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Abstract

Recurrent neural networks can generate lo-
cally coherent text but often have difficulties
representing what has already been generated
and what still needs to be said – especially
when constructing long texts. We present the
neural checklist model, a recurrent neural net-
work that models global coherence by stor-
ing and updating an agenda of text strings
which should be mentioned somewhere in the
output. The model generates output by dy-
namically adjusting the interpolation among a
language model and a pair of attention mod-
els that encourage references to agenda items.
Evaluations on cooking recipes and dialogue
system responses demonstrate high coherence
with greatly improved semantic coverage of
the agenda.

1 Introduction

Recurrent neural network (RNN) architectures have
proven to be well suited for many natural language
generation tasks (Mikolov et al., 2010; Mikolov et
al., 2011; Sordoni et al., 2015; Xu et al., 2015;
Wen et al., 2015; Mei et al., 2016). Previous neu-
ral generation models typically generate locally co-
herent language that is on topic; however, overall
they can miss information that should have been in-
troduced or introduce duplicated or superfluous con-
tent. These errors are particularly common in situ-
ations where there are multiple distinct sources of
input or the length of the output text is sufficiently
long. In this paper, we present a new recurrent neu-
ral model that maintains coherence while improv-
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Figure 1: Example checklist recipe generation. A checklist

(right dashed column) tracks which agenda items (top boxes;

“salt,” “lime,” etc.) have already been used (checked boxes).

The model is trained to interpolate an RNN (e.g., encode “pico

de gallo” and decode a recipe) with attention models over new

(left column) and used (middle column) items that identify

likely items for each time step (shaded boxes; “tomatoes,” etc.).

ing coverage by globally tracking what has been said
and what is still left to be said in complete texts.

For example, consider the challenge of generat-
ing a cooking recipe, where the title and ingredient
list are provided as inputs and the system must gen-
erate a complete text that describes how to produce
the desired dish. Existing RNN models may lose
track of which ingredients have already been men-
tioned, especially during the generation of a long
recipe with many ingredients. Recent work has fo-
cused on adapting neural network architectures to
improve coverage (Wen et al., 2015) with applica-
tion to generating customer service responses, such
as hotel information, where a single sentence is gen-
erated to describe a few key ideas. Our focus is in-
stead on developing a model that maintains coher-
ence while producing longer texts or covering longer



input specifications (e.g., a long ingredient list).
More specifically, our neural checklist model gen-

erates a natural language description for achieving
a goal, such as generating a recipe for a particu-
lar dish, while using a new checklist mechanism
to keep track of an agenda of items that should
be mentioned, such as a list of ingredients (see
Fig. 1). The checklist model learns to interpolate
among three components at each time step: (1)
an encoder-decoder language model that generates
goal-oriented text, (2) an attention model that tracks
remaining agenda items that need to be introduced,
and (3) an attention model that tracks the used, or
checked, agenda items. Together, these compo-
nents allow the model to learn representations that
best predict which words should be included in the
text and when references to agenda items should be
checked off the list (see check marks in Fig. 1).

We evaluate our approach on a new cooking
recipe generation task and the dialogue act genera-
tion from Wen et al. (2015). In both cases, the model
must correctly describe a list of agenda items: an in-
gredient list or a set of facts, respectively. Gener-
ating recipes additionally tests the ability to main-
tain coherence in long procedural texts. Experi-
ments in dialogue generation demonstrate that our
approach outperforms previous work with up to a 4
point BLEU improvement. Our model also scales to
cooking recipes, where both automated and manual
evaluations demonstrate that it maintains the strong
local coherence of baseline RNN techniques while
significantly improving the global coverage by ef-
fectively integrating the agenda items.

2 Task

Given a goal g and an agenda E = {e1, . . . , e|E|},
our task is to generate a goal-oriented text x by mak-
ing use of items on the agenda. For example, in the
cooking recipe domain, the goal is the recipe title
(“pico de gallo” in Fig. 1), and the agenda is the in-
gredient list (e.g., “lime,” “salt”). For dialogue sys-
tems, the goal is the dialogue type (e.g., inform or
query) and the agenda contains information to be
mentioned (e.g., a hotel name and address). For
example, if g =“inform” and E = {name(Hotel
Stratford), has internet(no)}, an output text might be
x =“Hotel Stratford does not have internet.”

3 Related Work

Attention models have been used for many NLP
tasks such as machine translation (Balasubramanian
et al., 2013; Bahdanau et al., 2014), abstractive sen-
tence summarization (Rush et al., 2015), machine
reading (Cheng et al., 2016), and image caption gen-
eration (Xu et al., 2015). Our model uses new types
of attention to record what has been said and to se-
lect new agenda items to be referenced.

Recently, other researchers have developed new
ways to use attention mechanisms for related gen-
eration challenges. Most closely related, Wen et al.
(2015) and Wen et al. (2016) present neural network
models for generating dialogue system responses
given a set of agenda items. They focus on gener-
ating short texts (1-2 sentences) in a relatively small
vocabulary setting and assume a fixed set of possi-
ble agenda items. Our model composes substantially
longer texts, such as recipes, with a more varied and
open ended set of possible agenda items. We also
compare performance for our model on their data.

Maintaining coherence and avoiding duplication
have been recurring challenges when generating text
using RNNs for other applications, including image
captioning (Jia et al., 2015; Xu et al., 2015) and ma-
chine translation (Tu et al., 2016b; Tu et al., 2016a).
A variety of solutions have been developed to ad-
dress infrequent or out-of-vocabulary words in par-
ticular (Gülçehre et al., 2016; Jia and Liang, 2016).
Instead of directly copying input words or determin-
istically selecting output, our model can learn how
to generate them (e.g., it might prefer to produce
the word “steaks” when the original recipe ingre-
dient was “ribeyes”). Finally, recent work in ma-
chine translation models has introduced new train-
ing objectives to encourage attention to all input
words (Luong et al., 2015), but these models do not
accumulate attention while decoding.

Generating recipes was an early task in planning
(Hammond, 1986) and generating referring expres-
sion research (Dale, 1988). These can be seen as
key steps in classic approaches to generating natu-
ral language text: a formal meaning representation
is provided as input and the model first does content
selection to determine the non-linguistic concepts to
be conveyed by the output text (i.e., what to say)
and then does realization to describe those concepts



Et

Generate
output

Et+1

 αt

σ

ht-1

g Et
xt

+
rt

st qt

zt
ht

ref-type(ht)

Pht Et

x

x

x

x
 αt

ft

ot

+

at-1

at

ft
new

Et+1
new

1-atE at

x

E

x

E

E
2

x

GRU language model

Attention mechanisms

Update checklist

hidden state
projected into
agenda space

hidden state
classifier

probability of
using new item

available
items

used
items

Update available and used agenda items

sum

σ sigmoid

linear projection

multiplication

softmax

linear interpolation

gate

select dimension ii

+

x

key

up
da

te
 c

he
ck

lis
t

la
ng

ua
ge

 m
od

el

ht

used

new

used

used

new

new available
items

agenda

agenda

Figure 2: A diagram of the neural checklist model. The bottom portion depicts how the model generates the output embedding ot.

The top portion shows how the checklist and available/used agenda item matrices are updated.

in natural language text (i.e., how to say it) (Thomp-
son, 1977; Reiter and Dale, 2000). More recently,
machine learning methods have focused on parts of
this approach (Barzilay and Lapata, 2005; Liang et
al., 2009) or the full two-stage approach (Angeli et
al., 2010; Konstas and Lapata, 2013). Most of these
models shorter texts, although Mori et al. (2014) did
consider longer cooking recipes. Our approach is a
joint model that instead operates with textual input
and tries to cover all of the content it is given.

4 Model

Fig. 2 shows a graphical representation of the neu-
ral checklist model. At a high level, our model uses
a recurrent neural network (RNN) language model
that encodes the goal as a bag-of-words and then
generates output text token by token. It additionally
stores a vector that acts as a soft checklist of what
agenda items have been used so far during genera-
tion. This checklist is updated every time an agenda
item reference is generated and is used to compute
the available agenda items at each time step. The
available items are used as an input to the language
model and to constrain which agenda items can still
be referenced during generation. Agenda embed-
dings are also used when generating item references.

4.1 Input variable definitions
We assume the goal g and agenda items E (see
Sec. 2) are each defined by a set of tokens. Goal

tokens come from a fixed vocabulary Vgoal, the item
tokens come from a fixed vocabulary Vagenda, and
the tokens of the text xt come from a fixed vocab-
ulary Vtext. In an abuse of notation, we represent
each goal g, agenda item ei, and text token xt as
a k-dimensional word embedding vector. We com-
pute these embeddings by creating indicator vec-
tors of the vocabulary token (or set of tokens for
goals and agenda items) and embed those vectors
using a trained k × |Vz| projection matrix, where
z ∈ {goal, agenda, text} depending whether we
are generating a goal, agenda item, or text token.

Given a goal embedding g ∈ Rk, a matrix of L
agenda items E ∈ RL×k, a checklist soft record of
what items have been used at−1 ∈ RL, a previous
hidden state ht−1 ∈ Rk, and the current input word
embedding xt ∈ Rk, our architecture computes the
next hidden state ht, an embedding used to generate
the output word ot, and the updated checklist at.

4.2 Generating output token probabilities
To generate the output token probability distribution
(see “Generate output” box in Fig. 2), wt ∈ R|Vtext|,
we project the output hidden state ot into the vocab-
ulary space and apply a softmax:

wt = softmax(Woot),

where Wo ∈ R|V |×k is a trained projection ma-
trix. The output hidden state is the linear interpola-
tion of (1) content cgrut from a Gated Recurrent Unit



(GRU) language model, (2) an encoding cnewt gen-
erated from the new agenda item reference model
(Sec. 4.3), and (3) and an encoding cusedt generated
from a previously used item model (Sec. 4.4):

ot = fgrut cgrut + fnewt cnewt + fusedt cusedt .

The interpolation weights, fgrut , fnewt , and fusedt ,
are probabilities representing how much the output
token should reflect the current state of the language
model or a chosen agenda item. fgrut is the proba-
bility of a non-agenda-item token, fnewt is the prob-
ability of an new item reference token, and fusedt

is the probability of a used item reference. In the
Fig. 1 example, fnewt is high in the first row when
new ingredient references “tomatoes” and “onion”
are generated; fusedt is high when the reference back
to “tomatoes” is made in the second row, and fgrut

is high the rest of the time.
To generate these weights, our model uses a three-

way probabilistic classifier, ref -type(ht), to deter-
mine whether the hidden state of the GRU ht will
generate non-agenda tokens, new agenda item refer-
ences, or used item references. ref -type(ht) gener-
ates a probability distribution ft ∈ R3 as

ft = ref -type(ht) = softmax(βSht),

where S ∈ R3×k is a trained projection matrix and
β is a temperature hyper-parameter. fgrut = f1t ,
fnewt = f2t , and fusedt = f3t . ref -type() does not
use the agenda, only the hidden state ht: ht must
encode when to use the agenda, and ref -type() is
trained to identify that in ht.

4.3 New agenda item reference model

The two key features of our model are that it (1) pre-
dicts which agenda item is being referred to, if any,
at each time step and (2) stores those predictions for
use during generation. These components allow for
improved output texts that are more likely to men-
tion agenda items while avoiding repetition and ref-
erences to irrelevant items not in the agenda.

These features are enabled by a checklist vector
at ∈ RL that represents the probability each agenda
item has been introduced into the text. The checklist
vector is initialized to all zeros at t = 1, representing

that all items have yet to be introduced. The check-
list vector is a soft record with each at,i ∈ [0, 1].1

We introduce the remaining items as a matrix
Enew

t ∈ RL×k, where each row is an agenda item
embedding weighted by how likely it is to still need
to be referenced. For example, in Fig. 1, after the
first “tomatoes” is generated, the row representing
“chopped tomatoes” in the agenda will be weighted
close to 0. We calculate Enew

t using the checklist
vector (see “Update [...] items” box in Fig. 2):

Enew
t = ((1L − at−1)⊗ 1k) ◦ E,

where 1L = {1}L, 1k = {1}k, and the outer prod-
uct ⊗ replicates 1L − at−1 for each dimension of
the embedding space. ◦ is the Hadamard product
(i.e., element-wise multiplication) of two matrices
with the same dimensions.

The model predicts when an agenda item will be
generated using ref -type() (see Sec. 4.2 for de-
tails). When it does, the encoding cnewt approxi-
mates which agenda item is most likely. cnewt is
computed using an attention model that generates a
learned soft alignment αnew

t ∈ RL between the hid-
den state ht and the rows of Enew

t (i.e., available
items). The alignment is a probability distribution
representing how close ht is to each item:

αnew
t ∝ exp(γEnew

t Pht),

where P ∈ Rk×k is a learned projection matrix
and γ is a temperature hyper-parameter. In Fig. 1,
the shaded squares in the top line (i.e., the first
“tomatoes” and the onion references) represent this
alignment. The attention encoding cnewt is then the
attention-weighted sum of the agenda items:

cnewt = ETαnew
t .

At each step, the model updates the checklist vector
based on the probability of generating a new agenda
item reference, fnewt , and the attention alignment
αnew

t . We calculate the update to checklist, anewt ,
as anewt = fnewt · αnew

t . Then, the new checklist at
is at = at−1 + anewt .

1By definition, at is non-negative. We truncate any values
greater than 1 using a hard tanh function.



4.4 Previously used item reference model
We also allow references to be generated for previ-
ously used agenda items through the previously used
item encoding cusedt . This is useful in longer texts
– when agenda items can be referred to more than
once – so that the agenda is always responsible for
generating its own referring expressions. The exam-
ple in Fig. 1 refers back to tomatoes when generating
to what to add the diced onion.

At each time step t, we use a second atten-
tion model to compare ht to a used items matrix
Eused

t ∈ RL×k. Like the remaining agenda item
matrix Enew

t , Eused
t is calculated using the checklist

vector generated at the previous time step:

Eused
t = (at−1 ⊗ 1k) ◦ E.

The attention over the used items, αused
t ∈ RL, and

the used attention encoding cusedt are calculated in
the same way as those over the available items (see
Sec. 4.3 for comparison):

αused
t ∝ exp(γEused

t Pht),

cusedt = ETαused
t .

4.5 GRU language model
Our decoder RNN adapts a Gated Recurrent Unit
(GRU) (Cho et al., 2014). Given an input xt ∈ Rk at
time step t and the previous hidden state ht−1 ∈ Rk,
a GRU computes the next hidden state ht as

ht = (1− zt)ht−1 + zth̃t.

The update gate, zt, interpolates between ht−1 and
new content, h̃t, defined respectively as

zt = σ(Wzxt + Uzht−1),

h̃t = tanh(Wxt + rt � Uht−1).

� is an element-wise multiplication, and the reset
gate, rt, is calculated as

rt = σ(Wrxt + Urht−1).

Wz , Uz , W , U , Wr, Ur ∈ Rk×k are trained projec-
tion matrices.

We adapted a GRU to allow extra inputs, namely
the goal g and the available agenda items Enew

t (see
“GRU language model” box in Fig. 2). These extra

inputs help guide the language model stay on topic.
Our adapted GRU has a change to the computation
of the new content h̃t as follows:

h̃t = tanh(Whxt + rt � Uhht−1

+ st � Y g + qt � (1TLZE
new
t )T ,

where st is a goal select gate and qt is a item select
gate, respectively defined as

st = σ(Wsxt + Usht−1),

qt = σ(Wqxt + Uqht−1).

1L sums the rows of the available item matrixEnew
t .

Y , Z, Ws, Us, Wq, Uq ∈ Rk×k are trained projec-
tion matrices. The goal select gate controls when
the goal should be taken into account during genera-
tion: for example, the recipe title may be used to de-
cide what the imperative verb for a new step should
be. The item select gate controls when the avail-
able agenda items should be taken into account (e.g.,
when generating a list of ingredients to combine).
The GRU hidden state is initialized with a projec-
tion of the goal: h0 = Ugg, where Ug ∈ Rk×k.

The content vector cgrut that is used to compute
the output hidden state ot is a linear projection of the
GRU hidden state, cgrut = Pht, where P is the same
learned projection matrix used in the computation of
the attention weights (see Sections 4.3 and 4.4).

4.6 Training
Given a training set of (goal, agenda, output text)
triples {(g(1), E(1),x(1)), . . . , (g(J), E(J),x(J))},
we train model parameters by minimizing negative
log-likelihood: NLL(θ) =

−
J∑

j=1

Nj∑
i=2

log p(x
(j)
i |x

(j)
1 , . . . ,x

(j)
i−1,g

(j), E(j); θ),

where x
(j)
1 is the start symbol. We use mini-batch

stochastic gradient descent, and back-propagate
through the goal, agenda, and text embeddings.

It is sometimes the case that weak heuristic su-
pervision on latent variables can be easily gathered
to improve training. For example, for recipe gen-
eration, we can approximate the linear interpolation
weights ft and the attention updates anewt and ausedt

using string match heuristics comparing tokens in



the text to tokens in the ingredient list.2 When this
extra signal is available, we add mean squared loss
terms toNLL(θ) to encourage the latent variables to
take those values; for example, if f∗t is the true value
and ft is the predicted value, a loss term −(f∗t − ft)

2

is added. When this signal is not available, as is the
case with our dialogue generation task, we instead
introduce a mean squared loss term that encourages
the final checklist a(j)Nj

to be a vector of 1s (i.e., every
agenda item is accounted for).

4.7 Generation

We generate text using beam search, which has been
shown to be fast and accurate for RNN decoding
(Graves, 2012; Sutskever et al., 2014). When the
beam search completes, we select the highest prob-
ability sequence that uses the most agenda items.
This is the count of how many times the three-way
classifier, ref -type(ht), chose to generate an new
item reference with high probability (i.e., > 50%).

5 Experimental setup

Our model was implemented and trained using the
Torch scientific computing framework for Lua.3

Experiments We evaluated neural checklist mod-
els on two natural language generation tasks. The
first task is cooking recipe generation. Given a
recipe title (i.e., the name of the dish) as the goal and
the list of ingredients as the agenda, the system must
generate the correct recipe text. Our second evalua-
tion is based on the task from Wen et al. (2015) for
generating dialogue responses for hotel and restau-
rant information systems. The task is to generate a
natural language response given a query type (e.g.,
informing or querying) and a list of facts to convey
(e.g., a hotel’s name and address).

Parameters We constrain the gradient norm
to 5.0 and initialize parameters uniformly on
[−0.35, 0.35]. We used a beam of size 10 for gen-
eration. Based on dev set performance, a learning
rate of 0.1 was chosen, and the temperature hyper-
parameters (β, γ) were (5, 2) for the recipe task and
(1, 10) for the dialogue task. The models for the
recipe task had a hidden state size of k = 256; the

2Similar to anew
t , aused

t = fusedt ·αused
t .

3http://torch.ch/

models for the dialogue task had k = 80 to compare
to previous models. We use a batch size 30 for the
recipe task and 10 for the dialogue task.

Recipe data and pre-processing We use the Now
You’re Cooking! recipe library: the data set contains
over 150,000 recipes in the Meal-MasterTM for-
mat.4 We heuristically removed sentences that were
not recipe steps (e.g., author notes, nutritional in-
formation, publication information). 82,590 recipes
were used for training, and 1,000 each for develop-
ment and testing. We filtered out recipes to avoid
exact duplicates between training and dev (test) sets.

We collapsed multi-word ingredient names into
single tokens using word2phrase5 ran on the train-
ing data ingredient lists. Titles and ingredients were
cleaned of non-word tokens. Ingredients addition-
ally were stripped of amounts (e.g., “1 tsp”). As
mentioned in Sec. 4.6, we approximate true values
for the interpolation weights and attention updates
for recipes based on string match between the recipe
text and the ingredient list. The first ingredient ref-
erence in a sentence cannot be the first token or after
a comma (e.g., the bold tokens cannot be ingredients
in “oil the pan” and “in a large bowl, mix [...]”).

Recipe data statistics Automatic recipe genera-
tion is difficult due to the length of recipes, the size
of the vocabulary, and the variety of possible dishes.
In our training data, the average recipe length is 102
tokens, and the longest recipe has 814 tokens. The
vocabulary of the recipe text from the training data
(i.e., the text of the recipe not including the title or
ingredient list) has 14,103 unique tokens. About
31% of tokens in the recipe vocabulary occur at least
100 times in the training data; 8.6% of the tokens oc-
cur at least 1000 times. The training data also repre-
sents a wide variety of recipe types, defined by the
recipe titles. Of 3793 title tokens, only 18.9% of the
title tokens in the title vocabulary occur at least 100
times in the training data, which demonstrates the
large variability in the titles.

Dialogue system data and processing We used
the hotel and restaurant dialogue system corpus and
the same train-development-test split from Wen et
al. (2015). We used the same pre-processing, sets

4Recipes and format at http://www.ffts.com/recipes.htm
5See https://code.google.com/p/word2vec/



of reference samples, and baseline output, and we
were given model output to compare against.6 For
training, slot values (e.g., “Red Door Cafe”) were re-
placed by generic tokens (e.g., “NAME TOKEN”).
After generation, generic tokens were swapped back
to specific slot values. Minor post-processing in-
cluded removing duplicate determiners from the re-
lexicalization and merging plural “-s” tokens onto
their respective words. After replacing specific slot
values with generic tokens, the training data vocab-
ulary size of the hotel corpus is 445 tokens, and that
of the restaurant corpus is 365 tokens. The task has
eight goals (e.g., inform, confirm).

Models Our main baseline EncDec is a model us-
ing the RNN Encoder-Decoder framework proposed
by Cho et al. (2014) and Sutskever et al. (2014). The
model encodes the goal and then each agenda item
in sequence and then decodes the text using GRUs.
The encoder has two sets of parameters: one for the
goal and the other for the agenda items. For the di-
alogue task, we also compare against the SC-LSTM
system from Wen et al. (2015) and the handcrafted
rule-based generator described in that paper.

For the recipe task, we also compare against three
other baselines. The first is a basic attention model,
Attention, that generates an attention encoding by
comparing the hidden state ht to the agenda. That
encoding is added to the hidden state, and a non-
linear transformation is applied to the result before
projecting into the output space. We also present a
nearest neighbor baseline (NN) that simply copies
over an existing recipe text based on the input simi-
larity computed using cosine similarity over the title
and the ingredient list. Finally, we present a hybrid
approach (NN-Swap) that revises a nearest neighbor
recipe using the neural checklist model. The neural
checklist model is forced to generate the returned
recipe nearly verbatim, except that it can generate
new strings to replace any extraneous ingredients.

Our neural checklist model is labeled Checklist.
We also present the Checklist+ model, which in-
teractively re-writes a recipe to better cover the in-
put agenda: if the generated text does not use every
agenda item, embeddings corresponding to missing
items are multiplied by increasing weights and a new
recipe is generated. This process repeats until the

6We thank the authors for sharing their system outputs.

Model BLEU-4 METEOR Avg. %
given
items

Avg.
extra
items

Attention 2.8 8.6 22.8% 3.0
EncDec 3.1 9.4 26.9% 2.0
NN 7.1 12.1 40.0% 4.2
NN-Swap 7.1 12.8 58.2% 2.1
Checklist 3.0 10.3 67.9% 0.6

- ot = ht 2.1 8.3 29.1% 2.4
- no used 3.0 10.4 62.2% 1.9
- no supervision 3.7 10.1 38.9% 1.8

Checklist+ 3.8 11.5 83.4% 0.8

Table 1: Quantitative results on the recipe task. The line with

ot = ht has the results for the non-interpolation ablation.

new recipe does not contain new items.
We also report the performance of our check-

list model without the additional weak supervision
of heuristic ingredient references (- no supervision)
(see Sec. 4.6).7 we also evaluate two ablations of
our checklist model on the recipe task. First, we re-
move the linear interpolation and instead use ht as
the output (see Sec. 4.2). Second, we remove the
previously used item reference model by changing
ref -type() to a 2-way classifier between new ingre-
dient references and all other tokens (see Sec. 4.4).

Metrics We include commonly used metrics like
BLEU-4,8 and METEOR (Denkowski and Lavie,
2014). Because neither of these metrics can measure
how well the generated recipe follows the input goal
and the agenda, we also define two additional met-
rics. The first measures the percentage of the agenda
items corrected used, while the second measures the
number of extraneous items incorrectly introduced.
Both these metrics are computed based on simple
string match and can miss certain referring expres-
sions (e.g., “meat” to refer to “pork”). Because of
the approximate nature of these automated metrics,
we also report a human evaluation.

6 Recipe generation results

Fig. 1 results for recipe generation. All BLEU and
METEOR scores are low, which is expected for long
texts. Our checklist model performs better than both
neural network baselines (Attention and EncDec) in
all metrics. Nearest neighbor baselines (NN and
NN-Swap) perform the best in terms of BLEU and

7For this model, parameters were initialized on [-0.2, 0.2] to
maximize development accuracy.

8See Moses system (http://www.statmt.org/moses/)



Model Syntax Ingredient use Follows goal
Attention 4.47 3.02 3.47
EncDec 4.58 3.29 3.61
NN 4.22 3.02 3.36
NN-Swap 4.11 3.51 3.78
Checklist 4.58 3.80 3.94
Checklist+ 4.39 3.95 4.10
Truth 4.39 4.03 4.34

Table 2: Human evaluation results on the generated and true

recipes. Scores range in [1, 5].
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METEOR; this is due to a number of recipes that
have very similar text but make different dishes.

However, NN baselines are not successful in gen-
erating a goal-oriented text that follows the given
agenda: compared to Checklist+ (83.4%), they use
substantially less % of the given ingredients (40% -
58.2%) while also introducing extra ingredients not
provided. EncDec and Attention baselines similarly
generate recipes that are not relevant to the given in-
put, using only 22.8% - 26.9% of the agenda items.
Checklist models rarely introduce extraneous ingre-
dients not provided (0.6 - 0.8), while other baselines
make a few mistakes on average (2.0 - 4.2).

The ablation study demonstrates the empirical
contribution of different model components. (ot =
ht) shows the usefulness of the attention encodings
when generating the agenda references, while (-no
used) shows the need for separate attention mech-
anisms between new and used ingredient references
for more accurate use of the agenda items. Similarly,
(-no supervision) demonstrates that the weak super-
vision encourages the model to learn more accurate
management of the agenda items.

Human evaluation Because neither BLEU nor
METEOR is suitable for evaluating generated text
in terms of their adherence to the provided goal and
the agenda, we also report human evaluation using
Amazon Mechanical Turk. We evaluate the gener-
ated recipes on (1) grammaticality, (2) how well the

recipe adheres to the provided ingredient list, and (3)
how well the generated recipe accomplishes the de-
sired dish. We selected 100 random test recipes. For
each question we used a Likert scale (∈ [1, 5]) and
report averaged ratings among five turkers.

Table 2 shows the averaged scores over the re-
sponses. The checklist models outperform all base-
lines in generating recipes that follow the provided
agenda closely and accomplish the desired goal,
where NN in particular often generates the wrong
dish. Perhaps surprisingly, both the Attention and
EncDec baselines and the Checklist model beat the
true recipes in terms of having better grammar. This
can partly be attributed to noise in the parsing of the
true recipes, and partly because the neural models
tend to generate shorter, simpler texts.

Fig. 3 shows the counts of the most used vocab-
ulary tokens in the true dev set recipes compared
to the recipes generated by EncDec and Checklist+.
Using the vocabulary from the training data, the true
dev recipes use 5206 different tokens. The EncDec’s
vocabulary is only ∼16% of that size, while the
Checklist+ model is a third of the size.

An error analysis on the dev set shows that the
EncDec baseline over-generates catch-all phrases
like “all ingredients” or “the ingredients,” used in
21% of the generated recipes, whereas only 7.8% of
true recipes use that construction. This phrase type
simplifies the recipe, but using all ingredients in one
step reduces the chance of accomplishing the desired
dish correctly. The Checklist model only generates
those phrases 13% of the time.

Qualitative analysis Fig. 4 shows two dev set
recipes with generations from the EncDec and
Checklist+ models. The EncDec model is much
more likely to both use incorrect ingredients and to
introduce ingredients more than once (e.g., “baking
power” and “salt” in the bottom example are not in
the ingredient list, and “milk” in the top example
is duplicated). In the top example, the Checklist+
model refers to both Parmesean and Swiss cheese
as “cheese”; generating more precise referring ex-
pressions is an important area for future work. The
Checklist+ recipes generate the correct dishes to an
extent: for example, the top recipe makes a casse-
role but does not cook the ingredients together be-
fore baking and mixes in biscuits instead of putting



Title: Casino royale casserole
Ingredients: 10 oz chopped broccoli, 2 tbsp butter, 2 tbsp flour, 1/2 tsp salt, 1/4 tsp black pepper, 1/4 tsp ground nutmeg, 1 cup milk,
1 1/2 cup shredded swiss cheese, 2 tsp lemon juice, 2 cup cooked cubed turkey, 4 oz mushrooms, 1/4 cup grated Parmesan cheese, 1
can refrigerated biscuits

Truth EncDec Checklist+

Preheat oven to 375. Melt butter in saucepan.
Blend in flour, salt, pepper, and nutmeg; cook
1-2 minutes. Gradually add milk; cook, stir-
ring, until slightly thickened. Stir in frozen
vegetables. Remove from heat; stir in cheese
until melted. Add lemon juice, turkey, mush-
rooms, and broccoli. Pour mixture into a
lightly greased 8”x8” baking dish; sprinkle
with parmesean and top with biscuits. Bake 20
minutes, or until biscuits are golden brown.

Cook broccoli according to package directions;
drain. In medium saucepan, melt butter. Stir in
flour, salt and pepper. Gradually add milk, stir-
ring constantly. Cook over medium heat, stir-
ring constantly, until mixture comes to a boil.
Reduce heat to low. Cook, stirring constantly,
until mixture boils and thickens, about 5 min-
utes. Stir in milk. Gradually heat to boiling;
reduce heat. Cover; simmer 10 minutes or until
heated through. Serve immediately.

Mix the turkey with the flour, salt,
pepper, milk and lemon juice. Stir
in the cheese. Add broccoli, mush-
rooms, nutmeg, and cheese. Mix well.
Add the butter and mix well. Add the
biscuits and mix well. Spread in a
greased 13x9 inch baking pan. Bake
in a 350f oven for 35 to 40 minutes, or
until pick inserted in the center comes
out clean. Serve hot.

Title: Kathie Frieman’s cheese cake
Ingredients: 2 lb cream cheese, 1 3/4 cups sugar, 5 eggs, 15 oreo cookies, 1/2 tsp vanilla, 1/2 tsp almond extract

Truth EncDec Checklist+

Butter pan well. Whip cheese until soft and add
sugar, combine until fluffy. Add extracts and eggs.
Chop oreos into pieces and fold into mixture. Pour
into pan and place in a pan of 1 or more inches
of water. Bake at 350 1 1/2 hours ( check after 1
1/4 hours ) until center is set. Cool in pan of wa-
ter. When cool turn upside-down on plate. Sprinkle
with cookie crumbs.

Beat cream cheese and sugar together until
light and fluffy. Add eggs, one at a time, beat-
ing well after each addition. Blend in vanilla.
Sift flour, measure, and sift with baking power
and salt. Add to creamed mixture alternately
with milk. Fold in stiffly beaten egg whites.
Pour into 9x13 pan. Bake at 350 degrees for 25
to 30 minutes.

Cream sugar and cream cheese
until smooth. Add eggs, one at a
time, beating well after each ad-
dition. Add vanilla, almond ex-
tract, and cookies. Mix well. Pour
into greased and floured tube pan.
Bake at 350 degrees for 30 min-
utes.

Figure 4: Example dev set generated recipes. Tokenization, newlines, and capitalization changed for space and readability. Bolded

ingredient references are either ingredients not in the list and/or duplicated initial ingredient references.

Model Hotel Restaurant
BLEU METEOR BLEU METEOR

HDC 55.52 48.10 44.39 43.42
SC-LSTM 86.53 60.84 74.49 54.31
Checklist 90.61 62.10 77.82 54.42

Table 3: Quantitative evaluation of the top generations in the
hotel and restaurant domains

them on top. Future work could better model the full
set of steps needed to achieve the overall goal.

7 Dialogue system results

Figure 3 shows our results on the hotel and restau-
rant dialogue system generation tasks. HDC is the
rule-based baseline from Wen et al. (2015). For both
domains, the checklist model achieved the highest
BLEU-4 and METEOR scores, but both neural sys-
tems performed very well. The power of our model
is in generating long texts, but this experiment shows
that our model can generalize well to other tasks
with different kinds of agenda items and goals.

8 Future work and conclusions

We present the neural checklist model that gener-
ates globally coherent text by keeping track of what

has been said and still needs to be said from a pro-
vided agenda. Future work includes incorporating
referring expressions for sets or compositions of
agenda items (e.g., “vegetables”). The neural check-
list model is sensitive to hyperparameter initializa-
tion, which should be investigated in future work.
The neural checklist model can also be adapted to
handle multiple checklists, such as checklists over
composite entities created over the course of a recipe
(see Kiddon (2016) for an initial proposal).
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