
ITS4: A Static Vulnerability Scanner for C and C++ Code

John Viega, J.T. Bloch, Yoshi Kohno, Gary McGraw
Reliable Software Technologies

Dulles, Virginia
{jviega, jtbloch, kohno, gem}@rstcorp.com

http://www.rstcorp.com

Abstract

We describeITS4 , a tool for statically scanning
security-critical C source code for vulnerabilities. Com-
pared to other approaches, our scanning technique stakes
out a new middle ground between accuracy and efficiency.
This method is efficient enough to offer real-time feedback
to developers during coding while producing few false neg-
atives. Unlike other techniques, our method is also simple
enough to scan C++ code despite the complexities inher-
ent in the language. UsingITS4 we found new remotely-
exploitable vulnerabilities in a widely distributed software
package as well as in a major piece of e-commerce soft-
ware. TheITS4 source distribution is available athttp:
//www.rstcorp.com/its4 .

1. Introduction

The C and C++ programming languages and supporting
libraries make it extremely easy for programmers to inad-
vertently introduce security vulnerabilities into their code.
For example, the standard C library defines thegets rou-
tine which takes as a parameter a pointer to a characters .
gets reads text from the standard input, placing the first
character in the location specified bys, and subsequent
data consecutively in memory. Reading continues until a
newline or end of file character is reached, at which point
the buffer is terminated with a null character. The program-
mer has no way to specify the size of the buffer passed to
gets . As a result, when the buffer isn bytes an attacker
trying to writen + m bytes into the buffer will always suc-
ceed if the data excludes newlines.

This example illustrates two significant risks. First, vari-
ables adjacent to the buffer in memory may be overwritten.
If these variables store security-critical data such as an ac-
cess control list, then an attacker can modify the data. The
second risk is that an attacker could overflow the stack and
trick the program into running arbitrary code. Stack over-

flow attacks are perhaps the most common security flaw in
applications today. The technical details of these attacks are
widely discussed in the security community [6, 17].

In practice, discoveringgets in a program usually in-
dicates a security problem. Nevertheless, this function
still resides in the standard C library, along with other
problematic constructs. Some well-known “gotchas” in-
clude sprintf , strcpy and strcat . Wagner et. al.
discuss more subtle buffer overflow problems with com-
mon C functions, including the so-called “safe” alternatives
snprintf, strncpy andstrncat [17].

Buffer overflow vulnerabilities are not the only known
security problems in C and C++ programs. For example,
system and popen , two library calls for running pro-
grams through the command shell, are both notoriously
difficult to use correctly. Nonetheless, these functions are
commonly used in security-critical applications together
with the unsafe string operations listed above. For exam-
ple,sendmail version 8.9.3 boasts 285 individual calls to
strcpy alone. If these problems are so well known, why
are they still so prevalent?

There are several reasons:

1. Well known problems are not universally recognized.
Furthermore, even programmers who know about a
problem may not focus on the issue when employing a
questionable routine; many programmers consider se-
curity after writing all the code.

2. Programmers often know a particular call introduces
potential vulnerabilities without understanding the de-
tails about these problems.

3. Programmers are often unaware of what corrections
will eliminate a known problem.

4. Programmers may hope that hazardous constructs are
not exploitable or that no one will discover vulnerabil-
ities (the “security through obscurity” approach).

Unfortunately, there are few good sources of information
about writing secure software. Information alleviates prob-
lems through education, but does not completely solve them
unless the developer remains security conscious.

Subtle, lesser known risks still join the obvious problems
in creating security vulnerabilites. For example, synchro-
nization issues—race conditions—can often lead to security
vulnerabilities. The “time-of-check-time-of-use” (TOC-
TOU) category of file-based race conditions identified by
Bishop and Dilger [5] serves as an example. Many pro-
grams using temporary, publicly writable files are suscepti-
ble to racing by a malicious process. Problems arise when
a process checks information about a file (such as its exis-
tence), then later uses the file assuming the validity of the
recently checked information. For example, a setuid text
editor might open a temporary file “/tmp/foo ” after ver-
ifying that it does not already exist. If an attacker links
“ /etc/passwd ” to “ /tmp/foo ” between the check and
open operation, he can modify passwords.

Few programmers anticipate these attacks, and fewer
still know how to eliminate their causes. For example, sup-
posed experts often address TOCTOU vulnerabilities by
creating temporary files with obscure names constructed
from a random number generator such asrand . This so-
lution is poor since most random number generators yield
reproducible output based on a seed value. Choosing a se-
cure seed is itself a difficult software security problem.

We believe that in an ideal world, programmers should
need to know nothing about security; abstractions and tools
used in programming should diminish the chance that a pro-
grammer would ever write insecure code. This goal is unre-
alistic. For example, determining whether “untrusted” data
is able to affect “trusted” data in general is a complex prob-
lem; current solutions require the programmer to essentially
annotate variables with a security policy [14]. Automating
this task appears unrealistic.

The C and C++ languages are unlikely to become inher-
ently more secure anytime soon. To make up for this short-
coming, we believe that programming environments should
attempt to ease the burden of writing secure software for the
end programmer. For example, both editors and program
compilers could be made to examine code for potential se-
curity violations. This approach is already used to catch
syntactic errors in many interactive development environ-
ments

The main advantage for including security checks in ed-
itors over security checks in compilers is that the program-
mer receives more immediate feedback from an editor than
a compiler. Every flaw the editing environment catches
can potentially spare the programmer an additional compile
when building and testing a program.

We see similar parallels in the area of static software vul-
nerability detection. On one end of the spectrum, “quick-

and-dirty” approaches should be available to the program-
mer as early in the development cycle as possible (prefer-
ably as the programmer types), even if they forego a signif-
icant amount of precision. Our work falls in this space. On
the other end of the spectrum, compilers (or similar tools)
should be capable of performing a much higher-assurance
static security analysis at build time, even if such an analy-
sis is time consuming.

2. The problem with grep

ITS4 was developed to address the need for a practical,
widely applicable tool to help people identify potentially
unsafe constructs in C and C++ code. While we certainly
would find such a tool useful in the course of developing
our own security-critical software, the primary motivation
was to save ourselves time when performing security audits
of C and C++ source.

BeforeITS4 , we would usegrep at the command line
as one part of a source code audit (as we believe many peo-
ple do). The primary goal was to identify locations at which
a program might fall prey to one of the many common se-
curity problems. We almost exclusively looked for call sites
to standard library functions with known issues. While this
technique was indeed useful in finding actual vulnerabili-
ties, it was lacking in several respects:

1. Too much expert knowledge is required.There are
hundreds of vulnerable system calls, but many rarely
appear in the wild. It is often impossible for a security
auditor to remember to check every potential problem
by hand.

A good tool lowers the requirement for possessing ex-
pert knowledge by keeping a database of vulnerabili-
ties. This database would include a description of pos-
sible problems, hints on how to tell if there really is a
problem, and suggested fixes.

2. Using grep is too inflexible. It would be useful for
the code auditor to be able to sort data intelligently.
For example, an auditor may wish to look at vulnera-
bilities in order, on a per-file basis, instead of looking
at all strcpy s followed by allsprintf s, etc. Also,
an auditor might want to look at all buffer overflow
problems at once, followed by all TOCTOU problems.
Unfortunately,grep alone does not provide this sort
of functionality; a special-purpose tool is necessary.

More importantly, to help refine results, it would be
useful to perform other forms of analysis in addition to
thegrep . For example, a heuristic for detecting race
conditions [5] may help keep the auditor from having
to check dozens of calls. Grep does not provide a good
framework for such analysis, since it contains no data

structures representing the program (e.g., there are no
parse trees or token streams).

3. There tend to be too many false positives.Since
grep is only performing simple string matching, its
false positive rate can be quite high. When a user has
to sift through high proportions of false positives, it
is common for the user not to examine individual in-
stances closely or at all.1 We call this the “get done,
go home” phenomenon. We postulate that this phe-
nomenon contributes to the fact that significant vulner-
abilities are often missed during manual security au-
dits [17].

3. Why not more precise analysis?

3.1. Parsing strategy

ITS4 breaks a non-preprocessed file into a series of lex-
ical tokens, and then matches patterns in that stream of to-
kens. Matching code is added by hand, so non-regular pat-
terns can be recognized. When performing more sophis-
ticated static analysis, it is generally easier to use a fairly
complete, easy to navigate representation of a program,
such as a parse tree generated with a context-free parser.

3.1.1. False negatives

One reason we chose not to use a “real parser” was because
we wanted to have a false negative rate as close to 0 as pos-
sible. Analysis tools using traditional parsing (such as the
lint family of tools) can only analyze a single build of
a program at once, since there is currently no known tech-
nique for parsing C and C++ programs with preprocessor
directives into a single abstract syntax tree.

As developers ourselves, we want to check every possi-
ble build of our program. As people who audit the code of
others, we also want to examine the entire program easily
without having to specify multiple build configurations and
keep track of uncovered code.

Under the assumption that people seldom analyze more
than a single build, we examined several large pieces of
open-source software to see how much source code such
an analysis would miss. We wrote a simplistic preprocessor
that counts how many lines of original source (not count-
ing system headers) will be included into an executable (we
call these active lines), and how many will not be (we call
these passive lines). This tool is not sophisticated enough to
handle complex conditional expressions, so in those cases,
we evaluate the conditional expressions by hand and sub-
stituted a constant expression. We ran this tool on several

1In fact, if a user doesn’t find a vulnerability fairly quickly, we often
find people claiming that the code is secure without finishing their audit!

Package Counted lines Percent passive
wu-ftpd-2.4 6613 8.65%
net-tools-1.33 8493 9.73%
sshd-1.2.26 21336 15.45%
sendmail-8.9.3 37124 17.95%
apache-1.3.9 60543 27.54%

Table 1. Code not compiled into an average
configuration

large open-source projects, using default configurations for
a Pentium-90 running Redhat 5.0. The tool counts lines of
source and blank lines, but omits comments. We did not
count lines in packaged third-party software. All prepro-
cessor directives are ignored in our statistics. The results
are shown in Table 1.

Even 8.65% of a program is quite a large portion to om-
mit during an analysis; in the testing world, 91.35% state-
ment coverage is not considered adequate.

Although we elide per-module data for the sake of
brevity, we should note that the percentage of passive lines
in individual modules can vary greatly. This means that
static analysis tools can fail to analyze mission-critical mod-
ules accurately. For example, thenet-tools package in-
cludes code to support IPv6. However, ifHAVEAFINET6
is undefined, none of the functionality in the IPv6 portions
of net-tools will be examined by a static analysis tool.

Of course, multiple builds can be made, but the analyst
has to figure out which builds to make, compile each, and
run the entire analysis algorithm repeatedly.

3.1.2. Interactivity

Another reason for not using “real” context-free parsing is
that we wanted to be able to support interactive program-
ming environments such as Emacs and Microsoft Visual
C++ in real time. We would like to see potential security
problems highlighted by programming environments in the
same way that incorrectly spelled words are highlighted by
Microsoft Office applications. In other words, as the pro-
grammer enters code, the programming environment should
recognize the likelihood that a particular piece of code con-
tains a security problem, and act appropriately.

Unfortunately, traditional parsing techniques are not
suitable for meeting this goal because they only work re-
liably on semantically valid programs. Furthermore, highly
accurate error handling in traditional parsers is notoriously
difficult [1]. Traditional parsing considers an entire file as a
unit, and thus may be inefficient in practice if an individual
file must be parsed after every few keystrokes.

Heuristics based on regular languages are known to work
fairly well in similar situations, even if they are not fully

precise. For example, Emacs uses regular-expression-based
matching on code in order to perform syntax highlighting,
though its inferences about the syntax of an individual token
are occasionally wrong. Similarly, the Microsoft Office in-
cremental spelling and grammar checker can fail to parse an
English sentence properly. Emacs and Microsoft Office are,
however, right far more often than they are wrong. Conse-
quently, despite their shortcomings, tools such as these can
be extremely useful in practice.

3.2. Current limitations of advanced static analysis
for C and C++

We believe that static analysis of a quality beyond that
available inITS4 can have a tremendous impact on C and
C++ software security. We identify several problems, how-
ever, which make a practical tool involving such technology
difficult.

1. C’s liberal nature makes the language poorly suited
for static analysis. The general laxness of the C lan-
guage (e.g., arbitrary pointer arithmetic andgoto s)
makes many types of static analysis intractable in the
worst case [11]. In the average case, C’s heavy re-
liance upon pointers makes any sophisticated analysis
very difficult.

2. The added complexities of C++ make it very dif-
ficult to analyze. Though recent research on static
analysis has made some headway into performing use-
ful analyses on object-oriented languages in general,
C++ suffers because it is both object-oriented and de-
rived from C. Currently, object-oriented analysis tech-
niques are cutting-edge research; performing an accu-
rate analysis in an environment with classes, dynamic
dispatch and templates is a large challenge.

3. Static analysis in a multi-threaded environment is
difficult. Multi-threaded applications are quite popu-
lar on Windows platforms and are becoming ever-more
popular on Unix-based systems. Unfortunately, the po-
tential for interaction of data between threads must be
considered by any analysis tool that wishes to be cor-
rect.

4. Better static analysis is less efficient. ITS4 , which
performs a very simple analysis (described in Section
4), analyzes about 9000 lines of code per second on a
Pentium-90. Forsendmail-8.9.3 , it took an aver-
age of 5.9 seconds of CPU time to scan the entire pack-
age, and never more than 7.5 seconds of wall-clock
time (more detailed performance information is given
in Section 4.6).

Wagner et. al. [17] present a static analysis technique
that uses constraint solving to try to determine which

buffers could potentially overflow, and by how much.
That technique ignores control flow information as
well as context. Their prototype tool can process
sendmail in about 15 minutes on a Pentium III. It is
believed that a version of the software could be made
to run in significantly less time if the code were better
tuned for performance [16]. We anticipate that an anal-
ysis similar to [17] that handled flow and context prop-
erly would be at least an order of magnitude slower.

These problems played a significant role in our decision
to avoid complicated forms of analysis inITS4 . The con-
clusion we drew from our experience with static analysis is
that it would take several years of solid effort to produce
a robust, precise, portable, and, most importantly, practical
tool that does an excellent job of statically analyzing source
for security vulnerabilities.

4. I
¯
t’s T

¯
he S

¯
oftware, S

¯
tupid! (S

¯
ecurity

S
¯
canner)

This section discusses version 1.0.2 ofITS4 . The cur-
rent version of the tool supports a command-line interface
to the scanning engine and integration with Gnu Emacs.

4.1. Initial scanning and assessment

ITS4 takes one or more C or C++ source files as input,
breaking each into a stream of tokens. After scanning a
file ITS4 examines the resultant token stream, comparing
identifiers against a database of “suspects.” This database is
discussed in Section 4.2.

Checking each identifier is a heuristic that is not com-
pletely accurate: security-neutral identifiers may be flagged.
The most obvious example is variable names. Consider the
following C code:

int main()
{

int strcpy;
return 0;

}

Obviously, we would like to avoid a false positive in
the case of the declaration ofstrcpy . However, without
“real” parsing we cannot accurately determine all identifiers
that are lexically used as variables. The largest problem is
that the preprocessor can arbitrarily modify our identifiers.
In the program above, both theint specifier and the vari-
able strcpy could be replaced with arbitrary code. We
could make a “closed-world” assumption that our scanner
gets to examine all code used to build an application. How-
ever, to handle the general case correctly, we would have to
implement a full preprocessor, as the programmer might do

arbitrarily complex things. The problem is made worse in
that the preprocessor can have arbitrarily complex expres-
sions in conditionals where the resulting value of each con-
ditional can change from build to build by passing in flags
at the compile line.

Our current solution to this problem is to restrict checks
to those identifiers followed by a left parenthesis, as pro-
grammers don’t generally pervert the preprocessor in this
way— a simpler analysis almost always suffices for prac-
tical applications. E.g., programmers don’t generally use
strcpy as a variable name. There is an option to flag all
suspect identifiers if the auditor is worried about potential
false negatives.

4.2. The vulnerability database

ITS4 reads a vulnerability database from a text file at
startup, keeping the entire contents resident in memory for
the lifetime of the tool. Vulnerabilities can be added to the
database, removed, and changed with ease.

The ITS4 vulnerability database currently contains 131
calls culled from many sources [4, 5, 8] including the Bug-
traq archives [12] and our own personal experience. The
largest single class of problems in our database are race
conditions involving file accesses. Functions susceptible to
buffer overflows also account for many entries. Several dif-
ferent pseudo-random number routines are flagged because
they are often used, albeit incorrectly, to provide entropy
in security-critical applications. For example, developers
may use these functions to shuffle cards or generate crypto-
graphic keys in situations where security is important [3, 9].

For each call, we store the following information:

• A brief description of the problem.

• A high-level description of how to code around the
problem.

• A relative assessment of the severity of the problem, on
the following scale:NORISK, LOWRISK, MODER-
ATE RISK, RISKY, VERYRISKY, MOSTRISKY.

• An indication of what type of analysis to perform
whenever the function is found in the token stream.

• Whether or not the function can retrieve input from
an external source such as a file or socket.ITS4 has
a mode that finds all points at which input can come
in to the program, because we often found ourselves
wanting that sort of functionality in our manual audits.

Unfortunately, the database currently has several limita-
tions:

1. Measures of severity should be refined based on feed-
back from the security community.

2. The descriptions and recommendations should be ex-
panded.

3. Several additional fields would be desirable, such as a
detailed code example on how to mitigate the problem.

4. The database currently contains primarily Unix vulner-
abilities; Windows vulnerabilities should be added.

We hope each of these issues can be addressed in the near
future with the help of the community.

The location of the vulnerability database can be spec-
ified at the command line. As a result, it is very easy to
use databases that have been modified, such as a trimmed
database that contains only buffer overflow information.
The programmer can also specify functions for whichITS4
should check at the command line, even if they are not in the
database.

4.3. ITS4 commands

ITS4 can ignore individual occurrences of a particular
function. While such a feature can be detrimental (as mis-
use can cause the tool to ignore actual vulnerabilities), it
is useful for pruning the output as individual vulnerabilities
are manually audited and eliminated.

For example, a developer may add astrcpy to a work-
in-progress. After runningITS4 , they learn about the po-
tential problem and fix it by adding an explicit bounds check
before the call.ITS4 cannot currently perform a sophis-
ticated enough analysis to determine that such a check is
present. As a result, it will always flag this instance ofstr-
cpy . It would be desirable for there to be a way to suppress
this error.

ITS4 commands can ameliorate this problem in two
ways. First, the developer can insert in-place comments
with embedded commands to the scanner. For example,

strcpy(buf, dst); // ITS4: ignore

will be ignored. The comment usually occurs on the same
line as the code it effects. However, if there is no code on
the same line, it affects the subsequent line.

The case-insensitive text “ITS4:” must appear in the
comment, followed by an optional list of function calls. The
list may be comma separated. Nothing else besides whites-
paces may appear in the comment. If no calls are specified,
ITS4 will ignore any call on the affected line.

When modifying the source code is not an option, the
user can keep a list ofITS4 commands in a file, along with
the file name and line number to which the command ap-
plies. The user specifies the location of this file on the com-
mand line.

To allow auditing of code that already has embedded
ITS4 commands, the tool provides a command line option
to ignore all commands.

ITS4 provides other ways to reduce the amount of out-
put and to present the output in a more useful way. For ex-
ample, there are several different sorting methods available,
and vulnerabilities can be filtered based on severity.

4.4. Analysis techniques

When ITS4 first flags a function name, it looks up a
“handler” for that function in the vulnerability database.
The handler is responsible for reporting the problem flagged
by the scanner. If no handler is found in the database, the
default handler is used, which merely adds the problem to
the results database. Handlers can also be used to perform
more sophisticated analyses on a program.

ITS4 performs several tricks in an attempt to reduce the
number of false positives produced by the tool. However,
the notion of “false positive” is slightly fuzzy in this dis-
cussion because our tool will never throw away information
about a vulnerability. In practice, we expect that users will
often consider only a percentage of the output, and then only
the output ranked as most severe. Consider the following C
code:

strcpy(buf, "\n");

ITS4 will reduce the severity of the above use of strcpy
from VERYRISKY to the lowest available. Since the scan-
ner only outputs vulnerabilities ofMODERATERISK or
above by default, the end user will never see the warning
generated by the tool unless she specifically asks to see all
warnings.

In our experience with the tool, we have found that even
the most patient programmers will give up fairly quickly
when the severity of all problems isRISKY or below. We
believe theRISKY designation is approximately where the
false positive rate starts to approach 100% rapidly.2 There-
fore, even in our own security audits, we may only look at
such items if time permits, depending on the situation. This
problem is discussed further in Section 6.

Currently, there are two types of analysis thatITS4 can
perform to refine the initial assessment it produces. The
first is checking parameters of string constants in argument
parameters in unsafe string operations. The second is per-
forming a heuristic check for race conditions, using a mod-
ification of an algorithm presented in [5].

Both analyses can be turned off at the command line.

4.4.1. Sanity checking arguments

As mentioned in Section 2,grep unfortunately reports
many hazards that are “obviously” unlikely to be problems

2Unfortunately, measuring accuracy rates is very difficult to do because
we would have to examine a large number of programs to get significant
numbers, and because the manual work involved to obtain such numbers is
enormous.

in practice. When performing code inspections withgrep
we would often note in frustration the things that could eas-
ily be ignored with some code that wrapped the command.
The most common examples we saw werestrcpy s that
only copied a fixed string into a buffer andsprintf s with
no string specifier (i.e., no%s) in the format string.ITS4
is able to identify these obvious cases through its handler
mechanism.

One handler that comes withITS4 is the “strcpy” han-
dler. This handler is currently used not only bystrcpy ,
but also bystrcat andstrncpy . In each of these func-
tions, the first argument is the target buffer and the second
is the source string. If the source string is a constant, then
we should reduce the severity of this vulnerability. For ex-
ample, the following call should not be flagged as severe
because the second argument is a fixed string:

strcpy(dst, "\n");

Our handler has a pointer to the current token, which is
the left parenthesis immediately after thestrcpy . If the
handler finds anything other than a parenthesis, it gives up.
Next, it tries to find the second argument, by scanning for-
ward in the token stream, looking for commas at the right
nesting level. If the first argument consists of nested func-
tion calls, the algorithm will work properly. For example,
ITS4 has no problem with the following:

strcat(a(b("h(i",e(x,y,z))),"the end");

If a second argument is not found or is not a string,ITS4
gives up. Otherwise, it matches the pattern, and awards the
problem the lowest possible severity level.

Similar checking is performed for thesprintf fam-
ily of functions. First, the format string is found. Then,
the format string is scanned for a percent sign, followed
immediately by an ‘s’. If no such pattern is found,ITS4
assumes that either the format string only contains format-
ting for numbers, or that all strings have a precision speci-
fication. Either way, the chances of exploit are greatly re-
duced. More checking could easily distinguish between the
two possibilities.

In both of these cases, we are recognizing patterns that
are not regular, due to the parenthesis matching that must be
performed;grep -style tools cannot recognize a pattern that
allows arbitrary nesting.3 Since the programmer writing a
handler can make use of the full power of the C++ language,
ITS4 is capable in the general case of performing a more
sophisticated analysis.

These two checks were added as a proof of concept. Sev-
eral other checks that would be possible to add (and at least
somewhat effective) are discussed in Section 4.7.

A comparison of our technique vs.grep and a more
sophisticated static analysis tool is presented in Section 6.

3Unless they have context-free extensions.

4.4.2. Race condition analysis

Our analysis also addresses race conditions in file ac-
cesses, so-called “Time-Of-Check, Time-Of-Use” (TOC-
TOU) problems. As mentioned in Section 1, Bishop and
Dilger discuss this type of problem extensively [5].

We scan for these problems in a simple way. First, TOC-
TOU functions are classified based on their handler into
functions that can be checks and functions that can be uses
(several can be both). Every time we see a function, we look
at the identifier that holds the file name. We store a mapping
of variables to the list of TOCTOU functions that use that
variable.

FILE *f;

int main(){
char *fname = argv[1];
if(!access(fname, W_OK)){

f = fopen(fname, "w+");
} else{

// Do error handling.
}
// Write stdin to f then exit.

}

In the example above, our mapping would contain a sin-
gle key “fname” which would have an array of two elements
as a value. The array’s values would be the instance ofac-
cess on line 5 and the instance offopen on line 6. The
mapping has a lifetime beyond that of the handler.

At this point, scanning continues. After scanning all to-
kens,ITS4 calls the handler module to perform any final
analysis of the data before reporting the results. We iter-
ate over our mapping. For any keys where there is at least
one check on a variable and one use, we combine the nota-
tions into a single result, which is reported with an increased
severity.

This strategy works well, but there are currently several
limitations that result inITS4 failing to promote the sever-
ity of conditions that should probably be reported. For
example, we do not address the aliasing problem. If we
change the above code to:

FILE *f;

int main(){
char *f1 = argv[1];
char *f2 = f1;
if(!access(f1, W_OK)){

f = fopen(f2, "w+");
}
...

}

ITS4 would not increase the severity. Approaches for im-
proving the “false negatives” in this analysis are discussed
in Section 4.7.

Note also that there is still plenty of room for false pos-
itives. Having two variables with the same name is indis-
tinguishable from a single variable, as far as our analysis
is concerned. Also, our approach fails to take control flow
into account, and so if the check happens after the use, they
are both promoted in severity, when they should not be.

Currently, there is no similar tool available that performs
a better static analysis for us to compare ourselves against.
However, in Section 7 we do discuss our tool in relation to
the prototype discussed by Bishop and Dilger [5].

4.5. Environment integration

ITS4 is designed so that the front-end to the tool and the
back-end for the tool are both easily removed. We did this
because we hope to seeITS4 integrated into popular pro-
gramming environments, such as Microsoft’s Visual Studio.

In such an environment, code should be analyzed in the
background while the user types. The current line can be
scanned continually and the entire file can be scanned fre-
quently to see if there are any new constructs to flag. When
such a construct is identified, it should be highlighted.
Mousing over the problem could give a detailed description
of the issues, and so on.

ITS4 commands would be a poor user interface for such
an environment. For example, Microsoft Office allows the
user to right-click on a misspelled word to ignore it; a much
better user interface, in our opinion.

Currently, the only environment with which we have in-
tegratedITS4 is Gnu Emacs. The user can either run the
scan all at once, much like one would compile a program
from within Emacs. Alternatively, we have bindings avail-
able that will scan the current file every time the user hits en-
ter or moves off the current line. Problems are highlighted
and output from the scanner is placed in another buffer. This
integration is only a prototype and is still fairly inefficient.
The biggest problem is that we invoke theITS4 command
every time. It would be easy to add a new front-end to the
scanner that enables it to be a persistent server communi-
cating with Emacs, which would make it far more usable.

4.6. Performance

We performed preliminary tests on the performance of
ITS4 . We measured performance on a Pentium-90 with
32M of RAM running Redhat 5.0. Generally, the machine
is 93.7% idle, with under 2M of real memory free. We mea-
sured the sum of user and system time using thetime com-
mand. In this environment, we ran our scanner ten times on
each of the tools mentioned in Section 3.1.1.

Computed over all 50 runs,ITS4 scans an average of
about 8800 lines per second, with a standard deviation of
approximately 800. During testing we noticed that adding
analyses such as TOCTOU scanning did not impact the run
time of our tool whatsoever, suggesting that our tool is cur-
rently bound by I/O rather than analysis.

4.7. Future Directions for ITS4

There are several practical improvements that can easily
be made toITS4 . Among them:

• Integrate with new programming environments.
We discuss this option in Section 4.5.

• Downgrade buffer overflow severity if the destina-
tion is not stack allocated.Overflows of dynamically
allocated and static memory are generally more dif-
ficult to exploit than are overflows of stack allocated
memory.ITS4 can look for patterns that look like ar-
ray declarations. For each such pattern,ITS4 can ac-
tually parse the declaration to determine whether it is
stack allocated. If not, the variable may be an alias for
a stack allocated buffer. Therefore, the scanner would
also need to check for allocation statements and static
declarations before it could rule out stack allocation.
With our general philosophy of conservatism, items
would not be downgraded unless such an allocation
could be found.4

• Perform alias analysis. More accurate TOCTOU
scanning can be performed if we obtain pointer alias-
ing information with any degree of accuracy, even if it
is not fully precise. One way to go about this is to scan
through all tokens, looking for assignments and func-
tion calls, noting any aliases we see. Then, aliases can
be considered in a flow-insensitive, context-insensitive
light. Since we will ignore the lack of flow informa-
tion and other contextual clues, we certainly will not
be capable of a precise analysis. The results should
be much better than no such analysis, however, assum-
ing that it is uncommon for such an approach to decide
something not helpful, such as “all variables can alias
all variables.”

• Perform range analysis.The biggest hurdle toITS4
performing the sort of static analysis presented by
Wagner [17] and briefly described in Section 3.2 is that
the constraint generation step is difficult given our ap-
proach to parsing the input. While we would have a
very difficult time generating the same constraint sets
as they do, a heuristic parse could potentially do a good

4We rarely see references to heap allocated memory later being used to
alias the stack, so we feel comfortable downgrading this type of situation.

job. Such work should be integrated with any sort of
alias analysis performed.

• Approximate flow information. Even our proposed
heuristic static analysis techniques could be improved
in accuracy if we can extract a reasonable model of the
program’s control flow from the data stream alone.

5. Practical experience withITS4

To date, we have appliedITS4 as a tool to assist in our
auditing of two large pieces of software. The first was I-Pay,
a reference version of an electronic payment system used
by many Dutch banks. Our tool helped us find a definitive
break in one of the network applications that comes with
this package. The second was Jitterbug, a web-based bug
tracking system, which has been extensively audited for se-
curity in the past [15].ITS4 helped find a small number of
exploitable flaws, though they are unlikely to affect many
users of the software.

We have some initial conclusions based on our experi-
ences usingITS4 :

1. ITS4 still requires a significant level of expert
knowledge.While our tool does encode a vast amount
of knowledge on vulnerabilities that the developer no
longer needs to keep in his head, we have found that
an expert still does a much better job than a novice at
taking a potential vulnerability location and manually
performing the static analysis necessary to determine
whether an exploit is possible. We find experts tend
to be far more efficient and far more accurate at this
process.

2. Even for experts, analysis is still time-consuming.
While we have not used the tool enough to give more
than anecdotal evidence, we would say that the tool
only eliminates one quarter to one third of the time it
takes to perform such an analysis because the manual
analysis is so time consuming.

3. Every little bit helps. We feel thatITS4 helps sig-
nificantly with fighting the “get done, go home” effect.
We noticed that in the case whereITS4 prioritizes one
instance of a function call over another, we tend to be
more careful about analysis of the more severe prob-
lem.

4. It can help find real bugs. Using ITS4 , we have
found security problems in two real applications. In
both cases, we found problems in the first 10 minutes
of analysis that we would not have otherwise found as
quickly.

Note that although we ran our tool on several large ap-
plications such assendmail and apache , we did

not hand-audit those tools. We only spent enough time
with them to gather data for purposes such as timing
tests and comparative analyses with other tools.

5.1. I­Pay

We usedITS4 to audit the source code for I-Pay, “the
Internet payment infrastructure for the combined Dutch
banks”[10]. We were most interested in remote exploits,
since the I-Pay software utilities typically run on organiza-
tional web servers and other protected machines.

Our first step was to useITS4 in locating all sites where
network or file data was read.ITS4 flagged a single call
to recv . We saw that this call was made from a function
callednetread . We askedITS4 to find netread , and
nothing else. There were several instances found, but we
followed the first, which was made from a function called
multiread . We askedITS4 to find uses of this function.
It found us one, in a function calledsaferead , which was
itself used only three times. The first of these three calls
turned out to be a major vulnerability.

I-Pay includes a utility calledcheckkey used after in-
stallation to check the firewall settings of the host machine
and confirm that the Triple-DES library included with I-
Pay is correctly configured for encryption and decryption.
When checkkey executes, it constructs a text message,
which is encrypted and sent to a server specified in a config-
uration file. Thecheckkey program waits for a response
from this server, decrypts the response upon receipt, and
displays it along with status information. Unfortunately,
the buffer which receives the response message is a stack-
allocated 256 byte buffer, while the reading function will
accept up to 32766 bytes. This programming mistake will
allow a malicious server, or a machine masquerading as the
server, to introduce and execute arbitrary code on the client
machine. An hour of subsequent experimentation yielded a
remote exploit.

The other potential problems identified byITS4 were
less serious. Several calls tostrcpy andsprintf were
flagged as risky, but were deemed harmless upon inspec-
tion. We did locate three other buffer overflow vulnerabili-
ties using the tool, but they require local access. As long as
the I-Pay utilities run with low privileges on non-interactive
machines, these flaws are likely have little or no impact.
Finally, I-Pay employs a rudimentary temporary file name
selection algorithm susceptible to race conditions.

5.2. Jitterbug

Jitterbug is free C software for tracking bug reports over
the web. We were interested in auditing Jitterbug because
we use it, and we are skeptical of any C code we run, espe-
cially if it has network access. We learned after our analysis

that Jitterbug has previously been extensively analyzed.

ITS4 immeadiately flagged fivepopen calls. Three of
these calls take input from the web. One sufficiently scru-
tinizes its arguments; we were unable to exploit it. We
developed exploits to leverage the other twopopen calls.
These vulnerabilities are only exploitable if one of two un-
documented features are enabled (by default, they are not).
Therefore, very few fielded implementations are affected by
this vulnerability. Apparently, the features were added for
a single high-profile user who no longer uses the software,
and, in light of the vulnerabilities found, they will be re-
moved in the next version of the software [15].

In addition, ITS4 ’s race condition analysis identified
five potential TOCTOU vulnerabilities. An audit using
grep reported nearly 80 different call sites where the called
function could be involved in a TOCTOU condition. With-
out ITS4 , we would have manually examined each of the
80 calls in the context of the entire program; instead we
considered just five locations.

ThusITS4 greatly reduces time spent examining code is
therefore expected to be large. However, our analysis does
not handle aliasing.

6. Comparing ITS4 to other solutions

6.1.grep

In this subsection, we comparegrep to ITS4 , each us-
ing a database that only scans the 13 functions for which
there are buffer overflow handlers. We limit the scope of
our comparison in this way so that we can compare the per-
formance of the handlers. Relative severities are ignored;
either the tool reported a problem, or it did not. In the case
of ITS4 with analysis, if the analysis downgraded a prob-
lem to the lowest possible setting, we considered that a fail-
ure to report.

Table 3 shows the number of vulnerabilities found by
grep , ITS4 with analysis turned off, andITS4 with anal-
ysis on. The next to last column of this table shows the per-
cent reduction of results reported compared togrep when
smarter parsing is applied (i.e., lexing instead ofgrep).
The last column shows the percent reduction of results re-
ported that are due to our analysis. Note that, except in the
case ofapache , which is a vast outlier, our analysis seems
slightly more effective than better parsing.

We believe thatITS4 users can expect results around
25% better thangrep , perhaps more. This number will
probably vary widely by application and may also vary
based on the programming style of the developer.

Package grep ITS4 ITS4 Lex Anl.
-anl. red.(%) red.(%)

wu-ftpd 146 138 112 5.5 17.8
net-tools 160 142 103 11.3 24.4
sshd 265 238 206 10.2 12.1
sendmail 480 418 342 12.9 15.8
apache 623 168 113 73.0 8.8

Table 2. Effectiveness of grep compared to
ITS4 , without and with analysis.

Package grep ITS4 Reduction (%)
wu-ftpd 146 112 23.3
net-tools 160 103 35.6
sshd 265 206 22.6
sendmail 480 342 28.8
apache 623 113 81.9

Table 3. Total reduction compared to grep .

6.2. Buffer overflow detection via range analysis

The only other tool we are aware of that we can compare
our work to is presented by Wagner et. al. in [17]. Unfortu-
nately, this comparison proves quite difficult:

1. Their work is not limited to picking out function calls
as ours currently is. Therefore, they may flag some
problems that we do not.

2. Their work fails to analyze approximately 18% of the
program thatITS4 does not fail to analyze. (See Sec-
tion 3.11)

3. Their output is based on different metrics than ours.
While theirs is based solely on the results of their anal-
ysis, ours is largely based on human experience, with
only a small analysis component.

Nonetheless, we make some simplifying assumptions in an
attempt to compare how these tools would compare “in
practice”:

1. Since we do not know the configuration used to test
sendmail , we made the assumption that it was tested
under the default configuration.

2. We assume that our tool will report everything their
tool reports, and probably more.

3. They present results for how many “probable” results
their tool gives. We assume that reporting our “very
risky” and “most risky” classifications has the same se-
mantic meaning. This means that, for the sake of our

comparison, there are some functions our tool consid-
ers that it will never report because their risk classifi-
cations are too low. The assumption is that such calls
are very unlikely to show up in their analysis.

4. We assume that the vulnerabilities a particular tool will
flag are uniformly distributed throughout the source
code.

Their analysis ofsendmail yielded 44 “probable” vul-
nerabilities. Our analysis yielded 79. Adjusting their num-
ber for the 17.95% of the code they missed based on our
uniform distribution assumption, their modified number of
vulnerabilities for the sake of comparison would be 53.6.
With this set of simplified assumptions, their results give a
32.15% reduction in false positives. In practice, we would
expect to see results from their tool that give up to a 50%
reduction.

7. Related work

Regular “lint” tools such asLCLint [7] perform similar
functions, but in the context of general robustness; security
features generally are not included. Also, such tools tend to
work on a per-build basis, and use context-free parsing.

Security experts have long proposed building simple
scanners that operate on source code, looking for simple
patterns that can potentially be exploited. To date, we
know of three limited prototypes of such systems (other
than ours), all of which process C, and possibly C++.

The first isslint [13], a general-purpose security scan-
ner developed by Mudge, formerly of the l0pht. While
there is a public web page for this product, no technical in-
formation is public.

The second is the Bishop and Dilger race condition scan-
ner. In [5], they detail a fairly accurate static analysis for
TOCTOU problems. Their prototype is similar in function-
ality and power to our race condition scanning. For exam-
ple, it uses regular expressions for token recognition instead
of context-free parsing.

The primary difference between the two tools is that the
Bishop and Dilger scanner considers variable names on a
per-function basis, whereasITS4 does not. If two func-
tions each have a variable with the same name,ITS4 will
treat all variables with the same name as the same variable,
even if across separate files. We believe theITS4 behav-
ior to be slightly more useful because most programmers
name parameters and local variables consistently across
functions. For example, consider the following code:

void do_it(char *fname) {
FILE *f = fopen(fname, "w");

}
int main(int argc, char **argv) {

char *fname = argv[1];
if(access(fname, W_OK))

do_it(fname);
}

The Bishop and Dilger scanner will miss the above race
condition because it does not support interprocedural anal-
ysis.

Although the Bishop and Dilger’s tool has never been
distributed, a third party reimplementation has recently be-
come available [2].

The only other tool we know about that statically scans
for security vulnerabilities is presented in [17]. We dis-
cussed this tool (primarily in Sections 3 and 6), as well as
its relative advantages and disadvantages compared to the
ITS4 approach.

Other forms of static analysis are possible. For example,
we discussed locating the places in the code where input
to the program is possible. From there, the usual goal is
to follow program flow to see what damage untrusted in-
put can do. Static language support for such an analysis
is now available for a subset of the Java programming lan-
guage [14].

8. Conclusion

We have presentedITS4 , a static analysis tool for C and
C++. While its parsing model makes it poorly suited for
highly accurate static analysis, the same model makes the
tool very practical for real-world use; even with some fa-
cility for a heuristic-driven static analysis of the program,
ITS4 can scan large programs efficiently, while still achiev-
ing adequate results. The tool is also appropriate for inte-
gration into programming environments with little modifi-
cation.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers: Princi-
ples, Techniques and Tools. Addison Wesley, 1986.

[2] Antonomasia. scancode.plx. http://www.
notatla.demon.co.uk/SOFTWARE .

[3] B. Arkin, F. Hill, S. Marks, M. Schmidt, T. Walls, and
G. McGraw. How we learned to cheat at online poker:
A study in software security.The developer.com Jour-
nal, September 1999.http://www.developer.
com/journal .

[4] M. Bishop. Writing safe setuid programs,
1998. http://seclab.cs.ucdavis.edu/
˜bishop/secprog.html .

[5] M. Bishop and M. Dilger. Checking for race condi-
tions in file accesses.Computing Systems, 9(2):131–
152, Spring 1996.

[6] C. Cowan et. al. Stackguard: Automatic adaptive de-
tection and prevention of buffer-overflow attacks. In
Proceedings of the Seventh USENIX Security Sympo-
sium, pages 63–77, San Antonio, TX, 1998.

[7] D. Evans, J. Guttag, J. Horning, and Y. Meng Tan.
Lclint: A tool for using specifications to check code.
In In proceedings of the SIGSOFT Symposium on
the Foundations of Software Engineering, December
1994.

[8] S. Garfinkel and G. Spafford.Practical Unix and In-
ternet Security. O’Reilly and Associates, Inc., 1996.

[9] I. Goldberg and D. Wagner. Randomness and the
netscape browser: How secure is the world wide web?
Communications of the ACM, January 1996.

[10] InterPay. I-pay product web site.http://www.
ipay.com .

[11] W. Landi and B. Ryder. A safe approximation al-
gorithm for interprocedural pointer aliasing. InPro-
ceedings of Programming Language Design and Im-
plementation, 1992.

[12] E. Levy. The bugtraq mailing list.http://www.
securityfocus.com .

[13] mudge. The slint web page.http://www.l0pht.
com/slint.html .

[14] A. Myers. Practical mostly-static information flow
control. In Proceedings of ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, San Antonio, TX, January 1999.

[15] A. Tridgell. Personal Communication.

[16] D. Wagner. Personal Communication.

[17] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A
first step towards automated detection of buffer over-
run vulnerabilities. InProceedings of the Year 2000
Network and Distributed System Security Symposium
(NDSS), pages 3–17, San Diego, CA, 2000.

