one step, because we may want to pick a good solution out of
three given solutions or even more. We have to give a limit of the maximum number of solutions
to visit, because we look as long at more solutions as the given properties are not fulfilled, which
designate the best solution.

If we have only one property, which has to be fulfilled, this is done very simple:

while(have not visited allowed maximum number of solutions) {
solution list = get list of possible solutions in this step;
if(solutions of list fulfill wished property) {

return best solution of the list;
}

}

It is possible to have several properties, which characterize the best solution. Each property
allows us, to pick the best solution of a set. But they do not need to agree about the best solution.
We check more solutions as long as they do not agree about the best one. But if we already visited
all solutions, we pick the best found solution of the most important property.

while(have not visited allowed maximum number of solutions) {
solution list = get list of possible solutions in this step;
for(all properties) {

54 2 Architecture

best solution i = best solution of the list for property i;
}
if(all properties found the same best solution) {

return best solution;
}

}
for(all properties) {

if(property has found best solution and has highest priority) {
return best solution of property i;

}
}

Estimate a solution

The best solution is designated by the following properties:

1. least number of peer

2. least number of conflicts

3. fields are wished to be rep

4. parameters and return types are best to be readonly

Mapping all variables to peer is nothing else, than not using Universe types at all, because all
objects lie in the same context. We want to annotate a variable with peer only, if we absolutely
wish or need to.

It is also possible, that all variables have a conflict somewhere. This is not very useful either.
We allow conflicts, because with them, it is more likely, that the used variables can get rep or
readonly. Conflicts should only be allowed, when a variable has to be mapped to peer, if we do
not allow a cast at that point.

It is more important, that a field is of type rep, than that a parameter is not of type peer.
Fields designate the attributes of a class and a class should usually own its attributes. Like this
they are protected by the class and can only be changed by accessing the class. There are some
exceptions, when a field is wished to be peer: For example if we design a data-structure like a list
item, that should belong to a list. All list items are then owned by the list, but have to be in the
same context. Therefore all attributes of the list item are mapped to peer.

This shows us, that some properties are more important than others. We need to know,
which property is the most important. We show in the next example, how different solutions
can be evaluated as the best one by different properties. We show two possible solutions of the
introductory example in section 2.2.

class P { class P {
/*@ rep @*/ A adr; /*@ readonly @*/ A adr;
void set(/*@ readonly @*/ A a) { void set(/*@ readonly @*/ A a) {

this.adr = (/*@ rep @*/ A) a; this.adr = a;
} }
/*@ readonly @*/ A get() { /*@ readonly @*/ A get() }

return this.adr; } return this.adr; }
} }

} }

The first heuristic would estimate both solutions as equal, because they contain no peer at all.
The second heuristic would choose the right solution as the better one, because it contains no
conflict. The third heuristic would prefer the left solution, because the field is mapped to rep and
for the fourth heuristic both solutions are equal again. Nevertheless the left solution is the better
one, because the right solution does not tell us anything. All objects are readonly and if we later

2.4 Detailed Description of the Architecture 55

add some more methods, this might not even work anymore.

56 2 Architecture

Chapter 3

Implementation

In this chapter we show some implementation details of our developed architecture. In section 3.1
we discuss the main implementation of the architecture and in 3.2 we show what solver databases
and solver optimisations we provide and discuss two implemented heuristics. The configuration
of the architecture is explained in 3.3 and the usage in 3.4. In section 3.5 we discuss some of the
tools we used to implement and use the architecture.

3.1 Static Inference Tool

The static inference tool has one main package, the ch.ethz.inf.sct.static_typinfer package,
which contains the main Java part of the tool. The class diagram of the main package is shown
in figure 3.1. We give a short overview over all classes now and then discuss each class in detail.

The main package contains the following classes:

Main
The Main class connects all parts of the static inference tool and is used to start the tool.

Configuration
This class reads in the configuration for the static inference tool given in the config.xml file.

Name Generator
The Name Generator is used to generate Prolog variable names for each Java method and variable.

Annotation Reader
This class reads in the purities and annotations given by the user.

Constraints Generator
The Constraints Generator visists the syntax tree of a class and generates a Prolog query for it.

Inquirer
This interface is used to get all solutions of a query from the solver.

JPL Prolog Query
The Prolog Query class asks a Prolog query to the SWI Prolog system.

Annotation Writer
This class writes the found annotation solution into a given XML format.

Helper Class
The Helper Class contains some useful methods.

57

58 3 Implementation

Figure 3.1: Class diagram for the main package

3.1.1 Main

The Main class puts all parts of the static inference tool together. It is also the starting point of
the tool, containing the main method.

The Main class calls the other parts of the tool in the following order:

1. Annotation Reader

2. Constraints Generator

3. Solution Scheduler and Evaluator

4. Annotation Writer

The annotation reader parses and stores the given purities of all methods and the annotations
of already annotated variables. This information is used in the generation of the constraints.

The generated constraints are ordered during the generation step with one of the orders dis-
cussed in section 3.2. Each generated constraint will be inserted in the chosen order during the

3.1 Static Inference Tool 59

first traversal of the syntax tree.

When we are finished with the traversal of all syntax trees with the constraints generator, the
global query rule is generated, which calls all generated constraints. We save each query head, we
generated for a class, for it will be used again in the global query body. The heads are inserted
in the global query body with a chosen order explained in section 3.2. If there is only one single
class to annotate, no global query is generated. We directly use the head of the query generated
for the class to ask to the Prolog system.

The solution scheduler and evaluator are discussed in section 3.2 and they may be called several
times until the wished solution is found.

The annotation writer traverses each syntax tree of the original program again to resolve type
conflicts and writes the annotation solution to the output.

3.1.2 Configuration

The Configuration class parses the config.xml file, which is used to configure the static inference
tool. The class is used several times to get the necessary information about input and output of
the tool. This class is implemented with the singleton pattern, so we can get a needed attribute
of the configuration at any point in the static inference tool. Please have a look at section 3.3,
where the configuration file is explained in detail.

3.1.3 Name Generator

This class contains methods to build a Prolog variable name for each of the following constructs:

• fields

• methods

• return type of a method

• formal parameters

• local variables

• newly created objects

• array elements

• static target

• cast types

Have a look at section 2.4.3 for the naming rules.

The Prolog variable name for methods is only built to look up the purity of a method. These
names are only generated and used in the Java part of the tool and never in the Prolog part.
Because of the uniqueness of the Prolog variable names, we can use them to store the purity
of the methods in a hashtable. We are already building the Prolog variable names for methods
in the constraints generator, because they are used for the Prolog variable names of local variables.

60 3 Implementation

3.1.4 Annotation Reader

The Annotation Reader reads in already given annotations and the purity of all methods. This is
done by a method, which reads in the XML input file. The information of the XML file is read
and for each variable and method a Prolog variable name is generated. Each Prolog variable name
is saved in a hashtable as the key with the appropriate purity or annotation as the value. The
uniqueness of our Prolog variable names allows us to use a hashtable for storing the annotation of
each variable and the purity of each method. With a hashtable we can quickly get the purity of a
method.

3.1.5 Constraints Generator

The Constraints Generator class is derived from the SimpleJmlVisitor. The SimpleJmlVisitor
is used to traverse the syntax tree of a Java program.

While traversing the syntax tree of a Java class, we generate the Prolog rule calls as described
in section 2.4.1. We discuss the implementation in detail next.

Deepest Node Problem

When we traverse the syntax tree, we reach the deepest node at some point. In this deepest node
we actually know where we are, but we cannot reconstruct, where we just came from.

In the local variable and the formal parameter node, we have to know, if we started in a variable
declaration, an assignment, a field access, a method call or in another expression. Therefore we
save the path in the syntax tree within flags. Basically it is enough to save, if we are in an expres-
sion or in a declaration. In an expression we generate the Prolog variable name, in a declaration
the whole rule call of the declaration rule, when reaching a local variable or formal parameter node.

Traversal Order

In each expression there might be some method calls or newly created objects, which require to
generate an additional call to a Prolog rule. We have to generate these rule calls before generating
the rule call of the expression itself. Whenever reaching an expression, we first generate all addi-
tional rule calls within the expression. This is done very easily by declaring, that we are not in the
generation of an expression now. Then all rule calls for newly created objects and method calls are
created. After this the same part of the syntax tree is traversed again, but this time we specifiy,
that we are in an expression now. Like this we have to traverse some parts of the syntax tree twice.

Visiting some parts of the syntax tree twice is a loss in performance. We discuss on the next
example, why we have to do this:

temp.m(var.p(a).field).f = t;

We generate the following rule calls for this line of code:

assignment([[V temp], [MRet], [V f]], [[V t]]),
method call parameters left([[V temp]],[[[V var], [PRet], [V field]]], [[MPar]], none),
method call parameters left([[V var]], [[[V a]]], [[PPar]], none),

The bold parts have to be generated simultaneously. When visiting variable var we have to
generate the Prolog variable name and use it in the argument of the first generated method rule
call and in the target of the second. Because of the deepest node problem we do not know, where
we just came from and that we have to append the generated Prolog variable to more than one
constraint. Each generated constraint has to be global, because we must be able to add another
Prolog variable name to the constraint in each node we visit. With arbitrary nested method calls
we cannot determine anymore, to which constraint we have to add a generated Prolog variable

3.1 Static Inference Tool 61

name.

Information Storage

During the traversal some other useful information is saved within flags, for example in what kind
of method we are:

• constructor

• static

• public

This information is used in the generation of the declaration statements.

For the left-hand side of an assignment there is always a more restrictive rule than for the
right-hand side. Therefore we need to store on which side of the assignment we are. Other useful
information to store is: the classname of the current class and the current method name.

All generated Prolog variable names are saved in a hashtable, because they build the solution
set and are used in the query head of the class. We are using a hashtable, because we insert a
Prolog variable name, whenever we create one. Like this the same Prolog variable name might be
inserted into the hashtable more than once. The Prolog variable name is the key of the hashtable
and it is unique. If we insert the same name twice, the old entry in the hashtable is just overwritten
with the excactly same entry. The Prolog variable name of a variable does not change and neither
does the kind of the variable.

The value of the hashtable is the kind of the variable:

• ”field”: for fields

• ”return”: for return types

• ”parameter”: for parameters

• ”local”: for local variables

• ”new”: for newly created objects

• ”type”: for static targets

• ”cast”: for cast types

Method Declarations

For each method declaration or call we have to check if the method is an overridden one. For
overridden methods we have to generate the same Prolog variable names for the parameters and
the return type as in the superclass or interface. We check for every method if there exists the
same method in one of the superclasses or in one of the interfaces. The method is an overridden
one, if it has the same method name and the same type and number of parameters as the method
of the superclass or interface. We always generate the Prolog variable name for the method in
the highest superclass or interface. This is done, because overridden methods must have the same
signature with the same Universe types as the original method.

Object Creation

The creation of new objects is a bit special. When first traversing the expression, where one or
more new objects are created, we generate the rule call and the Prolog variable name for the newly
created object. Each generated Prolog variable name for a new object is saved on a temporary
stack. When traversing the same part of the syntax tree for the second time, we access the names
on the stack and use them in the rule call for the expression. This works because a newly created
object is limited to one expression. The last generated object is used next in the generation step.
Please have a look at the next example for a better understanding:

62 3 Implementation

class Node {
private Node(Object o) { ... }

public Node newNode() {
Node n = new Node(new Object());

}
}

The one line of code in the method newNode() generates the following rule calls:

local_variable_declaration(none, [V_n]),
new(none, [V_New2]),
new(none, [V_New1]),
method_call_parameters_right([[V_New1]], [[[V_New2]]], [[MPar]], none),
assignment([[V_n]], [[V_New1]]),

References

In each variable node, we have to check, if the variable is a reference or not. If it is not, we just
generate the constant primitive as explained in 2.4.1. If the variable is a reference, we have to
generate the Prolog variable name for it. If the variable is already annotated by the user, we
directly generate the annotation. For Strings we always generate readonly.

Arrays

For arrays we normally have to generate the Prolog variable name for the array elements. Whenever
we reach an array reference, we have to check the following cases:

• array of primitive type

• array declaration

• expression with array access

The Prolog view of an array access and an array reference assignment differs. Please have a look
at section 2.4.1. In an assignment of one array reference to another, where the arrays are of prim-
itive type, we do not generate anything for the array elements. But if we are in an expression of
an array access of a primitive array, we do generate the constant primitive for the array elements.

Query Rules Order

To build up the query of a class, we save each generation of a Prolog rule call in a string. When
the rule call is completed, we add the string to a linked list, which saves all rule calls. The linked
list is very practical, because we can add elements at the beginning, the end or in the middle of
the list. Therefore we order the rule calls during the traversal of the syntax tree. We do not need
to reorder them after the traversal. The order of the rule calls is done by an implementation of
the interface explained in section 3.2.

3.1.6 Inquirer

The Prolog Inquirer is an interface to the solver system. It is an accessor to all solutions of a query
and provides the following methods:

void init(String query); initializes the Inquirer
with the query string to ask

boolean consultFile(String fileName); loads one file into the solver system
boolean consultFiles(List<String> fileNames); loads a list of files into the solver

3.1 Static Inference Tool 63

void setFlags(); configures the system of the solver
boolean hasMoreSolutions(); to check if there is another solution
List<Map<String,String> > getAllSolutions(); get all possible solutions of a query
Map<String,String> getNextSolution(); get the next solution

The hasMoreSolutions() method already gets the next solutions, which will be returned by
a call to the getNextSolution() method. Therefore the hasMoreSolutions() method needs not
to return a fast answer.

The last one is the same as when we are in the Prolog system and type a semicolon after the
actual solution the system shows. With these methods it is possible to get an iterator over all
possible solutions of a query.

A solution is always presented as a map of strings. The keys are the Prolog variable names of
the query head and the values are the solutions of the respective Prolog variables, i.e. Universe
types.

3.1.7 JPL Prolog Query

This class implements the Inquirer interface. It uses the JPL interface from SWI Prolog. JPL
is a Java interface to Prolog that allows to call a Prolog query from Java code. JPL requires SWI
Prolog 3.1.0 or later and provides several classes to call Prolog from Java. We cover the function-
ality of this interface in our JPL Prolog Query class for one could later use another interface than
the JPL interface or even another Prolog system as the SWI Prolog system.

3.1.8 Annotation Writer

The Annotation Writer class is also derived from the SimpleJmlVisitor and writes one annota-
tion solution for a class to a predefined annotation XML format.

Traversal

The benefits of traversing all syntax trees again are:

• the right order of all variables

• all information about the variables is available: name, type, line number, index and so on

• tracing of additional casts

Another possibility is of course to save all information during the first traversal of the syntax
tree. But if we want to allow conflicts, we have to retrace them and write them to the XML output
file. The user needs to know, in which line a conflict actually occurs. This can only be done in
traversing the syntax tree again and checking each expression for occurring conflicts. We write
down additional casts for occurring conflicts as explained in the conflicts section in 2.4.4.

Variable Declarations

We mainly look at the declaration of variables, because we write an XML tag for every declared
variable. When allowing conflicts we also have to check each expression for additional casts.

For every reference, we have to get its annotation. This can be a part of the solution of the
Prolog query or an already given annotation by the user. If we get the type conflict_rep or
conflict_peer as solution for a reference, we simply write readonly as the modifier. We also have
to check for each reference, if it is an array reference of a non-primitive type. We just generate
the array element name for each reference and check, if there is an annotation. If there is one, we
know, that the reference is an array of a non-primitive type.

64 3 Implementation

Method Declarations

We have to check for each parameter and return type of a method again, if they are of an over-
ridden method. First we generate the Prolog variable names for the method of the actual class.
If we do not find a solution in the hash-tables, we generate the Prolog variable names for the
method of the superclass and the interfaces and so on. As long as we do not get any solution,
it was not the right Prolog variable name. This is done for all super-classes and interfaces of a class.

3.1.9 Helper Class

This class contains some helpful methods like the following:

• split off class name from package name

• split off the package name from a fully qualified type name

• convert directory name into package name

• convert package name into directory name

• checks if an array type is of a primitive type

• generation of the head of a query with all Prolog variable names

• writing a whole query to a Prolog file

• read query head from a file

• determine kind of variable by the Prolog variable name

• if a string is contained in another string

The Constraints Generator gives us all Prolog rule calls of the query body of a class in a linked
list and all Prolog variables of the query head in a hashtable. With this information, we are able to
write down each Prolog query for each class in a separate file. If the file already exists, because the
query has been generated in another context before, we are not traversing the syntax tree again.
We read in the query head and all Prolog variables of the query head from the already existing file.

3.2 Solver and Heuristics

All interfaces and classes of this part belong to the ch.ethz.inf.sct.static_typinfer.heuristic
package. The class diagram of all classes in this package is shown in figure 3.2. All of the following
interfaces are implemented to give the user the possibility to experiment with the static inference
tool. In the future we need more tests to figure out how the static inference tool is configured
best.

3.2.1 Solver Database Selection

The Prolog part of the static inference tool is a Prolog program, which models the type relations
of the Universe type system. We implemented two possible Prolog databases one can use. The
first one is the Prolog database to model the Universe type rules in Prolog and the second one
contains the additional type rules to trace conflicts automatically. Developers may also write and
use new Prolog programs. We need a new Prolog program, when the Universe type system changes
or developers want to apply a whole new type system to Java programs.

If the Prolog part is written within more than one Prolog file, we can still load all files at once
into the Prolog system. So we allow only one class to be used for the following interface.

3.2 Solver and Heuristics 65

Figure 3.2: Class diagram for the heuristic package

Rule Selector Interface

This interface is called in the main class before we ask the global query to the Prolog system.

The RuleSelector interface is kept simple:

66 3 Implementation

List<String> selectPrologProgram();
All file names of all parts of a Prolog program are returned in a list and will be loaded in the
Prolog system together with all generated Prolog files in the main class before asking the global
query. All files of a Prolog program have to be in the current directory and the name must be
given without the ”.pl” ending of the Prolog file name.

We provide two implementations of this interface:

Usage of the Universe Prolog Program

We return only the rules.pl file. The rules.pl file is the Prolog part of the static inference
tool and our provided implementation of the Universe type system in Prolog.

Additional use of the Conflict Prolog Program

We return the rules.pl file and the conflict.pl file to the Prolog system. The conflict.pl
file implements the two new types conflict_rep and conflict_peer, which are used for allow-
ing conflicts. It overrides several rules from the rules.pl file. There will be several warnings
printed out by the Prolog system, when the conflict.pl file is loaded. The Prolog system prints
a warning for each Prolog rule of the rules database that is overwritten by the same rule in the
conflict database. All warnings can be ignored.

The order of the two files is important. The rules.pl file has to be loaded into the Prolog
system before the conflict.pl file. Otherwise the rules.pl file would overwrite the rules of the
conflict.pl file and the conflict.pl file would be useless.

3.2.2 Optimisations

We provide two interfaces for the two optimizations discussed in section 2.4.5. The first one is
used to order the rule calls in the query of a single class and the second one is used to order the
query calls in the global query body. We provide some implementations of each of the interfaces.

Rule Call Disposer Interface

The user can only specify one class to order the rule calls in a query. It is sufficient to order the
rule calls of all classes in the same way.

This interface is called during the generation of the constraints and contains the following
methods:

void insertFieldDeclaration(String fieldDeclaration);
inserts the generated constraint of a field declaration at the right position in the query body

void insertFieldInitialisation(String expression);
inserts the generated constraint of a field initialization at the right position in the query body

void insertExpression(String expression);
inserts the generated constraint of an expression at the right position in the query body

void insertMethodDeclaration(String declaration);
inserts the generated constraint of a method declaration at the right position in the query body

3.2 Solver and Heuristics 67

void insertParameterDeclaration(String declaration);
inserts the generated constraint of a parameter declaration at the right position in the query body

void insertLocalVariableDeclaration(String declaration);
inserts the generated constraint of a local variable declaration at the right position in the query
body

List<String> getQueryBody();
returns the whole query body in a list

We implemented three classes with possible realizations of this interface:

Top Down Order

This class orders the rule calls in the way the syntax tree is visited. It contains just one single
list and appends each rule call at the end of the list.

All Expressions First

Declarations tell us, which solutions are allowed for a variable, but expressions do actually
restrict the set of possible solutions for a variable. The usage of a variable shows the relations
a variable is used in and leads to the correct annotation. When starting with all expression rule
calls first, we can avoid some backtracking.

This class contains two lists:

• one for all expressions

• and one for all declarations

The two lists are connected to one list in the getQueryBody() method. We start with the
calls to all expression rules from all methods and ask at the end all declaration rule calls from all
methods.

Order := [FieldExpressions] {Expressions} Declarations.
Fieldexpressions := all generated expressions for field initializations.
Expressions := all generated expressions for a method.
Declarations := [Fielddeclarations] {[Methoddeclaration]

[Parameterdeclarations] [Localvariabledeclarations]}.
Methoddeclaration := generated method declaration for one method.
Parameterdeclarations := all generated parameter declarations for one method.
Localvariabledeclarations := all generated local variable declarations for one method.
Fielddeclarations := all generated field declarations.

Group Rules by Method

Local variables are only used within the method body and fully restricted there. If we group
all rule calls of a method together, at least the rule calls of all local variables are grouped together.
When a solution found for a local variable does not fit the declaration or the usage in other ex-
pressions, the Prolog system will only backtrack locally. Of course we have to ask the expression
rule calls of the variable before the declaration rule call, because they are more restrictive. Field
initializations and declarations are asked at the very end, because they may be used in all methods
of a class.

This class contains five lists:

68 3 Implementation

• one for all expressions of a method

• one for all declarations of a method

• one for all field initializations

• one for all field declarations

• and one for the whole query body

We add the first two lists to the last one, whenever we reach another declaration part of a new
method. Whenever we register the first call to the insertMethodDeclaration or insertParam-
eterDeclaration method after some calls to the insertExpression method, we know, that we
enter a new method. If a method has no reference return type and no reference parameters we
cannot notice, that we are entering a new method and the declarations are appended at the end
or after the next method with a reference return type or parameter.
The field initialization and declaration lists are added to the end of the last list, before it is returned
in the getQueryBody() method.

Order := {Expressions Declarations}
[Fieldexpressions] [Fielddeclarations].

Expressions := all generated expressions for a method
Declarations := [Methoddeclaration] [Parameterdeclarations]

[Localvariabledeclarations].
Methoddeclaration := generated method declaration for one method.
Parameterdeclarations := all generated parameter declarations for one method.
Localvariabledeclarations := all generated local variable declarations for one method.
Fieldexpressions := all generated expressions for field initializations.
Fielddeclarations := all generated field declarations.

Class Disposer Interface

This interface is used to order the query calls in the global query body. As we have only one global
query, it is sufficient to order the query calls in the global query body with one given order. We
call this interface in the main class after the generation of all constraints, while generating the
global query.

The ClassDisposer interface contains only two methods:

void insertQueryCall(Map<String,String> allPrologVariables,
Map<String,String> alreadyAnnotatedVariables, String[] javaFiles,
String javaFileName, String queryCall);

The first method inserts one query call in the global query body. All given Parameters can be
used to determine the place of the query call.
allPrologVariables: contains all Prolog variable names of all references, which are not anno-
tated by the user, for a whole program.
alreadyAnnotatedVariables: contains all Prolog variable names of already annotated variables
javaFiles: contains all file names of the Java files of the program
javaFileName: name of the Java file to insert generated query in the global query body
queryCall: query to insert in the global query body

List<String> getGlobalQueryBody();
The second method returns the list with the global query body. The single query calls are ordered
in the specified way.

We implemented the following four approaches, which use this interface:

Alphabetic Order

3.2 Solver and Heuristics 69

A simple first approach is to order the classes alphabetically, which is a kind of random order.
We order the query calls by the given Java file name alphabetically.

Ordered by Size

A more specific approach to order the query calls in the global query is, to look at the size
of each class file. The biggest file is placed at the beginning of the global query body. Like this
bigger files are less backtracked than small files. We use the Java file name to get the appropriate
file and determine its size.

Ordered by Numbers of Variables

This approach is quite similar to the last one. But we order the query calls after the number
of variables to annotate. Variables already annotated by the user are not counted. Therefore we
only look at the size of a query head. The query head with the most Prolog variables is asked
first, so it will be always visited last while the system backtracks.

User defined Order

Another approach is to let the user order the queries directly. The order is taken from the
configuration file and the single queries are asked in the same way the Java files of the related
classes are ordered in the configuration file. Like this the user can order the files in the order of
their dependencies. If he does arrange the files arbitrarily, we get a random order. The order of
the Java files is given in the javaFiles array.

3.2.3 Heuristics

We provide two interfaces, which allow the user to experiment with several heuristics. The first
one is only to determine how many solutions should be consulted to find an approximative best
solution and the second one decides for each set of solutions if it already contains a good one.

Solution Scheduler Interface

This interface is used to decide, at how many solutions we look at in a single step and at how
many in total. We allow only one instance of this interface, because the two factors, we can set,
suffice.

void init(Inquirer i);
We initialize the solution scheduler with the interface to the solver system within this method.
The inquirer interface is an accessor to all solutions of a query.

List< Hashtable<String,String> > getNextSolutions();
This method returns a list of the next solutions we like to look at. It returns a list of solutions
as long as we have not looked at the maximum allowed number of solutions. Otherwise it returns
null. We can look at only one solution at a time or at more than one.

We apply the interface in the main class after the generation of the constraints and imple-
mented the following possibilities for it:

Score out of 3

70 3 Implementation

We always get three solutions at a time and do this at most 10 times. Like this we look at at
most 30 solutions.

All Solutions

We get all possible solutions of a query at once. The getNextSolutions() method of this
implementation can only be called once and returns all solutions, the Prolog system finds.

Solution Evaluator Interface

The solution scheduler gives us a set of possible solutions, and we have to figure out, which one
is the solution that we would like to have. The solution evaluator stores the best solution of all
solutions visited so far. The best solution can depend on more than one property. Therefore we
allow multiple instances of this interface.

The implementation of the evaluator interface is also called in the main class together with the
solution scheduler.

init(Map<String,String> allPrologVariables,
Map<String,String> alreadyAnnotatedVariables);

For some implementations of this interface we might need the kind of the Prolog variables and
the annotations of already annotated variables to estimate a solution. The first map contains all
Prolog variable names of a program with the kind of the variable saved as value. The second
hashtable stores already given annotations with the related Prolog variable name as the key.

Map<String,String> getBestSolutionOfAllVisited(
List< Map<String,String> > solutions);

Each solution evaluator estimates a solution by one property, the best solution must fulfill. This
method returns the best solution found, of all so far visited solutions, which fulfills the given
property. The solution evaluator picks the best solution out of the given list and compares it to
the currently stored best one. This method does not return the best solution of the list given as
parameter, but of all so far visited solutions.
If no solution fulfilled the property of the solution evaluator so far, this method returns null. But
the currently best solution found is nevertheless stored within the solution evaluator. Although it
does not fulfill the given property.

Map<String,String> getActualBestSolution();
If we have visited all solutions and the property of the solution evaluator is still not fulfilled, we
can get the internally stored best solution with this method.

int getPriority();
Returns the priority of a solution evaluator. The solution evaluator with the highest priority is
the most important. The priority is a fixed value in the implementation. We allow any integer
value as priority value. Please look at the priorities of already implemented solution evaluators
if you implement a new one. If your new solution evaluator is more important than all others,
choose a high value, but maybe not the highest possible integer. There might be a more important
property in the future. If there is more than one solution evaluator with the same highest priority,
the one, which is declared first in the configuration file will always succeed.

Less Peer

A simple property is that we want to get more rep and readonly in our solution than peer. We
count the occurrences of peer in each solution and keep the one with the least peer references.

This solution evaluator has priority 0, because it is not very important.

3.3 Configuration 71

Score System

Another property is, that we rather want fields to be rep than local variables. We can use a
kind of a score system, where a rep field counts more than a readonly field or a rep local variable.
The solution with the highest score wins and is returned.

We assume a score for each Universe type depending on the kind of variable:

Universe type fields parameters local variables return types
rep 23∗ number of variables 21 22 21

readonly 22∗ number of variables 23 23 23

peer 0 22 21 22

conflict 21∗ number of variables 0 0 0

One field scores as much as the sum of all variables to annotate, because it is more important
to have a rep or readonly field than a rep or readonly parameter, local variable or return type.

To determine if we already have found a good solution, we use a threshold score, which is half
of the maximum possible score:

threshold = (
23∗ number of variables * number of fields)
+ (23∗ number of parameters)
+ (23∗ number of return types)
+ (23∗ number of local variables)

) / 2.0;

We only return a solution, if we have already found a solution with a score, which is better
than the threshold. We save the solution with the highest score within the class.

This solution evaluator has priority 10, because it refines the property of the other solution
evaluator.

3.3 Configuration

The user has to configure the static inference tool with the configuration file and the annotation
files. In the configuration file, the user has to specify the following parts of the static inference
tool:

• Java input

• annotation input

• annotation output

• solver system

• heuristics

Like this all parts of the static inference tool are exchangeable.

The Java input files are simply the files the user likes to annotate by the tool. The file names
have to be given as fully qualified type names, meaning with preceding package name.

In the annotation input the purity of every method of each class, the user wishes to annotate,
must be specified. The purity cannot be determined by the static inference tool and has to be
given by the user. All parameters of each method are required, because the static inference tool
needs the parameter types for the generation of the Prolog name for a method. The return type

72 3 Implementation

and the local variables are not needed. The XML input files have to be in the right form, which is
declared in the annotations.xsd file. The XML format for the annotations input and output and
the one for the configuration file are written in the annotations.xsd and the configuration.xsd file.
Both files are stored on the CD, which contains the whole architecture.

The user also has the possibility to specify some predefined annotations in one or more XML
file. The tool then tries to find a solution, which satisfies these annotations. Another possibility
for the user to insert annotations, is to directly declare them in the Java file at the variable dec-
laration point.

The user can specify more than one annotation input file. He can for example give one file
containing all purities and one file with additional annotations or a file with annotations and pu-
rities for each class.

It is possible to get for every Java class a XML annotation output file. This is useful, if the
user wants to store the annotation of single classes or wants to reuse the annotation of a class for
another inference step. The user has only two possibilities:

• one output file

• one XML output file for each analyzed class

In the first case all classes are written to one file with the name given in the configuration file.
In the second case the user does not specify a filename in the configuration file and each output
file gets the same name as the appropriate Java class.

The solver system has to be specified with an implementation of the inquirer interface.

As a last point the user needs to configure, which heuristics he wants to apply to get the
best solution. For each interface discussed in section 3.2 the user must specify the class name of
exactly one implementation. Only for the SolutionEvaluator interface there can be more than
one implementation given.

3.4 Usage

The static inference tool is used in the simple following way:

run

Just run the run shell script in your console. For the run shell script to work, the JPL en-
vironment shell env.sh is needed in the working directory as well. The env.sh script sets some
path variables for JPL. It can be found in your SWI Prolog installation in the examples order:
file:/usr/lib/pl-5.4.7/doc/packages/examples/jpl/java. The run shell script simply runs
the main class.

The compileAndRun shell compiles the code, applies the retroweaver tool to it and runs the
main class. Developers, who add new classes or change existing classes, should use this shell.

The CLASSPATH must contain all libraries, which are needed by the tool:

• commons-beanutils.jar

• commons-collections-3.1.jar

• commons-digester-1.7.jar

• commons-logging-1.0.4.jar

• log4j-1.2.11.jar

3.4 Usage 73

• jsr173 api.jar

• xbean.jar

• annotations.jar

• jpl.jar

• antlr-2.7.5.jar

• java-getopt-1.0.11.jar

• junit.jar

They are saved in the lib directory of the tool. If you install a newer SWI Prolog version,
feel free to overwrite the jpl.jar file in the lib directory. The jpl.jar file is given within your SWI
Prolog installation. The annotations.jar file must first be generated out of the annotations.xsd
file, which is done by the scomp tool:

scomp -out annotations.jar annotations.xsd

This tool comes together with the XMLBeans library.

The configuration file for your shell should look the following way:

export JUTS_ROOT=/home/MJ/
export MJ_RELATIVE_ROOT=../../../MJ/
export JML_ROOT=/home/JML2
export JML_CLASSROOT=/home/JML2/
export JAVA_HOME=/usr/java/j2sdk1.4.2_08
export JAVAC=$JAVA_HOME/bin/javac
export JAVA=$JAVA_HOME/bin/java
export JAR=$JAVA_HOME/bin/jar
export PLBASE=/usr/lib/pl-5.4.7
export PLLIBDIR=$PLBASE/lib/i686/libjpl
export LD_LIBRARY_PATH=$PLLIBDIR
export TOOLS14=$JAVA_HOME/lib/tools.jar
export HOME=/home/static-inference/lib

export CLASSPATH=${HOME}/antlr-2.7.5.jar:${TOOLS14}:
${HOME}/java-getopt-1.0.11.jar:${HOME}/junit.jar:
${JML_ROOT}:${JML_ROOT}/specs:
${JUTS_ROOT}:${HOME}/jpl.jar:${JAVA_HOME}/lib:
${HOME}/commons-beanutils.jar:
${HOME}/commons-collections-3.1.jar:
${HOME}/commons-digester-1.7.jar:
${HOME}/commons-logging-1.0.4.jar:
${HOME}/log4j-1.2.11.jar:
${HOME}/jsr173_api.jar:
${HOME}/annotations.jar:${HOME}/xbean.jar:.

export PLSL_CLASSROOT=${JUTS_ROOT}
export MJ_CLASSROOT=${JUTS_ROOT}
export JPATHSEP=:
export JFILESEP=/
export JTEMP=/tmp/

The example is used for a bash shell under Linux Red Hat. Please replace /home/ with your
home directory, where you saved the Multijava and JML environment.

74 3 Implementation

The config.xml file cannot change its name and has to be placed in the working directory from
where the tool is started. This is the same directory where the run shell is.

All generated query files are stored in the working directory, because the static inference tool
and therefore the Prolog system is started from the working directory. If there is already stored
a query file for a class in the working directory, the syntax tree of the class is not traversed and
no new query is generated. If one has changed the class and needs to rebuild the query for it, one
has to delete or remove the old query file first. Otherwise the file will not be newly built. This is
actually useful for the case if the user wants to use the already compiled class in another context
and the query file needs not be built again.

3.5 Used Tools

We used the following tools for the implementation of our tool.

3.5.1 Reading and Writing XML

To read and write XML at several points in the Java part, we use the org.apache.xmlbeans
package. This package can generate classes for each XML tag out of a .xsd file. The classname is
always built the following way:

Classname = name of the tag starting with a capital letter + "Document"

Each class has a method to add a nested tag and so it is easy to build up the hierarchical
structure of the XML file.

3.5.2 Retroweaver Tool

We used the SDK 1.5 to implement the Java part of the inference tool, because we want to use
the generic features of the new Java version. The visitors of the static inference tool have some
dependencies on JML and Multijava, which requires SDK 1.4.2. We used the Retroweaver tool to
transform compiled SDK 1.5. code in SDK 1.4.2 executable code.

The Retroweaver tool is used to convert SDK 1.5 runnable code into SDK 1.4.2 runnable code.
SDK 1.5 has many new features, which a developer wants to use. But many environments still
run only under SDK 1.4.2. Retroweaver is an open source tool to solve this problem.
The tool has a GUI or can be started on the command line. One has to declare the directory,
where the SDK 1.5 compiled classes lie and the whole classpath. Unfortunately the class path
cannot be determined by the Retroweaver tool. We have to declare all dependencies inclusive two
additional ones:

• rt.jar of the Java SDK 1.4.2

• retroweaver-rt.jar of the Retroweaver tool

The call to the retroweaver tool over the command line then looks the following way:

jdk1.5.0_02/bin/java -cp release/retroweaver-ex.jar:lib/bcel-5.1.jar:
lib/Regex.jar:lib/jace.jar:lib/asm-1.5.1.jar:
/usr/java/j2sdk1.4.2_08/jre/lib/rt.jar:
/home/retroweaver/release/retroweaver-rt.jar:
/home/static-inference/src:
/usr/java/j2sdk1.4.2_08/lib/tools.jar:
/home/MJ:/home/JML2:/home/JML2/specs:
/home/static-inference/lib/annotations.jar:
/home/static-inference/lib/ant.jar:

3.5 Used Tools 75

/home/static-inference/lib/antlr-2.7.5.jar:
/home/static-inference/lib/java-getopt-1.0.11.jar:
/home/static-inference/lib/junit.jar:
/home/static-inference/lib/jpl.jar:
/home/static-inference/lib/commons-beanutils.jar:
/home/static-inference/lib/commons-collections-3.1.jar:
/home/static-inference/lib/commons-digester-1.7.jar:
/home/static-inference/lib/commons-logging-1.0.4.jar:
/home/static-inference/lib/log4j-1.2.11.jar:
/home/static-inference/lib/jsr173_api.jar:
/home/static-inference/lib/xbean.jar

com.rc.retroweaver.Weaver
-source /home/static-inference/src/ch/ethz/inf/sct/static_typinfer/

76 3 Implementation

Chapter 4

Results and Conclusion

In this chapter we discuss the functionality of our static inference tool. In section 4.1 we exten-
sively tested the tool with some examples and discuss the annotation results. In section 4.2 we
discuss the complexity of the static type inference tool. Further we compare our results to the
runtime inference [9] in section 4.3 and discuss the future work, which has to be done in section 4.4.

4.1 Examples

We show the functionality of our tool at some small examples and one medium example in this
section. We always present the solution with and without allowing the tool to trace conflicts.

The small examples always pick the best solution of all possible solutions if we are not allowing
the tool to trace conflicts automatically. When looking at solutions with conflicts, we always look
at most 30 solutions. When allowing additional casts, there are much too many solutions to look
at them all.

We always order the rule calls of a single query with the GroupRulesByMethod strategy and
the query calls in the global query body by a user defined order. We specify the user defined order
in each example. We normally order the classes by their dependencies.

4.1.1 Iterator

We first look at the iterator example from [2]. Iterators need a direct reference to the internal
structure of a collection, because they are allowed to read and write objects of a collection. But
with a direct reference to the structure of the collection, they can also destroy that structure. In
this implementation the iterator stores a reference to a list and can modify objects through the
set method of the list.

We extended the example by the addElement(Object e) method in the LinkedList class and
the getNext() method in the Iter class. Like this more dependencies between the variables are
drawn. The method equals(Object e) overwrites the method from the Object class. We declare
the method as pure and the parameter as readonly in the annotation input.

The class LinkedList is used in the class Iter and the class Node in the class LinkedList.
This gives us the following order of the query calls in the global query body:

1. Iter

2. LinkedList

3. Node

77

78 4 Results and Conclusion

All generated constraints are given in the appendix in A.1, where we also show, what query
we ask to the Prolog system for this example and what solution is returned first.

Solution without Conflicts

public class Node {
public readonly Node prev;
public peer Node next;
public readonly Object elem;

}

public class LinkedList {
peer Node first ;

void set(peer Node np, readonly Object e) {
peer Node n = np;
n.elem = e;

}

public void addElement(readonly Object e) {
peer Node n = new peer Node();
n.elem = e;
n.next = first ;
first = n;
first .next.prev = first ;

}

public boolean equals(readonly Object l) {
if (!(l instanceof LinkedList))
return false ;
readonly Node f1 = first ;
readonly Node f2 = ((readonly LinkedList) l). first ;
while (f1 != null && f2 != null && f1.elem == f2.elem) {

f1 = f1.next;
f2 = f2.next;

}
return f1 == null && f2 == null;

}
}

public class Iter {
peer LinkedList list ;
peer Node pos;

public Iter (peer LinkedList l) {
list = l ;
pos = l . first ;

}

public void setValue(readonly Object e) {
list . set(pos, e);

}

public void getNext() {
pos = pos.next;

}
}

Without allowing conflicts, we get a solution, which sets all list nodes in the same context as
the list. The list does not own the list nodes as in [2]. The elements of the nodes can be in an
arbitrary context and the iterator is also in the same context as the list and the nodes. This is as
expected.

4.1 Examples 79

The best solution found by our architecture does not achieve that the list nodes belong to the
list. Like this the iterator has the possibility to change the list nodes without accessing them
over the list and is therefore able to destroy the structure of the list, because the pos field of the
iterator is mapped to peer.

The iterator calls the non-pure method set over the list pointer and therefore this pointer
has to be peer. The position into the list, the iterator stores in the pos pointer, is an argument
of the same method call and can therefore not become readonly, because the combination of the
target and the formal parameter is peer.

The parameter of the set method in the linked list must be peer, because it is assigned to a
local variable, which is used to update a field. The local variable cannot be readonly because of
the field update and therefore the parameter can neither be readonly as no casts are allowed. As
both fields of the iterator get peer, the first pointer of the list cannot become rep or readonly
anymore, because it is accessed over the list pointer in the constructor of the iterator and the
combination is assigned to the position. All other variables are annotated as expected.

The static inference tool looked at all possible 138 solutions and chose the first as the best one,
because of the less peer heuristic. The threshold of the score system is not reached and therefore,
this heuristic is not considered. Although the second solution gets the most points within the score
system. The threshold of the score system is not reached, because we have too many variables
mapped to peer. The single parts of the tool were done in the following times:

Step of the Tool Time needed
parse classes 21.329 s
read annotations 1.486 s
generate constraints 0.165 s
type inference 1.177 s
write annotation solution 1.054 s

As we can see in the table, the parsing of all classes needs the most time. The JML compiler
needs to parse each class to annotate and all used library classes. This cannot be avoided, because
we need the type informations of all used classes, otherwise we are not able to check subclasses
and interfaces for overridden methods.

If we change the order to the following one, the type inference part needs more time:

• Node

• LinkedList

• Iter

Step of the Tool Time needed
type inference 3.176 s

The query is much faster, when asking the query of the iterator first. Most of the possibilities are
eliminated in the iterator class.

Solution with Conflicts

class Node {
readonly Node prev;
peer Node next;
readonly Object elem;

}

public class LinkedList {
rep Node first ;

80 4 Results and Conclusion

void set(readonly Node np, readonly Object e) {
readonly Node n = np;
(rep Node n).elem = e;

}

public void addElement(readonly Object e) {
rep Node n = new rep Node();
...

}

public boolean equals(readonly Object l) {
...

rep Node f1 = first ;
readonly Node f2 = ((readonly LinkedList) l). first ;
...

}
}

public class Iter {
peer LinkedList list ;
readonly Node pos;

public Iter (peer LinkedList l) { ... }

public void setValue(readonly Object e) { ... }

public void getNext () { ... }
}

This time the list owns its nodes and therefore only the list has write access to its nodes. The
iterator is in the same context as the linked list and has only read access to nodes. But the iterator
can manipulate nodes over the set method of the list.

When enabling conflicts we get a solution, which differs only in the following annotations to
the one found in [2]:

1. prev is not peer
All node objects are in the same context and their references should therefore be annotated
with peer. Our architecture does not annotate the reference to a previous node with peer,
because it is never used in an updating field access like next.

2. The local variable n is casted to rep in the LinkedList.set method instead of the formal
parameter. This is no real difference, because both casts have the same result: We can only
change the value of a node over the list, because the nodes are owned by the list.

3. The local variable f1 is not readonly. In a pure method we do like all variables to be readonly,
because like this, we can easy see, that no object can ever be changed. Our architecture
annotates f1 with rep, because we always try out rep first.

By adding one single cast, we get a much better solution than without. This example shows,
why additional casts are useful. The cast in the set method of the list allows the parameter to
become readonly, which turns the position stored in the iterator into readonly. Only a readonly
position allows the first pointer of the list to become rep.

The static inference tool looked at 30 possible solutions to pick the best one. The first solution
was taken, because it has less peer, although the seventh solution scores the most. But the thresh-
old is not reached. If we do not use the less peer heuristic, we get the solution, which annotates
the local variable f1 of the LinkedList.equals method with readonly as desired. The following
times were needed for the single steps when conflicts and both heuristics were enabled:

4.1 Examples 81

Step of the Tool Time needed
parse classes 21.236 s
read annotations 1.488 s
generate constraints 0.148 s
type inference 0.490 s
write annotation solution 0.883 s

4.1.2 Producer Consumer

This example was also taken from [2]. The producer and the consumer share a common buffer. The
producer puts products in the buffer and the consumer gets them from the buffer. The consumer
does not modify the buffer, but only reads from it. The consumer and producer are synchronized
by storing a reference to each other.

Both classes use each other. The consumer constricts the variables of the producer by accessing
them. Therefore we ask the query of the consumer first.

Solution without Conflicts

public class Producer {

public rep readonly Product [] buf;
public int n;
public readonly Consumer con;

public Producer() {
buf = new rep readonly Product[10];

}

public void produce(readonly Product p) {
buf[n] = p;
n = (n+1) % buf.length;

}
}

public class Consumer {

public readonly readonly Product[] buf;
public int n;
public readonly Producer pro;

public Consumer(peer Producer p) {
buf = p.buf;
pro = p;
n = buf.length−1;
p.con = this ;

}

public readonly Product consume() {
n = (n+1) % buf.length;
return (readonly Product) buf[n];

}
}

We get nearly the same solution as in [2]. We have the following differences:

1. the reference to the consumer within the producer is readonly and not peer

2. the parameter of the method produce() is readonly and not peer

82 4 Results and Conclusion

3. the reference to the producer in the consumer is readonly and not peer

4. the return type of the method consume is readonly and not peer

If we additionally analyze another class, which uses the producer and consumer classes in
the intended way, we might get the same solution as in [2]. There are no calls of the method
Consumer.consume in this program and therefore it is enough to annotate the return type with
readonly.

Our solution nevertheless puts the producer in the same context as the consumer, which can
be seen at the parameter of the constructor of the consumer. The given producer, which is stored
within the class is peer and therefore in the same context. The buffer is owned by the producer
and the consumer can only access the buffer over the producer. The consumer can although point
to the buffer, because he does not write anything to it, but only reads from it. With a readonly
reference the consumer is allowed to point into the buffer’s context, which is owned by the producer.

The static inference tool looked at all possible 9984 solutions. The first was taken, because it
has less peer and the highest score in the score system.

Step of the Tool Time needed
parse classes 21.177 s
read annotations 1.379 s
generate constraints 0.098 s
type inference 22.463 s
write annotation solution 2.861 s

The type inference needs so much time, because we are looking at many solutions, which is not
even necessary, because the first one is already the best one.

Solution with Conflicts

When enabling conflicts for this example, the same solution as before is returned as the best one.
There are no conflicts needed in this example.

Step of the Tool Time needed
parse classes 21.338 s
read annotations 1.465 s
generate constraints 0.115 s
type inference 0.303 s
write annotation solution 0.903 s

This time the type inference is much faster, because we are only looking at the first solution.
Both heuristics agree on the first solution and therefore no more solutions are checked. On this
example we see, that it is sometimes a waste of time to look at all possibles solutions.

4.1.3 Tree

The following example is a larger example to test the static inference tool. It uses interfaces and
inheritance and has the following additional dependencies, which are not seen in the class diagram:

• The SortedTreeNode class is used in all tree iterators and the sorted tree.

• The Statistics interface and all classes, which implement this interface are only used in
the Test class.

• All tree iterator classes are used in the sorted tree.

• All classes are used in the Test class.

These dependencies give us a good order of the single queries in the global query rule. We
always query a class after we query for the using class:

4.1 Examples 83

Figure 4.1: Class diagram for the tree example

1. Test

2. SortedTree

3. InorderTreeIterator

4. PostorderTreeIterator

5. TreeIterator

6. SortedTreeNode

7. Iterator

8. Collection

9. ArrayCollectionIterator

10. ArrayCollection

11. Checker

12. Average

13. SumAndSubtract

14. Sum

15. Statistics

The static inference tool returns the expected solution. A tree owns its nodes and is in the
same context as the tree iterator. The tree iterator can only read the nodes of a tree. The elements
of the tree nodes are in another context. The array collection also owns its elements, which are

84 4 Results and Conclusion

Figure 4.2: Contexts of the tree example

in an arbitrary context and the array collection iterator can only read the elements. The fully
annotated source code is given in the appendix in A.2.

The static inference tool looked at 3 solutions and picked the first solution as the best one.
Both heuristics agreed in the first step, that the first solution is the best one of the 3 drawn
solutions.

Step of the Tool Time needed
parse classes 25.965 s
read annotations 1.486 s
generate constraints 0.358 s
type inference 28.125 s
write annotation solution 1.559 s

We do not look at the solution, which can be found when enabling conflicts, because we already
found the solution we expected and the next examples will show, that we cannot find a better
solution with enabling conflicts then.

4.1.4 Linked List

The linked list example is taken from [9] and implements a singly linked list, where the list items
create new items to store new objects. The method Object.equals(Object) is declared pure with
a readonly parameter as before and the method ListItem.contains(Object) is also declared pure
in the annotation input.

We order the query calls in the global query in the following user defined way, because the
items are used within the list and the list is used by the user.

1. LinkedListUser

2. LinkedList

3. ListItem

Solution without Conflicts

public class ListItem {
readonly Object stored ;
peer ListItem next;

4.1 Examples 85

public String name;

ListItem(readonly Object toStore){
stored = toStore;
next = null ;

}

public peer ListItem getNextItem(){
return next;

}

public void insert (readonly Object toStore){
if (next == null){

next = new peer ListItem(toStore);
next.name = ”item”;

}else{
next. insert (toStore);

}
}

public readonly Object remove(int index){
if (next == null){

return null ;
}else if (index == 0){

readonly Object ret = next. stored ;
next = next.next;
return ret ;

}else{
return next.remove(index−1);

}
}

public readonly Object remove(readonly Object o){
if (next == null){

return null ;
}else if (o. equals(next. stored)){

readonly Object ret = next. stored ;
next = next.getNextItem();
return ret ;

}else{
return next.remove(o);

}
}

public pure boolean contains(readonly Object o){
if (o. equals(stored)){

return true ;
}else{

if (next == null){
return false ;

}else{
return next. contains(o);

}
}

}
}

public class LinkedList {
rep ListItem head;
int size ;

public LinkedList (){
head = null;

86 4 Results and Conclusion

size = 0;
}

public int size (){
return size ;

}

public void insert (readonly Object o){
if (head == null){

head = new rep ListItem(o);
}else{

head. insert (o);
}
size++;

}

public boolean contains(readonly Object o){
if (head != null){

return head.contains(o);
}else{

return false ;
}

}

public readonly Object remove(int index){
if (head == null || index < 0){

return null ;
}else if (index == 0){

readonly Object ret = head.stored ;
head = head.next;
return ret ;

}else{
return head.remove(index−1);

}
}

public readonly Object remove(readonly Object o){
if (head == null){

return null ;
}else if (o. equals(head.stored)){

readonly Object ret = head.stored ;
head = head.next;
size−−;
return ret ;

}else{
readonly Object ret = head.remove(o);
if (ret != null){

size−−;
}
return ret ;

}

}
}

public class LinkedListUser {
public static void main(readonly readonly String [] args) {

peer LinkedList list = new peer LinkedList();
for(int i=0; i<1000; i++){

if (i%2 == 0){
list . insert (new peer A());

}else{
list . insert (new peer B());

4.1 Examples 87

}
}
for(int i=0; i<400; i++){

if (i%10 != 0){
if (i%21 == 0){

for(int j=0; j<(i%10); j++){
list .remove(i);

}
}

}else{
list . insert (new peer A());

}
}

}
}

The solution is as expected for a linked list and the same as found in [9]. The next pointers
of the items are all in the same context. The elements are in another context and the list owns
its nodes. All parameters of the methods insert, remove, contains of the ListItem and the
LinkedList class are mapped to readonly. The ListItem.getNextItem method returns peer, so
the ListItem.remove method can operate on an item. The ListItem.getNextItem method is
called in the ListItem.remove method over the next pointer of the item and assigns it to the
same next pointer again.

next = next.getNextItem();

As the called method is not pure, the next pointer needs to be peer and because of the assign-
ment to the peer next pointer, the return type of the method must also be peer.

The static inference tool looked at all possible 718 solutions and returned the second as the
best one. The second solution has the highest score within the score system, although the first
solution has less peer than the second one. The type inference step needed more time than in the
other list example, but less than the parsing of all used libraries.

Step of the Tool Time needed
parse classes 22.595 s
read annotations 1.483 s
generate constraints 0.212 s
type inference 14.742 s
write annotation solution 1.737 s

Solution with Conflicts

public class ListItem {
...

public readonly ListItem getNextItem(){
return next;

}

...

public peer Object remove(int index){
...

}

public readonly Object remove(readonly Object o){
if (next == null){

return null ;
}else if (o. equals(next. stored)){

readonly Object ret = next. stored ;

88 4 Results and Conclusion

next = (peer ListItem) next.getNextItem();
return ret ;

}
...

}

...
}

public class LinkedList {
...

public rep Object remove(int index){
if (head == null || index < 0){

return null ;
}else if (index == 0){

readonly Object ret = head.stored ;
head = head.next;
return ret ;

}else{
return head.remove(index−1);

}
}

...
}

The solution with conflicts differs in the following annotations from the one without:

1. The ListItem.getNextItem method returns now readonly. But when the method is called
in the ListItem.remove(Object) method, the actual return type is casted to peer. This
cast is not useful, because it is as we would not use a cast at all and just set the return type
of the ListItem.getNext method to peer like before.

2. The ListItem.remove(int) method returns now peer. This is the price that has to be payed
that the LinkedList.remove(int) method returns rep. This solution scores less than the
solution without conflicts.

3. The LinkedList.remove(int) method returns now rep

For this example it is not useful to allow conflicts, because we get not the solution we wished.
But as we have seen, we already get the wished solution without conflicts and therefore we do not
need to look at conflicts at all, because we do not want to allow any additional casts in this program.

The static inference tool looked at 3 solutions and picked the second one, which has less peer
and a higher score than the first one.

Step of the Tool Time needed
parse classes 22.618 s
read annotations 1.482 s
generate constraints 0.196 s
type inference 2.654 s
write annotation solution 0.930 s

4.1.5 Lottery

The lottery example is also taken from [9] to compare the results of the static and the runtime
inference. A person obtains a lottery ticket and chooses a number. When the lottery is drawn,
the person has to check the winning number.

4.1 Examples 89

The methods Lottery.getWinner, Person.check, WinningNumber.isWinner and
Object.equals are denoted as pure methods in the annotation input.

The query of the classes are ordered by their dependencies:

1. LotteryGame

2. Person

3. Lottery

4. WinningNumber

5. LotteryTicket

Solution without Conflicts

public class LotteryTicket {
int chosenNumber;

}

public class WinningNumber {
int number;

public pure boolean isWinner(readonly LotteryTicket ticket){
if (ticket .chosenNumber == number){

return true ;
}else{

return false ;
}

}
}

public class Lottery {
rep WinningNumber winner;
public peer LotteryTicket getNewTicket(){

return new peer LotteryTicket();
}
public void draw(){

winner = new rep WinningNumber();
winner.number = 123456;

}
public pure rep WinningNumber getWinner(){

return winner;
}

}

public class Person {
peer LotteryTicket ticket ;
readonly Lottery lottery ;
public void play(peer Lottery lottery){

this . lottery = lottery ;
ticket = lottery .getNewTicket();
ticket .chosenNumber = 123456;

}

public pure boolean check(){
return lottery .getWinner().isWinner(ticket);

}
}

public class LotteryGame {

public static void main(readonly readonly String [] args) {

90 4 Results and Conclusion

peer Lottery lottery = new peer Lottery();
peer Person person = new peer Person();
person. play(lottery);
lottery .draw();
if (person.check()){

System.out. println (”I ’ve won!”);
}else{

System.out. println (”I ’ve lost !”);
}

}

}

Our architecture finds excactly the same annotation solution as with runtime inference in [9].

The static inference tool looked at 16 solutions and picked the first one, which has the least
number of peer, although the second solution scores higher. But the threshold is not reached for
this example.

Step of the Tool Time needed
parse classes 22.767 s
read annotations 1.530 s
generate constraints 0.105 s
type inference 0.256 s
write annotation solution 0.948 s

Solution with Conflicts

This solution differs in the following annotations:

1. The winner field of the lottery class is now readonly, but casted to rep in the Lottery.draw()
and the Lottery.getWinner() method. The Lottery.getWinner() method still returns
rep.

2. The Lottery.getNewTicket() method now returns readonly, but the call of the method is
casted to peer.

Both casts should be omitted. The solution found without allowing conflicts is much better.
There is no need in allowing conflicts, because this program does not need any conflicts and we
can only get worse solutions with less type restrictions. Whenever we allow conflicts, we actually
need less type restrictions to get a solution. This is unnecessary for this program.

The static inference tool looked at 30 solutions and picked the 28th one, which has less peer,
although the fourth has the highest score. But the threshold is not reached and therefore the
solution with the least number of peer returned.

Step of the Tool Time needed
parse classes 23.663 s
read annotations 1.520 s
generate constraints 0.104 s
type inference 0.401 s
write annotation solution 0.904 s

If we do not use the less peer heuristic, the fourth solution is picked as the best one and this
is nearly the same solution as without conflicts. No additional cast has to be inserted. The only
difference is, that the method Lottery.getWinner() returns readonly, which is possible, because
we only call a pure method on the return type of the call to the Lottery.getWinner() method.
This is a case, where the less peer heuristic is not helpful and should not be used.

4.1 Examples 91

4.1.6 Golf Driver

This is the last example analyzed in [9]. A car has an engine, which can be started and stopped.
A golf is also a car, which can be driven. The golf driver describes how the golf is driven. The
golf class is derived from the car class and uses the golf driver class. This gives us the following
user defined order of the query calls in the global query rule:

1. Golf

2. GolfDriver

3. Car

4. Engine

Solution without Conflicts

public class Car {
rep Engine engine;
public Car(){

engine = new rep Engine();
engine.isRunning = false ;

}
public void start (){

engine.isRunning = true;
}
public void stop(){

engine.isRunning = false ;
}

}

public class GolfDriver {
peer Golf golf ;
public void driveGolf (){

golf . enter(this);
golf . start ();
golf . stop ();

}
public static void main(readonly readonly String [] args){

peer Golf mycar = new peer Golf();
peer GolfDriver me = new peer GolfDriver();
me.golf = mycar;
me.driveGolf ();

}
}

public class Golf extends Car {
readonly GolfDriver driver ;
public void enter(readonly GolfDriver driver){

this . driver = driver ;
}

}

We get the same solution as in [9] except for the annotations of the golf, where both variables
were annotated with peer in [9]. This is an example, where the solution found by runtime solution
is better than the one found with our architecture. The car and its driver should be in the same
context for they can interact with each other. As we never access the golf field over the driver
in the Golf class, we do not annotate the driver field with peer.

The static inference tool looked at all possible 12 solutions and picked the first one, which has
less peer and the highest score, although the threshold is not reached.

92 4 Results and Conclusion

Step of the Tool Time needed
parse classes 22.601 s
read annotations 1.533 s
generate constraints 0.120 s
type inference 0.178 s
write annotation solution 0.832 s

Solution with Conflicts

The solution found with allowing conflicts is worse than the one before. Again this program does
not need any conflicts and we cannot get a better solution with less type restrictions. The engine
of the car is now readonly and casted in each updating field access, which is not useful. The local
variable me in the main method is also readonly now and needs to be casted for each method
invocation.

The static inference tool looked at 30 solutions and picked the 28th one, which has less peer,
although the 10th solution has the highest score. But the threshold is not reached.

Step of the Tool Time needed
parse classes 22.664 s
read annotations 1.538 s
generate constraints 0.096 s
type inference 0.249 s
write annotation solution 0.939 s

If we omit the less peer heuristic, we get the 10th solution returned by the score heuristic. This
solution does not annotate the local variable me of the main method with readonly, but does also
annotate the engine of the car with readonly and cast it whenever it is used. We do not get the
same solution than without using conflicts when not using the less peer heuristic.

4.1.7 Conclusion

The static inference tool worked for the small and for one medium example and is fast enough. In
all the examples it was not much slower than the parsing of all libraries by the JML compiler. All
examples except for the medium one were even much faster than the parsing. The right order of
the query calls in the global query body can help to gain performance.

Conflicts should only be enabled, when the solution found without conflicts is not the expected
one or if the programmer knows, that the design will must probably need conflicts to work out.
Otherwise conflicts should be omitted, because they allow less restrictive type relations and lead
to larger solution sets. The annotation solution found will then most probably insert a cast, where
no one is needed as we have seen in the examples.

If all classes of a program are used in the intended way, better annotation solutions can be
found. Therefore it is very important to annotate only classes with the static inference tool, which
are fully implemented and use all their variables in all allowed ways.

4.2 Complexity

We want to show the complexity of the static type inference in this section. The two parts, which
influence the complexity are:

1. the solver and

2. the heuristics

The solver is the important factor if we have to detect that there is no possible solution and
the heuristics determine the complexity if all possibilities work out for a program.

4.3 Comparison to Runtime Inference 93

There are 3 possible Universe types to annotate each variable in a program. If a program has
n variables, there are 3n possibilities to try out for a program until the solver notices that there is
no possible solution.

No annotation possible = O(3n) (4.1)

If a program is as less restrictive that all Universe annotations are possible solutions for all vari-
ables, the set of all possible solutions grows to 3n, which is just the number of all possibilities the
solver can check as explained before. Each heuristic looks at all n variables of a solution. If we have
to check n variables for all 3n possible solutions, we get the following complexity for this worst case:

All annotations possible = O(3n ∗ n) (4.2)

The two worst cases should be omitted, because they mean a loss in performance:

1. detect that there is no solution

2. find best solution if all annotations are possible

The first case is not as easy to circumvent. Normally there is an annotation solution for each
program, as long as we are not using partly annotated programs and be careful with exceptions
and pure methods. Exception objects in a throw- or catch-clause are always readonly by default
and are not allowed to call a non-pure method.

The second case can be circumvented if the source is fully implemented and uses all its variables
in the appropriate manner. If a user really wants the annotation of a program, which has no real
type restrictions, there is no need to apply heuristics and the first solution returned by the solver
should already be the best one.

4.3 Comparison to Runtime Inference

The benefits of the static inference compared to the runtime inference project of [9] are the fol-
lowing:

1. Annotate larger subset
With static inference we are able to annotate all variables of a program, also those, whose
annotation cannot be determined easily by runtime inference:

• local variables

• arrays

• static fields

• static methods

2. Partially annotated programs
The user can directly annotate variables in the program or give the annotations in an addi-
tional XML input file. The given annotations are inserted easily in the generated constraints.

3. Dereferencing chains
The Prolog program applies the Universe combination rule to a chain of field accesses. The
appropriate Prolog field_access_left rule assures, that the write access after a derefer-
encing chain is legal.

4. Time Consumption
In our examples the static type inference can be much faster than the runtime inference.
This can be seen on the linked list example from [9], which needed over 20 minutes in the
runtime inference, where the static type inference needed less than a minute. The runtime
inference needs the most time to build up the needed object graph. The inference step is
also fast enough.

94 4 Results and Conclusion

Code coverage and input values are very important to get a good solution with runtime in-
ference. The user must provide a good usage of the program he wants to annotate for the best
solution can be found. To find a good solution with static type inference, it is more important that
the program to annotate is fully implemented with all allowed possibilities and uses all declared
variables in the intended way.

The runtime inference always finds the solution with the deepest nested universes, but our
architecture may not return the best possible solution. We cannot assure that the expected solu-
tions are returned first by the Prolog system and that the heuristics always grab the solution we
wish. But we have the possibility to exchange the solver and experiment with a whole new solver
system, which may have more influence on the order of possible solutions.

Another problem with our solution is, that we cannot guarantee, that all casts of a program
work out. Annotations found for casts the user inserted in the original source and for additional
casts we insert because of occurring conflicts may fail at runtime. As long as we are not using
conflicts and the user inserts no casts in the original source the annotation found is always com-
pilable and runnable.

In the future it is best to combine the static and the runtime inference to find a good annota-
tion solution. The runtime inference should be used to infer the annotations of fields, parameters
and return types. These annotations are then used as input for the static inference, which will
annotate the method bodies. Like this the benefits of both designs can be used.

4.4 Future Work

4.4.1 Inner Classes

The Universe type rules for inner classes are not yet implemented in the Prolog database. Inner
classes are parsed and we also generate constraints for them, but we do not apply the additional
Universe type rules for inner classes. The Prolog database has to be extended in the future for
inner classes are also handled correctly and has to be adapted to all changes of the Universe type
system, which take place after this project.

4.4.2 Testing

In the future we need to test all possible configurations of the static inference tool to find the
best one. We need to experiment with the already implemented heuristics and optimizations and
possibly develop new ones.

We have to check, which optimisation strategy is best for larger programs:

• Does the arrangement of the rules in a query gain much performance?

• How are the query calls in the global query body ordered best?

We provided some solutions for these two questions, but further tests are needed.

We also need to experiment with more heuristics to find out, how we can get the best solution
automatically. The interaction of the heuristics also needs further testing. As we have seen in the
examples, the score system sometimes finds a better solution, but has no influence, because the
threshold is not fulfilled. The less peer heuristic has to be carefully used when allowing conflicts,
because when a solution has less peer than it will probably add more casts.

4.4.3 User Interaction

Another improvement is to allow the user to interact with the architecture while it is running.
The user should be able to look at solutions found by the architecture and has to decide, if the

4.5 Conclusion 95

solution found is already the expected one. If this is not the case, the user can get another solution.
We should be able to change heuristics at runtime if we do not get the expected solution with a
heuristic. Further the user should be allowed to insert annotations during the static type inference
to see how the solution changes and if there is still a solution found at all.

As is proposed in the work of Jonathan Aldrich, we can also allow the solver to ask for an
annotation if a certain period of unsuccessful searches is elapsed. This would require an extended
solver program, which is not just a database to model the Universe type system, but also observes
its own runtime behavior.

The work of Jonathan Aldrich [4] is about type inference for object oriented languages. It
shows a possible implementation of a constraints solver in Prolog, which resembles our Prolog
database approach. The work talks about the problems with Prolog as a solver as for example
that the recursive descent techniques to solve constraints can be a loss in performance. It also
proposes the usage of heuristics to approximate a good solution. There is also a user interaction
with type inference proposed, where the type inference is paused after a certain period of unsuc-
cessful searches and the user is asked to add an annotation.

4.5 Conclusion

We showed with the results presented in this section, that the goal of the project was achieved.
We developed and implemented a modular architecture, which is able to infer the Universe types
of all used variables correctly. If there is an annotation solution, our architecture can find one in
reasonable short time.

Our implemented architecture is modular and can be configured with additional heuristics
and Prolog optimizations. To grant also a short runtime for the type inference of large programs
further testing with Prolog optimizations is needed. It is also necessary to experiment with more
heuristics and find a way to assure that the expected solution is found with a heuristic.

It is also possible to exchange the Prolog database and to apply another type system to the
generated constraints of a given Java source or to implement a new database if the Universe type
system changes. In the future it is also a good idea to experiment with another solver system than
the Prolog system.

Our architecture will be used together with the runtime inference algorithm of [9] to generate
feasible annotations for Java programs. The annotation solutions found by automatic type infer-
ence will further be compared to manual annotations for Java patterns.

96 4 Results and Conclusion

Bibliography

[1] Peter Müller and A. Poetzsch-Heffter: Universes: A Type System for Alias and Dependency
Control. Technical Report, Fernuniversität Hagen, 2001.

[2] Werner Dietl and Peter Müller: Universes: Statically-checkable ownership for JML. Journal
of Object Technology, 2005.

[3] Dietl, W. and Müller, P.: Exceptions in Ownership Type Systems, Formal Techniques for
Java-like Programs, 2004.

[4] Jonathan Aldrich: Incremental Type Inference for Software Engineering. University of Wash-
ington, December 1997.

[5] Peter Müller: Modular Specification and Verification of Object-Oriented Programs, volume
2262 of Lecture Notes in Computer Science, Springer Verlag, 2002.

[6] Jan Wielemaker: SWI-Prolog Reference Manual, 5.4.3 ed. http://www.swi-prolog.org/.

[7] Jakarta Project. XMLBeans. Available from http://xmlbeans.apache.org/.

[8] Retroweaver. Available from http://retroweaver.sourceforge.net/.

[9] Frank Lyner: Runtime Universe Type Inference,
http://www.sct.inf.ethz.ch/projects/student docs/Frank Lyner/, 2005. Master Thesis.

[10] Marco Meyer: Interaction with ownership graphs,
http://www.sct.inf.ethz.ch/projects/student docs/Marco Meyer/, 2005, Semester Project.

97

http://www.swi-prolog.org/
http://xmlbeans.apache.org/
http://retroweaver.sourceforge.net/
http://www.sct.inf.ethz.ch/projects/studentprotect T1	extunderscore docs/Frankprotect T1	extunderscore Lyner/
http://www.sct.inf.ethz.ch/projects/studentprotect T1	extunderscore docs/Marcoprotect T1	extunderscore Meyer/

98 BIBLIOGRAPHY

A
p
p
e
n
d
ix

A

E
x
a
m

p
le

s

A
.1

It
e
ra

to
r

E
x
a
m

p
le

In
th

is
ex

am
pl

e,
th

e
id

en
ti
fie

r
’L

’
as

w
el

l
as

th
e

pa
ck

ag
en

am
e

in
th

e
va

ri
ab

le
na

m
es

ar
e

om
it
te

d
fo

r
th

e
or

ig
in

al
va

ri
ab

le
na

m
es

ca
n

st
ill

be
re

co
gn

is
ed

.
T

he
lo

ng
er

na
m

es
fo

r
m

et
ho

ds
ar

e
no

t
us

ed
ei

th
er

fo
r

th
e

sa
m

e
re

as
on

.
T

he
so

lu
ti
on

is
ju

st
th

e
fir

st
so

lu
ti
on

,
th

e
P

ro
lo

g
sy

st
em

fin
ds

.

T
he

fo
llo

w
in

g
fil

es
w

ou
ld

be
ge

ne
ra

te
d

fo
r

th
e

cl
as

s
N

od
e,

L
in

ke
dL

is
t

an
d

It
er

:

A
.1

.1
q
u
e
ry

N
o
d
e
.p

l

q
u
er

y
N

o
d
e(

[N
o
d
e

n
ex

t,
N

o
d
e

el
em

,
N

o
d
e

pr
ev

])
:−

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[N

o
d
e

el
em

])
,

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[N

o
d
e

n
ex

t]
),

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[N

o
d
e

pr
ev

])
.

A
.1

.2
q
u
e
ry

L
in

k
e
d
L
is

t.
p
l

q
u
er

y
L
in

ke
d
L
is
t
([

N
o
d
e

el
em

,
N

o
d
e

pr
ev

,
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0
,

L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0
,

N
o
d
e

n
ex

t,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n
,

L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
,

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

,
L
in

ke
d
L
is
t

fi
rs

t
,

L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0
])

:−

as
si
g
n
m

en
t
([

[
L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

]]
,

[[
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0

]]
),

as
si
g
n
m

en
t
([

[
L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

],
[
N

o
d
e

el
em

]]
,

[[
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1

]]
),

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

n
o
n
e
,
[L

in
ke

d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0

])
,

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

n
o
n
e
,
[L

in
ke

d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1

])
,

lo
ca

va
ri
ab

le
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[

L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

])
,

n
ew

(n
o
n
e,

[L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0
])

,
as

si
g
n
m

en
t
([

[L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n

]]
,

[[
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0
]]
),

as
si
g
n
m

en
t
([

[L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n

],
[
N

o
d
e

el
em

]]
,

[[
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0
]]
),

as
si
g
n
m

en
t
([

[L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n

],
[
N

o
d
e

n
ex

t]
],

[[
th

is
],

[
L
in

ke
d
L
is
t

fi
rs

t
]]
),

as
si
g
n
m

en
t
([

[
th

is
],

[
L
in

ke
d
L
is
t

fi
rs

t
]]
,

[[
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n

]]
),

as
si
g
n
m

en
t
([

[
th

is
],

[
L
in

ke
d
L
is
t

fi
rs

t
],

[
N

o
d
e

n
ex

t
],

[N
o
d
e

pr
ev

]]
,

[[
th

is
],

[
L
in

ke
d
L
is
t

fi
rs

t
]]
),

as
si
g
n
m

en
t
([

[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

]]
,
[[

th
is

],
[

L
in

ke
d
L
is
t

fi
rs

t
]]
),

ca
st

ri
g
h
t
(n

o
n
e
,
[
L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
],

[[
re

a
d
o
n
ly

]]
),

as
si
g
n
m

en
t
([

[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

]]
,

[[
L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
],

[
L
in

ke
d
L
is
t

fi
rs

t
]]
),

b
o
o
le

an
ex

pr
es

si
o
n

([
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

]]
,
[[

n
u
ll

]]
),

b
o
o
le

an
ex

pr
es

si
o
n

([
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

]]
,
[[

n
u
ll

]]
),

b
o
o
le

an
ex

pr
es

si
o
n

([
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

],
[
N

o
d
e

el
em

]]
,

[[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

],
[
N

o
d
e

el
em

]]
),

as
si
g
n
m

en
t
([

[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

]]
,

[[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

],
[
N

o
d
e

n
ex

t]
])

,
as

si
g
n
m

en
t
([

[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

]]
,

[[
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

],
[
N

o
d
e

n
ex

t]
])

,

99

100 A Examples

b
o
o
le

an
ex

pr
es

si
o
n

([
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

]]
,
[[

n
u
ll

]]
),

b
o
o
le

an
ex

pr
es

si
o
n

([
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

]]
,
[[

n
u
ll

]]
),

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,
p
u
b
lic

,
[L

in
ke

d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0
])

,
lo

ca
va

ri
ab

le
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[L

in
ke

d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n

])
,

lo
ca

va
ri
ab

le
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

])
,

lo
ca

va
ri
ab

le
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

])
,

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[

L
in

ke
d
L
is
t

fi
rs

t
])

.

A
.1

.3
q
u
e
ry

It
e
r.

p
l

q
u
er

y
It
er

([
N

o
d
e

n
ex

t,
L
in

ke
d
L
is
t

fi
rs

t
,

It
er

p
o
s

,
It
er

lis
t

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1
,

It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0
,

L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0
,

It
er

It
er

F
or

m
al

P
ar

am
et

er
0

])
:−

as
si
g
n
m

en
t
([

[
th

is
],

[
It
er

lis
t

]]
,
[[

It
er

It
er

F
or

m
al

P
ar

am
et

er
0

]]
),

as
si
g
n
m

en
t
([

[
th

is
],

[
It
er

p
o
s

]]
,

[[
It
er

It
er

F
or

m
al

P
ar

am
et

er
0

],
[

L
in

ke
d
L
is
t

fi
rs

t
]]
),

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

co
n
st

ru
ct

or
,
[

It
er

It
er

F
or

m
al

P
ar

am
et

er
0

])
,

m
et

h
o
d

ca
lp

ar
am

et
er

s
ri
g
h
t
([

[
th

is
],

[
It
er

lis
t

]]
,

[[
[
th

is
],

[
It
er

p
o
s

]]
,
[[

It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0

]]
],

[[
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0

],
[L

in
ke

d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1

]]
,

n
o
n
e)

,
as

si
g
n
m

en
t
([

[
th

is
],

[
It
er

p
o
s

]]
,
[[

th
is

],
[

It
er

p
o
s

],
[
N

o
d
e

n
ex

t]
])

,
p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,
p
u
b
lic

,
[
It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0

])
,

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[

It
er

lis
t

])
,

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,
[
It
er

p
o
s

])
.

A
.1

.4
q
u
e
ry

.p
l

q
u
er

y
([

N
o
d
e

el
em

,
N

o
d
e

pr
ev

,
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1
,

L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0
,

L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0
,

It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0

,
N

o
d
e

n
ex

t,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n
,

L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
,

It
er

p
o
s
,

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

,
L
in

ke
d
L
is
t

fi
rs

t
,

It
er

lis
t

,
It
er

It
er

F
or

m
al

P
ar

am
et

er
0

,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0
])

:−

q
u
er

y
It
er

([
N

o
d
e

n
ex

t,
L
in

ke
d
L
is
t

fi
rs

t
,

It
er

p
o
s

,
It
er

lis
t

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1

,
It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0
,

L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0

,
It
er

It
er

F
or

m
al

P
ar

am
et

er
0

])
,

q
u
er

y
L
in

ke
d
L
is
t
([

N
o
d
e

el
em

,
N

o
d
e

pr
ev

,
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1
,

L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0

,
L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0
,

N
o
d
e

n
ex

t,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n
,

L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
,

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

,
L
in

ke
d
L
is
t

fi
rs

t
,

L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0
])

,
q
u
er

y
N

o
d
e(

[N
o
d
e

n
ex

t,
N

o
d
e

el
em

,
N

o
d
e

pr
ev

])
.

A
.1

.5
O

u
tp

u
t

b
y

th
e

P
ro

lo
g

S
y
st

e
m

T
he

ca
ll

of
th

e
qu

er
y

to
th

e
P

ro
lo

g
Sy

st
em

lo
ok

s
lik

e
th

is
:

?−
q
u
er

y(
[N

o
d
e

el
em

,
N

o
d
e

pr
ev

,
L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1
,

L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0
,

L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

,
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0
,

It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0

,
N

o
d
e

n
ex

t,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n
,

L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
,

It
er

p
o
s
,

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f2

,
L
in

ke
d
L
is
t

fi
rs

t
,

It
er

lis
t

,
It
er

It
er

F
or

m
al

P
ar

am
et

er
0

,
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0
])

.

A
nd

th
e

P
ro

lo
g

sy
st

em
an

sw
er

s
w

it
h

th
e

fo
llo

w
in

g
so

lu
ti
on

:

N
o
d
e

el
em

=
re

ad
o
n
ly

N
o
d
e

pr
ev

=
re

ad
o
n
ly

L
in

ke
d
L
is
t

eq
u
al

s
L
o
ca

l
f1

=
re

ad
o
n
ly

A.2 Tree Iterator Example 101

L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
1

=
re

ad
o
n
ly

L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
F
or

m
al

P
ar

am
et

er
0

=
re

ad
o
n
ly

L
in

ke
d
L
is
t

se
t

L
o
ca

l
n

=
p
ee

r
L
in

ke
d
L
is
t

se
t

F
or

m
al

P
ar

am
et

er
0

=
p
ee

r
It
er

se
tV

al
u
e

F
or

m
al

P
ar

am
et

er
0

=
re

ad
o
n
ly

N
o
d
e

n
ex

t
=

p
ee

r
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
L
o
ca

l
n

=
p
ee

r
L
in

ke
d
L
is
t

eq
u
al

s
C
as

t0
=

re
p

It
er

p
o
s

=
p
ee

r
L
in

ke
d
L
is
t

eq
u
al

s
f2

=
re

p
L
in

ke
d
L
is
t

fi
rs

t
=

p
ee

r
It
er

lis
t

=
p
ee

r
It
er

It
er

F
or

m
al

P
ar

am
et

er
0

=
p
ee

r
L
in

ke
d
L
is
t

ad
d
E
le

m
en

t
N

ew
0

=
p
ee

r

A
.2

T
re

e
It

e
ra

to
r

E
x
a
m

p
le

A
.2

.1
S
ta

ti
st

ic
s

in
te

rf
a
ce

S
ta

ti
st

ic
s

{
p
u
b
lic

vo
id

sa
m

p
le

(r
ea

d
o
n
ly

In
te

g
er

i)
;

p
u
b
lic

re
a
d
o
n
ly

O
b
je

ct
re

su
lt

()
;

p
u
b
lic

S
tr

in
g

g
et

N
am

e(
);

} A
.2

.2
A

v
e
ra

g
e

p
u
b
lic

cl
a
ss

A
ve

ra
g
e

im
p
le

m
en

ts
S
ta

ti
st

ic
s
{

p
ri
va

te
in

t
su

m
;

p
ri
va

te
in

t
co

u
n
te

r;

p
u
b
lic

A
ve

ra
g
e(

)
{

su
m

=
0
;

co
u
n
te

r
=

0
;

} p
u
b
lic

vo
id

sa
m

p
le

(r
ea

d
o
n
ly

In
te

g
er

i)
{

su
m

+
=

i.
in

tV
al

u
e(

);
co

u
n
te

r+
+

;
} p
u
b
lic

re
a
d
o
n
ly

O
b
je

ct
re

su
lt

()
{

re
tu

rn
n
ew

re
p

D
o
u
b
le

(s
u
m

/
(d

o
u
b
le

)
co

u
n
te

r)
;

} p
u
b
lic

S
tr

in
g

g
et

N
am

e(
)
{

re
tu

rn
”A

ve
ra

g
e”

;
}

} A
.2

.3
S
u
m

p
u
b
lic

cl
a
ss

S
u
m

im
p
le

m
en

ts
S
ta

ti
st

ic
s
{

p
ri
va

te
in

t
su

m
;

p
u
b
lic

S
u
m

()
{

su
m

=
0
;

} p
u
b
lic

vo
id

sa
m

p
le

(r
ea

d
o
n
ly

In
te

g
er

i)
{

su
m

+
=

i.
in

tV
al

u
e(

);
} p
u
b
lic

re
a
d
o
n
ly

O
b
je

ct
re

su
lt

()
{

re
tu

rn
n
ew

re
p

In
te

g
er

(s
u
m

);
} p
u
b
lic

S
tr

in
g

g
et

N
am

e(
)
{

102 A Examples

re
tu

rn
”S

u
m

”;
}

} A
.2

.4
S
u
m

A
n
d
S
u
b
tr

a
ct

p
u
b
lic

cl
a
ss

S
u
m

A
n
d
S
u
b
tr

ac
t
im

p
le

m
en

ts
S
ta

ti
st

ic
s
{

p
ri
va

te
in

t
su

m
;

p
ri
va

te
in

t
o
p
er

at
or

;

p
u
b
lic

S
u
m

A
n
d
S
u
b
tr

ac
t(

)
{

su
m

=
0
;

o
p
er

at
or

=
1
;

} p
u
b
lic

vo
id

sa
m

p
le

(r
ea

d
o
n
ly

In
te

g
er

i)
{

su
m

+
=

o
p
er

at
or

∗
i.
in

tV
al

u
e
()

;
o
p
er

at
or

−
=

o
p
er

at
or

;
} p
u
b
lic

re
a
d
o
n
ly

O
b
je

ct
re

su
lt

()
{

re
tu

rn
n
ew

re
p

In
te

g
er

(s
u
m

);
} p
u
b
lic

S
tr

in
g

g
et

N
am

e(
)
{

re
tu

rn
”S

u
m

A
n
d
S
u
b
tr

ac
t”
;

}
} A

.2
.5

C
h
e
ck

e
r

p
u
b
lic

cl
a
ss

C
h
ec

ke
r
im

p
le

m
en

ts
S
ta

ti
st

ic
s
{

p
ri
va

te
b
o
o
le

a
n

fo
u
n
d
;

p
ri
va

te
re

a
d
o
n
ly

In
te

g
er

el
em

en
t;

p
u
b
lic

C
h
ec

ke
r(

re
a
d
o
n
ly

In
te

g
er

va
l)

{
el

em
en

t
=

va
l;

fo
u
n
d

=
fa

ls
e
;

} p
u
b
lic

vo
id

sa
m

p
le

(r
ea

d
o
n
ly

In
te

g
er

i)
{

if
(
i.

eq
u
al

s(
el

em
en

t)
)
{

fo
u
n
d

=
tr

u
e;

}
} p
u
b
lic

re
a
d
o
n
ly

O
b
je

ct
re

su
lt

()
{

re
tu

rn
n
ew

re
p

B
o
o
le

an
(f

o
u
n
d
);

} p
u
b
lic

S
tr

in
g

g
et

N
am

e(
)
{

re
tu

rn
”C

h
ec

ke
r”

;
}

} A
.2

.6
C

o
ll
e
ct

io
n

in
te

rf
a
ce

C
o
lle

ct
io

n
{

p
u
b
lic

p
ee

r
It
er

at
or

el
em

en
ts

()
;

p
u
b
lic

vo
id

ad
d
E
le

m
en

t(
re

a
d
o
n
ly

In
te

g
er

i)
;

p
u
b
lic

b
o
o
le

a
n

is
E
m

p
ty

()
;

} A
.2

.7
It

e
ra

to
r

im
p
o
rt

ja
va

.
u
ti
l
.N

o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

A.2 Tree Iterator Example 103

in
te

rf
a
ce

It
er

at
or

{

p
u
b
lic

vo
id

fi
rs

t
()

;

p
u
b
lic

vo
id

n
ex

t(
)

th
ro

w
s

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

p
u
b
lic

re
a
d
o
n
ly

In
te

g
er

g
et

C
u
rr

en
t
()

;

p
u
b
lic

b
o
o
le

a
n

is
D

o
n
e(

);
} A

.2
.8

A
rr

a
y
C

o
ll
e
ct

io
n

p
u
b
lic

cl
a
ss

A
rr

ay
C
o
lle

ct
io

n
im

p
le

m
en

ts
C
o
lle

ct
io

n
{

p
u
b
lic

re
p

re
a
d
o
n
ly

In
te

g
er

[]
d
at

a
;

p
u
b
lic

in
t

p
o
s;

p
ri
va

te
st

a
ti
c

fi
n
a
l

in
t

S
IZ

E
=

6
4
;

p
u
b
lic

A
rr

ay
C
o
lle

ct
io

n
()

{
d
at

a
=

n
ew

re
p

re
a
d
o
n
ly

In
te

g
er

[S
IZ

E
];

p
o
s

=
0
;

} p
u
b
lic

vo
id

ad
d
E
le

m
en

t(
re

a
d
o
n
ly

In
te

g
er

i)
{

if
(p

o
s

>
=

d
at

a.
le

n
g
th

)
{

re
p

re
a
d
o
n
ly

In
te

g
er

[]
o
ld

D
at

a
=

d
at

a;
d
at

a
=

n
ew

re
p

re
a
d
o
n
ly

In
te

g
er

[d
at

a
.l
en

g
th

∗2
];

fo
r(

in
t

j
=

0
;

j<
o
ld

D
at

a.
le

n
g
th

;
j+

+
)
{

d
at

a
[j

]
=

o
ld

D
at

a[
j
];

} d
at

a
[p

o
s+

+
]
=

i;
}

} p
u
b
lic

b
o
o
le

a
n

is
E
m

p
ty

()
{

re
tu

rn
(p

o
s

=
=

0
);

} p
u
b
lic

p
ee

r
It
er

at
or

el
em

en
ts

()
{

re
tu

rn
n
ew

p
ee

r
A

rr
ay

C
o
lle

ct
io

n
It
er

at
or

(
th

is
);

}
} A

.2
.9

A
rr

a
y
It

e
ra

to
r

im
p
o
rt

ja
va

.
u
ti
l
.N

o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

p
u
b
lic

cl
a
ss

A
rr

ay
C
o
lle

ct
io

n
It
er

at
or

im
p
le

m
en

ts
It
er

at
or

{
p
ri
va

te
in

t
p
o
s;

p
ri
va

te
re

a
d
o
n
ly

A
rr

ay
C
o
lle

ct
io

n
co

ll
;

p
u
b
lic

A
rr

ay
C
o
lle

ct
io

n
It
er

at
or

(r
ea

d
o
n
ly

A
rr

ay
C
o
lle

ct
io

n
co

ll
)
{

th
is

.
co

ll
=

co
ll

;
} p
u
b
lic

vo
id

fi
rs

t
()

{
p
o
s

=
0
;

} p
u
b
lic

vo
id

n
ex

t(
)

th
ro

w
s

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
{

if
(p

o
s

<
co

ll
.d

at
a
.l
en

g
th

−
1
)
{

p
o
s+

+
;

} el
se

{
th

ro
w

n
ew

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
(

”
A

rr
ay

C
o
lle

ct
io

n
It
er

at
or

”
);

}
} p
u
b
lic

re
a
d
o
n
ly

In
te

g
er

g
et

C
u
rr

en
t(

)
{

re
tu

rn
co

ll
.d

at
a
[p

o
s
];

}

104 A Examples

p
u
b
lic

b
o
o
le

a
n

is
D

o
n
e(

)
{

re
tu

rn
(p

o
s

>
=

co
ll
.p

o
s

)
||

(
p
o
s

>
=

co
ll
.d

at
a
.l
en

g
th

);
}

} A
.2

.1
0

S
o
rt

e
d
T
re

e
N

o
d
e

p
u
b
lic

cl
a
ss

S
or

te
d
T
re

eN
o
d
e
{

p
u
b
lic

re
a
d
o
n
ly

In
te

g
er

ke
y
;

p
u
b
lic

p
ee

r
S
or

te
d
T
re

eN
o
d
e

le
ft

;

p
u
b
lic

p
ee

r
S
or

te
d
T
re

eN
o
d
e

ri
g
h
t;

p
u
b
lic

re
a
d
o
n
ly

S
or

te
d
T
re

eN
o
d
e

p
ar

en
t;

p
u
b
lic

S
or

te
d
T
re

eN
o
d
e(

re
a
d
o
n
ly

In
te

g
er

i)
{

ke
y

=
i;

th
is

.p
ar

en
t

=
n
u
ll
;

} p
u
b
lic

S
or

te
d
T
re

eN
o
d
e(

re
a
d
o
n
ly

In
te

g
er

i,
re

a
d
o
n
ly

S
or

te
d
T
re

eN
o
d
e

p
ar

en
t)

{
ke

y
=

i;
th

is
.p

ar
en

t
=

p
ar

en
t;

}
} A

.2
.1

1
S
o
rt

e
d
T
re

e

p
u
b
lic

cl
a
ss

S
or

te
d
T
re

e
im

p
le

m
en

ts
C
o
lle

ct
io

n
{

p
ro

te
ct

ed
re

p
S
or

te
d
T
re

eN
o
d
e

ro
o
tN

o
d
e;

p
u
b
lic

S
or

te
d
T
re

e
()

{
ro

o
tN

o
d
e

=
n
u
ll;

}

p
u
b
lic

b
o
o
le

a
n

is
E
m

p
ty

()
{

re
tu

rn
(r

o
o
tN

o
d
e

=
=

n
u
ll)

;
} p
u
b
lic

vo
id

ad
d
E
le

m
en

t(
re

a
d
o
n
ly

In
te

g
er

i)
{

if
(r

o
o
tN

o
d
e

=
=

n
u
ll)

{
ro

o
tN

o
d
e

=
n
ew

re
p

S
or

te
d
T
re

eN
o
d
e(

i)
;

} el
se

if
(
i.

in
tV

al
u
e
()

<
=

ro
o
tN

o
d
e.

ke
y.

in
tV

al
u
e(

))
{

in
se

rt
In

L
ef

tS
u
b
tr

ee
(
i,

ro
o
tN

o
d
e)

;
} el

se
{

in
se

rt
In

R
ig

h
tS

u
b
tr

ee
(
i,

ro
o
tN

o
d
e)

;
}

} p
u
b
lic

p
ee

r
It
er

at
or

el
em

en
ts

()
{

re
tu

rn
cr

ea
te

In
or

d
er

It
er

at
or

()
;

} p
u
b
lic

re
p

It
er

at
or

cr
ea

te
P
o
st

or
d
er

It
er

at
or

()
{

re
tu

rn
n
ew

re
p

P
o
st

or
d
er

T
re

eI
te

ra
to

r
(r

o
o
tN

o
d
e)

;
} p
u
b
lic

p
ee

r
It
er

at
or

cr
ea

te
In

or
d
er

It
er

at
or

()
{

re
tu

rn
n
ew

p
ee

r
In

or
d
er

T
re

eI
te

ra
to

r
(r

o
o
tN

o
d
e)

;
} p
ri
va

te
vo

id
in

se
rt

In
L
ef

tS
u
b
tr

ee
(r

ea
d
o
n
ly

In
te

g
er

i,
re

p
S
or

te
d
T
re

eN
o
d
e

n
o
d
e)

{
re

p
S
or

te
d
T
re

eN
o
d
e

le
ft

C
h
ild

=
n
o
d
e.

le
ft

;
if

(
le

ft
C
h
ild

=
=

n
u
ll)

{
re

p
S
or

te
d
T
re

eN
o
d
e

n
ew

n
o
d
e

=
n
ew

re
p

S
or

te
d
T
re

eN
o
d
e(

i,
n
o
d
e)

;
n
o
d
e.

le
ft

=
n
ew

n
o
d
e;

} el
se

if
(
i.

in
tV

al
u
e
()

<
=

le
ft

C
h
ild

.k
ey

.i
n
tV

al
u
e
()

)
{

A.2 Tree Iterator Example 105

in
se

rt
In

L
ef

tS
u
b
tr

ee
(
i,

le
ft

C
h
ild

);
} el

se
{

in
se

rt
In

R
ig

h
tS

u
b
tr

ee
(
i,

le
ft

C
h
ild

);
}

} p
ri
va

te
vo

id
in

se
rt

In
R
ig

h
tS

u
b
tr

ee
(r

ea
d
o
n
ly

In
te

g
er

i,
re

p
S
or

te
d
T
re

eN
o
d
e

n
o
d
e)

{
re

p
S
or

te
d
T
re

eN
o
d
e

ri
g
h
tC

h
ild

=
n
o
d
e.

ri
g
h
t
;

if
(
ri
g
h
tC

h
ild

=
=

n
u
ll)

{
re

p
S
or

te
d
T
re

eN
o
d
e

n
ew

n
o
d
e

=
n
ew

re
p

S
or

te
d
T
re

eN
o
d
e(

i,
n
o
d
e)

;
n
o
d
e.

ri
g
h
t

=
n
ew

n
o
d
e;

} el
se

if
(
i.

in
tV

al
u
e
()

<
=

ri
g
h
tC

h
ild

.k
ey

.i
n
tV

al
u
e
()

)
{

in
se

rt
In

L
ef

tS
u
b
tr

ee
(
i,

ri
g
h
tC

h
ild

);
} el

se
{

in
se

rt
In

R
ig

h
tS

u
b
tr

ee
(
i,

ri
g
h
tC

h
ild

);
}

}
} A

.2
.1

2
T
re

e
It

e
ra

to
r

im
p
o
rt

ja
va

.
u
ti
l
.N

o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

a
b
st

ra
ct

cl
a
ss

T
re

eI
te

ra
to

r
im

p
le

m
en

ts
It
er

at
or

{

p
ro

te
ct

ed
re

a
d
o
n
ly

S
or

te
d
T
re

eN
o
d
e

cu
rr

en
tN

o
d
e;

p
ro

te
ct

ed
re

a
d
o
n
ly

S
or

te
d
T
re

eN
o
d
e

st
ar

tN
o
d
e;

p
u
b
lic

vo
id

fi
rs

t
()

{
cu

rr
en

tN
o
d
e

=
st

ar
tN

o
d
e;

}

a
b
st

ra
ct

p
u
b
lic

vo
id

n
ex

t(
)

th
ro

w
s

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

p
u
b
lic

re
a
d
o
n
ly

In
te

g
er

g
et

C
u
rr

en
t(

)
{

re
tu

rn
cu

rr
en

tN
o
d
e.

ke
y
;

} p
u
b
lic

b
o
o
le

a
n

is
D

o
n
e(

)
{

re
tu

rn
(c

u
rr

en
tN

o
d
e

=
=

n
u
ll)

;
}

} A
.2

.1
3

In
o
rd

e
rT

re
e
It

e
ra

to
r

im
p
o
rt

ja
va

.
u
ti
l
.N

o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

p
u
b
lic

cl
a
ss

In
or

d
er

T
re

eI
te

ra
to

r
ex

te
n
d
s

T
re

eI
te

ra
to

r
{

p
u
b
lic

In
or

d
er

T
re

eI
te

ra
to

r
(r

ea
d
o
n
ly

S
or

te
d
T
re

eN
o
d
e

ro
o
tN

o
d
e)

{
st

ar
tN

o
d
e

=
ro

o
tN

o
d
e;

if
(r

o
o
tN

o
d
e

!=
n
u
ll
)
{

w
h
ile

(s
ta

rt
N

o
d
e
.
le

ft
!=

n
u
ll

)
{

st
ar

tN
o
d
e

=
st

ar
tN

o
d
e.

le
ft

;
}

} cu
rr

en
tN

o
d
e

=
st

ar
tN

o
d
e;

} p
u
b
lic

vo
id

n
ex

t(
)

th
ro

w
s

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
{

if
(c

u
rr

en
tN

o
d
e

=
=

n
u
ll)

{
th

ro
w

n
ew

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
(”

In
or

d
er

T
re

eI
te

ra
to

r”
);

} el
se

if
(c

u
rr

en
tN

o
d
e.

ri
g
h
t

!=
n
u
ll

)
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

ri
g
h
t;

w
h
ile

(c
u
rr

en
tN

o
d
e.

le
ft

!=
n
u
ll

)
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

le
ft

;
}

106 A Examples

} el
se

{
w

h
ile

((
cu

rr
en

tN
o
d
e.

p
ar

en
t

!=
n
u
ll
)

&
&

(c
u
rr

en
tN

o
d
e.

p
ar

en
t.

le
ft

!=
cu

rr
en

tN
o
d
e)

)
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

p
ar

en
t;

} cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

p
ar

en
t;

}
}

} A
.2

.1
4

P
o
st

o
rd

e
rT

re
e
It

e
ra

to
r

im
p
o
rt

ja
va

.
u
ti
l
.N

o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
;

p
u
b
lic

cl
a
ss

P
o
st

or
d
er

T
re

eI
te

ra
to

r
ex

te
n
d
s

T
re

eI
te

ra
to

r
{

p
u
b
lic

P
o
st

or
d
er

T
re

eI
te

ra
to

r
(r

ea
d
o
n
ly

S
or

te
d
T
re

eN
o
d
e

ro
o
tN

o
d
e)

{
st

ar
tN

o
d
e

=
ro

o
tN

o
d
e;

if
(s

ta
rt

N
o
d
e

!=
n
u
ll
)
{

w
h
ile

((
st

ar
tN

o
d
e
.
le

ft
!=

n
u
ll
)

||
(
st

ar
tN

o
d
e
.r

ig
h
t

!=
n
u
ll

))
{

w
h
ile

(s
ta

rt
N

o
d
e
.r

ig
h
t

!=
n
u
ll

)
{

st
ar

tN
o
d
e

=
st

ar
tN

o
d
e.

ri
g
h
t
;

} if
(s

ta
rt

N
o
d
e
.
le

ft
!=

n
u
ll

)
{

st
ar

tN
o
d
e

=
st

ar
tN

o
d
e.

le
ft

;
}

}
} cu

rr
en

tN
o
d
e

=
st

ar
tN

o
d
e;

} p
u
b
lic

vo
id

n
ex

t(
)

th
ro

w
s

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
{

if
(c

u
rr

en
tN

o
d
e

=
=

n
u
ll)

{
th

ro
w

n
ew

N
o
S
u
ch

E
le

m
en

tE
xc

ep
ti
o
n
(”

P
o
st

or
d
er

T
re

eI
te

ra
to

r”
);

} if
(c

u
rr

en
tN

o
d
e.

p
ar

en
t

=
=

n
u
ll)

{
cu

rr
en

tN
o
d
e

=
cu

rr
en

tN
o
d
e.

p
ar

en
t;

re
tu

rn
;

} if
(c

u
rr

en
tN

o
d
e.

p
ar

en
t.

ri
g
h
t

=
=

cu
rr

en
tN

o
d
e)

{
if

(c
u
rr

en
tN

o
d
e.

p
ar

en
t.

le
ft

!=
n
u
ll

)
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

p
ar

en
t.

le
ft

;
} el

se
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

p
ar

en
t;

re
tu

rn
;

} w
h
ile

((
cu

rr
en

tN
o
d
e.

le
ft

!=
n
u
ll
)

||
(
cu

rr
en

tN
o
d
e.

ri
g
h
t

!=
n
u
ll

))
{

w
h
ile

(c
u
rr

en
tN

o
d
e.

ri
g
h
t

!=
n
u
ll

)
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

ri
g
h
t;

} if
(c

u
rr

en
tN

o
d
e.

le
ft

!=
n
u
ll

)
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

le
ft

;
}

}
} el

se
{

cu
rr

en
tN

o
d
e

=
cu

rr
en

tN
o
d
e.

p
ar

en
t;

}
}

} A
.2

.1
5

T
e
st

im
p
o
rt

ja
va

.
u
ti
l
.R

an
d
o
m

;

p
u
b
lic

cl
a
ss

T
es

t
{

p
u
b
lic

st
a
ti
c

vo
id

m
ai

n
(r

ea
d
o
n
ly

re
a
d
o
n
ly

S
tr

in
g

[]
ar

g
sv

)
{

p
ee

r
S
ta

ti
st

ic
s

s
=

n
u
ll
;

A.2 Tree Iterator Example 107

if
(a

rg
sv

.l
en

g
th

<
1
)
{

re
tu

rn
;

} el
se

if
(a

rg
sv

[0
].

eq
u
al

s(
”a

ve
ra

g
e
”)

)
{

s
=

n
ew

p
ee

r
A

ve
ra

g
e(

);
} el

se
if

(a
rg

sv
[0

].
eq

u
al

s(
”s

u
m

su
b
”)

)
{

s
=

n
ew

p
ee

r
S
u
m

A
n
d
S
u
b
tr

ac
t(

);
} el

se
if

(a
rg

sv
[0

].
eq

u
al

s(
”s

ea
rc

h
”)

)
{

s
=

n
ew

p
ee

r
C
h
ec

ke
r(

n
ew

p
ee

r
In

te
g
er

(
re

a
d
o
n
ly

In
te

g
er

.
p
ar

se
In

t
(a

rg
sv

[1
])

))
;

} el
se

{
re

tu
rn

;
} p
ee

r
T
es

t.
m

ea
su

re
(1

0
0
,
s
);

m
ea

su
re

(1
0
0
0
0
,
s)

;
m

ea
su

re
(1

0
0
0
0
0
0
,
s)

;
} p
ri
va

te
st

a
ti
c

vo
id

m
ea

su
re

(i
n
t

el
em

en
ts

,
p
ee

r
S
ta

ti
st

ic
s

s)
{

in
t

i;
lo

n
g

st
ar

t
,

en
d
;

p
ee

r
A

rr
ay

C
o
lle

ct
io

n
ar

ra
y

=
n
ew

p
ee

r
A

rr
ay

C
o
lle

ct
io

n
()

;

fi
ll

(
ar

ra
y

,
el

em
en

ts
);

ap
p
ly

(
ar

ra
y

,
s
);

p
ee

r
S
or

te
d
T
re

e
tr

ee
=

n
ew

p
ee

r
S
or

te
d
T
re

e(
);

fi
ll

(
tr

ee
,

el
em

en
ts

);

ap
p
ly

(
tr

ee
,

s
);

}

p
ri
va

te
st

a
ti
c

vo
id

ap
p
ly

(p
ee

r
C
o
lle

ct
io

n
co

ll
,

p
ee

r
S
ta

ti
st

ic
s

s)
{

p
ee

r
It
er

at
or

it
er

=
co

ll
.e

le
m

en
ts

()
;

w
h
ile

(!
it
er

.i
sD

o
n
e
()

)
{

s
.s

am
p
le

(
it
er

.g
et

C
u
rr

en
t
()

);
it
er

.n
ex

t
()

;
}

} p
ri
va

te
st

a
ti
c

vo
id

fi
ll

(p
ee

r
C
o
lle

ct
io

n
co

ll
,

in
t

el
em

en
ts

)
{

p
ee

r
R
an

d
o
m

ra
n
d
o
m

=
n
ew

p
ee

r
R
an

d
o
m

()
;

ra
n
d
o
m

.s
et

S
ee

d
(4

2
);

fo
r(

in
t

i
=

0
;

i<
el

em
en

ts
;

i+
+

)
{

co
ll

.a
d
d
E
le

m
en

t(
n
ew

p
ee

r
In

te
g
er

(r
an

d
o
m

.n
ex

tI
n
t(

)
%

1
0
0
))

;
}

}
}

108 A Examples

A
p
p
e
n
d
ix

B

P
ro

lo
g

P
ro

g
ra

m

B
.1

ru
le

s.
p
l

%
F
ile

ru
le

s
.p

l

%
ty

p
es

%
si
m

p
le

u
n
iv

er
se

ty
p
es

u
n
iv

er
se

([
re

p
])

.
u
n
iv

er
se

([
re

ad
o
n
ly

])
.

u
n
iv

er
se

([
p
ee

r
])

.

%
al

l
ar

ra
y

u
n
iv

er
se

ty
p
es

%
o
n
ly

fo
r

ar
ra

ys
w

h
ic

h
co

n
ta

in
a

re
fe

re
n
ce

ty
p
e

u
n
iv

er
se

([
re

p
,

re
ad

o
n
ly

])
.

u
n
iv

er
se

([
re

p
,

p
ee

r
])

.
u
n
iv

er
se

([
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

u
n
iv

er
se

([
re

ad
o
n
ly

,
p
ee

r
])

.
u
n
iv

er
se

([
p
ee

r
,

re
ad

o
n
ly

])
.

u
n
iv

er
se

([
p
ee

r
,

p
ee

r
])

.

%
al

l
ty

p
es

ty
p
e(

X
)

:−
u
n
iv

er
se

(X
).

ty
p
e
([

pr
im

it
iv

e
])

.
ty

p
e
([

n
u
ll

])
.

%
sp

ec
ia

l
ty

p
e

fo
r

’
th

is
’

o
b
je

ct
s

ty
p
e
([

th
is

])
.

%
u
n
iv

er
se

su
b
ty

p
es

su
b
ty

p
e

n
o
te

q
u
al

([
re

p
],

[
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
p
ee

r
],

[
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
n
u
ll

],
X

)
:−

u
n
iv

er
se

(X
).

su
b
ty

p
e

n
o
te

q
u
al

([
n
u
ll

],
[

th
is

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
re

p
,

re
ad

o
n
ly

],
[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
re

p
,

p
ee

r
],

[
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
re

p
,

p
ee

r
],

[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
re

p
,

p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

n
o
te

q
u
al

([
re

ad
o
n
ly

,
p
ee

r
],

[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
p
ee

r
,

re
ad

o
n
ly

],
[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
p
ee

r
,

p
ee

r
],

[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
p
ee

r
,

p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

n
o
te

q
u
al

([
p
ee

r
,

p
ee

r
],

[
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

n
o
te

q
u
al

([
th

is
],

[
re

ad
o
n
ly

])
.

%
va

ri
ab

le
su

b
ty

p
es

%
x

=
y;

%
[y

]
<

:
[x

];

su
b
ty

p
e

eq
u
al

(X
,
Y

)
:−

su
b
ty

p
e

n
o
te

q
u
al

(X
,
Y

).

109

110 B Prolog Program

su
b
ty

p
e

eq
u
al

(X
,
X

)
:−

ty
p
e(

X
).

su
b
ty

p
e

eq
u
al

([
th

is
],
[
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
],

[
th

is
])

.

%
co

m
b
in

at
io

n
s

co
m

b
in

at
io

n
([

re
p

],
[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
p

],
[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
p

],
[
p
ee

r
],

[
re

p
])

.

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[
p
ee

r
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

X
],

[Y
,
Z

],
[
U

,
Z

])
:−

co
m

b
in

at
io

n
([

X
],

[Y
],

[U
])

.

co
m

b
in

at
io

n
([

th
is

],
[
re

p
],

[
re

p
])

.
co

m
b
in

at
io

n
([

th
is

],
[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

th
is

],
[
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

th
is

],
[
Y

,
Z

],
[
U

,
Z

])
:−

co
m

b
in

at
io

n
([

th
is

],
[
Y

],
[U

])
.

co
m

b
in

at
io

n
([

re
p

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

re
ad

o
n
ly

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

p
ee

r
],

[
pr

im
it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

th
is

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

.

co
m

b
in

at
io

n
([

X
,Y

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

:−
u
n
iv

er
se

([
X

,Y
])

.

%
fi
el

d
d
ec

la
ra

ti
o
n

%
st

at
ic

re
fe

re
n
ce

fi
el

d
s

ar
e

al
w
ay

s
re

ad
o
n
ly

by
n
ow

fi
el

d
d
ec

la
ra

ti
o
n

(
st

at
ic

,
[
F
ie

ld
])

:−
u
n
iv

er
se

([
F
ie

ld
])

,
F
ie

ld
\=

=
re

p
.

fi
el

d
d
ec

la
ra

ti
o
n

(
st

at
ic

,
[
F
ie

ld
A

rr
ay

,
F
ie

ld
A

rr
ay

E
l]

)
:−

u
n
iv

er
se

([
F
ie

ld
A

rr
ay

,
F
ie

ld
A

rr
ay

E
l
])

,
F
ie

ld
A

rr
ay

\=
=

re
p
.

fi
el

d
d
ec

la
ra

ti
o
n

(n
o
n
e
,

F
ie

ld
)

:−
u
n
iv

er
se

(
F
ie

ld
).

%
h
eu

ri
st

ic
%

if
a

fi
el

d
is

tr
ie

d
to

b
e

p
ee

r
an

d
th

e
pr

ec
ed

in
g

fi
el

d
%

is
st

ill
re

p
,

tr
y

fi
rs

t
to

m
ak

e
th

e
pr

ec
ed

in
g

fi
el

d
%

re
ad

o
n
ly

an
d

th
e

fi
el

d
re

p
ag

ai
n

%
lo

ca
l

va
ri
ab

le
d
ec

la
ra

ti
o
n

%
lo

ca
l

va
ri
ab

le
s

in
st

at
ic

m
et

h
o
d
s

m
u
st

n
o
t

b
e

o
f
ty

p
e

re
p

lo
ca

l
va

ri
ab

le
d
ec

la
ra

ti
o
n

(
st

at
ic

,
[
L
o
ca

l]
)

:−
u
n
iv

er
se

([
L
o
ca

l
])

,
L
o
ca

l
\=

=
re

p
,

L
o
ca

l
\=

=
co

n
fl
ic

t
re

p
.

lo
ca

l
va

ri
ab

le
d
ec

la
ra

ti
o
n

(
st

at
ic

,
[
L
o
ca

lA
rr

ay
,

L
o
ca

lE
l]
)

:−
u
n
iv

er
se

([
L
o
ca

lA
rr

ay
,

L
o
ca

lE
l
])

,
L
o
ca

lA
rr

ay
\=

=
re

p
,

L
o
ca

lA
rr

ay
\=

=
co

n
fl
ic

t
re

p
.

lo
ca

l
va

ri
ab

le
d
ec

la
ra

ti
o
n

(n
o
n
e
,

L
o
ca

l)
:−

u
n
iv

er
se

(L
o
ca

l)
.

st
at

ic
ta

rg
et

(
st

at
ic

,
[
T
yp

e]
)

:−
u
n
iv

er
se

([
T
yp

e
])

,
T
yp

e
\=

=
re

p
,

T
yp

e
\=

=
co

n
fl
ic

t
re

p
,

T
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
st

at
ic

ta
rg

et
(n

o
n
e
,
[T

yp
e]

)
:−

u
n
iv

er
se

([
T
yp

e
])

,
T
yp

e
\=

=
co

n
fl
ic

t
re

p
,

T
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.

%
m

et
h
o
d
s

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(p
u
re

,
,
[
P
ar

am
et

er
])

:−
P
ar

am
et

er
=

re
ad

o
n
ly

;
P
ar

am
et

er
=

co
n
fl
ic

t
re

p
;

P
ar

am
et

er
=

co
n
fl
ic

t
p
ee

r
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(p
u
re

,
,
[
P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
)

:−
(P

ar
am

et
er

A
rr

ay
=

re
ad

o
n
ly

;

B.1 rules.pl 111

P
ar

am
et

er
A

rr
ay

=
co

n
fl
ic

t
re

p
;

P
ar

am
et

er
A

rr
ay

=
co

n
fl
ic

t
p
ee

r
),

u
n
iv

er
se

([
P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
).

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

co
n
st

ru
ct

or
,[

P
ar

am
et

er
])

:−
u
n
iv

er
se

([
P
ar

am
et

er
])

,
P
ar

am
et

er
\=

=
re

p
,

P
ar

am
et

er
\=

=
co

n
fl
ic

t
re

p
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

co
n
st

ru
ct

or
,[

P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
)

:−
u
n
iv

er
se

([
P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]

),
P
ar

am
et

er
A

rr
ay

\=
=

re
p
,

P
ar

am
et

er
A

rr
ay

\=
=

co
n
fl
ic

t
re

p
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

st
at

ic
,[

P
ar

am
et

er
])

:−
u
n
iv

er
se

([
P
ar

am
et

er
])

,
P
ar

am
et

er
\=

=
re

p
,

P
ar

am
et

er
\=

=
co

n
fl
ic

t
re

p
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

st
at

ic
,[

P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
)

:−
u
n
iv

er
se

([
P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
),

P
ar

am
et

er
A

rr
ay

\=
=

re
p
,

P
ar

am
et

er
A

rr
ay

\=
=

co
n
fl
ic

t
re

p
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

p
u
b
lic

,[
P
ar

am
et

er
])

:−
u
n
iv

er
se

([
P
ar

am
et

er
])

,
P
ar

am
et

er
\=

=
re

p
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

p
u
b
lic

,[
P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
)

:−
u
n
iv

er
se

([
P
ar

am
et

er
A

rr
ay

,
P
ar

am
et

er
A

rr
ay

E
l]
),

P
ar

am
et

er
A

rr
ay

\=
=

re
p
.

p
ar

am
et

er
d
ec

la
ra

ti
o
n

(n
o
n
e
,

n
o
n
e,

P
ar

am
et

er
)

:−
u
n
iv

er
se

(P
ar

am
et

er
).

%
m

et
h
o
d

d
ec

la
ra

ti
o
n

m
et

h
o
d

d
ec

la
ra

ti
o
n
(p

u
re

,
st

at
ic

,
[
R
et

u
rn

T
yp

e]
)

:−
u
n
iv

er
se

([
R
et

u
rn

T
yp

e
])

,
R
et

u
rn

T
yp

e
\=

=
re

p
,

R
et

u
rn

T
yp

e
\=

=
co

n
fl
ic

t
re

p
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(p

u
re

,
st

at
ic

,
[
R
et

u
rn

A
rr

ay
,

R
et

u
rn

A
rr

ay
E
l]
)

:−
u
n
iv

er
se

([
R
et

u
rn

A
rr

ay
,

R
et

u
rn

A
rr

ay
E
l]

),
R
et

u
rn

A
rr

ay
\=

=
re

p
,

R
et

u
rn

A
rr

ay
\=

=
co

n
fl
ic

t
re

p
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(p

u
re

,
p
u
b
lic

,
R
et

u
rn

T
yp

e)
:−

u
n
iv

er
se

(R
et

u
rn

T
yp

e)
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(p

u
re

,
n
o
n
e
,

R
et

u
rn

T
yp

e)
:−

u
n
iv

er
se

(R
et

u
rn

T
yp

e)
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(n

o
n
e
,

st
at

ic
,
[
R
et

u
rn

T
yp

e]
)

:−
u
n
iv

er
se

([
R
et

u
rn

T
yp

e
])

,
R
et

u
rn

T
yp

e
\=

=
re

p
,

R
et

u
rn

T
yp

e
\=

=
co

n
fl
ic

t
re

p
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(n

o
n
e
,

st
at

ic
,
[
R
et

u
rn

A
rr

ay
,

R
et

u
rn

A
rr

ay
E
l]
)

:−
u
n
iv

er
se

([
R
et

u
rn

A
rr

ay
,

R
et

u
rn

A
rr

ay
E
l]

),
R
et

u
rn

A
rr

ay
\=

=
re

p
,
R
et

u
rn

A
rr

ay
E
l
\=

=
re

p
,

R
et

u
rn

A
rr

ay
\=

=
co

n
fl
ic

t
re

p
,

R
et

u
rn

A
rr

ay
E
l
\=

=
co

n
fl
ic

t
re

p
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(n

o
n
e
,

p
u
b
lic

,
R
et

u
rn

T
yp

e)
:−

u
n
iv

er
se

(R
et

u
rn

T
yp

e)
.

m
et

h
o
d

d
ec

la
ra

ti
o
n
(n

o
n
e
,

n
o
n
e
,

R
et

u
rn

T
yp

e)
:−

u
n
iv

er
se

(R
et

u
rn

T
yp

e)
.

%
o
b
je

ct
cr

ea
ti
o
n

%
v

=
n
ew

T
S
()

;
%

T
S

<
:
[v

]

n
ew

(s
ta

ti
c

,
[
V
ar

ia
b
le

])
:−

u
n
iv

er
se

([
V
ar

ia
b
le

])
,

V
ar

ia
b
le

\=
=

re
ad

o
n
ly

,
V
ar

ia
b
le

\=
=

re
p
,

V
ar

ia
b
le

\=
=

co
n
fl
ic

t
re

p
,

V
ar

ia
b
le

\=
=

co
n
fl
ic

t
p
ee

r
.

n
ew

(n
o
n
e,

[V
ar

ia
b
le

])
:−

u
n
iv

er
se

([
V
ar

ia
b
le

])
,

V
ar

ia
b
le

\=
=

re
ad

o
n
ly

,
V
ar

ia
b
le

\=
=

co
n
fl
ic

t
re

p
,

V
ar

ia
b
le

\=
=

co
n
fl
ic

t
p
ee

r
.

%
ar

ra
y

cr
ea

ti
o
n

%
V

[]
v

=
n
ew

V
[5

];

n
ew

(s
ta

ti
c

,
[
A

rr
ay

,
A

rr
ay

E
l]

)
:−

u
n
iv

er
se

([
A

rr
ay

,
A

rr
ay

E
l]

),
A

rr
ay

\=
=

re
ad

o
n
ly

,
A

rr
ay

\=
=

re
p
,

A
rr

ay
\=

=
co

n
fl
ic

t
re

p
,

A
rr

ay
\=

=
co

n
fl
ic

t
p
ee

r
,

A
rr

ay
E
l
\=

=
co

n
fl
ic

t
p
ee

r
.

n
ew

(n
o
n
e,

[A
rr

ay
,

A
rr

ay
E
l]

)
:−

u
n
iv

er
se

([
A

rr
ay

,
A

rr
ay

E
l]

),
A

rr
ay

\=
=

re
ad

o
n
ly

,
A

rr
ay

\=
=

co
n
fl
ic

t
re

p
,

A
rr

ay
\=

=
co

n
fl
ic

t
p
ee

r
,

A
rr

ay
E
l
\=

=
co

n
fl
ic

t
p
ee

r
.

%
fi
el

d
ac

ce
ss

es
ri
g
h
t
−

h
an

d
si
d
e

%
v

=
w

.f
.g

.h
;

%
[w

]∗
[f

]∗
[g

]∗
[h

]
<

:
[v

]

112 B Prolog Program

%
in

cl
u
d
in

g
m

et
h
o
d

ca
lls

%
v

=
w

.m
(e

);
fi
el

d
ac

ce
ss

ri
g
h
t

([
W

,
M

R
et

u
rn

],
R
es

).
%

v
=

w
.f
.g

.m
(e

);
fi
el

d
ac

ce
ss

ri
g
h
t

([
W

,
F
,
G

,
M

R
et

u
rn

],
R
es

).
%

v
=

w
.f
.g

.m
(e

).
h
;

fi
el

d
ac

ce
ss

ri
g
h
t

([
W

,
F
,
G

,
M

R
et

u
rn

,
H

],
R
es

).

fi
el

d
ac

ce
ss

ri
g
h
t

([
H

],
R
es

)
:−

ty
p
e(

H
),

R
es

=
H

.
fi
el

d
ac

ce
ss

ri
g
h
t

([
H

1
,
H

2
|T

],
R
es

)
:−

ty
p
e(

H
1
),

ty
p
e(

H
2
),

co
m

b
in

at
io

n
(H

1
,
H

2
,
H

R
es

),
fi
el

d
ac

ce
ss

ri
g
h
t

([
H

R
es
|T

],
R
es

).

%
fi
el

d
ac

ce
ss

es
le

ft
−

h
an

d
si
d
e

%
in

cl
u
d
in

g
m

et
h
o
d

ca
lls

%
v.

f.
g
.h

=
w

;
%

[w
]
<

:
[v

]∗
[f

]∗
[g

]∗
[h

]

fi
el

d
ac

ce
ss

le
ft

([
H

],
R
es

)
:−

ty
p
e(

H
),

R
es

=
H

.
fi
el

d
ac

ce
ss

le
ft

([
H

1
,
H

2
|T

],
R
es

)
:−

ty
p
e(

H
1
),

H
1
\=

=
[t
h
is

],
H

1
\=

=
[r
ea

d
o
n
ly

],
ty

p
e(

H
2
),

H
2
\=

=
[r
ep

],
H

2
\=

=
[c

o
n
fl
ic

t
re

p
],

co
m

b
in

at
io

n
(H

1
,
H

2
,
H

R
es

),
fi
el

d
ac

ce
ss

le
ft

([
H

R
es
|T

],
R
es

).
fi
el

d
ac

ce
ss

le
ft

([
H

1
,
[A

rr
ay

,
A

rr
ay

E
l]
|T

],
R
es

)
:−

ty
p
e(

H
1
),

H
1
\=

=
[t
h
is

],
H

1
\=

=
[r
ea

d
o
n
ly

],
u
n
iv

er
se

([
A

rr
ay

,
A

rr
ay

E
l
])

,
A

rr
ay

\=
=

re
p
,
A

rr
ay

\=
=

co
n
fl
ic

t
re

p
,

co
m

b
in

at
io

n
(H

1
,
[A

rr
ay

,
A

rr
ay

E
l
],

[
R
es

A
rr

ay
,

R
es

A
rr

ay
E
l]

),
fi
el

d
ac

ce
ss

le
ft

([
[R

es
A

rr
ay

,
R
es

A
rr

ay
E
l]
|T

],
R
es

).
fi
el

d
ac

ce
ss

le
ft

([
[
th

is
],

H
2
|T

],
R
es

)
:−

ty
p
e(

H
2
),

co
m

b
in

at
io

n
([

th
is

],
H

2
,
H

R
es

),
fi
el

d
ac

ce
ss

le
ft

([
H

R
es
|T

],
R
es

).

ca
st

le
ft

(
st

at
ic

,
[
C
as

tT
yp

e
],

E
xp

re
ss

io
n
)

:−

fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e]
=

E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
le

ft
(
st

at
ic

,
[
C
as

tT
yp

e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e
],

E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
le

ft
(
st

at
ic

,
[
C
as

tT
yp

e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e]

),
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
le

ft
(
st

at
ic

,
[
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e,
C
as

tE
l]

=
E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

le
ft

(
st

at
ic

,
[
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

le
ft

(
st

at
ic

,
[
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e,

C
as

tE
l]

),
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

B.1 rules.pl 113

ca
st

le
ft

(n
o
n
e
,
[C

as
tT

yp
e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e]
=

E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
le

ft
(n

o
n
e
,
[C

as
tT

yp
e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e
],

E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
le

ft
(n

o
n
e
,
[C

as
tT

yp
e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e]

),
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
le

ft
(n

o
n
e
,
[C

as
tT

yp
e,

C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e,
C
as

tE
l]

=
E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

le
ft

(n
o
n
e
,
[C

as
tT

yp
e,

C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

le
ft

(n
o
n
e
,
[C

as
tT

yp
e,

C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

le
ft

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e,

C
as

tE
l]

),
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

ri
g
h
t
(
st

at
ic

,
[
C
as

tT
yp

e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e]
=

E
xp

re
ss

io
n
T
yp

e,

u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
ri
g
h
t
(
st

at
ic

,
[
C
as

tT
yp

e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e
],

E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
ri
g
h
t
(
st

at
ic

,
[
C
as

tT
yp

e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e]

),
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
ri
g
h
t
(
st

at
ic

,
[
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e,
C
as

tE
l]

=
E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

ri
g
h
t
(
st

at
ic

,
[
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

ri
g
h
t
(
st

at
ic

,
[
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e,

C
as

tE
l]

),
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

ri
g
h
t
(n

o
n
e
,
[C

as
tT

yp
e
],

E
xp

re
ss

io
n
)

:−

114 B Prolog Program

fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e]
=

E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
ri
g
h
t
(n

o
n
e
,
[C

as
tT

yp
e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e
],

E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
ri
g
h
t
(n

o
n
e
,
[C

as
tT

yp
e
],

E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e]

),
u
n
iv

er
se

([
C
as

tT
yp

e]
),

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r.
ca

st
ri
g
h
t
(n

o
n
e
,
[C

as
tT

yp
e,

C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

[C
as

tT
yp

e,
C
as

tE
l]

=
E
xp

re
ss

io
n
T
yp

e,
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

ri
g
h
t
(n

o
n
e
,
[C

as
tT

yp
e,

C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

([
C
as

tT
yp

e,
C
as

tE
l]

,
E
xp

re
ss

io
n
T
yp

e
),

u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

ca
st

ri
g
h
t
(n

o
n
e
,
[C

as
tT

yp
e,

C
as

tE
l]

,
E
xp

re
ss

io
n
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(E
xp

re
ss

io
n

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

n
o
te

q
u
al

(E
xp

re
ss

io
n
T
yp

e
,
[C

as
tT

yp
e,

C
as

tE
l]

),
u
n
iv

er
se

([
C
as

tT
yp

e,
C
as

tE
l]

),
C
as

tT
yp

e
\=

=
co

n
fl
ic

t
re

p
,

C
as

tT
yp

e
\=

=
co

n
fl
ic

t
p
ee

r,
C
as

tE
l
\=

=
co

n
fl
ic

t
p
ee

r
.

%
as

si
g
n
m

en
t

as
si
g
n
m

en
t(

L
ef

tL
is
t

,
R
ig

h
tL

is
t
)

:−
fi
el

d
ac

ce
ss

le
ft

(
L
ef

tL
is
t

,
L
ef

tR
es

),

fi
el

d
ac

ce
ss

ri
g
h
t

(
R
ig

h
tL

is
t
,

R
ig

h
tR

es
),

su
b
ty

p
e

eq
u
al

(R
ig

h
tR

es
,

L
ef

tR
es

).

%
co

n
fl
ic

t
:

if
th

e
as

si
g
n
m

en
t

is
n
o
t

p
o
ss

ib
le

%
tr

y
to

m
ak

e
th

e
ri
g
h
t−

h
an

d
si
d
e

re
ad

o
n
ly

an
d

h
av

e
%

a
co

n
fl
ic

t
o
n

th
e

ri
g
h
t
−

h
an

d
si
d
e,

w
h
ic

h
ca

n
b
e

so
lv

ed
%

by
a

ty
p
e

ca
st

to
th

e
ty

p
e

o
f

th
e

le
ft
−

h
an

d
si
d
e

%
b
o
o
le

an
ex

pr
es

si
o
n
s

lik
e

eq
u
al

it
y

or
in

eq
u
al

it
y

%
fo

r
ex

am
p
le

n
.n

ex
t

=
=

m
.n

ex
t

b
o
o
le

an
ex

pr
es

si
o
n

(
L
ef

tL
is
t

,
R
ig

h
tL

is
t
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(
L
ef

tL
is
t

,
L
ef

tR
es

),
fi
el

d
ac

ce
ss

ri
g
h
t

(
R
ig

h
tL

is
t
,

R
ig

h
tR

es
),

su
b
ty

p
e

eq
u
al

(R
ig

h
tR

es
,

L
ef

tR
es

).

b
o
o
le

an
ex

pr
es

si
o
n

(
L
ef

tL
is
t

,
R
ig

h
tL

is
t
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(
L
ef

tL
is
t

,
L
ef

tR
es

),
fi
el

d
ac

ce
ss

ri
g
h
t

(
R
ig

h
tL

is
t
,

R
ig

h
tR

es
),

su
b
ty

p
e

n
o
te

q
u
al

(L
ef

tR
es

,
R
ig

h
tR

es
).

%
re

tu
rn

st
at

em
en

t
in

a
m

et
h
o
d

re
tu

rn
st

at
em

en
t(

R
et

u
rn

T
yp

e,
E
xp

re
ss

io
n
L
is
t
)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(
E
xp

re
ss

io
n
L
is
t

,
E
xp

re
ss

io
n
T
yp

e
),

su
b
ty

p
e

eq
u
al

(E
xp

re
ss

io
n
T
yp

e
,

R
et

u
rn

T
yp

e)
.

%
m

et
h
o
d

in
vo

ca
ti
o
n

%
sp

lit
s

u
p

p
ar

am
et

er
lis

t
an

d
lo

o
ks

fo
r

ev
er

y
p
ar

am
et

er
,

if
it

is
ag

ai
n

a
lis

t
%

m
ea

n
s

fi
el

d
ac

ce
ss

es
%

b
u
ild

s
th

e
re

m
ai

n
in

g
ty

p
e

%
v

=
b
.m

(a
.f
);

%
m

et
h
o
d

ca
ll

p
ar

am
et

er
s

ri
g
h
t
([

B
],

[[
A

,
F

]]
,
[
M

P
ar

],
M

M
o
d
).

%
sp

lit
ri
g
h
t

([
[A

,
F

]]
,

R
es

u
lt

).

B.1 rules.pl 115

sp
lit

le
ft

([
],

[]
).

sp
lit

le
ft

([
P
|P

s
],

R
es

u
lt
)

:−
sp

lit
le

ft
(P

s,
P
R
es

),
fi
el

d
ac

ce
ss

le
ft

(P
,
P
T
yp

e)
,
R
es

u
lt

=
[P

T
yp

e|
P
R
es

].

sp
lit

ri
g
h
t

([
],

[]
).

sp
lit

ri
g
h
t

([
P
|P

s
],

R
es

u
lt
)

:−
sp

lit
ri
g
h
t

(P
s,

P
R
es

),
fi
el

d
ac

ce
ss

ri
g
h
t

(P
,
P
T
yp

e)
,
R
es

u
lt

=
[P

T
yp

e|
P
R
es

].

%
p
ar

am
et

er
s

%
m

et
h
o
d

ca
ll

o
n

an
o
b
je

ct
%

v
=

w
.m

(e
);

p
ar

am
et

er
s

([
],

[
P
ar
|P

ar
L
is
t

],
[
M

P
ar
|M

P
ar

L
is
t]
,

)
:−

su
b
ty

p
e

eq
u
al

(P
ar

,
M

P
ar

),
M

P
ar

\=
=

[r
ep

],
p
ar

am
et

er
s

([
],

P
ar

L
is
t
,

M
P
ar

L
is
t,

n
o
n
e)

.

p
ar

am
et

er
s(

,
[]
,
[]
,

).

p
ar

am
et

er
s(

[
th

is
],

[
P
ar
|P

ar
L
is
t

],
[
M

P
ar
|M

P
ar

L
is
t]
,

)
:−

co
m

b
in

at
io

n
([

th
is

],
M

P
ar

,
X

),
su

b
ty

p
e

eq
u
al

(P
ar

,
X

),
p
ar

am
et

er
s(

[
th

is
],

P
ar

L
is
t
,

M
P
ar

L
is
t,

).

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,
[
P
ar
|P

ar
L
is
t

],
[
M

P
ar
|M

P
ar

L
is
t]
,
n
o
n
e)

:−
F
ie

ld
T
yp

e
\=

=
[t
h
is

],
co

m
b
in

at
io

n
(F

ie
ld

T
yp

e
,

M
P
ar

,
X

),
su

b
ty

p
e

eq
u
al

(P
ar

,
X

),
M

P
ar

\=
=

[r
ep

],
p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

L
is
t
,

M
P
ar

L
is
t,

n
o
n
e)

.

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,
[[

P
A

rr
,

P
A

rr
E
l]
|P

ar
L
is
t
],

[[
P
ar

A
rr

ay
,

P
ar

A
rr

ay
E
l]
|M

P
ar

L
is
t]

,
n
o
n
e)

:−
F
ie

ld
T
yp

e
\=

=
[t
h
is

],
u
n
iv

er
se

([
P
ar

A
rr

ay
,

P
ar

A
rr

ay
E
l]

),

co
m

b
in

at
io

n
(F

ie
ld

T
yp

e
,
[P

ar
A

rr
ay

,
P
ar

A
rr

ay
E
l]

,
X

),
su

b
ty

p
e

eq
u
al

([
P
A

rr
,

P
A

rr
E
l]

,
X

),
P
ar

A
rr

ay
\=

=
re

p
,

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

L
is
t
,

M
P
ar

L
is
t,

n
o
n
e)

.

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,
[
P
ar
|P

ar
L
is
t

],
[
M

P
ar
|M

P
ar

L
is
t]
,
p
u
re

)
:−

F
ie

ld
T
yp

e
\=

=
[t
h
is

],
co

m
b
in

at
io

n
(F

ie
ld

T
yp

e
,

M
P
ar

,
X

),
su

b
ty

p
e

eq
u
al

(P
ar

,
X

),
p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

L
is
t
,

M
P
ar

L
is
t,

p
u
re

).

%
m

et
h
o
d

ca
ll

o
n

an
o
b
je

ct
o
n

th
e

le
ft
−

h
an

d
si
d
e

o
n

an
as

si
g
n
m

en
t

%
v

=
w

.m
(e

);

%
M

P
u
ri
ty

h
as

to
b
e

g
iv

en
d
ir
ec

tl
y

an
d

n
o
t

th
ro

u
g
h

a
va

ri
ab

le
.

%
ca

ll
th

e
pr

ed
ic

at
e

w
it
h

th
e

co
n
st

an
t

p
u
re

or
n
o
n
e

m
et

h
o
d

ca
ll

p
ar

am
et

er
s

le
ft

([
],

P
ar

L
is
t
,

M
et

h
P
ar

L
is
t,

)
:−

sp
lit

ri
g
h
t

(
P
ar

L
is
t
,

P
ar

am
et

er
L
is
t
),

p
ar

am
et

er
s

([
],

P
ar

am
et

er
L
is
t
,

M
et

h
P
ar

L
is
t,

).

m
et

h
o
d

ca
ll

p
ar

am
et

er
s

le
ft

(
F
ie

ld
L
is
t

,
P
ar

L
is
t
,

M
et

h
P
ar

L
is
t,

p
u
re

)
:−

fi
el

d
ac

ce
ss

ri
g
h
t

(
F
ie

ld
L
is
t

,
F
ie

ld
T
yp

e
),

sp
lit

ri
g
h
t

(
P
ar

L
is
t
,

P
ar

am
et

er
L
is
t
),

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

am
et

er
L
is
t
,

M
et

h
P
ar

L
is
t,

p
u
re

).

m
et

h
o
d

ca
ll

p
ar

am
et

er
s

le
ft

(
F
ie

ld
L
is
t

,
P
ar

L
is
t
,

M
et

h
P
ar

L
is
t,

n
o
n
e)

:−
fi
el

d
ac

ce
ss

le
ft

(
F
ie

ld
L
is
t

,
F
ie

ld
T
yp

e
),

F
ie

ld
T
yp

e
\=

=
[r
ea

d
o
n
ly

],
sp

lit
le

ft
(
P
ar

L
is
t
,

P
ar

am
et

er
L
is
t
),

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

am
et

er
L
is
t
,

M
et

h
P
ar

L
is
t,

n
o
n
e)

.

%
m

et
h
o
d

ca
ll

o
n

an
o
b
je

ct
o
n

th
e

ri
g
h
t
−

h
an

d
si
d
e

o
n

an
as

si
g
n
m

en
t

%
v

=
w

.m
(e

);

m
et

h
o
d

ca
ll

p
ar

am
et

er
s

ri
g
h
t

([
],

P
ar

L
is
t
,

M
et

h
P
ar

L
is
t,

)
:−

sp
lit

ri
g
h
t

(
P
ar

L
is
t
,

P
ar

am
et

er
L
is
t
),

116 B Prolog Program

p
ar

am
et

er
s

([
],

P
ar

am
et

er
L
is
t
,

M
et

h
P
ar

L
is
t,

).

m
et

h
o
d

ca
ll

p
ar

am
et

er
s

ri
g
h
t
(

F
ie

ld
L
is
t

,
P
ar

L
is
t
,

M
et

h
P
ar

L
is
t,

p
u
re

)
:−

fi
el

d
ac

ce
ss

ri
g
h
t

(
F
ie

ld
L
is
t

,
F
ie

ld
T
yp

e
),

sp
lit

ri
g
h
t

(
P
ar

L
is
t
,

P
ar

am
et

er
L
is
t
),

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

am
et

er
L
is
t
,

M
et

h
P
ar

L
is
t,

p
u
re

).

m
et

h
o
d

ca
ll

p
ar

am
et

er
s

ri
g
h
t
(

F
ie

ld
L
is
t

,
P
ar

L
is
t
,

M
et

h
P
ar

L
is
t,

n
o
n
e)

:−
fi
el

d
ac

ce
ss

ri
g
h
t

(
F
ie

ld
L
is
t

,
F
ie

ld
T
yp

e
),

F
ie

ld
T
yp

e
\=

=
[r
ea

d
o
n
ly

],
sp

lit
ri
g
h
t

(
P
ar

L
is
t
,

P
ar

am
et

er
L
is
t
),

p
ar

am
et

er
s(

F
ie

ld
T
yp

e
,

P
ar

am
et

er
L
is
t
,

M
et

h
P
ar

L
is
t,

n
o
n
e)

.

B
.2

co
n
fl
ic

t.
p
l

%
ty

p
es

%
si
m

p
le

u
n
iv

er
se

ty
p
es

u
n
iv

er
se

([
re

p
])

.
u
n
iv

er
se

([
re

ad
o
n
ly

])
.

u
n
iv

er
se

([
p
ee

r
])

.
u
n
iv

er
se

([
co

n
fl
ic

t
re

p
])

.
u
n
iv

er
se

([
co

n
fl
ic

t
p
ee

r
])

.

%
al

l
ar

ra
y

u
n
iv

er
se

ty
p
es

%
o
n
ly

fo
r

ar
ra

ys
w

h
ic

h
co

n
ta

in
a

re
fe

re
n
ce

ty
p
e

u
n
iv

er
se

([
re

p
,

re
ad

o
n
ly

])
.

u
n
iv

er
se

([
re

p
,

p
ee

r
])

.
u
n
iv

er
se

([
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

u
n
iv

er
se

([
re

ad
o
n
ly

,
p
ee

r
])

.
u
n
iv

er
se

([
p
ee

r
,

re
ad

o
n
ly

])
.

u
n
iv

er
se

([
p
ee

r
,

p
ee

r
])

.

u
n
iv

er
se

([
re

p
,

co
n
fl
ic

t
p
ee

r
])

.

u
n
iv

er
se

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
u
n
iv

er
se

([
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
u
n
iv

er
se

([
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

])
.

u
n
iv

er
se

([
co

n
fl
ic

t
re

p
,

p
ee

r
])

.
u
n
iv

er
se

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
u
n
iv

er
se

([
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

])
.

u
n
iv

er
se

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
u
n
iv

er
se

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.

%
va

ri
ab

le
su

b
ty

p
es

%
x

=
y;

%
[y

]
<

:
[x

];

su
b
ty

p
e

eq
u
al

(X
,
Y

)
:−

su
b
ty

p
e

n
o
te

q
u
al

(X
,
Y

).
su

b
ty

p
e

eq
u
al

(X
,
X

)
:−

ty
p
e(

X
).

su
b
ty

p
e

eq
u
al

([
th

is
],
[
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
],

[
th

is
])

.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
],

[
re

p
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
],

[
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
],

[
th

is
])

.
su

b
ty

p
e

eq
u
al

([
re

p
],

[
co

n
fl
ic

t
re

p
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

],
[

co
n
fl
ic

t
re

p
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
th

is
],

[
co

n
fl
ic

t
p
ee

r
])

.

su
b
ty

p
e

eq
u
al

([
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

])
.

B.2 conflict.pl 117

su
b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

],
[
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

],
[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

],
[
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

],
[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

],
[

co
n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

p
ee

r
],

[
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

p
ee

r
],

[
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

p
ee

r
],

[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

p
ee

r
],

[
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

],
[
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

],
[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

],
[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
],

[
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
],

[
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
],

[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
],

[
re

p
,

co
n
fl
ic

t
p
ee

r
])

.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
re

ad
o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.

su
b
ty

p
e

eq
u
al

([
re

p
,

re
ad

o
n
ly

],
[
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

p
,

re
ad

o
n
ly

],
[

co
n
fl
ic

t
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

p
,

re
ad

o
n
ly

],
[

co
n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

p
,

p
ee

r
],

[
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

p
,

p
ee

r
],

[
co

n
fl
ic

t
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

p
,

p
ee

r
],

[
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
re

ad
o
n
ly

],
[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
re

ad
o
n
ly

],
[

co
n
fl
ic

t
re

p
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
re

ad
o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
re

ad
o
n
ly

],
[

co
n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
re

ad
o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
p
ee

r
],

[
re

ad
o
n
ly

,
co

n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
p
ee

r
],

[
co

n
fl
ic

t
re

p
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
re

ad
o
n
ly

,
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

re
ad

o
n
ly

],
[
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

re
ad

o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
,

re
ad

o
n
ly

])
.

su
b
ty

p
e

eq
u
al

([
p
ee

r
,

re
ad

o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

p
ee

r
],

[
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

p
ee

r
])

.
su

b
ty

p
e

eq
u
al

([
p
ee

r
,

p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
,

co
n
fl
ic

t
p
ee

r
])

.

%
co

m
b
in

at
io

n
s

co
m

b
in

at
io

n
([

re
p

],
[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
p

],
[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
p

],
[
p
ee

r
],

[
re

p
])

.

118 B Prolog Program

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[
p
ee

r
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

X
],

[Y
,
Z

],
[
U

,
Z

])
:−

co
m

b
in

at
io

n
([

X
],

[Y
],

[U
])

.

co
m

b
in

at
io

n
([

th
is

],
[
re

p
],

[
re

p
])

.
co

m
b
in

at
io

n
([

th
is

],
[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

th
is

],
[
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

th
is

],
[
Y

,
Z

],
[
U

,
Z

])
:−

co
m

b
in

at
io

n
([

th
is

],
[
Y

],
[U

])
.

co
m

b
in

at
io

n
([

re
p

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

re
ad

o
n
ly

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

p
ee

r
],

[
pr

im
it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

th
is

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

.

co
m

b
in

at
io

n
([

X
,Y

],
[

pr
im

it
iv

e
],

[
pr

im
it
iv

e
])

:−
u
n
iv

er
se

([
X

,Y
])

.

co
m

b
in

at
io

n
([

re
p

],
[

co
n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
p

],
[

co
n
fl
ic

t
p
ee

r
],

[
re

p
])

.
co

m
b
in

at
io

n
([

re
ad

o
n
ly

],
[

co
n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

re
ad

o
n
ly

],
[

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
co

n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
re

p
],

[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
p
ee

r
],

[
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
p
ee

r
],

[
re

ad
o
n
ly

],
[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
re

p
],

[
p
ee

r
],

[
re

p
])

.
co

m
b
in

at
io

n
([

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
re

p
],

[
co

n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
re

p
],

[
co

n
fl
ic

t
p
ee

r
],

[
re

p
])

.
co

m
b
in

at
io

n
([

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
re

p
],

[
re

ad
o
n
ly

])
.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
p
ee

r
],

[
co

n
fl
ic

t
p
ee

r
],

[
p
ee

r
])

.

co
m

b
in

at
io

n
([

co
n
fl
ic

t
re

p
],

[
pr

im
it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

co
n
fl
ic

t
p
ee

r
],

[
pr

im
it
iv

e
],

[
pr

im
it
iv

e
])

.
co

m
b
in

at
io

n
([

th
is

],
[

co
n
fl
ic

t
re

p
],

[
re

p
])

.
co

m
b
in

at
io

n
([

th
is

],
[

co
n
fl
ic

t
p
ee

r
],

[
p
ee

r
])

.

	1 Introduction
	1.1 Motivation
	1.2 Introduction to the Universe Type System
	1.2.1 Aliasing
	1.2.2 Universe Type System

	1.3 Prolog Introduction
	1.3.1 Logic Programming
	1.3.2 Prolog Syntax
	1.3.3 Backtracking
	1.3.4 Limits of the Prolog Language
	1.3.5 Prolog System

	1.4 Goal
	1.5 Outline

	2 Architecture
	2.1 Overview of the Parts of the Architecture
	2.1.1 Generation of Constraints out of the Syntax Tree
	2.1.2 Finding Solutions considering Heuristics
	2.1.3 Generation of the XML Output
	2.1.4 Benefits

	2.2 Introductory Example
	2.3 Rejected Designs
	2.3.1 Type relations as facts
	2.3.2 No separate Prolog Program
	2.3.3 Prolog used as more than a Solver
	2.3.4 One Query for all Expressions

	2.4 Detailed Description of the Architecture
	2.4.1 Constraints Generator
	2.4.2 Solver Database
	2.4.3 Prolog Variable Naming
	2.4.4 Conflicts
	2.4.5 Optimizations
	2.4.6 Heuristics

	3 Implementation
	3.1 Static Inference Tool
	3.1.1 Main
	3.1.2 Configuration
	3.1.3 Name Generator
	3.1.4 Annotation Reader
	3.1.5 Constraints Generator
	3.1.6 Inquirer
	3.1.7 JPL Prolog Query
	3.1.8 Annotation Writer
	3.1.9 Helper Class

	3.2 Solver and Heuristics
	3.2.1 Solver Database Selection
	3.2.2 Optimisations
	3.2.3 Heuristics

	3.3 Configuration
	3.4 Usage
	3.5 Used Tools
	3.5.1 Reading and Writing XML
	3.5.2 Retroweaver Tool

	4 Results and Conclusion
	4.1 Examples
	4.1.1 Iterator
	4.1.2 Producer Consumer
	4.1.3 Tree
	4.1.4 Linked List
	4.1.5 Lottery
	4.1.6 Golf Driver
	4.1.7 Conclusion

	4.2 Complexity
	4.3 Comparison to Runtime Inference
	4.4 Future Work
	4.4.1 Inner Classes
	4.4.2 Testing
	4.4.3 User Interaction

	4.5 Conclusion

	A Examples
	A.1 Iterator Example
	A.1.1 query_Node.pl
	A.1.2 query_LinkedList.pl
	A.1.3 query_Iter.pl
	A.1.4 query.pl
	A.1.5 Output by the Prolog System

	A.2 Tree Iterator Example
	A.2.1 Statistics
	A.2.2 Average
	A.2.3 Sum
	A.2.4 SumAndSubtract
	A.2.5 Checker
	A.2.6 Collection
	A.2.7 Iterator
	A.2.8 ArrayCollection
	A.2.9 ArrayIterator
	A.2.10 SortedTreeNode
	A.2.11 SortedTree
	A.2.12 TreeIterator
	A.2.13 InorderTreeIterator
	A.2.14 PostorderTreeIterator
	A.2.15 Test

	B Prolog Program
	B.1 rules.pl
	B.2 conflict.pl

