
MultiJava, JML, and Generics

Ovidio José Mallo

Semester Project Report

Software Component Technology Group
Department of Computer Science

ETH Zurich

http://sct.inf.ethz.ch/

SS 2006

Supervised by:
Dipl.-Ing. Werner M. Dietl
Prof. Dr. Peter Müller

Software Component Technology Group

http://sct.inf.ethz.ch/

2

Abstract

The goal of this semester project is to extend the already existing support for generics in the
MultiJava compiler by implementing special features of Java generics on top of it, namely wildcards
and raw types, while also making the necessary modifications to JML. To that end, we will give
a brief overview of Java generics and describe the main design decisions behind its specification
before presenting a thorough discussion of wildcards and raw types along with several interesting
examples which should provide the necessary insight into some of the subtleties of the parametric
polymorphism as realized in the Java 5 language. This will give us the necessary theoretical and
practical ground before proceeding to the discussion of the actual implementation.

3

4

Contents

1 Introduction 7
1.1 The evolution of the Java language . 7
1.2 MultiJava and JML . 7

2 Generics 9
2.1 Introduction . 9

2.1.1 Terminology . 9
2.2 Generics in the Java language . 10

2.2.1 Unchecked warnings . 11
2.2.2 Example . 12

2.3 Wildcards . 13
2.3.1 Subtyping among parameterized types . 14
2.3.2 Capture conversion . 16
2.3.3 Wildcard capture . 20

2.4 Raw types . 21
2.4.1 Raw type members . 21
2.4.2 Type safety . 22
2.4.3 Raw types in the Java platform APIs . 24

3 Implementation 27
3.1 Support for JRE 5.0 . 27

3.1.1 Generics in a class file . 28
3.1.2 Modifications to the compiler . 29

3.2 Generics . 29
3.2.1 Existing generics support . 29
3.2.2 Wildcards . 30
3.2.3 Raw types . 32
3.2.4 Limitations of the generics support . 34

3.3 Testcases . 34
3.4 Modifications to the JML tools . 35

3.4.1 JML checker . 35
3.4.2 JML compiler . 36

4 Conclusion and future work 37
4.1 Conclusion . 37
4.2 Generics . 37
4.3 Java 5 support . 37
4.4 Generic Universes . 38

5

6 CONTENTS

Chapter 1

Introduction

1.1 The evolution of the Java language

Java is an object-oriented programming language developed at Sun Microsystems since the early
1990s. Despite several unsuccessful attempts at formalizing the Java technology through the
ISO/IEC JTC1 standards body and later the ECMA standards consortium, Java still remains
a proprietary de facto standard whose evolution is controlled by the Java Community Process1

(JCP).
Extensions to the Java platform are driven by so-called Java Specification Requests (JSRs)

which embody proposals for the development of new specifications. Examples of such JSRs include
the Java language specification itself but also the individual additions to the Java programming
language introduced in J2SE 5.0 which we will mainly focus on in this writing. Adding new
features to the Java programming language typically implies different kinds of modifications to be
applied to the Java platform:

• Modifications to the Java Language Specification which describe the actual language con-
structs along with their syntax and semantics.

• Modifications to the Java Virtual Machine Specification which describe the JVM support
required to implement the desired language feature. Some language constructs, such as
generics, require changes to the JVM specification while others are mere compile-time con-
structs which have no representation in a class file. An example of the latter kind is the
enhanced for loop introduced in the latest version of the Java language.

• Modifications to the Java platform APIs. Annotations are an example of a language con-
struct which requires the APIs to be adapted in order to e.g. allow querying the annotations
at runtime via reflection.

In this writing, the new features of the Java 5 language will be discussed. Thereby, we will mainly
concentrate on the changes to the Java Language Specification and also cover some aspects of
the JVM Specification. Modifications to the platform’s APIs resulting from the new language
constructs will not be treated.

1.2 MultiJava and JML

MultiJava, as described in [7], is a conservative extension of the Java programming language
that adds symmetric multiple dispatch and open classes. Multiple dispatch provides a means
of dynamically deciding at runtime which of a set of overloaded methods to invoke based on
the runtime types of all method arguments. This contrasts with the way Java treats method

1see http://www.jcp.org/

7

http://www.jcp.org/

8 1 Introduction

invocations where dynamic dispatching is only performed on the receiver of the method but not
on its arguments. Multiple dispatch provides a solution to the binary method problem and the
implementation of typical programming paradigms such as event handlers greatly benefits from
such a feature. Open classes, on the other hand, allow the modular addition of new methods
to an existing class without modifying the class’ code. This solves the extensibility problem of
object-oriented programming languages. Despite those significant extensions, MultiJava preserves
Java’s static modular typechecking properties.

JML (Java Modeling Language) is a specification language for Java. In its most basic use,
JML serves as a design-by-contract language for Java, as described in [11], but it also supports
full abstract modeling which allows to specify the behavior of Java modules without exposing any
implementation details.

The MultiJava project2 provides a compiler for the MultiJava programming language which
translates MultiJava programs to regular Java bytecode which can be executed on any standard
Java Virtual Machine. The compiler targets version 1.4 of the Java programming language and
also offers partial support for Java generics, as described in [5]. The goal of this semester thesis
is to add full support for wildcards and raw types to the already existing generics implementation
in the MultiJava compiler and to make the generics support also accessible to JML tools.

2see http://sourceforge.net/projects/multijava

http://sourceforge.net/projects/multijava

Chapter 2

Generics

2.1 Introduction

JDK 1.2 introduced the Collections type hierarchy into the Java platform APIs which provides
a common abstraction for a large set of data structures. By that time, in order for a collection
to hold arbitrary data, the elements it contains had to be declared as being of type Object, the
type sitting at the top of Java’s type hierarchy. This contrasts the fact that whenever a collection
is actually used in some client code, the programmer typically knows that all elements it contains
are of some type more specific than Object. However, earlier versions of the Java language did not
offer any support for declaring that e.g. a List does not contain arbitrary data, but only elements
of type String while some other list is supposed to only contain Integers. Instead, the elements
extracted from any collection were always of type Object and therefore had to eventually be cast
to the appropriate type before further processing. This not only introduced additional clutter into
the code but also, and more importantly, gave rise to potential exceptions at runtime as down-casts
are not statically checkable.

This situation has changed recently with the introduction of JDK 5.0 which adds parametric
polymorphism – also known as generics – to the Java language. Generics support the declaration
of types dependent on a set of type parameters which are provided whenever a variable of that
type is declared. This allows to e.g. declare a list which is supposed to only contain Strings –
supported by the simple syntax List<String> – while at some other point we operate on a list of
Numbers (or subtypes of it). This support for explicitly specifying the programmer’s intention of
having a list of a specific type allows the compiler to statically1 enforce this program property.

2.1.1 Terminology

In this writing, we try to follow the terminology for generics from [9].
Type variables are unqualified identifiers that are introduced by generic class declarations,

generic interface declarations, generic method declarations, and generic constructor declarations.
A type parameter is a type variable with an optional set of declared upper bounds.

A generic type declaration defines a set of parameterized types, which consist of the class or
interface name followed by an actual type argument list. Every such parameterized type is termed
an invocation of its corresponding generic type declaration.

A raw type is the name of a generic type declaration used without any accompanying actual
type arguments.

1Note that Java’s static typechecking system may actually miss some unsafe operations which lead to excep-
tions at runtime but only in the presence of so-called unchecked warnings which may be issued under certain
circumstances. This is discussed in 2.4.

9

10 2 Generics

2.2 Generics in the Java language

Many object-oriented programming languages nowadays offer support for some kind of parametric
polymorphism. However, even though the basic idea is always the same, concrete implementations
may differ considerably. As an example, the C++ template mechanism resembles a kind of high-
level macro in which a new class is created at compile-time for every concrete parameterization of
a class template. It is then up to the C++ linker to share the code for identical class instantiations.
This approach offers a great flexibility and typically leads to better efficiency, but suffers from an
obvious problem of code bloat.

For typesafe languages supporting generics, such as Java and C#, the design decision of whether
to retain the generic type information at runtime is probably one of the most crucial ones as it
greatly influences the backward compatibility of the new language but also the flexibility offered
by the generic type system.

As described in [10], the approach taken for adding generics to version 2.0 of the C# program-
ming language was to provide full runtime support for the generic type information. This had to
be done at the cost of not being backward compatible to old non-generic code. By contrast, in
Java the main goal was to be able to run new generic code on an unmodified JVM. Therefore,
no runtime support for generic types is provided2. The actual mapping from types of the generic
type system to types supported by the JVM at runtime is called type erasure and is defined in [9]
as follows:

• The erasure of a parameterized type G<T1, . . . , Tn> is |G|.

• The erasure of a nested type T.C is |T |.C.

• The erasure of an array type T [] is |T |[].

• The erasure of a type variable is the erasure of its leftmost bound.

• The erasure of every other type is the type itself.

We see that erasure simply throws away all type arguments to parameterized types while type
variables are replaced (recursively) by the erasure of their leftmost bound. Additionally, all type
parameter lists in type and method/constructor declarations are discarded to make them non-
generic. The whole process results in type declarations which contain no generic type information
at all which is what the JVM will work with at runtime. The fact of having type information which
gets erased during compilation calls for a distinction between types fully supported at runtime –
so-called reifiable types – and types which are merely supported at compile-time. The following
types are not reifiable:

• Type variables.

• Parameterized types unless all actual type arguments to the type are unbounded wildcards.

• Array types whose component type is not reifiable.

These correspond to the types which lose information during type erasure as defined above. How-
ever, note the special case of a parameterized type having only unbounded wildcards (discussed in
detail in 2.3) as actual type arguments. This singular form of a parameterized type is considered to
be reifiable as unbounded wildcards stand for no particular type meaning that no real information
is lost even if they are discarded upon performing type erasure.

2However, the current generics implementation has been carefully designed to not preclude a possible future
extension adding runtime support for generic types.

2.2 Generics in the Java language 11

2.2.1 Unchecked warnings

The Java type system supports several constructs which are not statically checkable. These include
down-casts, the type comparison operator, and array store operations. In order to ensure that the
integrity of the JVM is never at risk, the type safety of these constructs is enforced by a runtime
check which triggers an exception for every unsafe operation. However, due to type erasure, these
runtime checks cannot be performed reliably if they involve non-reifiable types. The approach
taken in the Java language to circumvent this shortcoming is to not allow (i.e. produce compiler
errors) for some of these constructs while issuing so-called unchecked warnings for others for which
it would be prohibitively restrictive to not support them at source code level.

Unchecked warnings are used to flag possibly unsafe operations which are permitted by the
type system as a concession for greater flexibility even though type erasure makes it impossible to
actually check them either statically or at runtime. As a simple working example, let us consider
Listing 2.1.

Listing 2.1: Unchecked operations and heap pollution

1 import java.util .Vector;
2

3 public class Unchecked {
4 public static void unsafe(Object someVector) {
5 Vector<String> strings = (Vector<String>) someVector; // Unchecked warning
6 String string = strings .get (0); // ClassCastException
7 }
8

9 public static void main(String[] args) {
10 Vector<Integer> integers = new Vector<Integer>();
11 integers .add(new Integer(7));
12 unsafe(integers);
13 }
14 }

On line 5, we have a cast to a parameterized type which is permitted by the type system.
However, an unchecked warning must be issued as the cast cannot be checked reliably at runtime
since the JVM has no information about the concrete invocation of a parameterized type. Conse-
quently, the only check which can be performed for that cast is to see whether the cast’s source
is of type Vector. In our concrete example, the type of the cast source is Vector<Integer> as
can be seen by looking at the main method meaning that the cast check succeeds at runtime and
the assignment on line 5 is performed. This in turn implies that before executing the statment on
line 6, the variable strings of type Vector<String> refers to an object of type Vector<Integer>
which is not a subtype of the former. This very special fact of having a variable of some param-
eterized type point to an object of a different invocation of the same generic type declaration is
known as heap pollution. This is the price we have to pay for the lack of runtime support for
generics. Heap pollution can, as illustrated on line 6, lead to a ClassCastException at runtime.
As this is clearly undesirable, the Java Language Specification mandates to flag every operation
which may lead to heap pollution with an unchecked warning. In other words, this means that, in
the absence of unchecked warnings, accessing the object stored in a type variable will never lead
to a ClassCastException as the one above.

It should be noted, however, that even in the presence of unchecked warnings the integrity and
type safety of the JVM is never at risk. This is guaranteed by inserting implicit casts whenever
an object stored in a type variable is accessed in some way. In particular, this means that every
access to a variable whose type is a type variable and every method invocation whose return type
is a type variable eventually requires an implicit cast to be inserted. Listing 2.2 shows different
examples which illustrate these simple scenarios but also some eventually less apparent subtleties
of the problem.

12 2 Generics

Listing 2.2: Implicit generics casts

1 import java.util . Iterator ;
2

3 public class Casts<T extends Number & Cloneable & Iterable> {
4 public T foo(T t) {
5 Number number = t; // no cast
6 Cloneable cloneable = t; // cast to Cloneable
7 Iterable iterable = foo(t); // cast to Iterable
8

9 Iterator iterator = t. iterator (); // cast to Iterable
10

11 return null;
12 }
13 }

The type variable T in the example has three types declared in its bounds. Its erasure is the
type Number which means that the object contained in the type variable is always of that type.
Therefore, the assignment on line 5 requires no cast to be inserted. The other two types in the
type variable’s bounds, however, get erased during compilation meaning that it is not guaranteed
that the actual type contained in the type variable really satisfies those bounds3. For that reason,
prior to performing the assignments on the lines 6 and 7, an implicit cast to the types Cloneable
and Iterable, respectively, needs to be inserted. This illustrates that the type to which a type
variable needs to be cast not only depends on the type variable itself but also on the concrete
context in which it is being used. In any case, that cast target is always one of the types declared
in the type variable’s bounds.

Finally, line 9 illustrates the invocation of a method on a type variable. In that case, the object
contained in the type variable must eventually be cast to the type in which the method is declared
as is indicated in our example.

It is thereby interesting to see that the implicit casts inserted by the compiler are exactly those
which one would write explicitly if working with the erasure of the generic type declaration. In
particular, this means that the use of generics in Java leads to no performance gain in that respect
as it is not safe to omit those down-casts. This is different from e.g. generics in C# where these
casts are superfluous due to the fact that generics are supported at runtime.

2.2.2 Example

Listing 2.3 illustrates the impact of type erasure on the usage of parameterized types and type
variables.

Listing 2.3: Impact of type erasure on the type system

1 import java.util .Vector;
2

3 class Erasure<T extends String> {
4 public void erased(Object arg) {
5 Vector<String> vector1 = (Vector<String>) arg; // Unchecked warning
6

7 if (arg instanceof Vector<String>) { } // Error
8

9 Vector<String>[] array = new Vector<String>[10]; // Error
10 Object[] alias = array;
11 alias [0] = new Vector<Integer>(); // Array store should fail, but does not!
12 String element = array[0].get (0);

3at least not in the presence of raw types, as discussed in detail in 2.4

2.3 Wildcards 13

13

14 Vector<String> vector2 = new Vector<String>(); // OK
15 T t = new T(); // Error
16 Vector<T> vector3 = new Vector<T>(); // OK
17 }
18 }

Line 5 shows a cast to a parameterized type which is permitted by the type system even though
an unchecked warning is issued. The reason for that is that this cast cannot be fully checked at
runtime as the JVM has no information about concrete invocations of a generic type declaration.
Therefore, the only possible runtime check for this cast is to verify whether the acutal object
contained in the variable arg is of type Vector. As a general rule, for every cast to a non-reifiable
type, only the conformance of the cast’s source to the erasure of that type is actually checked.

On line 7, we see that the type comparison operator may not be applied to non-reifiable types
as no information about generic type invocations or type variables is available at runtime. Note
that this line really triggers a compiler error and not just an unchecked warning as the result of
such a type comparison on a non-reifiable type would make only little sense.

The reason for not permitting the instantiation of the array on line 9 is probably a bit less
apparent. However, let us consider what would happen on the subsequent lines if this was allowed.
On line 10, we declare an alias for our array which we use on line 11 to store an object of type
Vector<Integer> in the array. At this point, we would expect the mandatory array store check
performed by the Java runtime to fail as the object inserted into the array is not compatible
with the array’s component type Vector<String>. However, the runtime check would succeed
as, after erasure, the array as well as the object being stored in the array are both merely known
to be of type Vector. Consequently, the statement on line 12 would be executed resulting in a
ClassCastException. Hence, as every statement on the lines 10 to 12 by itself is clearly legal,
the only way to avoid this kind of problems is to not permit the instantiation of arrays whose
component type is not reifiable. This ensures that an array store check can always be performed
reliably.

Finally, lines 14 and 15 illustrate a situation in which parameterized types and type variables
are treated differently. As indicated on line 14, it is permitted to instantiate an object of a
parameterized type. This poses no problem since a parameterized type is a concrete, known
type which can be instantiated like any non-generic type. By contrast, a type variable is not
bound to a fixed type but instead would depend on the concrete invocation of the current this
object. However, as this information is not available after erasure, no object whose type is a type
variable can be instantiated. Note that in turn having a type variable in the type arguments of a
parameterized type is no impediment for instantiating an object of the latter type as, once more,
the actual type arguments are erased and therefore have no influence on the object instantiation
but are merely used for the subsequent static type checking. This is exemplified on line 16.

2.3 Wildcards

Up to now, whenever we wanted to use a generic type declaration, we always had to specify concrete
type arguments for every declared type parameter. However, there are plenty of situations in which
code written for some generic type is applicable to all, or at least a subset of, possible invocations
of that type as it is independent of the concrete parameterization.

Wildcards, first described in [14], address this important use case of parameterized types by
introducing a type safe abstraction over different invocations of a generic type. A wildcard is
a special kind of type argument which stands for any and no particular type. Wildcards are
supported by the suggestive syntax List<?> to e.g. express that we want to work on a list of
some arbitrary type. Note that even though we would not know anything about the type of the
elements stored in such a list, we would still be able to operate on the list itself by querying and
also modifying the parts of the list’s state which are independent of the concrete parameterization

14 2 Generics

of the list.
To support invocations in which the concrete parameterization is not totally irrelevant but

where we need at least some partial knowledge about the type arguments, a wildcard can be
equipped with an upper bound as in List<? extends Number>. While this still does not tell us
what the actual type of the elements in the list is, we can at least be sure that it is a subtype of
Number and use that information when working with such a list. Note that the idea of supporting
an upper bound on wildcards is analogous to the notion of upper bounds on type parameters where
the set of valid type arguments is restricted to a subset of the whole type hierarchy.

Additionally, wildcards can also be used in conjunction with a lower bound. In that case, a
List<? super Integer> represents all possible invocations of a list whose type is a supertype of
Integer. Note that this is very specific to wildcards and not supported on type parameters. Even
though this feature is certainly more rarely used, let us consider a simple example taken from
Java’s platform APIs to see what flexibility lower bounded wildcards add to the type system by
looking at the signature of the polymorphic copy method in the Collections class which reads

public static <M> void copy(List<? super M> dest, List<? extends M> src);

In this example, the use of a lower bounded wildcard permits to correctly express the semantic
requirement that the element type of the dest list must be a supertype of the element type of the
src list. Note that, even though more expressive, in this particular example one could afford the
use of a lower bounded wildcard and instead declare the type of dest to simply be List<M> as M
would be inferred to the type of the parameter’s type argument, thereby allowing the same set of
parameters to the method as if using the lower bounded wildcard. However, there are situations
in which lower bounded wildcards are inevitable to express the semantic relationship between
different parameters of a polymorphic method. An example for this is the Collections.fill
method which replaces all elements in a given list by the specified object. Its signature

public static <M> void fill(List<? super M> list, M object);

expresses the fact that the element type of the given list must be a supertype of the type of the
object to fill in. These semantics are solely captured by lower bounded wildcards.

2.3.1 Subtyping among parameterized types

Upon introducing generics into the Java language, the subtyping relationship among different
types had to be extended to handle the presence of parameterized types. Historically, the addition
of wildcards to the generic type system followed that of type parameters and type variables. For
that reason, we try to mimic that evolution at this point by first discussing what the subtype
relationship between concrete invocations (i.e. with no wildcards as type arguments) is and only
then we will see what wildcards contribute to the flexibility of the type system.

Subtyping in the absence of wildcards

In short, different concrete invocations of a generic type declaration are not subtypes of each other.
This means that all type arguments must be the same in both types. This is a very restrictive
and counterintuitive yet necessary limitation. To see why, let us assume this restriction was not
imposed by the type system and consider what would then happen in the example of Listing 2.4.

Listing 2.4: Generics and subtyping

1 import java.util .Vector;
2

3 public class Subtyping {
4 public void generics() {
5 Vector<String> strings = new Vector<String>();
6 Vector<Object> objects = strings; // Error
7

2.3 Wildcards 15

8 objects .add(new Object()); // storing an Object in a String vector !
9 String string = strings .get (0);

10 }
11

12 public void arrays() {
13 String [] strings = new String[1];
14 Object[] objects = strings ; // OK
15

16 objects [0] = new Object(); // ArrayStoreException at runtime!
17 }
18 }

On line 6, we have the relevant assignment between parameterized types whose type arguments
are not the same. We see that, if this assignment was permitted, we could use the alias of type
Vector<Object> to insert a value of type Object into a vector whose element type is String,
as illustrated on line 8. This is clearly wrong and would lead to a ClassCastException on the
next line. Once more, the reason for this kind of problem is type erasure: as we do not have
runtime information about the concrete invocation the variable objects is pointing at, we cannot
check whether inserting an instance of type Object into it is valid or not. Note that this clearly
contrasts the use of arrays which resemble parameterized types in that they also serve as containers
for objects of some specified type (the array’s component type). However, the key difference is
that arrays in fact carry information about their actual component type at runtime. Therefore,
covariant subtyping between arrays can be safely permitted (see line 14) as the array store on line
16 can be checked reliably at runtime, thereby avoiding spurious ClassCastExceptions.

Subtyping in the presence of wildcards

As was already mentioned, wildcards provide an abstraction over different invocations of a generic
type declaration. This is fundamental for situations in which code operating on a parameterized
type needs only partial knowledge about the actual parameterization of the type. As an example,
assume we want to write a utility method which iterates over a list of listeners and notifies them
of some event. Using wildcards, the signature of the method would look like

void notifyAll(List<? extends Listener> listeners, Event event);

Such a method could then be invoked with a list whose element type is an arbitrary subtype
of Listener as actual parameter. As discussed above, this would not be the case if the type of
listeners was the concrete invocation List<Listener>. In that case, only a variable of the exact
same type could be passed as actual parameter even though the actual implementation would be
able to operate on any type of listener.

It is thereby interesting to see that a method as the one above could also be expressed without
using wildcards. Indeed, the polymorphic method

<M extends Listener> void notifyAll(List<M> listeners, Event event);

is semantically equivalent to the one above in that both accept the same set of actual type pa-
rameters. We see that the wildcard is simply replaced with a dummy type variable which has the
same upper bound as the wildcard. However, other things expressible with wildcards cannot be
simulated using type parameters, the most important one being the ability to declare fields which
can hold objects of different invocations of some generic type declaration. Such a field could e.g.
serve to store our list of listeners used above by giving it the type List<? extends Listener>.
Note that something equivalent cannot be expressed without wildcards.

Type argument containment

At the beginning of this section, we have already mentioned that different concrete invocations of
the same generic type declaration are not subtypes of each other. We have also seen that in the

16 2 Generics

List<?>

List<? extends Super>

List<? extends Sub> List<Super>

List<? super Sub>

List<Sub> List<? super Super>

List<Sub> List<Super>

Figure 2.1: Subtyping among parameterized types; assuming Sub <: Super

presence of wildcards, this is different, but we have not yet discussed the exact rules for subtyping
when using wildcards. This is what we will do at this point.

To that end, let us first define a special relationship between type arguments called type con-
tainment. As defined in [9], a type argument A1 is said to contain another type argument A2,
written A2 <= A1, if the set of types denoted by A2 is a subset of the set of types denoted by A1.
The type containment rules for concrete type arguments and wildcards read as follows:

1. ? extends T <= ? extends S, if T <: S

2. ? super S <= ? super T, if T <: S

3. T <= T

4. T <= ? extends T

5. T <= ? super T

Under this definition, an invocation of a generic type is a subtype of another invocation of the
same generic type if and only if the former’s type arguments are pairwise contained in the latter’s
type arguments.

By rule 1, we see that upper bounded wildcards exhibit covariant subtyping with respect
to their bounds. Conversely, following rule 2, lower bounded wildcards give rise to contravariant
subtyping. Rule 3 reflects the already discussed fact that different concrete invocations of a generic
type declaration are not subtypes of each other as a non-wildcard type argument only contains
itself. Rules 4 and 5 are used as a bridge between wildcards and concrete type arguments. One
could e.g. use first rule 1 and then rule 4 to derive the following (note that the actual derivation
goes from right to left):

Vector <= ? extends Vector <= ? extends Collection

Figure 2.1 graphically illustrates the subtype relationships between different invocations of the
same generic type declaration starting at the parameterization with an unbounded wildcard and
going down to concrete invocations where subtyping ends. Note that, even though depicted as
such, the structure representing the subtype relationships is not a tree since concrete invocations
are subtypes of different wildcard-parameterizations of a generic type. This immediately follows
from the type containment rules 4 and 5 above.

2.3.2 Capture conversion

Wildcards by themselves are no real types as the set of types a wildcard covers also depends on the
corresponding formal type parameter. In other words, an unbounded wildcard does not just stand

2.3 Wildcards 17

for an arbitrary type but rather for any type which respects the declared upper bounds of the
wildcard’s formal type parameter. Likewise, a bounded wildcard represents all the types which
fulfill the constraints imposed by both the type parameter’s upper bounds and the wildcard’s
upper or lower bound.

This dependence on a concrete type parameter is thereby the reason why wildcards can only
be used as type arguments, since using them as types of variables or methods would be completely
meaningless. However, even though we cannot directly specify wildcards as types in the code,
whenever an expression is evaluated which accesses a member of a parameterized type, all eventual
type variables contained in the member’s type are substituted by the actual type arguments. If
the type of the member is itself a type variable and the corresponding actual type argument is
a wildcard, the type of the expression is also a wildcard. After such a generic type argument
substitution, the wildcard would be completely detached from its formal type parameter meaning
that type information would get lost. For that reason, we must make sure that this kind of generic
substitution carries on all the type information contained not only in the wildcard but also in its
formal type parameter. A very elegant solution to this problem is given by a process called capture
conversion which was first described in [14] and later elaborated in [13].

The basic idea behind capture conversion is to ensure that prior to some member access on
a parameterized type as the one described above, all top-level wildcard arguments of that type
are replaced by a newly created special type variable which retains all the type information of the
wildcard’s formal type parameter as well as that of the wildcard bound itself, if any.

Capture conversion is a mapping from parameterized types to parameterized types in which
all non-wildcard type arguments are left unchanged while wildcards are replaced by a special kind
of type variable which is equipped not only with adequate upper bounds, as usual, but also with a
lower bound. Such a type variable represents all the types which are subtypes of its upper bounds
and, at the same time, supertypes of its lower bound.

Formalization of capture conversion

Following [9], let us assume that the parameterized type on which we want to apply capture
conversion is G<T1, . . . , Tn> and that its corresponding formal type parameters A1, . . . , An have
the declared upper bounds U1, . . . , Un. Then, a new parameterized type G<S1, . . . , Sn> results
from capture conversion by transforming every type argument Ti to the new type argument Si by
one of the following rules (Ui[Ak := Sk] denotes generic type substitution on Ui):

• If Ti is an unbounded wildcard, Si becomes a fresh type variable whose upper bounds are
Ui[A1 := S1, . . . , An := Sn] and whose lower bound is the null type.

• If Ti is a wildcard with the upper bound Bi , Si becomes a fresh type variable whose upper
bounds are Bi & Ui[A1 := S1, . . . , An := Sn] and whose lower bound is the null type.

• If Ti is a wildcard with the lower bound Bi , Si becomes a fresh type variable whose upper
bounds are Ui[A1 := S1, . . . , An := Sn] and whose lower bound is Bi.

• Otherwise, Ti is not a wildcard and we have Si = Ti.

We see that an unbounded wildcard by itself carries no type information and, therefore, the
type variable created for it simply has the same upper bounds as the wildcard’s formal type
parameter. A wildcard with an upper bound, by contrast, retains its full type information by
including that bound in the upper bounds of the new type variable. A lower bounded wildcard
contributes no type information to the upper bounds of the type variable being created, but its
lower bound becomes the lower bound of the new type variable.

The lower bound thereby plays an important role for checking whether a value of some type
can be assigned to a given type variable. More concretely, the Java Language Specification defines
a type variable as being a direct supertype of its own lower bound. Consequently, a value of some
type can only be assigned to a type variable if that type is the type variable itself or if it can be
assigned to the type variable’s lower bound.

18 2 Generics

Above, we see that unbounded and upper bounded wildcards both result in a type variable
whose lower bound is the null type meaning that only null or a value of the same type variable can
be assigned to them. This is intuitively clear since we do not know the concrete type captured by
the wildcard and, therefore, we cannot be sure that the type we want to assign is really a subtype
of that unknown type. However, type variables resulting from a lower bounded wildcard can be
assigned arbitrary subtypes of its lower bound. This is always safe since, whatever the concrete
type captured by the wildcard is, it is always a supertype of its lower bound.

When capture conversion needs to be applied

In order to avoid that the type of any expression in the code ever evaluates to an uncaptured
wildcard, capture conversion must be applied to every parameterized type before one of its members
can actually be accessed. To ensure this, capture conversion must be performed on the types of
the following kinds of expressions: simple name expressions, field access expressions, method
invocations, assignment expressions, cast expressions, array access expressions, and conditional
expressions. Listing 2.5 shows some simple examples of applying capture conversion.

Listing 2.5: Applying capture conversion

1 public class Capture<T extends Number> {
2 T t;
3

4 Vector<T> vector;
5

6 public void apply(Capture<?> capture) {
7 Number number = capture.t;
8

9 capture = new Capture<Integer>();
10

11 Vector<?> vec = new Vector<String>();
12 capture.vector = vec; // Error
13 }
14 }

On line 7, we see that, without capture conversion, the type of the expression capture.t would
evaluate to an unbounded wildcard. However, if capture conversion is applied correctly, prior to
accessing the field t, we would convert the wildcard in the type Capture<?> of the simple name
expression capture into a fresh type variable whose upper bound is the declared upper bound
of the formal type parameter, i.e. Number. This type variable would then, after generic type
substitution, become the type of the field being accessed, thus making the assignment valid. Here,
we see how the type variable created during capture conversion carries the type information of the
wildcard’s formal type parameter in its upper bounds.

On line 9, we have an assignment between parameterized types. Before an assignment is
actually evaluated, the type of the right hand side of the assignment must have been computed
but not that of the left hand side as it is not needed for simply writing the variable. Similarly,
prior to the actual assignment, capture conversion is only applied to the right hand side. This
is important, as it ensures that such an assignment succeeds since Capture<?> is a supertype
of Capture<Integer>. However, if capture conversion were also applied to the left hand side,
the wildcard would be replaced by a type variable and, as was discussed in 2.3.1, a non-wildcard
invocation is not a supertype of any other type.

Finally, on line 12, we see an assignment which is not permitted. Following the rules above,
capture conversion is applied to the two simple name expressions capture and vec before actually
performing the assignment. If we give the synthetic type variables created during capture con-
version explicit names, this would result in capture having the type Capture<T_01> and vec the
type Vector<T_02>. Please note that capture conversion is really applied individually on every

2.3 Wildcards 19

expression, thereby resulting in two different type variables – here T_01 and T_02 – being created.
If we now perform generic type substitution on the field access capture.vector, we see that the
assignment tries to copy a value of type Vector<T_02> into a variable of type Vector<T_01>. Since
these are two different, concrete invocations of a generic type declaration, they are not compatible,
as explained in 2.3.1. Here we see the importance of really creating a fresh type variable whenever
capture conversion is applied.

Despite the application of capture conversion as described above, two restrictions on the use
of wildcards must be imposed in order to definitely ensure that the type of an expression never
evaluates to an uncaptured wildcard. These restrictions forbid to use wildcards as top-level type
arguments in the type of a constructor call as well as in the supertypes of a type declaration.

The intuition behind capture conversion

Whenever a variable of some wildcard-parameterized type is declared in the code, the wildcard
really stands for any and no particular type. However, as soon as the variable is read, we can
be sure that, at some point in the code, the variable has been assigned a value of a concrete
invocation of the generic type. After such an assignment, the type behind the wildcard is not
anymore arbitrary, but it is some fixed yet unknown type.

Capture conversion provides a mechanism to differentiate between wildcards which are bound
to a specific type and those which still stand for some arbitrary type. Bound wildcards are
thereby transformed into special type variables as described above while unbound wildcards are
left unchanged. As was already discussed, capture conversion only transforms top-level wildcards
since these, and only these, are known to be bound to a specific type. To see why, let us consider
the example in Listing 2.6.

Listing 2.6: Bound and unbound wildcards

1 public class A<T> {
2 T t1;
3 T t2;
4

5 public void foo() {
6 A<?> bound = new A<Integer>(); // ? is bound to Integer
7 bound.t1 = ”string”; // Error
8 bound.t2 = new Integer(7); // Error!
9

10 A<A<?>> unbound = new A<A<?>>(); // ? remains unbound
11 unbound.t1 = new A<String>(); // OK
12 unbound.t2 = new A<Integer>(); // OK
13 }
14 }

On line 6, we have an example of a top-level wildcard. We see that even though, in general, a
variable of type A<?> can hold a value of any particular invocation of A, we just know that after
the assignment, the wildcard represents a specific type, in our case Integer.

On the lines 7 and 8, we have two invalid assignments. The one on line 7 is intuitively wrong
since we are trying to write a String into a variable which we know to be of type Integer.
However, the assignment on line 8 is also forbidden since even though we know that, in our
particular example, bound.t2 is of type Integer, this cannot be guaranteed on a general basis
since we merely know that the wildcard is bound to some type but not which concrete type it is.

Line 10 shows an example where the wildcard is not a top-level type argument. Already here,
we see that after the assignment, the wildcard is still unbound. In fact, it is not possible to assign
any other type to the variable since A<A<?>> is a concrete parameterized type and therefore, by the
type containment rules in 2.3.1, incompatible with any different invocation of A. This immediately

20 2 Generics

shows why only top-level wildcard type arguments can be bound to a specific type which is what
capture conversion reflects.

Finally, lines 11 and 12 show two different assignments to a variable of type A<?>. Since the
wildcard is still unbound in both cases, both assignments succeed.

2.3.3 Wildcard capture

When invoking a polymorphic method, we can either explicitly specify the type arguments for the
method type variables or, more commonly, we simply let the compiler infer them based on the
actual parameters passed to the method. However, special care must be taken when some inferred
type argument is a wildcard. In order to see how this can lead to problems, let us consider the
example in Listing 2.7 which illustrates the two types of issues which can arise in conjunction with
wildcards.

Listing 2.7: Type inference and wildcards

1 public class Inference {
2 public static <M> void reduce(Stack<List<M>> lists) {
3 List<M> top = lists.pop();
4 lists .peek().addAll(top);
5 }
6

7 public static <M> void append(List<M> list1, List<M> list2) {
8 list1 .addAll(list2);
9 }

10

11 public static void main(String[] args) {
12 List<?> strings = Collections.singletonList (”string”);
13 List<?> integers = Collections.singletonList (new Integer (7));
14

15 Stack<List<?>> lists = new Stack<List<?>>();
16 lists .push(strings);
17 lists .push(integers);
18 reduce(lists); // Error
19

20 append(strings, integers); // Error
21 }
22 }

On the lines 12 and 13, we create a list of strings and a list of integers, respectively. Both are
stored in a variable whose static type is List<?>.

On line 15, we then create a stack whose elements are declared to be of type List<?>, meaning
that we are allowed to safely push our two lists onto it as is done on the lines 16 and 17. On line
18, we have a polymorphic method call without explicit type arguments. Therefore, the compiler
must infer the type of the type variable M declared in the method reduce in order to check whether
the method invocation is valid or not. We see that in order for the method call to be valid, the
compiler would have to infer the type variable M to be the passed wildcard. However, since the
wildcard stands for some unknown type, this is not safe, as can be seen in our example. In fact, if
the method call was permitted, the method reduce would be able to append the list of integers to
the list of strings. The actual problem is that the method sees all elements stored in the stack as
being of the identical type List<M> while the type Stack<List<?>> clearly permits to push lists
having different element types onto the stack.

Finally, line 20 illustrates a similar situation where the two lists are passed separately. Likewise,
instantiating the type variable M to a wildcard is again not permitted as it would lead to the same
problems as those of the previous method call.

2.4 Raw types 21

However, there are also situations in which it is perfectly safe to instantiate a type variable to
a wildcard during type inference. As an example, let us consider the polymorphic method

<M> List<M> copy(List<M> list);

which returns a copy of a given list. For such a method, it is intuitively clear that passing a list
of type List<?> is always safe, since even though we do not know the exact element type of the
list, we can still be sure that it is some specific type and any such element type would make the
invocation typesafe. Therefore, such a method call would be valid. The process of instantiating a
type variable to a wildcard in methods similar to the one above is known as wildcard capture.

It is thereby interesting to see that the decision of whether a type variable can be instantiated
to a wildcard during type inference or not becomes trivial in the presence of capture conversion.
In fact, it is sufficient to only permit a type variable to be instantiated to a wildcard which has
previously been transformed into a type variable during capture conversion. Intuitively, this means
that a type variable may only capture wildcards which are known to be bound to some specific
type.

Following this simple rule, we see that the invocation of the method reduce previously discussed
in Listing 2.7 would indeed not be valid since the wildcard in Stack<List<?>> is not a top-level
type argument and therefore, it would not get transformed during capture conversion.

The call to the append method is a bit different. In that case, two parameters are passed to
the method, both of type List<?>. Since here the wildcards indeed are top-level type arguments,
the process of capture conversion would transform each of them into an appropriate type variable.
However, the two type variables are different and therefore not compatible to each other, meaning
that the type inference for M would fail, thus making the method call invalid, as expected.

Passing a List<?> to our copy method above, by contrast, would be valid since the top-level
wildcard gets transformed during capture conversion and, consequently, the type variable M can
be instantiated to the wildcard.

2.4 Raw types

The Java language permits to use the name of a generic type declaration without specifying any
accompanying actual type arguments, i.e. the erasure of a parameterized type is also considered
to be a valid type. Such a type is termed a raw type and its interplay with a generic type system
was first described in [3].

Supporting raw types is thereby a mere concession for being able to interoperate with legacy
code (i.e. old non-generic code). Such a support is important since, otherwise, some generic client
code in which e.g. the generic type List<E> is used could not take advantage of a non-generic
library to operate on such a list as the library would address the list through its raw type List.
Instead, one would have to wait until the old library is generified or, alternatively, write the new
code without using generics. Even worse, two versions of the library would eventually have to be
maintained if supporting generic as well as non-generic client code was desired. By contrast, if
raw types are supported, it is e.g. possible to assign a parameterized type to its corresponding
raw type. As we will see later, an assignment in the opposite direction is potentially unsafe but if
we want to support legacy code, the type system must nevertheless permit it.

2.4.1 Raw type members

As a raw type has no type arguments, its supertypes and the types of its members are not well-
defined by the usual generic type substitution used on parameterized types.

Instead, those types must be defined explicitly. Assuming that our raw type R belongs to the
generic type declaration G, those types are defined as follows:

• The supertypes of R are the erasures of the supertypes declared in G.

22 2 Generics

• If a non-static member of R is declared in G, its type is the erasure of the member’s declared
type.

• The type of a static member of R is the same as its declared type.

In the definition, we see that the type of a non-static member is only erased if the member is
really declared in the class corresponding to the raw type. If, by contrast, the member is defined
in one of the supertypes of the raw type, we have to check whether that supertype itself is a raw
type in order to decide whether to erase the member’s type or not. An example of why this is
really different is shown in Listing 2.8.

Listing 2.8: Raw type members

1 class Super {
2 public List<Integer> superList;
3 }
4

5 public class Sub<T> extends Super {
6 public static void main(String[] args) {
7 Sub raw = new Sub();
8 List<Integer> list = raw.superList; // access to non−raw−type member
9 }

10 }

On line 8, we see that the member superList is accessed on a variable of the raw type Sub.
However, that member is not declared in Sub but rather in its supertype Super which is clearly
not a raw type. Therefore, the type of the expression raw.superList is not erased and remains
List<Integer>.

Figure 2.2 illustrates a few examples of how the member types of a raw type differ from those
of its corresponding generic type. Thereby, it is interesting to note that, for non-static members,
even types which do not depend on any class type variable get erased. This is e.g. the case for
the variable listString whose type is List<String>. Static members, by contrast, preserve all
their type information, including parameterized types and method type variables.

class G<T> extends Vector<T> {
T t;

List<T> listT;
List<String> listString;

<M> M foo(List<T> list);

static List<String> staticList;
static <M> void bar(M m);

}

class G extends Vector {
Object t;

List listT ;
List listString ;

Object foo(List list);

static List<String> staticList;
static <M> void bar(M m);

}

Figure 2.2: Class members of a generic type (left) and its corresponding raw type (right)

2.4.2 Type safety

As was already mentioned, raw types are merely supported to facilitate the interoperability of
generic code with legacy code. However, except from this very special use case, using raw types
should be avoided whenever possible as in the presence of raw types all the type safety guarantees
otherwise provided by the generic type system become void.

2.4 Raw types 23

In 2.2.1, we have already encountered a situation in which type safety cannot be totally guaran-
teed by the generic type system, namely in the presence of down-casts which involve non-reifiable
types. Even though this shortcoming is inevitable due to the translation by type erasure employed
in Java generics, we have seen that type safety can only be compromised at runtime if the compi-
lation produced unchecked warnings. In order to ensure that this is still true in the presence of raw
types, we have to identify all possibly unsafe operations introduced by raw types and flag them
with an unchecked warning. To that end, we will first discuss an example which illustrates how
raw types can actually undermine the type safety guarantees provided by the generic type system
before giving the exact rules as of which operations require unchecked warnings to be issued. The
example is given in Listing 2.9.

Listing 2.9: Unsafe operations with raw types

1 public class Unsafe<T> {
2 T t;
3

4 T getT() { return t; }
5

6 void setT(T t) { this.t = t; }
7

8 public static void main(String[] args) {
9 Unsafe<String> nonRaw = new Unsafe<String>();

10

11 Unsafe raw = nonRaw; // OK
12

13 raw.t = new Object(); // Unchecked warning
14 String s1 = nonRaw.t; // ClassCastException at runtime
15

16 raw.setT(new Object()); // Unchecked warning
17 String s2 = nonRaw.getT(); // ClassCastException at runtime
18

19 nonRaw = raw; // Unchecked warning
20 String s3 = nonRaw.t; // ClassCastException at runtime
21 }
22 }

On line 11, we have an assignment from a non-raw-type to a raw type. Such an assignment
by itself is safe since the member types of any particular invocation of a generic type are al-
ways compatible to their own erasure. Hence, no unchecked warning is required. However, such
an assignment nevertheless introduces a raw-type-alias for our parameterized type which, as a
consequence, may lead to problems as is illustrated on the subsequent lines.

On line 13, that alias is used for writing a field whose declared type is the type variable T.
However, as the field is accessed on a raw type, its type gets erased to Object meaning that the
assignment is valid. This now clearly poses a problem because we know that the variable raw
is actually an alias for an object of type Unsafe<String> which, in turn, expects its field t to
contain an object of type String. As this is obviously not the case after our field assignment,
the statement on line 14 would trigger a ClassCastException at runtime. The actual operation
which leads to that exception is thereby the field assignment, but as its validity cannot be checked
at runtime due to type erasure, the only thing we can do is issuing an unchecked warning in order
to advice the user that he is performing a potentially unsafe operation which cannot be checked.

Line 16 illustrates a similar but nevertheless slightly different situation. This time, we are
invoking a method on a raw type. Since the formal parameter type T gets erased to Object, the
method call is valid. However, this is somewhat different from the field assignment above, since
passing an instance of type Object to a parameter of type T does not automatically mean that this
object is really stored in the raw type thereby leading to a ClassCastException when accessing

24 2 Generics

that object through a parameterized type. However, an unchecked warning must nevertheless be
issued since the method body may actually store that object in the raw type, as is indeed done in
the setT method, thus leading to the exception on line 17.

Finally, line 19 contains an assignment from a raw type to a parameterized type. Since, in
general, the member types of some invocation of a generic type are more specific than their own
erasure, such an assignment is potentially unsafe and must be flagged with an unchecked warning,
since it may lead to a ClassCastException as the one on line 20.

After this more intuitive approach at explaining when and why an unchecked warning must be
issued in the presence of raw types, we still provide the formal rules for the problem as they cover
some aspects not discussed in the above example. These rules read as follows:

• An assignment from a raw type to a compatible parameterized type always triggers an
unchecked warning.

• An invocation of a method or constructor of a raw type triggers an unchecked warning if
any of the declared parameter types differs from the corresponding parameter type of the
raw type.

• An assignment to a field of a raw type triggers an unchecked warning if its declared type
differs from the corresponding type of the raw type.

In particular, this implies that no unchecked warning is generated when reading a field or when
invoking a method in which only the declared return type differs from the corresponding result
type of the raw type. In addition, the use of static members never triggers an unchecked warning
as their declared types are not affected when accessed on a raw type.

Note also, that it is not always immediately apparent that some member is indeed being
accessed on a raw type or that what is being assigned to a parameterized type in truth is a raw
type. Listing 2.10 illustrates such situations.

Listing 2.10: Raw type members

1 class Super<T> {
2 public List<T> superList;
3 }
4

5 public class Sub extends Super {
6 public static void main(String[] args) {
7 Sub nonRaw = new Sub();
8 List<Integer> list = nonRaw.superList; // Unchecked warning
9

10 Super<String> sup = new Sub(); // Unchecked warning
11 }
12 }

In the example, we see that the class Sub extends the raw type Super. Therefore, the field
access on line 8 is indeed an access to a member of a raw type, even though, in the code, we are
accessing it on the non-raw-type Sub. Similarly, on line 10, we are in fact assigning the raw type
Super to the parameterized type Super<String>, thereby leading to an unchecked warning to be
issued.

2.4.3 Raw types in the Java platform APIs

As we have just seen, raw types bring us back many of the type safety issues we were faced to
before the introduction of generics into the Java programming language. For that reason, their
use should be avoided whenever possible. However, there are some situations, in which this is not
feasible.

2.4 Raw types 25

This is reflected in the fact that even the generified versions of the Java platform APIs which
ship as part of J2SE 5.0 indeed expose raw types in their public interface. In the following, we
will briefly describe a simple example of this phenomenon and also present an interesting type safe
alternative provided by the designers of the new API. Our example is drawn from the Collections
class and the relevant portions of the code are illustrated in Listing 2.11.

Listing 2.11: Raw types in the JDK

public class Collections {
/∗ ... ∗/

public static final List EMPTY LIST = new EmptyList();

public static final <M> List<M> emptyList() {
return (List<M>) EMPTY LIST;

}

/∗ ... ∗/
}

The field Collections.EMPTY_LIST shown in the example was already part of previous versions
of the JDK and could therefore not be dropped in the new generified class. However, since the field
is static, there is no way to parameterize it by a type variable, meaning that the field’s type must
be used in its raw form List. As assigning such a field to a parameterized version of a list used
in some client code would always trigger an unchecked warning, a type safe alternative has been
provided as part of the new API. In fact, using the polymorphic method emptyList illustrated
in the example would not generate an unchecked warning when compiling the client code. Note,
however, that this does not mean that the unchecked warning can really be avoided. Instead,
if we look at the implementation of the method, we see that it uses a cast to the non-reifiable
type List<M> which, in turn, would issue an unchecked warning. Here, it becomes evident that
unchecked warnings are really tailor-made to flag every possibly unsafe operation and, therefore,
they cannot be avoided when converting from a raw type to a parameterized type. However, what
the addition of the method emptyList pretends to do is moving the unchecked warning from client
code to the implementation of the JDK.

26 2 Generics

Chapter 3

Implementation

In the following sections, we will describe the actual implementation of the features discussed so
far but also the things originally part of the semester project which could not be implemented
completely during the given time frame.

Note that since JML builds on top of the MultiJava compiler and its utility classes, most
modifications regard the MultiJava code as JML automatically benefits from them. Therefore,
the actual modifications to JML are described separately towards the end of the chapter.

3.1 Support for JRE 5.0

A new version of the Java Platform usually also introduces a new JVM class file format which is
adapted in order to accommodate new features such as additions to the Java language. Of course,
a compiler written for a previous version of the platform would typically reject to compile against
such a class file just as it would not be able to compile a source file of the new language.

However, a compiler written for a previous version of the Java language can often be easily
adapted in order to be able to work with such class files by only extracting the information it
knows and understands while simply ignoring the rest. Note that this is exactly what the Sun
Java 5 compiler does if invoked through the command

javac -source 1.4

The design of the JVM class file format greatly simplifies the above process by providing a set
of facilities which allow to attach metadata to classes and its members. In particular, the following
simple constructs for adding information to classes, fields, and methods are supported:

• Access and property flags: This is a simple mask of predefined flags used to denote
access permissions and various other properties of a class, field, or method. This bitmask
e.g. reveals whether the type described by the class file in fact is a class or rather an
interface, or whether a field has been declared to be volatile. Flags specific to methods
include whether the method is synchronized or native.

• Attributes: Attributes provide a much more flexible way of adding metadata to a particular
class, field, or method. In fact, an attribute consists of a name and an arbitrary string
which represents the actual contents of the attribute. The JVM specification supports a
set of predefined attributes by clearly stating how the contents of a specific attribute should
be interpreted and what semantic information it contains. Currently, there are predefined
attributes that can e.g. be used to mark a class member as being deprecated but also very
familiar constructs such as the checked exceptions declared in the throws clause of a method
are stored in special attributes in the class file. In addition, the JVM specification allows
user-defined attributes to be stored in a class file as long as their names do not clash with
those of predefined ones. The actual interpretation and handling of such attributes is then
up to specific tools which recognize them.

27

28 3 Implementation

The JVM specification expressly requires that a compiler or any other tool operating on the
class file silently ignores access and property flags as well as attributes which may have been
assigned special meaning in a later version of the JVM specification. This usually permits a
compiler to work with such class files by safely skipping the extra information.

At its current version, the MultiJava compiler mainly targets version 1.4 of the Java language
(despite some basic support for Java 5). In the following, we will describe how the compiler was
adapted to make it cope with the class file format defined in J2SE 5.0. This makes it possible
to run the MultiJava compiler as a Java 1.4 compiler on a Java 5 Platform which forms a first
basic step to move the development and support of the compiler to the new platform. To that
end, we will briefly describe how generics are mapped to the class file format. Please note that
other Java 5 language additions – namely varargs, enumerations, and annotations – have also some
minimal representation in a class file. However, no modifications were necessary to handle them
and, therefore, they will not be discussed at this point. For a thorough discussion of all changes to
the JVM class file format introduced by the Java 5 language additions [2], we refer the interested
reader to the JVM specification which is currently only available as a final public draft version of
JSR-202 [1].

3.1.1 Generics in a class file

Generic type information

As was discussed in 2.2, the JVM offers no runtime support for generics. However, the generic
type information must still be stored in the class file as it is later needed by the compiler.

Prior to the support for generics, the type information of classes, fields, and methods was
stored in so-called descriptors. A descriptor of classes and fields is just a string containing a
simple encoding of the corresponding type while method descriptors similarly contain the types of
the formal parameters and that of the return type. In order to preserve backward compatibility, the
generic type information is not stored in those descriptors but, instead, a new predefined attribute
is introduced – the so-called Signature attribute – which contains the generic type information of
classes, fields, and methods.

Bridge methods

Under certain circumstances, generics require special methods – so-called bridge methods – to be
inserted by the compiler. To see why, let us consider Listing 3.1.

Listing 3.1: Need for bridge methods

interface ValueHolder<T> {
T getValue();

}

public class Implementor implements ValueHolder<String> {
public String getValue() {

return ”the value”;
}

}

We see that the interface method implemented by the Implementor class must have String
as its return type. However, assume the method is invoked on a variable whose static type is the
interface, not the class. Since the JVM only knows about the erasure of the interface, the compiler
would generate bytecode to invoke a method whose signature is the erasure of the interface’s
declared method, i.e.

Object getValue();

3.2 Generics 29

Since the JVM searches for methods by their full signature, i.e. also including the return type,
no such method would be found at runtime on an instance of the implementing class as the
return types differ. Therefore, the compiler must insert an appropriate bridge method into the
Implementor class which simply delegates the call to the actual method specified in the code.
Bridge methods are thereby explicitly marked as such by the special ACC_BRIDGE bit in their
property flags.

3.1.2 Modifications to the compiler

Following the above explanations of how generics are mapped to the class file, it becomes clear
that it was indeed very easy to adapt the MultiJava compiler to make it cope with the new class
file format.

This was done by ensuring that for every field, method, and type declaration, the generic type
information stored in the separate Signature attribute is only used by the compiler if generics are
turned on. However, if the compiler is configured to only support version 1.4 of the Java language,
the required type information is extracted from the type descriptor. This only required changes to
the classes CBinaryField, CBinaryMethod, and CBinaryClass where the correct type signature
is picked from the class file before passing it to the class file parser which then constructs an
appropriate member based on the provided type information.

Bridge methods, on the other hand, need only be handled explicitly in that the compiler must
be aware of the fact that they are synthetic methods generated by the compiler in order to e.g.
ignore them during type checking. Since the MultiJava compiler already provided support for
correctly handling synthetic methods, we merely had to mark bridge methods as being synthetic,
which was done in the class MethodInfo.

3.2 Generics

3.2.1 Existing generics support

The work of this semester project largely builds on top of a recent master’s thesis [5] which
implemented an important part of generics for the MultiJava compiler. In this section, we will
briefly discuss some aspects of that implementation and also describe the main classes at the
core of the MultiJava compiler which will be referenced later on during the discussion of our
implementation.

The MultiJava compiler uses two different abstractions for type declarations and for types used
in the code. The abstract class CClass represents a type declaration and different specializations
are provided which model types declared in a Java source file (CSourceClass) and types extracted
from a class file (CBinaryClass). A CClass mainly serves as a data structure which holds the
different type members such as fields and methods, while it also provides methods to lookup
such members. The abstract class CType, on the other hand, stands for a type of the Java type
hierarchy and it represents all the types used in the code, such as the types of fields and method
parameters, but also the types to which expressions evaluate. A CType mainly contains the logic
for checking the subtype relationship to other types which is required for verifying the correctness
of e.g. assignments and method calls in the code. Additionally, it incorporates the type checking
of the type itself which includes verifying whether a type declaration for the given type name really
exists. As is done in Java, the MultiJava compiler mainly differentiates between primitive types
and reference types, the latter being represented by the abstract class CClassType. Reference
types defined by some type declaration are modeled by the class CClassNameType.

In [5], the MultiJava compiler has been extended to support generic types as well as polymor-
phic methods. Type variables introduced by generic type declarations are thereby represented by
the special reference type CTypeVariable which mainly contains an array of types representing
the upper bounds of the type variable. Parameterized types, on the other hand, have been im-
plemented on top of CClassNameType by associating a set of actual type arguments to that type.

30 3 Implementation

Since the MultiJava compiler lacks an abstraction for nested types, it was decided to store the
type arguments in a two-dimensional array in which the type arguments of a nested type

HashMap<Integer, String>.HashIterator<Integer>

can be stored in the form (assuming that a type is simply represented by its name for illustration)

{ { ”Integer”, ”String” }, { ”Integer” } }.

The appropriate array structure containing the type arguments is constructed while parsing the
type in the source file (or in the class file) and is then passed to the actual type. Finally, the
erasure of a generic type is modeled separately by the special class CErasedClassType.

Despite the support for wildcards and raw types, the already existing generics implementation
covered most other aspects of the generic type system. In particular, support for the following
parts of generics was provided prior to this semester project:

• Generic type and method declarations, including type parameters with multiple upper bounds.

• Reading/Writing generic type signatures of fields, methods, and generic type declarations
from/to class files (not including wildcard signatures, as described later in 3.2.2).

• Subtyping in the presence of type variables and parameterized types (not including the new
subtyping facilities introduced by wildcards, as described in 2.3.1).

• Computing the erasure of a generic type.

• Inserting implicit generics casts where needed.

• Generating bridge methods where needed.

• Handling method resolution and method overriding in the presence of generic types.

As we can see, a very extensive generics support was already provided on which we could base
our own implementation. However, a few minor details had to be adapted since at the time the
existing implementation was elaborated, the specification of Java generics was only available as a
public draft version of JSR-14 which slightly differs from the final specification given by the third
edition of the Java Language Specification [9]. Examples of such changes include that it is now not
permitted to instantiate arrays of non-reifiable types and that casts to non-reifiable types must
issue an unchecked warning (see discussions in 2.2.1 and 2.2.2).

In addition to such changes, we have also tried to fix other problems we encountered during
our work. For example, the existing implementation did not cope with the generic type signature
of type parameters which have only interfaces in their bounds. In fact, the generic type signature
of e.g. the type parameter T extends Cloneable would look like

T::Ljava/lang/Cloneable;

The general structure of such a type parameter signature is the specification of the type parameter’s
name followed by the individual upper bounds, each of them preceded by a colon. However, even
if no class (as opposed to an interface) is specified as the first upper bound, an empty signature is
nevertheless produced, hence the two subsequent colons in the signature above. The mishandling
of such signatures was one of the reasons why the existing implementation could not be run on
JRE 5.0.

3.2.2 Wildcards

In the following, the main aspects of adding support for wildcards to the MultiJava compiler will
be described. We will thereby refer to the theory elaborated in 2.3 and discuss how the semantics
of wildcards have been accommodated in the compiler.

3.2 Generics 31

Core wildcard support

A wildcard itself is represented by the new type CWildcardType which supports unbounded as well
as upper and lower bounded wildcards. Wildcards can appear in a Java source file but must also
be extracted from class files. In a class file, all the generic type information, including wildcards,
is stored in so-called signatures which contain type information which is not part of the JVM type
system but which is used by the compiler to reconstruct the generic type information originally
specified in the source code. A signature contains a simple encoding of the type information where
the different types are represented by a single character, possibly followed by some additional
information such as the fully qualified name of a class type. Table 3.1 shows the encoding used
for the individual Java types.

Encoding Type Encoding Type
B byte C char
D double F float
I int J long
S short Z boolean
L ClassType ; class type [ArrayType array type
T Identifier ; type variable * unbounded wildcard
+ Bound upper bounded wildcard - Bound lower bounded wildcard

Table 3.1: Type signature encoding

For representing parameterized types, the type information about the actual type arguments
is enclosed in angle brackets and immediately follows the encoding of the class name, so e.g. the
type List<? extends String> would be encoded to the following signature:

Ljava/util/List<+Ljava/lang/String;>;

For being able to extract wildcards from the generic type signature of fields and methods,
the class file parser of the MultiJava compiler was extended to correctly recognize the wildcard
signatures shown in Table 3.1 and to build an appropriate instance of CWildcardType based on the
information collected. On the other hand, writing such signatures to a class file during compilation
for wildcards which appear in the source code is directly done in CWildcardType, thereby following
the basic design of the MultiJava compiler.

Capture conversion

As was pointed out in 2.3.2, the process of capture conversion is an important aspect in the
implementation of wildcards as it provides a convenient way of differentiating between wildcards
which are not bound to any particular type and wildcards which are known to stand for some
specific type. Such a distinction is very important since, depending on whether a wildcard is
bound to some specific type or not, its semantic behavior is totally different.

Therefore, we have decided to strictly adhere to the implementation by capture conversion in
that we separately model an unbound wildcard by the already introduced class CWildcardType
while a bound wildcard captured during the process of capture conversion is represented by the
new class CCaptureType. The latter largely behaves like a normal type variable and, as such, is
implemented as a subtype of CTypeVariable.

Capture conversion is performed on the type of every expression which is evaluated. If that type
is a parameterized type, all top-level wildcard type arguments (CWildcardType) are transformed
into fresh type variables (CCaptureType) with appropriate upper bounds and a lower bound. The
actual logic for this transformation is implemented in the CCaptureType class itself which provides
a static factory method which creates such a type variable from a given wildcard following the
definition given in 2.3.2. Note that for the transformation, the formal type parameter of the

32 3 Implementation

wildcard is required. Since the parameterized type containing that wildcard always knows what
the corresponding type parameter is, the type parameter is associated to the wildcard during the
type checking of the parameterized type. This ensures that the necessary information is always
available when performing capture conversion.

We have already mentioned that, once an instance of CCaptureType has been created with the
appropriate bounds, it behaves like any other type variable explicitly declared in the code, at least
in most situations. In fact, only when assigning a value to them, the two kinds of type variables
behave differently: while a normal type variable can only be assigned a value of its own type, a
type variable generated during capture conversion relaxes this requirement by also allowing values
to be assigned to it if those values are assignable to its lower bound.

Type containment

In 2.3.1, a special relationship between type arguments called type argument containment was
introduced which defines the subtype relationships between parameterized types belonging to the
same generic type declaration.

In our implementation, checking whether a type argument A contains another type argument
is done in the type A itself. This is easily possible since checking the containment relationship
between two type arguments is totally independent of other type information of the parameterized
types in which the type arguments are used. Note that the actual type containment check is only
interesting in the presence of wildcards, since, for all other types, it reduces to a mere type equality
check. For wildcards, the type containment rules presented in 2.3.1 have been implemented in the
CWildcardType class.

3.2.3 Raw types

In the following, the main aspects of adding support for raw types to the MultiJava compiler will
be described. We will thereby mainly discuss the implementation of the features described in 2.4
but also mention some of the issues encountered during the implementation.

Type arguments for raw types

In the existing implementation of parameterized types, many places in the code relied on the fact
that every type belonging to a generic type declaration has appropriate actual type arguments for
every corresponding type parameter. Of course, this is a more than valid assumption but only in
the absence of raw types. However, it is actually possible to synthetically equip raw types with
special type arguments which basically cover their semantics, namely the erasures of the type
parameters defined in the corresponding generic type declaration.

In our implementation, these special type arguments are attached to a raw type during its type
checking. This ensures that, even in the presence of raw types, the old assumption of all generic
types having appropriate type arguments still holds. In addition, treating a raw type similarly to
any other parameterized type permits to naturally represent the erasure of a generic type by such
a raw type instead of using the special purpose class CErasedClassType as was done before. Of
course, this does not mean that raw types do not require special handling in the code. In fact,
class member accesses and assignments involving raw types (both discussed below) still need to
be handled explicitly. However, this only requires punctual changes in the code.

Type checking

The additional type checking required for supporting raw types mainly consists of two parts: on
the one hand, assignments between parameterized types and raw types must be handled correctly
while, on the other hand, the impact of accessing a class member on a raw type must be considered.
Listing 3.2 shows an example which illustrates both situations.

3.2 Generics 33

Listing 3.2: Raw type invocation

class Super<T> {
public List<T> superList;

}

public class Sub extends Super {
public static void main(String[] args) {

Super<String> sup = new Sub(); // Unchecked warning

Sub nonRaw = new Sub();
nonRaw.superList = new List(); // Unchecked warning

}
}

For assignments, we have to check whether we are assigning a raw type to a parameterized
type in order to eventually issue an unchecked warning. As we can see in the example, it is not
always immediately apparent in the code whether this is the case or not. In fact, in our sample
assignment, Sub is not a raw type, but its supertype Super is a raw type, so we must issue an
unchecked warning. More generally, what we have to check is whether the value being assigned
is a raw type invocation of the target type of the assignment. That check is performed on every
valid assignment and eventually produces an unchecked warning. An equivalent check is performed
for every actual type argument passed to a method or constructor, since passing an argument is
semantically equivalent to a normal assignment.

For member accesses, the situation is very similar in that we must also be able to check whether
the type on which the member is accessed is a raw type invocation of the type where the member
is actually declared. In our example, once more, we see that we are accessing a field on the non-
raw-type Sub, but the field is declared in Super, which, in our case, is a raw type. Therefore,
we must again issue an unchecked warning, since we are writing a field which is accessed on a
raw type and whose type changes by erasure. More generally, whenever we identify a field or a
method being accessed on a raw type, we apply the rules described in 2.4.2 to figure out whether
an unchecked warning must be generated or not. In addition, the type of the member access
expression is adapted accordingly by eventually replacing it by its own erasure, unless the member
is declared to be static.

As we can see, checking assignments and member accesses is both based on the ability to
check whether a type is a raw type invocation of some given generic type declaration. Since this
functionality is required at different places, we have integrated it directly into the class CClassType
which is the base class for reference types. The actual implementation takes an object representing
a type declaration (CClass) as its sole argument and returns whether the type on which the method
is invoked is a raw type invocation of that type declaration. This is simply done by going up the
supertype hierarchy of the type until we get to the appropriate class and then checking whether
that supertype is a raw type.

Unchecked warnings

During compilation, the MultiJava compiler provides feedback to the user not only by reporting
eventual compilation errors but also by displaying different types of warnings or even more general
informational messages. The compiler thereby provides appropriate compiler switches to control
which of these messages to report to the user while suppressing all others. The MultiJava compiler
even supports custom filters which can be loaded via reflection to provide an even more fine-
grained control over the display of such messages. Either type of message filtering relies on a
proper classification of the individual messages which have a type associated to them which tells
the compiler what kind of message it is. Examples of such message types are simple errors but
also different flavors of warnings (depending on their severity) are supported.

34 3 Implementation

Since unchecked warnings are a very special kind of warnings, it was decided to introduce a
separate type of message for them and to add a specific compiler switch for controlling the display
of such warnings. Following the behavior of the Sun Java compiler, by default, unchecked warnings
are not reported to the user, but they can be turned on using the custom compiler switch --Xlint
as in

java org.multijava.mjc.Main --Xlint unchecked

Note thereby that even though unchecked warnings as such are not reported to the user if not
explicitly enabled, the mere fact that such warnings occurred during compilation is nevertheless
reported since it is usually important for the user to be aware of the presence of unchecked warnings.

Note also that the annotation facilities introduced in Java 5 allow unchecked warnings to be
suppressed in specific parts of the code only, supported by the special annotation

@SuppressWarnings("unchecked")

While such annotations are not yet supported in the MultiJava compiler, the fact of having a
special message type for unchecked warnings should facilitate their suppression in the scope of
such an annotation.

3.2.4 Limitations of the generics support

The MultiJava compiler is now able to work with class files part of JDK 5.0. However, due to
some punctual bugs in the compiler, the generics support is not yet robust enough to correctly
handle all the generic features in the Java 5 platform APIs, meaning that some correct constructs
are rejected by the MultiJava compiler. As a concrete example, it is currently not possible to
reference a type parameter in its own upper bound even though this is allowed by the Java
Language Specification. In addition, some generic constructs – such as generic arrays – are still
not correctly extracted from a class file. In order to facilitate future development on the generics
support in the MultiJava compiler, we will write appropriate bug reports1 which allow to reproduce
the still persisting problems we have encountered during our work.

Unfortunately, the above mentioned bugs currently prevent the MultiJava compiler to use
the generic type information contained in class files part of the JDK since those classes contain
constructs which would lead to spurious type checking errors during compilation. For that reason,
JDK classes are currently treated specially in that their generic type information is not parsed,
meaning that generics can currently only be used in the client code itself. This temporary limitation
is implemented in the class org.multijava.mjc.Main and can be removed as soon as the above
bugs have been fixed.

3.3 Testcases

A number of simple testcases have been created in the org.multijava.mjc.testcase.java5
package and integrated into the MultiJava testing framework to test the individual aspects of our
implementation. Every unit test consists of a single Java source file together with a text file which
contains the messages the compiler is expected to produce upon processing the source file. This
expected compiler output is then compared to the actual one during the execution of the unit test.

For wildcards, the main aspects covered by the unit tests are checking the validity of wild-
card type arguments, the subtyping among wildcard-parameterized types, the process of capture
conversion, and assignments involving (captured) wildcards. For raw types, mainly the member
accesses on raw types as well as assignments involving raw types are tested.

Interestingly, while writing the unit tests, we have discovered several bugs in the Sun Java 5
compiler (and also in the Eclipse compiler). Some of them turned out to be fixed but only in the
current beta version of the Java 6 compiler. A totally new bug was also found2. In our opinion,

1see http://sourceforge.net/projects/multijava
2see http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6452148

http://sourceforge.net/projects/multijava
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6452148

3.4 Modifications to the JML tools 35

this reflects the fact that the generic type system in Java indeed contains many subtleties which
are not totally apparent at first sight. An interesting consequence of this fact we have encountered
during the elaboration of this semester project is that many reports for bugs in the generic type
system are characterized by an extensive discussion which tries to clarify whether it really is a bug
or not.

3.4 Modifications to the JML tools

As was already mentioned, the actual logic of our implementation resides in the MultiJava compiler
since JML builds on top of it and therefore automatically benefits from the modifications to the
MultiJava code. Hence, only some very basic changes to the JML tools [4] were necessary. More
precisely, the JML checker and the JML compiler have been adapted to allow them to take
advantage of all the generics support provided by the MultiJava compiler.

3.4.1 JML checker

The jml (org.jmlspecs.checker.Main) tool is known as JML checker and it provides the most
basic tool support for JML by simply parsing and typechecking the JML specifications. This
already ensures that the specifications are at least syntactically correct and that they e.g. do not
contain references to non-existing types or variables. However, the JML checker does not generate
code of any kind.

In order to make the JML checker cope with generics, only a few very basic changes were neces-
sary. In particular, we have adapted the JML parser to make it recognize the type parameter defi-
nitions in generic type declarations (JmlTypeDeclaration) and polymorphic method declarations
(JmlMethodDeclaration). Since the actual implementation of the JML classes for generic type
and method declarations are based on their MultiJava counterpart, i.e. JTypeDeclaration and
JMethodDeclaration, respectively, the newly parsed type parameters could basically be passed
to the MultiJava classes which already handled them correctly. This already allowed us to run
the JML checker on a Java source file containing generic type information. As we can see in
Listing 3.3, generic types can also be used in the JML specifications.

Listing 3.3: JML checker example

public interface List<E> extends Collection<E> {
/*@ pure @*/ int size();

/*@ pure @*/ E get(int index);

/*@ also
@ ensures \result
@ <==> o instanceof List
@ && (size() == ((List<E>) o).size())
@ && (\forall int i; 0 <= i && i < size();
@ (get(i) == null && ((List<E>) o).get(i) == null)
@ || get(i).equals(((List<E>) o).get(i)));
@*/

/*@ pure @*/ boolean equals(/*@ nullable @*/ Object o);
}

The example mainly illustrates a possible JML specification for the equals method of a list. We
see that generic types cannot only be used in the Java code but also in JML specifications, where
we automatically benefit from all the typechecking implemented in the MultiJava compiler. As an
example, the above casts to List<E> in the JML specification would indeed generate unchecked
warnings, just as we would expect.

36 3 Implementation

3.4.2 JML compiler

The jmlc (org.jmlspecs.jmlrac.Main) tool is known as JML compiler and it provides one way
of checking the correctness of JML specifications by runtime assertion checking, i.e. by producing
code for the JML assertions which checks their correctness at runtime.

The JML compiler employs a special compilation strategy called double-round compilation
which is described in [6]. In essence, the compiler first runs the JML checker on the original
source file containing the Java code as well as the JML specifications. It then generates runtime
assertion checking code for the JML specifications and adds appropriate nodes representing that
code to the abstract syntax tree. The code represented by the modified abstract syntax tree is
then written to a temporary file and compiled in a second run using the MultiJava compiler, which
finally produces the actual bytecode containing both the original Java code as well as the runtime
assertion code for dynamically checking the JML specifications.

Unfortunately, the concrete implementation of this compilation strategy turned out to lead to
several problems in conjunction with generics. One of the main issues encountered is caused by the
way the generated assertion checking code is inserted into the original code. More concretely, as
described in [6], the JML compiler generates special assertion methods which contain the code to
check different JML specifications such as pre- and postconditions or class invariants. If the type
being annotated is a class, these assertion methods can be directly added to the class itself. For
interface specifications, however, the interface cannot directly host those methods since all methods
in an interface must be abstract. Therefore, the solution adopted in the JML compiler is to add
an inner class to the interface to which the assertion methods can then be added. However, the
context of inner classes inside an interface is always static, meaning that possible type parameters
of the interface cannot be accessed from within this context. In particular, this means that generic
interface declarations would break the compilation since the interface’s type parameters usually
need to be referenced by the generated assertion methods.

In order to circumvent this problem, we have decided to drop all the generic type information
just before starting the second compilation run by only writing the erasure of all generic types to
the temporary file. This clearly solves the above problem and allows the JML compiler to be run
on source files containing generic types both in Java code and in JML specifications. However,
even though all the typechecking on the original source file is performed including the generic type
information, the obvious drawback is that no generic type information is included in the generated
class file since the actual compilation to bytecode is done in the second compilation run in which
no generic type information is available anymore.

Chapter 4

Conclusion and future work

4.1 Conclusion

In this report, a rough overview of the parametric polymorphism as realized in the Java pro-
gramming language was given. Thereby, a special emphasis was placed on discussing many of the
subtleties of the generic type system and how they relate to the certainly most crucial and contro-
versial design decision of not providing runtime support for Java generics. In addition, a thorough
treatment of the semantics of wildcards and raw types was provided and the implementation of
those special features on top of the MultiJava compiler was described.

4.2 Generics

The MultiJava compiler now supports most features of Java generics. However, an important major
aspect still missing is a type inference algorithm for polymorphic methods. In most cases, such an
algorithm allows to automatically infer the types of method type variables without requiring the
programmer to explicitly specify them for every polymorphic method call. The algorithm is fully
specified in the Java Language Specification [9] but its implementation seems to be nevertheless
involved since some features of the type system such as wildcards and intersection types make
the type inference algorithm more powerful but at the same time also inherently complex. In
particular, in the presence of wildcards, there is not always a unique optimal type which can be
inferred from a given set of actual type parameters, as described in [13].

4.3 Java 5 support

Beside generics, J2SE 5.0 introduced further significant additions to the Java programming lan-
guage whose specification and development was driven by two different JSRs. JSR-201 embodies
several language additions which all aim at facilitating the development of Java programs by pro-
viding built-in support for several common programming idioms. Most of these features are mere
convenience constructs to reduce the clutter in the code but a very powerful support for typesafe
enumerations is also added to the language. JSR-175, on the other hand, specifies an annotation
facility which allows to associate metadata with Java code. This avoids having to maintain sep-
arate files in which the metadata is stored and, more importantly, the annotations can also be
retained in the bytecode and queried by tools via reflection.

In this semester project, we have adapted the frontend of the MultiJava and JML compilers
to support the syntax of these language additions. However, the actual semantics need still be
implemented.

37

38 4 Conclusion and future work

4.4 Generic Universes

The Universe type system [12] is an ownership type system which hierarchically partitions the
object store into so-called universes while providing control over references between different uni-
verses. Compared to other ownership type systems, the Universe type system is mainly charac-
terized by its simplicity and ease of use.

The Universe type system was implemented on top of the MultiJava compiler and the JML
tools. A proposal for integrating the type system into the generics mechanism of Java 5 is described
in [8] which allows the Universe type system to benefit from the improved static type checking
facilities provided by Java generics. The extension of the Universe type system to support generics
was originally part of this semester project but could unfortunately not be realized in the given
time frame.

Bibliography

[1] JSR-202: Java class file specification update. http://www.jcp.org/en/jsr/detail?id=202.

[2] New features and enhancements in J2SE 5.0. http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe for the past: Adding
genericity to the java programming language. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 183–200, New York, NY, USA, 1998.
ACM Press.

[4] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan M. Leino, and
Erik Poll. An overview of JML tools and applications. In International Journal on Software Tools for Technology
Transfer, volume 7, number 3, pages 212–232, June 2005.

[5] Tongje Chen. Extending MultiJava with generics. Master’s thesis, Iowa State University, 2004.

[6] Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD thesis, Department of
Computer Science, Iowa State University, Ames, April 2003.

[7] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers. MultiJava: Design rationale, compiler imple-
mentation, and applications. ACM Transactions on Programming Languages and Systems, 28(3), May 2006.

[8] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types. Technical report, to appear.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition. Addison-Wesley
Professional, June 2005.

[10] Andrew Kennedy and Don Syme. Design and implementation of generics for the .NET common language runtime. In
PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and implemen-
tation, pages 1–12, New York, NY, USA, 2001. ACM Press.

[11] Gary T. Leavens and Yoonsik Cheon. Design by contract with JML. 2006.

[12] Peter Müller and Arnd Poetzsch-Heffter. Universes: A type system for alias and dependency control. Technical
Report 279, Fernuniversität Hagen, 2001.

[13] Mads Torgersen, Erik Ernst, Christian Plesner Hansen, Peter von der Ahé, Gilad Bracha, and Neal Gafter. Adding
wildcards to the java programming language. In Journal of Object Technology, vol. 3, no. 11, pages 97–116, December
2004.

[14] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé, Gilad Bracha, and Neal Gafter. Adding
wildcards to the java programming language. In SAC ’04: Proceedings of the 2004 ACM symposium on Applied
computing, pages 1289–1296, New York, NY, USA, 2004. ACM Press.

39

http://www.jcp.org/en/jsr/detail?id=202
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

	1 Introduction
	1.1 The evolution of the Java language
	1.2 MultiJava and JML

	2 Generics
	2.1 Introduction
	2.1.1 Terminology

	2.2 Generics in the Java language
	2.2.1 Unchecked warnings
	2.2.2 Example

	2.3 Wildcards
	2.3.1 Subtyping among parameterized types
	2.3.2 Capture conversion
	2.3.3 Wildcard capture

	2.4 Raw types
	2.4.1 Raw type members
	2.4.2 Type safety
	2.4.3 Raw types in the Java platform APIs

	3 Implementation
	3.1 Support for JRE 5.0
	3.1.1 Generics in a class file
	3.1.2 Modifications to the compiler

	3.2 Generics
	3.2.1 Existing generics support
	3.2.2 Wildcards
	3.2.3 Raw types
	3.2.4 Limitations of the generics support

	3.3 Testcases
	3.4 Modifications to the JML tools
	3.4.1 JML checker
	3.4.2 JML compiler

	4 Conclusion and future work
	4.1 Conclusion
	4.2 Generics
	4.3 Java 5 support
	4.4 Generic Universes

