
Published at the 22nd ACM Conference on Computer and Communications Security (CCS 2017).
More information at https://rewritinghistory.cs.washington.edu/.

Rewriting History: Changing the ArchivedWeb from the Present
Ada Lerner∗

Wellesley College
alerner@wellesley.edu

Tadayoshi Kohno
Paul G. Allen School

of Computer Science & Engineering
University of Washington
yoshi@cs.washington.edu

Franziska Roesner
Paul G. Allen School

of Computer Science & Engineering
University of Washington
franzi@cs.washington.edu

ABSTRACT
The Internet Archive’s Wayback Machine is the largest modern web
archive, preserving web content since 1996. We discover and ana-
lyze several vulnerabilities in how the Wayback Machine archives
data, and then leverage these vulnerabilities to create what are to
our knowledge the first attacks against a user’s view of the archived
web. Our vulnerabilities are enabled by the unique interaction be-
tween theWaybackMachine’s archives, other websites, and a user’s
browser, and attackers do not need to compromise the archives in
order to compromise users’ views of a stored page. We demonstrate
the effectiveness of our attacks through proof-of-concept imple-
mentations. Then, we conduct a measurement study to quantify
the prevalence of vulnerabilities in the archive. Finally, we explore
defenses which might be deployed by archives, website publishers,
and the users of archives, and present the prototype of a defense
for clients of the Wayback Machine, ArchiveWatcher.

CCS CONCEPTS
• Information systems→ Digital libraries and archives; • Se-
curity and privacy→ Web application security;

KEYWORDS
web archives; web security

1 INTRODUCTION
The Wayback Machine is a publicly browsable web archive which
has cataloged and preserved a collection of over 286 billion web
pages over the period from 1996 to 2017 [26]. Like other web
archives, which use similar techniques and technologies, the Way-
back Machine allows clients using ordinary web browsers to access
snapshots of past websites through a web interface1, enabling or-
dinary citizens as well as technical experts to see how the web
has changed and what it once contained. These archival snapshots
of websites are rendered in HTML, Javascript, and CSS just like
∗This work was performed while Dr. Lerner was a PhD Candidate at the Paul G. Allen
School of Computer Science at the University of Washington.
1https://web.archive.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134042

the modern web, preserving not only their content but also their
client-side dynamic behaviors, making them a rich cultural and
technical preserve.

The Wayback Machine is frequently used in a variety of contexts
critical to our free society, including scholarly articles, journal-
ism, and legal proceedings. Scientists may cite archived snapshots
in their scientific papers to increase the durability of their refer-
ences [19, 41], while journalists have used archives to understand
how websites such as official government pages have changed [38],
and lawyers often use archival snapshots as evidence in legal cases,
including civil and criminal cases, administrative proceedings, and
patent litigation (e.g., [1, 2, 4, 40]). While other researchers have
studied inaccuracies in the Wayback Machine which arise acciden-
tally, we observe that these socially and financially important uses
suggest incentives to intentionally manipulate archives after the
fact. For example, governments might want to suppress or change
historical information, companies might want to manipulate ev-
idence of prior art in a patent case, organizations might want to
hide evidence of past wrongdoing, and news sources might want
to manipulate source material for their reporting.

To our knowledge, this paper is the first to investigate the tech-
nical vulnerabilities and attacks that might be used to perform such
intentional manipulation. That is: how might attackers attempt to
rewrite history? How might they intentionally cause clients who
view the archive to see archived websites with content, appearance,
and behavior that are different from the actual website at archival
time? We analyze the way that the Wayback Machine functions,
finding that in fact, there are several types of vulnerabilities which
would allow an attacker today to take full control of clients’ views
of snapshots. For example, snapshots sometimes cause clients to
accidentally mix content from the live web into an archived page, al-
lowing servers on the live web to inject content or code into clients’
views of the archive. Our attacks are global— they affect the ap-
pearance and behavior of snapshots for all visitors, and they do not
involve the direct compromise of archival or publisher servers or
databases.

We demonstrate the viability of our attackswith proofs-of-concept.
For example, we demonstrate the ability to inject arbitrary Javascript
code into client views of archival snapshots, allowing us to modify
text, images, styling, and behavior, subtly or completely rewriting
the web of the past. Figure 1 shows such an attack, in which we
took complete control of a snapshot of reuters.com from 2011.2

We then quantify the prevalence of the types of vulnerabilities we
discovered, seeking them in the wild through a measurement study
of archived websites. We find that vulnerabilities to our attacks are
very common: over snapshots of the Top 500 most popular websites
2For ethical reasons, we disabled our attacks after showing that they worked.

https://web.archive.org/
https://doi.org/10.1145/3133956.3134042
reuters.com

(a) Above, the snapshot URL for our demonstration attack, a capture of
the Reuters homepage from the timestamp 20110901233330 (1 Septem-
ber 2011, at 23:33:00).

(b) Above, the original news story from the page, as preserved in the
snapshotURL above: a political opinion piece, illustratedwith a picture
of President Barack Obama. Accessed 15 May 2017.

(c) Above, we used an Archive-Escape Abuse attack (Section 5.1) to re-
place the above article with incorrect content, so that clients would see
CCS 2017’s cover image and a 6-year-early prediction ofCCS 2017’s host
city rather than the correct election opinion piece.

Figure 1: We enabled this attack only or the purposes of ob-
taining this demonstration screenshot, and disabled the at-
tack after determining that it worked.

of the past 20 years, 74% contain some vulnerability which exposes
the snapshot to complete control by an attacker (65% for URLs
sampled from the Top Million). Additionally, we perform these
same measurements over a set of website snapshots which have
been cited in legal contexts such as court decisions, administrative
decisions, and documents filed as trial court and appellate briefs,
finding that 37 domains referenced in the 991 legal documents we
examined are vulnerable to an attackwhichwould provide complete

control to some attacker over the way clients view the snapshot.
We note that we are unaware of any attackers who have used
these vulnerabilities for malicious purposes in practice— rather,
our measurements show that a large fraction of sites are or were
vulnerable to such attacks, suggesting that the consumer of web
archives should exercise caution.

While an instance of our attacks may be evident upon detailed
technical inspection of the way a client renders a snapshot, they are
likely to be completely invisible to less technical users of the archive.
Even when investigated by technical experts, attackers may have
plausible deniability, since modern content can and does become
intermingled with archival content in many benign cases [16, 30].
We explore a variety of defenses that could help clients see correct
views of snapshots, and we design and build ArchiveWatcher, an
end-user defense which demonstrates a subset of our defensive
techniques. Our defense focuses on highly motivated users of the
archive, aiming to demonstrate techniques which may aid indi-
viduals, such as expert witnesses and fact checkers in legal and
journalism contexts, in determining when an archived view of a
website can be reliably cited.

This paper makes the following contributions:
• We analyze the Wayback Machine in order to identify vul-
nerabilities which enable adversaries to manipulate clients’
view of archival snapshots (Section 4).

• We develop attacks which exploit these vulnerabilities, ex-
ploring how an adversary can change the appearance and
behavior of snapshots seen by all visitors to the archive, even
years after the snapshot was captured. We execute proofs-of-
concept of our attacks against real snapshots in the Wayback
Machine (Section 5).

• We measure the prevalence in the wild of vulnerabilities
which enable our attacks, finding that they are quite common,
including a number of vulnerabilities which affect snapshots
cited in legal cases and decisions (Section 6).

• We explore the space of possible defenses which might be
deployed by archives, website publishers, and end-users, and
we build an end-user defense, ArchiveWatcher, that detects
and blocks vulnerabilities to our attacks (Section 7).

Before the publication of this paper, we have disclosed these
vulnerabilities to the Wayback Machine, and made our defense,
ArchiveWatcher, publicly available. Links to the code for Archive-
Watcher, alongwith links to other artifacts from the paper, including
the TrackingExcavator tool used to make our measurements, can
be found at https://rewritinghistory.cs.washington.edu.

2 BACKGROUND AND RELATEDWORK
2.1 HowWeb Archives Work
Overview: Archival Protocol and Systems.We focus our anal-
ysis of web archives on the Internet Archive’s Wayback Machine,
since it is the largest publicly available web archive, with a goal
of archiving as much of the public available web as possible. We
note that while we developed our attacks against the Wayback Ma-
chine and did not test them against other archives, our techniques
form an intellectual basis for understanding how other archives and
systems which similarly rehost content could be manipulated. For

https://rewritinghistory.cs.washington.edu

example, other archives follow the same pattern as the Wayback
Machine of hosting mutually distrustful content from the same
domain, and this pattern results directly in vulnerabilities that our
attacks exploit. We discuss the generality of our results in more
detail in Section 4.4. In this section, we explain the design of the
Wayback Machine in order to form a background for how the de-
sign of web archives has led to the vulnerabilities we describe later
in the paper.

The Wayback Machine consists of two major components rele-
vant to this paper. The first is the archive crawler, which visits,
retrieves, loads, and archives pages on the web into the archive’s
database. The second is the archive front-end, which is the sys-
tem of web servers, accessible via https://web.archive.org, which
allow anyone to use their browser to view the web of the past.

In this paper, we refer to the archival preservation of a top
level page as an archival snapshot, or simply snapshot, and the
archival copies of a page’s subresources (e.g., images, scripts, CSS,
etc.) as archival captures. Each snapshot or capture was saved
at a moment in time, called its timestamp, which appears in its
URL. For example, https://web.archive.org/web/20001110101700/
http://www.ccs2000.org:80/ refers to a capture of the homepage
page for the 7th CCS which was saved by the archival crawler at
10:17:00 UTC on 11 November 2000. When a web browser visits
this snapshot, it does the same thing as when it accesses a normal
site on the live web: it recursively downloads, parses, executes, and
renders the HTML, Javascript, and CSS of the page. The only differ-
ence is that the archive plays the role of the first- and third-party
web servers which originally published the the site, serving the
resources that make up the snapshot.

The archive crawler performs regular crawls of a large set of
pages, providing significant coverage of the web. Internet Archive’s
Frequently Asked Questions page does not offer details about how
they find sites to crawl, but states that “crawls tend to find sites
that are well linked from other sites”, and that they collect pages
that are “publicly available” [27]. Additionally, any person can
use a form on the Wayback Machine’s website “Save Page Now”,
which “Capture[s] a web page as it appears now for use as a trusted
citation in the future.” This feature causes the archival crawler
to immediately capture the given page or resource, including its
subresources [28]. We discuss additional technical details about the
Wayback Machine inline as appropriate.

2.2 How are Web Archives Used?
Web archives are used in variety of important social contexts, in-
cluding legal proceedings, news articles, academic publications. We
take particular interest in their use in legal proceedings for two rea-
sons: because the integrity of the legal process is important to our
free society, and because legal proceedings may motivate involved
parties to launch attacks that modify evidence in their favor, such
as by using the attacks described in this paper. Lawyers use web
archives in a wide variety of legal contexts, such as civil lawsuits
(e.g., [4]), criminal cases (e.g., [2]), administrative proceedings (e.g.,
[3]), federal claims court (e.g., [1]), and patent litigation (e.g., [40]),
anc they may use archival evidence for various purposes, such as to

demonstrate “prior art” in patent litigation 3 or to recover evidence
of wrongdoing that has since been deleted from the live web.

Because of these socially important uses, users of archives should
take appropriate steps to ensure that archival data they use is trust-
worthy and not manipulated. We emphasize that we are unaware
of any attacks like the ones in this paper being used in practice.
However, this work demonstrates that not only are attacks are pos-
sible (Sections 4 & 5), but also that the vulnerabilities which enable
them are very common in the wild (Section 6).

2.3 Legal Guidance on Web Archives
Legal scholars have written on the evidence standards that do
and should govern the admissibility of archival material. Eltgroth
encouraged the use of existing evidence standards to allow “reliable
evidence from the Wayback Machine [to be] admitted as any other
Internet-derived proof” [21], while Gazaryan argued in 2013 argued
for the need to lower the difficulty of using archival material as
evidence [24]. Others have advised lawyers on best practices such
as employing experts to evaluate the technical limitations of the
archive [40]. These articles discuss only non-adversarial factors,
while we focus on the technical aspects of adversarial manipulation
rather than the legal aspects of incidental inaccuracies.

In 2007, Fagan raised the possibility of “E-Evidence Tampering”,
noting that archival infrastructure may be compromised, or that an
archived website might be cached or archived in a compromised
state [22]. Our work is different in that we consider less privileged
attackers, who do not compromise the archive.

2.4 Technical Work on or with Web Archives
Computer scientists have used the Wayback Machine in research:
Nikiforakis et al. measured longitudinal trends in Javascript in-
clusion from 2001 to 2010 [35]; Soska and Christin used archival
data to develop and evaluate a method for determining which web-
sites would become malicious over time [45]; Lerner et al. studied
third-party web tracking using archival data [10]; and Hackett et al.
studied the evolution of website accessibility from 1997 to 2002 [25].

Others have studied the (non-malicious) incompleteness or in-
consistency of web archives (e.g., [13, 17, 31, 34]). We find in our
work that the technical limitations of archives that lead to accidental
incompleteness can be leveraged intentionally by adversaries.

3 THREAT MODEL
In our threat model, we consider attacks in which clients (both
people and automated systems) browsing archival material are
maliciously caused to see content that does not accurately reflect the
the web of the past. Critically, we show that this is possible without
requiring attacks to be launched by the archive itself, and without
compromising website publisher or archival servers. Instead, the
vulnerabilities which enable our attacks involve entirely ordinary
interaction with archives, such as hosting content on domains and
servers the attacker rightfully owns and requesting that the archive
capture specific URLs.

3Patents must be original to be valid, and prior art is information published prior to a
patent which might be relevant to the patent’s claims of originality[5].

https://web.archive.org
https://web.archive.org/web/20001110101700/http://www.ccs2000.org:80/
https://web.archive.org/web/20001110101700/http://www.ccs2000.org:80/

Time-of-
Archive

Time-of-
Access

Possible
Times-of-Attack
(#1, #4)

Possible
Times-of-Attack
(#2, #3)

Archive/
User
Events

Malicious
Events

Page & subresources
saved in archive
database

Client browser renders
snapshot; client may view
incorrect content due to attack

Time-of-
Publication

Figure 2: A timeline depicting the (1) lifecycle of archive
snapshots (top of figure) and (2) events that make up attacks
against the integrity of those snapshots (bottom). The left-
handpossible Times-of-Attack, beforeTime-of-Archive, cor-
respond to Attacks #2 and #3, which require attacker fore-
sight. The right-hand possible Time-of-Attack is after Time-
of-Archive (but still before Time-of-Access), for Attacks #1
and #4, which do not require attacker foresight. Attacks are
described in detail in Section 5.

We note that the vulnerabilities we consider can also cause non-
malicious inaccuracies in the archive. These non-malicious inaccu-
racies have been discussed in other work (e.g., [11, 12, 44]), and our
defenses (Section 7) might incidentally mitigate them. However,
we focus on the ways in which our vulnerabilities can be used
intentionally by malicious actors.

3.1 Definitions
We refer to a single capture of aweb page as a snapshot or archival
snapshot. For example, http://web.archive.org/web/20000101000000/
http://example.com is a snapshot of http://example.com which aims
to represent its appearance as of 1 January, 2000. We will use the
terms time-of-archive, timestamp, or archival timestamp to
refer to the time at which a particular snapshot was taken. Prior to
time-of-archive, we may refer to time-of-publication, when the
first-party website chose what content to include in its website and
published it on the web. We may use these terms to refer to the
domains involved in an attack and their owners at different times.
For example, we may refer to the time-of-archive first-party, by
which we mean “the entity which owned example.com at the time
that the snapshot in question was archived,” noting that ownership
may change over time. Figure 2 depicts the relationship of different
times in the lifecycle of a snapshot.

We will refer to as clients the end-users and devices that use
the archival front-end to view snapshots, and who may rely upon
those snapshots for information about the past. For example, a
client may wish to refer to the content of http://example.com in
2000 in the course of a legal argument. To do so, they would use an
ordinary browser (the client browser) to access the snapshot “http:
//web.archive.org/web/20000101000000/http://example.com”. We
will refer to the time at which a client accesses a snapshot as the
time-of-access. For example, if a client examines the past contents
of example.com on 19 May 2017, then 19 May is the time-of-access
in this scenario. If an attack has been made against that snapshot,
then the client may see a modified version of the snapshot at the

time-of-access, rather than something which accurately reflects the
site’s appearance at time-of-archive.

We refer to the time at which an attacker takes an action to de-
ploy an attack as the time-of-attack. Since our attacks sometimes
require multiple actions by the attacker at different times, there
may be multiple times-of-attack for a scenario. The time-of-attack
may be either before or after time-of-archive, depending on the
attack, and time-of-attack may precede or coincide with payload
delivery to the client at time-of-access.

3.2 Attacker’s Goals
Our attacks aim to change what clients see when they view archived
snapshots— that is, to cause the client browser to display snapshots
incorrectly, rendering content and exhibiting behavior (i.e., running
code) which do not reflect the original website nor (in the case
of benign archival errors) the website as it had originally been
preserved in the archive.

We observe that attackers may have incentives to modify both
their own and others’ content in the archive. For example, if Alice
accuses Bob of publishing slander on his website, then Bobmaywish
to retroactively remove the slander from the archive of his website.
Alternatively, Alice (or an uninvolved party, such as Mallory) may
frame Bob by retroactively adding slander to snapshots of his site.
Attackers may be motivated by a wide variety of personal, political,
legal, and financial motivations.

We emphasize that although our threat model encompasses at-
tacks that add material to the archive’s databases, the adversary
must only do so legitimately, not by compromising those databases.
That is, some attacks involve archiving new websites that we create
as part of an attack.

By default, successful attacks are visible to any client who views
that archived resource. However, attackers could also customise
their attacks for different clients. For example, attackers might
identify clients via techniques like browser fingerprinting [20, 23,
33, 36], or by using tracking cookies [42]. Though we note such
customization is possible, we do not explore it further in this paper.

3.3 Possible Attackers
Under our threat model, the attacker owns— at time-of-attack—
the domain from which the attack is mounted. For a given victim
snapshot, the attacker may either be the owner of the first-party
domain (e.g., example.com) or the owner of a third-party domain
on that page (e.g., ads.com, serving an ad embedded inside example.
com).

In a third-party attack, an attacker who controls ads.com (either
at time-of-archive or in the future) may wish to modify the snapshot
of example.com. To motivate a first-party attack— example.com
modifying itself —we note that the ownership of domains may
change over time. Thus, for example, a different entity may own
example.com now than in the past, and that new owner may now
wish to modify past archives of example.com. The present first-
party owner might also be the same as the past owner, but seeking
to alter its own past archives.

Thus, depending on the attack, an attacker must be able to serve
content from one of the first- or third-party domains that make

http://web.archive.org/web/20000101000000/http://example.com
http://web.archive.org/web/20000101000000/http://example.com
http://example.com
example.com
http://example.com
http://web.archive.org/web/20000101000000/http://example.com
http://web.archive.org/web/20000101000000/http://example.com
example.com
example.com
ads.com
example.com
example.com
ads.com
example.com
example.com
example.com
example.com

up the target snapshot, either at time-of-archive and/or at time-of-
access. To meet this criterion, the attacker may either already own
relevant domains, or they might purchase domains specifically to
perform these attacks. They might also be able to hijack domains
illicitly, e.g., through DNS poisoning. The means by which the
attacker gains the ability to publish content from the domain of the
vulnerable resource is orthogonal to the discussions of this paper.

4 ANALYZING THEWAYBACK MACHINE
FOR VULNERABILITIES

We analyzed the Wayback Machine, surfacing three types of vul-
nerabilities which emerge from its design. Those types of vulnera-
bilities are Archive-Escapes, Same-Origin Escapes, and Never-
Archived Resources, detailed below.

4.1 Archive-Escapes
To deliver snapshot content, the Wayback Machine plays the role
of all web servers which were originally involved in serving the
archived site. That is, it serves archived versions of all first- and
third-party content the client requests while rendering its view of
the snapshot. To cause the client to correctly request all these re-
sources from the archive, rather than the live web, the archive
performs URL rewriting, modifying URLs in archived HTML,
Javascript, and CSS to make them refer to archived versions of
the same URL. For example, the archive may find the URL http:
//example.com/script.js in some HTML at time-of-archive, and
rewrite the HTML so that the URL instead reads http://web.archive.
org/web/<timestamp>/example.com/script.js, where the timestamp
of the archived script matches the timestamp of the archived HTML.

URL rewriting is not perfect, primarily because it does not ac-
count for client-side dynamically generated URLs. We find that
when Javascript computes subresource URLs using computation as
simple as string concatenation, then URL rewriting fails and clients
end up making requests to the live web to load those subresources.
For example, if URL rewriting fails, the client might accidentally
load a live copy of example.com/script.js instead of its archived ver-
sion. These live web subresources are incorporated into the client’s
rendered view of the snapshot, mixing live and archived content
and behavior.

We refer to the request and use of live-web resources as part of a
snapshot view as anArchive-Escape, the first of our classes of vul-
nerabilities. We refer to the domain contacted for live resources as
the archive-escape destination, such that in the example above,
example.com is an archive-escape destination. Whenever there is
an archive-escape, the destination of that escape becomes a poten-
tial attacker, since that domain can now serve a malicious payload
on the live web at the escaping URL. For example, the live copy
of example.com/script.js can be replaced with a malicious payload.
Note that the archive-escape destination may be the same domain
as that of the victim snapshot.

4.2 Same-Origin Escapes
We discovered a second class of vulnerability, related to the fact
that archives take on the role of serving both content from all of the
domains which were involved in a snapshot at time-of-publication.

As background, browsers prevent third-parties inside <iframe>s
from accessing or modifying data from the main page. This policy
of preventing cross-origin access is called the Same-Origin Policy.
So, for example, if http://example.com embeds http://ads.com in
a frame, code from ads.com (running inside the frame) will be
blocked by the browser from reading or influencing any parts of
the page outside of its frame. This allow sites to safely embed
content from third-parties within the context of their own pages.
The http://ads.com attacker might embed malicious code which
attempts to modify the page, but it will be blocked from doing so
by the Same-Origin Policy.

The Same-Origin Policy, however, is ineffective in the archival
context. Since all archived resources are loaded from the archive,
this means that all resources making up a snapshot, including both
first- and third-party resources, are loaded by the client from a
single domain, archive.org. When this occurs, a vulnerability arises:
code from the embedded frame now executes without the isolation
provided on the live web by the Same-Origin Policy, allowing it
to reach outside of its frame to modify any aspect of the main
page. This allows an attacker to embed an attack payload inside of
an <iframe>, where it will become active when preserved by the
archive and served to clients, modifying the client’s view of the
containing snapshot.

4.3 Never-Archived Resources and
Nearest-Neighbor Timestamp Matching

Our third class of vulnerability arises from the interaction of two
properties of the Wayback Machine: its incompleteness, and its
nearest-neighbor timestamp matching.

First, we discuss incompleteness. Many pages in the Wayback
Machine include resources which the archive has never success-
fully captured. There are a variety of reasons why this might occur,
including archival crawler errors or a partial unavailability of the
publisher’s web server at time-of-archive. For example, a snap-
shot’s HTML might include an image, but that image has never
been saved in the archive’s database. When the client asks for
a never-archived resource, the archive front-end responds with
an HTTP X-Archive-Wayback-Runtime-Error header with value
ResourceNotInArchiveException, and error code 404. Our mea-
surements (Section 6) show that never-archived resources arise
quite commonly.

Second, we discuss the archive front-end’s nearest-neighbor
timestamp matching policy. Imagine that a client requests an
archived resource R at a timestamp T , and that the archive’s data-
base contains captures of R, but only with timestamps , T . When
this happens, the archive will find the capture of R with timestamp
as close as possible to T , and redirect the client to that version.
For example, imagine a client that requests to visit a March 2005
snapshot of example.com. If example.com was never captured in
March of 2005, but was captured in April, then the archive would
redirect the browser (302 FOUND) to the April timestamp.

In non-malicious situations, this “nearest-neighbor” behavior
allows clients to view a more complete picture of the past in the
case that a snapshot’s subresources were not captured at the exact
moment the snapshot was. However, there is no apparent limit to
the time delta permitted by nearest-neighbor timestamp matching.

http://example.com/script.js
http://example.com/script.js
http://web.archive.org/web/<timestamp>/example.com/script.js
http://web.archive.org/web/<timestamp>/example.com/script.js
example.com/script.js
example.com
example.com/script.js
http://example.com
http://ads.com
ads.com
http://ads.com
archive.org
example.com
example.com

Thus it is possible, for example, to request a resource from 1996
and be redirected to a capture of that resource from 2016, if no
other closer timestamp exists. We refer to instances where client
browsers are redirected to timestamps very far in time from the
original page as anachronisms.

An attacker who owns the domain of a never-archive resource
can abuse these observations by inserting a malicious payload as
the anachronistic capture of that missing resource, which will be
served to clients due to nearest-neighbor matching.

4.4 Generality
We emphasize that while we analyzed these vulnerabilities in the
specific context of the Wayback Machine, our insights could form
the intellectual basis for developing similar attacks to manipulate
other web archive systems. These attacks, and the ideas behind
them, are general due to the sharing of both (a) software and (b) de-
sign principles across web archives.
Shared Software. Other web archives frequently use the Way-
back Machine’s software, which is open source. For example, the
Wayback Machine’s web crawler (Heritrix [14]) and archive host-
ing/playback software (Wayback/OpenWayback4 [15, 18]) are used
by archives such as the Internet Memory Foundation ([29]), Stan-
ford University Libraries ([46]), OpenGovData’s Russia Archives
([39]), and the US Library of Congress ([32]), among at least 22
national web archives [47]. While each deployment may modify
the software or deploy it differently, the intellectual basis for the
attacks described in this section should apply to these other web
archives. For example, as an anecdote, we spot-checked five Library
of Congress archived pages, finding archive-escapes to scripts and
missing script resources [37, 43]). We also found that the Library of
Congress archive (a) performs nearest-neighbor timestamp match-
ing on resource timestamps (enabling Attack #4) and (b) serves all
content from the same domain, regardless of its original domain
(enabling Attack #2).
Shared Design Principles. Even when code is not shared, a gen-
eral lesson we take from the vulnerabilities we identified is that
by rehosting and remixing web content, web archives can create
unexpected situations which violate the threat model underlying
web security assumptions and primitives. For example, hosting
mutually distrustful content from the same domain violates a key
assumption of the Same-Origin Policy. Additionally, the nature of
web archives in attempting to reproduce a particular moment in
time creates new assumptions that may be violated: e.g., that all
resources seen by the user came from the same time, and not from
the present. Our work surfaces how these assumptions – common
across web archives systems – may be violated.

5 REWRITING HISTORY: OUR ATTACKS
Having discussed our vulnerabilities, we delve into the design of
attacks which exploit these vulnerabilities to rewrite history. For
reference in discussing these attacks, recall that Figure 2 depicts
the lifecycle of a snapshot and possible attacks against it.

4OpenWayback is the community version of Wayback— Internet Archive’s Wayback
repository is forked from OpenWayback

5.1 Attack #1: Archive-Escape Abuse
Preliminaries andAttacker.The precondition for Archive-Escape
Abuse is the presence of an archive-escape vulnerability in the vic-
tim snapshot. The potential attacker is the owner of the destination
of the archive-escape, to whom the client makes a request for the
vulnerable resource. Because the attacker delivers the payload from
their own servers (rather than via the archive) at time-of-access,
we refer to this as an active attack.
Attack Concept. To mount this attack, the attacker (the desti-
nation of an archive-escape), publishes malicious content at the
escaping URL. If the archive-escape is to a static resource like an
image, then the attacker will only be able to affect that resource; if
the archive-escape is a request for a script or stylesheet, then the
attacker can choose arbitrary malicious code to execute.
Sequence of Events for Attack #1.

(1) The victim page is published. (Optional: If the attacker is the
first-party domain wishing to enable future modifications of
itself, the attacker can intentionally include requests which
will result in archive-escapes.)

(2) The page is archived as the victim snapshot.
(3) The victim snapshot, when loaded, causes the client browser

to make an archive-escape request.
(4) The attacker (who owns the domain on which the escaping

script is hosted) serves malicious code in response to the
archive-escape request. The malicious code runs in the client
browser and modifies the appearance of the snapshot so that
the client sees an inaccurate view of the page.

Proof ofConceptAttack Implementation.Wedeveloped a proof-
of-concept implementation of Attack #1, demonstrating the abil-
ity to attack snapshots of websites over which we have no con-
trol and which were archived years ago. We used our measure-
ments (Section 6) to locate archive-escape vulnerabilities where
the attacker domain was unowned, using whois. Finding that http:
//web.archive.org/web/20110901233330/reuters.com generates an
archive-escape to http://cdn.projecthaile.com/js/trb-1.js, and that
as of 19 March 2017, projecthaile.com had no owner. We purchased
projecthaile.com and hosted our own version of /js/trb-1.js which
modifies specific elements of the reuters.com snapshot. This attack
resulted in the screenshot shown in Figure 1, in which we replaced
a news article image and headline with our own.

As with all of our attacks against snapshots we do not own, we
disabled the attack after confirming that it worked, so as not to
disrupt the public’s view of the snapshot. Additionally, we have
purchased the remaining unowned domains (without hosting any-
thing from them) for this attack to prevent any other attackers from
buying and using them.
Advantages and Disadvantages of Attack #1. Attack #1 is an
active attack, where the attacker’s server delivers payloads directly
to clients, allowing an attacker to modify their attack over time,
customize it per client, or disable the attack entirely. However,
it also means the attack is not permanent. Additionally, defenses
which block archive-escapes are among the easiest for clients to
deploy.

http://web.archive.org/web/20110901233330/reuters.com
http://web.archive.org/web/20110901233330/reuters.com
http://cdn.projecthaile.com/js/trb-1.js
projecthaile.com
projecthaile.com
/js/trb-1.js
reuters.com

5.2 Attack #2: Same-Origin Escape Abuse
Preliminaries and Attacker. Potential Same-Origin Escape at-
tackers include all third-parties embedded in <iframes> at time-
of-archive. However, this attack requires foresight— the attacker
needs to have included their payload inside their <iframe> at time-
of-archive, so that it can be preserved and served from the archive’s
database. Note that this makes Attack #2 a passive attack, since the
payload is stored and delivered to the client by the archive, rather
than directly from the attacker’s server at time-of-access.
Attack Concept. As described above, this attack abuses the lower
level of isolation which the client browser applies to frames when
they are delivered from a single origin (the archive’s origin) rather
than multiple origins, as they are served on the live web. The first-
party publisher includes the attacker in their page under the as-
sumption that malicious code the attacker writes to deface the first-
party’s page will be unable to do so because of the Same-Origin
Policy, and this assumption is violated in the archival context.
Sequence of Events for Attack #2.

(1) A victim site includes a third-party in an <iframe>, where
they are now a potential Same-Origin Escape attacker.

(2) The third-party attacker publishes malicious code in its
<iframe>.

(3) In the live web, the malicious code executes, but its effects
are blocked by the browser, according to the Same-Origin
Policy.

(4) The first-party page is archived as a snapshot, including the
attacker’s <iframe>.

(5) When the snapshot is loaded, both the page and the <iframe>
are served from web.archive.org. Since they are now served
from the same domain, the Same-Origin Policy no longer
applies, and the malicious code in the <iframe> can make
arbitrary modifications to client’s view of the page.

Proof of Concept Attack Implementation. For Attack #2, we
developed a prototype demonstration against a toy website which
we created and archived for demonstration purposes. The reason
is that this attack requires the attacker to be a third-party with
foresight, and we do not have a third-party position on any websites
we do not control which we could use to demonstrate the attack.

Thus, to demonstrate this attack, we published, on the live web,
the victim page of our first-party domain, including an <iframe>
of our third-party domain. Inside the <iframe>, we then deployed
attack code which attempts to modify elements of the first-party
page. On the live web, this attack code fails, due to the Same-Origin
Policy. We then requested that the Wayback Machine “Save Page
Now” for our first-party victim page, causing it to archive that
page and, as part of archiving that page, also archive the attacker’s
<iframe> with its attack code. When viewing the snapshot of the
victim page in the archive, both first- and third-party content are
served from the same domain, causing the Same-Origin Policy to no
longer apply, and allowing the third-party code to modify clients’
views of the victim snapshot.
Advantages and Disadvantages of Attack #2. This attack has
several strengths. First, the prerequisites for performing the attack
are minimal, since all that is required is to be a third-party who can
execute Javascript. Third-party frames are commonly embedded

and trusted by websites, and it may even be possible to purchase
advertising space in order to gain the position needed to execute the
attack. Additionally, there are some third-parties who are present
on a large fraction of websites (see Section 6), meaning that for
certain attackers, this attack represents a huge capability to modify
snapshots of a large number of websites.

However, this attack is significantly limited because the attacker
must have foresight: Their attack code, and thus the changes they
wish to cause in the client’s view, must be chosen before time-of-
archive, since the attack code must itself be stored in the archive.

5.3 Attack #3: “Same-Origin Escape” +
“Archive-Escape”

Preliminaries and Attacker. Noting the limitation of Attack #2
requiring foresight, we consider a stronger way to use Same-Origin
Escapes: Attack #3. This attack uses a Same-Origin Escape to create
an intentional archive-escape, allowing the attacker to launch a
later attack without foresight. Attack #3 is applicable any time
Attack #2 is applicable, since it begins with a third-party in an
<iframe> executing Attack #2 in order to create a later opportunity
for Attack #1.
AttackConcept. This attack combines Attacks #1 and #2. Here, the
attacker uses a Same-Origin Escape (malicious code in an <iframe>)
to intentionally cause archive-escapes, with a destination the at-
tacker controls, in the snapshot of the victim page. Once this has
been done, the attacker is now capable of performing archive-escape
abuse, immediately or at a later time.
Sequence of Events for Attack #3.

(1) The attacker must be a third-party who is embedded as an
<iframe> on the target page as of time-of-publication.

(2) The attacker chooses a destination payload URL which they
control, and embeds an archive-escape to that URL as the
src attribute of a <script> tag in their <iframe>.

(3) The page, along with the <iframe>, is archived.
(4) Some time in the future, the attacker chooses and publishes

a payload at the archive-escape URL.
(5) When a client browser loads the snapshot, the archived

<iframe> is retrieved from the archive, including the script
which causes an archive-escape. The browser retrieves the
payload and executes it in the context of the <iframe>. Since
the <iframe> is archived, it is not isolated by the Same-
Origin Policy (see Section 5.2) allowing the modern attack
script to cause arbitrary modifications to the client’s view of
the snapshot.

Proof ofConceptAttack Implementation. SinceAttack #3 lever-
ageAttack #2 (Same-Origin Escape), we created a similar victim/attacker
pair of testbed websites to demonstrate this attack. We again de-
ployed attack code inside a third-party <iframe>, but in this case
our attack code used string concatenation to create an archive-
escape to the third-party domain rather than directly modifying the
snapshot content directly. We then hosted the snapshot-modifying
code on the live web at the third-party domain.
Advantages andDisadvantages ofAttack #3.This attack allows
archive-escape attacks against a page which does not naturally
generate any archive-escapes to the attacker’s domain, making it

web.archive.org

subject to the disadvantages of archive-escape attacks discussed
above.

Since the archive-escape payload can be chosen after time-of-
archive, this attack reduces a Same-Origin Escape attacker’s need
for foresight: they must only choose to enable a future attack by
embedding a small amount of archive-escape generating code in
the <iframe>, without the need to know how exactly they will
change the snapshot in the future. An attacker such as a content
delivery network or advertiser which appears on many pages could
even choose to seed many pages with archive-escapes in order to
preserve their ability to attack snapshots of many pages later on.

5.4 Attack #4: Anachronism-Injection
Preliminaries and Attacker. The precondition for Anachronism-
Injection is a page which contains at least one resource which has
never been captured by the archive. The potential attacker is the
owner of the domain of that never-archived resource, who is in a
position to publish a malicious version of that resource and cause
that payload to be preserved in the archive as the resource’s first
(and at that point only) capture.
AttackConcept.The attacker publishes payload code to themissing-
resource’s URL on the live web, then uses the archive’s “Save Page
Now” feature to archive the payload. For example, a snapshot from
2000 might include a script capture, also from 2000. If that script has
never been archived, then today, in 2017, the owner of the script’s
domain can publish a malicious payload at the script’s URL and
use the archive’s “Save Page Now” feature to create a capture of
the script with a 2017 timestamp. Once the missing resource has
been archived, it will be the only capture of that resource in the
archive (since a precondition of the attack was that the resource had
never before been archived). As the only capture of the resource, its
timestamp necessarily is (and always will be) the nearest neighbor
to the timestamp requested in the victim snapshot, despite being 17
years distant. Thus the payload will be loaded in the context of the
victim snapshot, as client requests are nearest-neighbor redirected
to the malicious payload’s timestamp. Even if more captures of the
malicious resource are made afterwards, the payload will always
have a timestamp that is strictly earlier, and thus which is closer to
the victim snapshot’s timestamp, than those subsequent captures,
making the attack permanently effective.
Sequence of Events for Attack #4.

(1) A victim snapshot refers to a vulnerable resource which has
never been archived.

(2) The attacker, who owns the vulnerable resource’s domain,
publishes an attack payload on the live web.

(3) The attacker uses the archive’s “Save Page Now” feature to
cause the payload to be preserved as the first and only extant
capture of the vulnerable resource.

(4) When a client browses the victim snapshot, their browser
makes a request for the vulnerable resource at the timestamp
of the snapshot. In response, the archival front-end redirects
the client browser to the malicious, anachronistic capture
of the resource, since it has the timestamp closest to the
requested version.

Proof-of-Concept Attack Implementation. As with Attack #1,
we could demonstrate the Anachronism-Injection attack on snap-
shots of previously-archived websites over which we have no con-
trol. However, because this attack permanently alters the victim
snapshot (even if our injected anachronism is not expressly mali-
cious), we chose not to implement this attack on real victim snap-
shots. Instead, we test it on our own testbed websites, similarly to
Attacks #2 and #3.

We note that executing this attack took careful planning, since
on several occasions we deployed attack code that was slightly
incorrect, forcing us to start over with entirely new victim and
attacker pages, since once the attack code is archived, the attacker
is unable to replace it with different attack code, since all subse-
quently archived code will have a timestamp farther from the victim
snapshot’s timestamp. However, using this attack we were able to
take control of our testbed victim snapshot.
Advantages and Disadvantages of Attack #4. This attack is a
passive attack, with the advantage that once the attack is in place,
it becomes permanent. However, the flip side to this advantage is
that the attacker cannot easily disable the attack, since the content
which enables the attack has been permanently preserved in the
archive’s database.

Indeed, this attack’s main weakness is that it is a one-time op-
portunity. Once the attacker has created a payload and caused it to
be archived, they no longer have any way to change the behavior of
that attack, since it is permanently the closest neighbor to the vul-
nerable resource. However, an attacker could choose to make two
distinct modifications to the attack to gain the ability to continue
to modify the payload over time:

(1) Archive-escape extension. In this version of the attack,
the malicious code creates an intentional archive-escape,
allowing persistent control from the present by the attacker.
This version fails against archive-escape-blocking defenses.

(2) Anachronism chaining. In this version, in addition to per-
formingmalicious modifications of the snapshot, the payload
also causes the client to make a request for the archival
version of another, different URL which has never been
archived. In other words, while deploying the payload, the
attacker intentionally creates the preconditions for another
Anachronism Injection attack, which they can exploit in the
future. For example, the archived payload script attack0.js
might make a request for the never-archived script attack1.js.
This request will fail until the attacker changes the con-
tent of the snapshot again, at which point they host and
archive attack1.js. This chaining can continue indefinitely
(attack2.js, attack3.js, etc.).

5.5 Reflecting on Attacks
We now step back and reflect on our attacks, which are summarized
in Table 1.We highlight several axes alongwhichwe can distinguish
our attacks:
Passive vs. Active Attacks.Attacks differ by whether the payload
is loaded from the archive itself — a passive attack—or from an at-
tacker’s live web server— an active attack. In a passive attack, the
attacker is not actively involved at time-of-access. Specifically, At-
tacks #1 and #3, which both use archive-escapes, are active attacks,

attack0.js
attack1.js

Requires Passive or
Name Foresight? Active?
1 Archive-Escape Abuse No Active
2 Same-Origin Escape Yes Passive
3 Same-Origin Escape -> Archive Escape Yes Active
4 Anachronism Injection No Passive

Table 1: A summary of the attacks we develop. Attacks re-
quiring foresight necessitate the attacker to plant a payload
(e.g., Javascript code) before the time-of-archive of the victim
page. At the time-of-access, attacks served from an archived
version of an attacker’s page are passive, whereas attacks
served from the attacker’s server in the live web are active.

since the attacker’s server is the destination of the archive-escape.
By contrast, Attacks #2 and #4 deliver payloads the attacker has
placed in the archive, and which are delivered to the client by the
archive front-end.
Some Attacks Require Foresight. Some attacks require foresight
on the part of the attacker. By foresight, we mean that the attacker
must define the attack payload (e.g., the Javascript code to run on the
snapshot when viewed by a client) at the time-of-publication of the
victim page. Specifically, attacks based on origin-escapes (Attacks
#2 and #3) require the attacker to plant malicious code inside an
<iframe> on the victim page. Attackswhich do not require foresight
(Attacks #1 and #4) allowing the attacker to choose a payload at
any time, including after time-of-archive. For example, in Attack
#1, the attacker can even change this payload over time (whereas
once an anachronism has been injected in Attack #4, that payload
is fixed).
Partial vs. Full Control. For all attacks, vulnerabilitiesmay permit
either partial-control or complete-control attacks, depending on the
type of resource the attacker controls in the specific instance of the
attack. If an attacker controls static resources like text or images,
the attacker can only changes those particular elements (partial-
control). If an attacker controls client-side code, such as Javascript
or a CSS stylesheet, the attacker can leverage that code for complete-
control, gaining the ability to modify any part of the client’s view
of the snapshot, such as its text, styling, images, layout, client-
side dynamic behavior, and so on. We explore the prevalence of
partial-control and complete-control attacks in the Section 6.

6 MEASURING PREVALENCE OF ARCHIVE
VULNERABILITIES

6.1 Measurement Methods
Measurement Tool. We used TrackingExcavator, the archival
measurement tool we developed for a previous project, for our mea-
surements [10]. TrackingExcavator is a Chrome extension which
automatically visits an “Input Set” of URLs, locates them in theWay-
back Machine at a requested timestamp, and collects event traces as
it loads and renders those URLs. These event traces include events
for all HTTP requests the browser makes, which we use to locate
vulnerabilities to our attacks.

With the publication of this paper, we are releasing TrackingEx-
cavator publicly at http://trackingexcavator.cs.washington.edu/.

Our Datasets. Our measurements include measurement traces
from three sets of URLs:

For the Top 500, we downloaded the publicly available traces
from [10]. 5 For the TopMillion, we used historical versions of the
Alexa Top Million CSV file for the years from 2010-2017, which we
located in the Wayback Machine [7]. We sampled every thousandth
site from those Top Million lists, such that we visited sites with pop-
ularity rank 1, 1001, 2001, ..., etc., similar to other papers that have
sampled from the Top Million [42]. These traces cover a different
(but sometimes overlapping) set of URLs in each timestamp year,
with a trace for each site’s snapshot once for each year in which it
appeared in the Top 500 or our Top Million sample.

For each of our Top 500 and Top Million datasets, we report
on data collected only from the archived homepages of each do-
main examined, e.g., from a snapshot of the url http://example.com.
However, in Section 6.2, we report on additional measurements we
performed examining other pages from the same domains, finding
that sites are often vulnerable not only on their archived homepages,
but also on subpages linked from the homepage.

For our Legal URL dataset, we searchedWestlaw and LexisNexis
for court decisions, court filings, and federal agency administrative
decisions which contained the phrase “web.archive.org” [8, 9]. We
found that both legal databases contained substantially similar
results, and so used only the results from Westlaw. We then located
Wayback Machine URLs cited in these materials, collecting separate
lists of URLs for each category of legal proceeding (court decisions,
court filings, administrative decisions). These include 119 URLs
cited in 101 court decisions, 255 URLs cited in 302 appellate briefs,
159 URLs cited in 217 expert material documents, and 307 URLs
cited in 371 administrative decisions. 6 We collected traces of the
snapshots at the exact URLs cited in the legal materials.
Measurement Parameters.We crawled the archive fromAmazon
EC2 t2.large instances, rendering Chrome (running TrackingExca-
vator) headlessly inside a virtual frame buffer. We opened 3 tabs at
once, one tab per snapshot, and remained on each snapshot for 40
seconds, which [10] found is a sufficient for snapshots to complete
loading in the browser. We set TrackingExcavator to block (but still
record) archive-escape requests, in order to prevent contaminating
our view of the archive with live data. This means we undercount
overall archive-escapes that would be seen by an ordinary browser
(since we miss archive-escapes caused by other archive-escapes),
making our numbers a conservative lower-bound on the archive-
escapes a client will encounter in the wild.

6.2 How Often Are Archived Sites Vulnerable?
Figure 3 depicts the prevalence of all types of vulnerabilities to
our attacks in the top panel, and the prevalence of vulnerabilities
which allow the most powerful attacks (complete-control without
foresight) in the bottom panel. This figure depicts only data from
the Top 500— the trends we found in the Top Million were similar.
Three-Fourths of Archived Sites Are Vulnerable. Considering
the union of the top sites across all years, we studied 2692 distinct
sites from the Top 500 and 7000 distinct sites in the Top Million.

5Available at https://trackingexcavator.cs.washington.edu/, Accessed 2017-03-30.
6In an administrative decision, a U.S. federal agency resolves lawsuit-like cases related
to the agency’s jurisdiction. They may replace or precede normal lawsuits.

http://trackingexcavator.cs.washington.edu/
http://example.com
https://trackingexcavator.cs.washington.edu/

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 T
op

 5
00

Prevalence of Vulnerabilities on Archived Domains

Vulnerable to Any Attack
Vulnerable to ArchiveEscape
Vulnerable to SameOrigin Escape
Vulnerable to Anachronism Injection

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 T
op

 5
00

Vulnerability to Strong Attacks

Vulnerable to CompleteControl #1/#4 Attack
Vulnerable to CompleteControl ArchiveEscape
Vulnerable to CompleteControl Anachronism Injection

Figure 3: Top: The prevalence of vulnerabilities to our at-
tacks across the Top 500 sites. Bottom: The prevalence of vul-
nerabilities to the particularly strong class of attacks which
provide complete-control without foresight (Attacks #1 and
#4with script/stylesheet as vulnerable resource). Not shown:
Our TopMillion dataset shows very similar trends to the Top
500.

We found found that 73% of those Top 500 sites and 80% of those
Top Million domains were vulnerable to one of our attacks, either
now (for Archive-Escape or Anachronism-Injection vulnerabilities,
which do not require foresight) or at time-of-archive (for Same-
Origin Escape vulnerable snapshots, which do require foresight).

Recall that for each vulnerable snapshot, there is a limited set of
domains which are capable of exploiting that vulnerability (e.g., the
destination domain of an archive-escape vulnerability, or the owner
of the domain of a missing resource). That is, not anyone can mount
these attacks— only attackers who own or are able to acquire these
domains. We consider the number of unowned domains (accessible
to anyone) later in this section.

As shown in Figure 3, these vulnerabilities are widespread and
varied in type, endangering client views of a large fraction of
archived sites. Archives and their users should take care to en-
sure they put appropriate levels of trust in archival data, given the
frequency with which they are vulnerable to manipulation.
Sites Are Vulnerable To Strong Attacks. While the top of Fig-
ure 3 considers all of our attacks, the bottom panel considers a

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bl
e

D
om

ai
ns

 W
hi

ch
 W

er
e

A
ls

o
V

ul
ne

ra
bl

e
In

 P
re

vi
ou

s
Y

ea
r

Domains Often Remain Vulnerable Over Time

Vulnerable to Either Attack
Vulnerable to ArchiveEscape
Vulnerable to Anachronism Injection

Figure 4: The increasing tendency of snapshots to remain
vulnerable to our attacks across subsequent years. This fig-
ure represents the number of snapshot domains in each year
whose snapshot from the previous year was also vulnerable
to the given attack(s).

particularly strong, category of attacks: Archive-Escape (#1) and
Anachronism Injection (#4) vulnerabilities which enable complete-
control. Even vulnerabilities to this strong class of attacks are quite
common in the archive: 38% of Top 500 domains and 65% of Top
Million domains are vulnerable.
Prevalence of SomeVulnerabilities Has Changed Over Time.
The prevalence of our vulnerabilities varies over the age of snap-
shots in the archive. For example, more recently captured snapshots
are dramatically more likely to be vulnerable to archive-escape
abuse. For example, in both the Top 500 and Top Million, the frac-
tion of snapshot domains vulnerable to archive-escape abuse in-
creased from 22% to nearly 80% over the period from 2007 to the
present day. We believe that this trend is due to the increasing
complexity of sites over the history of the web, since URL rewriting
failures, which cause archive-escapes, often result in client-side
dynamic behaviors in sites. As sites have grown more complex
with more client-side dynamic behaviors, so have the prevalence
of archive-escapes and the vulnerabilities that they cause.
Snapshot Domains Remain Vulnerable Over Archival Time.
The series of snapshots of a site in the archive may span years
or decades, as a site ages. We find that not only are individual
snapshots often vulnerable (Figure 3), but also that many of the
websites we studied remained vulnerable over long periods of time.
Figure 4 shows the number of vulnerable domains in each year
which were also vulnerable in the previous year. For example, of
the snapshot domains which were vulnerable to Archive-Escape
Abuse in 2016, about 80% of them were also vulnerable in 2015.

This type of continuous vulnerability suggests that the appear-
ance of vulnerabilities in these sites may be due to structural el-
ements of the way the sites are designed and published, such as
publishers’ choices to embed third-parties, to use client-side dy-
namic behavior, and to include third-party Javascript libraries. This
implies both that changes in the architecture of these sites might
alleviate these vulnerabilities, but also that they are unlikely to go

Potential Attacker Number of Possible Victims
google-analytics.com 108
googletagservices.com 78
facebook.net 67
googletagmanager.com 66
doubleclick.net 59
gstatic.com 56
criteo.com 27
amazon-adsystem.com 22
newrelic.com 22
cloudfront.net 21

Table 2: The third-party domains capable of attacking the
most snapshot domains we studied. Do we not suggest that
any of these domainshave orwould deploy any such attacks.

away on their own, especially as many of the more complex aspects
of the modern web may lead directly to some of our attacks.

We note that continuous vulnerability of a website may be valu-
able to attackers who need to modify the appearance of a particular
snapshot of a website for their goals. If a large fraction of the
snapshots of a website are vulnerable over time, the chances are
much greater that an attacker will be able to exploit the particular
snapshots needed for their goals.
Both Homepages and Subpages are Vulnerable. In addition to
the other measurements described in this section, which examined
only homepages, we also performed a smaller measurement of
pages linked to from those homepages (“subpages”), to determine
whether vulnerabilities also occur off the front page of websites.

For this measurement, we configured TrackingExcavator to visit
up to 5 links on each homepage it visited in the archived 2016 top
500. It selected only links which led to snapshots of the same do-
main. Following this criteria, if a homepage had no within-domain
links, or we were unable to follow those links for some reason, we
excluded it from this analysis.

We found 236/500 domains on which we were able to follow
at least one link which remained within the domain but led to a
different page on that domain. Of these 236 domains, we found
that 192 (81%) of them contained an archive-escape vulnerability
on either a homepage or a subpage, which is roughly consistent
with our larger results across the entire top 500%. For 124/236 (52%),
had vulnerabilities on both the homepage and at least one subpage,
15/236 (6%) had vulnerabilities only on the homepage, and 53/236
(22%) had vulnerabilities only on subpages.

These results suggest several things. First, the fact that vulner-
abilities frequently appeared in this analysis on subpages but not
on homepages suggests that our main numbers may undercount
the total vulnerability of the archived web, as the rest of the num-
bers reported in this paper are derived from measurements only of
archived homepages. Second, the frequency with which vulnerabil-
ities appear on both homepages and subpages of the same domain
suggests support for our hypothesis that these vulnerabilities are
often created by structural elements of websites which are used
across multiple different pages and remain over time.

6.3 How Many Potential Attackers Are There?
Some Potential Attackers Have the Ability to Compromise
Many Domains’ Snapshots. Recall that potential attackers are
those who own, or can obtain, the domains associated with vulner-
abilities. There are a total of 2077 Attack #1/#4 attackers over the
2692 sites in our Top 500 dataset (3298 attackers over 7000 sites in
the TopMillion). Many of these attackers are quite limited in the tar-
gets they can attack, with just over half of attackers in the Top 500
only able to attack a single, particular snapshot domain (40% in the
Top Million). However, attackers with more widespread opportuni-
ties exist. Table 2 shows the individual third-party domains which
could launch Attacks #1 or #4 against the most snapshot domains.
Many of these domains are third-party domains which appear as
across a large number of sites, such as advertising and analytics
networks, social network widgets, and content distribution services.
We do not expect any of these companies to maliciously modify the
archive; rather, we list them to characterize the types of modern
web practices which so frequently lead to our vulnerabilities.
First vs. Third PartyAttackers.While Same-Origin Escape based
attacks (#2 and #3) can only be executed by a third-party domain,
both Archive-Escape Abuse and Anachronism Injection attacks (#1
and #4) can be performed by both first- and third-parties. Both of
these types of attackers are interesting, although they represent
significantly motivated attackers. The first-party is usually the
original publisher of the information in the snapshot, and so a first-
party attacker is changing content they published, while a third-
party attacker is generally changing content which was originally
created and published by the first-party. While both first- and third-
parties are potentially interesting attackers, we note that individual
site owners may be more alarmed by the potential for third-parties
to modify their snapshots.

Over the existence of the archive, third-party attackers have
become much more common for archive-escape vulnerabilities, to
the point that nearly every (97%) recent snapshot with an archive-
escape vulnerability includes at least one to with a third-party
destination, up from 60% since 2007-timestamp snapshots. We hy-
pothesize that this trend is caused by the combined trends in the
modern web of increasing complexity and increasing inclusion of
third-parties. By contrast, third-party missing resources have be-
come less common over time. They made up nearly all missing
resource vulnerabilities in 1996 (98%), and only about 40% in 2016.
Unowned Attack Domains. Our vulnerabilities enable attacks
by particular domains on the Internet, but the ownership of that
domain may shift over time. Indeed, attacker domains are some-
times completely unowned. Aggregating across our datasets, we
found 23 archive-escape destination domains and 60 never-archived
resource domains which were unowned as of Spring 2017. These
domains can be purchased by anyone to launch an attack on their
vulnerable sites. This is how we performed our proof-of-concept
attack (Figure 1). We found no unowned attack domains in our legal
dataset.

6.4 Measurements of URLs Used in Court
Proceedings

We now analyze our dataset of the archive.org URLs used in court
proceedings. Recall from Section 6.1 that this dataset consists of 840
URLs from 991 legal documents. Because they have been cited in
court proceedings, the accuracy of these archived pages is critical —
or, conversely, the motivation clearly exists for a potential attacker
to manipulate one of these snapshots to influence legal proceedings.

In this section, we thus investigate the prevalence of vulnerabili-
ties in these snapshots. We stress that the presence of a vulnerability
does not imply that an attack actually occurred. Indeed, evaluating
the question of whether an attack occurred is challenging, since, for
most attacks, they can be temporarily enabled and then disabled.
Instead, our goal is to survey the prevalence of these vulnerabilities
in specific archives that have been used in legal proceedings in the
past, to serve as a note of caution for the use of archived URLs in
future proceedings.

For these legally referenced snapshots, we considered only At-
tacks #1 and #4, which do not require foresight, and thus could be
mounted after the fact, at the time of legal proceedings. 57 were
vulnerable to Attack #1, and 37 of those were complete-control
vulnerabilities. However, none contained never-archive resources,
which is quite unlike the archive at large, which commonly contains
never-archived resource vulnerabilities (Figure 3). We hypothesize
that URLs cited in legal proceedings may be of higher quality since
they were curated by experts deciding which URLs to cite.

If these vulnerabilities had been exploited at the time of these
legal cases, they could have given an attacker the ability to hide
or plant evidence. Again, we stress that we have no reason to
believe that any of these vulnerabilities were exploited at the time
of the relevant court proceedings, but emphasize that future use
of archived URLs in legal or other similar matters must be treated
with caution.

7 DEFENSES
In this section, we explore the space of possible defenses against
our attacks, including defenses which detect or block our attacks.
As an overall defensive goal, we aim to allow users of archives to
have more confidence in their understanding of the web of the past.

We organize our defenses first by who deploys them: website
publishers, archives, or clients, and categorize them additionally by
when they can be deployed (i.e., whether they work retrospectively,
after time-of-attack). This breakdown is important, since while
end-user defenses are the easiest to deploy for high-value expert
users, but we recognize that most ordinary users will not install
defenses, suggesting that exploring centrally deployed defenses is
also important. Table 3 summarizes these defenses, and we discuss
them in detail below. We also we present the implementation of
ArchiveWatcher, a browser extension which detects and blocks
archive-escapes and anachronisms.

7.1 Defenses Deployed by Website Publishers
We begin with defenses website publishers can deploy to protect
snapshots of their won websites. These defenses work for all clients,
but must be separately deployed by each website, and some are
not retroactive, since publishers cannot modify previously archived

data. First-party attackers, may avoid deploying these defenses to
retain editorial power over their site’s past.

7.1.1 Opt-Out of Archives. Websites can opt-out of being pre-
served in the Wayback Machine, sidestepping the possibility of
archival vulnerabilities. The Wayback Machine has long respected
website publishers’ opt-out preferences in two ways: manual re-
quests, and the use of robots.txt policy files. By opting out of
preservation entirely, a site would avoid having snapshots which
could be manipulated, preventing all attacks in this paper.

The downside to this defense is that the relevant sites are not
archived or available for the public to browse in the archive, elimi-
nating all the social and cultural benefits the archive brings. This
defense throws the baby out with the bathwater. Some sites may
also not be legally permitted opt-out, such as government sites with
archival requirements. Additionally, this defense may soon become
much less viable: Wayback Machine has expressed, in a recent blog
post, an intent to give less weight to robots.txt files, saying that
as of April 2017 it now ignores robots.txt on U.S. government
and military websites and is “looking to do this more broadly.” [6]

7.1.2 Avoid Dynamically Generated URLs to Avoid Archive-Escapes.
Website publishers can reduce the incidence of archive-escapes by
designing their websites to use fewer dynamically generated URLs,
since these are a common cause of archive-escapes.

This approach has two major weaknesses. The first is that dy-
namic behavior and URLs are a common, valuable feature of the
modern web, and asking engineers to do without them could be
inconvenient and expensive. Second, this defense cannot protect
against archived-escapes caused by third-party content, such as
third-party Javascript libraries, which are commonly used and
whose behavior is not fully under the control of the publisher.

7.1.3 Actively Archive Subresources. In Anachronism Injection,
the attacker wants to replace a subresource which has never been
archived with a malicious payload. One way to defend against
this attack is to preemptively replace missing subresources with
benign resources, plugging the vulnerability. Though anyone can
use the “Save Page Now” feature to plug vulnerabilities — the same
feature attackers use to archive their payloads—website publishers
wishing to defend their pages in the archive likely have the greatest
incentive to do so. However, if no benign resource is published at
the URL, the defense will not work. The non-malicious content
could be the correct content which was originally present at the
URL, an empty response, or even a 404 Not Found response. In
all these cases the archive will record the given response as the
only capture of the resource and serve it, causing no harm, as the
nearest-neighbor to the vulnerable reference.

The most significant limitation of this defense is that only the
potential attacker can publish a benign resource to be archived—
the permission to enact this defense lies with the potential attacker.
While anyone can ask to “Save Page Now” for any URL, this process
only works for resources where the server responds to the crawler’s
response with some response, even if it is simply a 404 error. Thus
attackers who wish to ensure against malice by themselves in the
future, or by later owners of their domain, can use this defense, but
it will be ineffective when the first-party wants to launch an attack.

Goals
Defense Prevent Detect Who Deploys? When?
Opt-Out of Archives ✓ Website Owner Any Time
Avoid Dynamically Generated URLs ✓ Website Owner Time-of-Publication
Actively Archive Subresources ✓ Website Owner Time-of-Archive
Modify Archived Javascript to Avoid Escapes ✓ ✓ Archive Any time
Serve Distinct Archived Domains from Distinct Subdomains ✓ Archive Any time
Escape-/Anachronism- Blocking Browser Extension ✓ End-user Time-of-Access
Escape-/Anachronism- Highlighting Browser Extension ✓ End-user Time-of-Access

Table 3: A summary of the defenses we explore.

7.2 Defenses Deployed by Web Archives
Defenses deployed by archives have the potential to be quite power-
ful, since archives can change the data they store in their database
(as they do with URL rewriting) and the data they collect in the
future, to provide both forward-looking and retroactive defense
which protect the views of all clients.

7.2.1 Use Content Security Policy Headers to Block Escapes. Af-
ter we disclosed the results of this paper to Internet Archive, they
modified the Wayback Machine to include Content Security Policy
(CSP) headers in their responses when serving archived content.
These headers can be used to instruct client browsers to block
the use of third-party resources in the context of a snapshot, thus
preventing both archive-escape requests and their abuse. We con-
firmed that theWaybackMachine’s changes blocked archive-escape
requests such as the one which allowed our attack in Figure 1.

7.2.2 Modify/Analyze Javascript to Prevent Escapes. In this de-
fense, the archivewould statically and dynamically analyze Javascript
code it captures in order to identify scripts might cause archive-
escapes. The archive would then rewrite or wrap these scripts,
replacing the original script with a version that performs the same
operations but avoids generating archive-escapes. For example,
such a defense might hook calls to browser APIs which generate
HTTP requests, interposing on them to rewrite URL arguments to
ensure they do not point outside the archive.

This solution is complex, and its implementation might involve
many engineering hours. Additionally, executing the defense on
each archived resource at time-of-archive might be computationally
expensive. However, if successful, this defense might permit the
Wayback Machine’s URL rewriting to be much more pervasive,
applying even to client-side dynamically generated URLs, the main
source of vulnerabilities that we identify in the archive today.

7.2.3 Serve Distinct Archived Domains from Distinct Subdomains.
Archives could defend against Same-Origin Escapes by serving
content from distinct subdomains, each of which corresponds to the
live domain from which that content was originally published. For
example, an archivemight choose to serve captures of example.com/
script.js from the subdomain http://example.com.web.archive.org/
instead of from http://web.archive.org. Since the Same-Origin Policy
considers subdomains as distinct domains, this would cause client
browsers to provide the same isolation in the archival context as
they do in the live context, preserving the same trust model across
both live and archival executions of the page. We recommend that
archives consider implementing this defense.

7.3 Defenses Deployed by Clients
Finally, we discuss defenses deployed inside the client’s browser.
Individual clients can unilaterally deploy these defenses, giving
them high value today. For example, experts in legal cases might
use these defenses to provide more trustworthy testimony. These
defenses are limited by the fact that each client must separately
install the defense, but they do apply to all snapshots in the archive.

7.3.1 Browser Extensions to Block/Highlight Escapes and Anachro-
nisms. This defense interposes on and blocks Archive-Escape and
Anachronistic requests made for subresources while browsing the
archive. It prevents Archive-Escape Abuse by blocking all HTTP
requests from a snapshot which leave the archive. Since the distinc-
tion between archive-escapes and archival requests is cut and dry
(distinguishable by the destination domain of the request), such a
defense should be highly effective against Archive-Escape Abuse.

This defense protects against Anachronism Injection not by pre-
venting the payload from being stored in the archive (as does the
Actively Archive Subresources defense, above), but by blocking the
anachronistic request which delivers that payload to the client. It
does so by blocking anachronistic requests— those requests for
archival resources which have timestamps far from the timestamp
of the enclosing page. This involves an inherent tradeoff, in which
the defense or its user must define how anachronistic a resource
must be to be blocked. In the most extreme case, only resources
with timestamp exactly equal to the snapshot’s timestamp can be
loaded, leading to complete blocking of the vulnerability, but also
preventing many legitimate resources from being loaded, leading
to a less complete picture of the past web.

This defense can also (or instead) visibly highlight, log, or sum-
marize archive-escapes and anachronistic requests and the visible
page elements which correspond to them. Such a feature can help a
human expert to better judge the accuracy of a snapshot. Archive-
Watcher, described in more detail below (Section 7.4), is an example
of this type of defense.

7.4 ArchiveWatcher: An End-User Defense
We prototyped ArchiveWatcher, a client-deployed defense consist-
ing of a browser extension which detects and blocks archive-escape
request vulnerabilities. ArchiveWatcher is implemented as a light-
weight Chrome Extension which interposes on requests made for
resources while browsing snapshots https://web.archive.org/web.
It is written in 6000 lines of Javascript, CSS, and HTML, and its
souce code can be found on Github by following the links at https:
//rewritinghistory.cs.washington.edu.

example.com/script.js
example.com/script.js
http://example.com.web.archive.org/
http://web.archive.org
https://web.archive.org/web
https://rewritinghistory.cs.washington.edu
https://rewritinghistory.cs.washington.edu

As described above in Section 7.3.1, ArchiveWatcher blocks re-
quests for archive-escapes. It can display to the user a summary of
the requests it has detected and blocked on the current snapshot
and across the current browsing session. ArchiveWatcher suggests
directions for defenses which could aid technical experts assessing
the veracity of archival snapshots.

8 CONCLUSION
In this paper, we have explored the space of attacks which can
rewrite history— i.e., attacks that can manipulate how clients see
archived websites, focusing on the Wayback Machine. Though
it is known that the archive contains accidental inaccuracies, to
our knowledge, we are the first to explore how an attacker might
introduce intentional errors. We identified and explored several
vulnerabilities in how the Wayback Machine archives and serves
snapshots of websites, and we developed four attacks that leverage
these vulnerabilities. We demonstrated proof-of-concept attacks on
the Wayback Machine, showing that we were able to manipulate
client views of snapshots without compromising the archive’s or
any other servers. We then quantified the prevalence of these types
of vulnerabilities, finding that over 70% of the sites we investigated
are vulnerable to this type of manipulation by some attacker.

Theweb is important to ourmodern society, makingweb archives
a critical source of socially important information, from journalism
to legal proceedings. This work suggests the importance for website
publishers, archive designers, and end users to take steps to prevent
or detect intentional manipulation.

ACKNOWLEDGEMENTS
We thank Lucy Simko, Anna Kornfeld Simpson, and Eric Zeng
for their insightful comments and feedback on the paper; Emily
McReynolds for feedback, advice, and consultation on legal con-
cepts referenced in the paper; and Gaites Swanson for his help
discovering, parsing, and interpreting the legal URLs we studied.

We thank Mark Graham and his colleagues at Internet Archive
for their thoughtful and rapid response to our disclosure of this
work.

This work was supported in part by NSF Grant IIS-1302709, the
Short-Dooley Professorship, and the UW Tech Policy Lab.

REFERENCES
[1] 2012. Laboratory Corp. of America v. United States, 108 Fed.Cl. 549 (2012). (2012).
[2] 2012. People v. Franzen, 210 Cal.App.4th 1193 (2012). (2012).
[3] 2013. Ex Parte Serguei N. Mamedrzaev. 2013 WL 1558372. (2013).
[4] 2014. Tharpe v. Lawidjaja, 8 F.Supp.3d 743 (2014). (2014).
[5] 2016. The Euroeapn Patent Convention, Article 54: Novelty. https://www.epo.

org/law-practice/legal-texts/html/epc/2016/e/ar54.html. (2016). Accessed: 2017-
05-17.

[6] 2017. Robots.txt meant for search engines don’t work well for web
archives. https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-
engines-dont-work-well-for-web-archives/. (4 2017). Accessed: 2017-05-19.

[7] 2017. Summary of s3.amazonaws.com. https://web.archive.org/web/*/http://s3.
amazonaws.com/alexa-static/top-1m.csv.zip. (2017). Accessed: 2017-05-05.

[8] 2017. Welcome to LexisNexis - Choose Your Path. https://www.lexisnexis.com/en-
us/gateway.page. (2017). Accessed: 2017-05-19.

[9] 2017. WestLaw.com. westlaw.com. (2017). Accessed: 2017-05-19.
[10] Ada Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, Franziska Roesner. 2016.

Internet Jones and the Raiders of the Lost Trackers: An Arcahaeological Study
of Web Tracking from 1996 to 2016. 25th USENIX Security Symposium (August
2016).

[11] Scott G. Ainsworth, Ahmed AlSum, Hany SalahEldeen, Michele C. Weigle, and
Michael L. Nelson. 2012. How Much of the Web Is Archived? arxiv.org (2012),
1–10. arXiv:1212.6177 http://arxiv.org/abs/1212.6177

[12] Scott G Ainsworth and Michael L Nelson. 2004. Only One Out of Five Archived
Web Pages Existed as Presented. ACM HT’15 (2004). http://public.lanl.gov/
herbertv/papers/Papers/2015/ht15-ainsworth-submission.pdf

[13] Scott G Ainsworth, Michael L Nelson, and Herbert Van de Sompel. 2015. Only
One Out of Five Archived Web Pages Existed as Presented. In Proceedings of the
26th ACM Conference on Hypertext & Social Media. ACM, 257–266.

[14] Internet Archive. 2017. Heritrix is the Internet Archive’s open-source, ex-
tensible, web-scale, archival-quality web crawler project. https://github.com/
internetarchive/heritrix3. (2017). Accessed: 2017-08-16.

[15] Internet Archive. 2017. IA’s public Wayback Machine (moved from SourceForge).
https://github.com/internetarchive/wayback. (2017). Accessed: 2017-08-16.

[16] Justin F. Brunelle. 2012. 2012-10-10: Zombies in the Archives. http://ws-dl.
blogspot.com/2012/10/2012-10-10-zombies-in-archives.html. (2012). Accessed:
2017-05-13.

[17] Justin F Brunelle, Mat Kelly, Hany Salaheldeen, Michele C Weigle, and Michael L
Nelson. 2015. Not All Mementos Are Created Equal : Measuring The Impact Of
Missing Resources Categories and Subject Descriptors. International Journal on
Digital Libraries (2015).

[18] International Internet Preservation Consortium. 2017. The OpenWayback De-
velopment http://www.netpreserve.org/openwayback. https://github.com/iipc/
openwayback. (2017). Accessed: 2017-08-16.

[19] Shawn E. Douglas. [n. d.]. Citing from a Digital Archive like the Internet
Archive: A Cheat Sheet. http://www.writediteach.com/images/Citing%20from%
20a%20Digital%20Archive%20like%20the%20Internet%20Archive.pdf. ([n. d.]). Ac-
cessed: 2017-05-08.

[20] Peter Eckersley. 2010. How unique is your web browser? Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 6205 LNCS (2010), 1–18. https://doi.org/10.1007/
978-3-642-14527-8_1

[21] Deborah R Eltgrowth. 2009. Best evidence and the Wayback Machine: toward
a workable authentication standard for archived Internet evidence. Fordham L.
Rev. 78 (2009), 181.

[22] Matthew Fagan. 2007. Can You Do a Wayback on That-The Legal Community’s
Use of Cached Web Pages in and out of Trial. BUJ Sci. & Tech. L. 13 (2007), 46.

[23] David Fifield and Serge Egelman. 2015. Fingerprinting web users through font
metrics. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 8975 (2015), 107–124.
https://doi.org/10.1007/978-3-662-47854-7_7

[24] Karén Gazaryan. 2013. Authenticity of Archived Websites: The Need to Lower
the Evidentiary Hurdle Is Imminent. Rutgers Computer & Tech. LJ 39 (2013), 216.

[25] Stephanie Hackett, Bambang Parmanto, and Xiaoming Zeng. 2003. Accessibility
of Internet websites through time. ACM SIGACCESS Accessibility and Computing
(2003), 32. https://doi.org/10.1145/1029014.1028638

[26] Internet Archive. 2017. Internet Archive: Digital Library of Free Books, Movies,
Music & Wayback Machine. https://archive.org/. (2017). Accessed: 2017-05-12.

[27] Internet Archive. 2017. Internet Archive Frequently Asked Questions. https:
//archive.org/about/faqs.php#23. (2017). Accessed: 2017-05-04.

[28] Internet Archive. 2017. Wayback Machine. https://web.archive.org. (2017). Ac-
cessed: 2017-05-11.

[29] Internet Memory Foundation. 2017. Internet Memory Foundation. http:
//internetmemory.org/en/. (2017). Accessed: 2017-08-16.

[30] Mat Kelly, Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson. 2013.
On the change in archivability of websites over time. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 8092 LNCS (2013), 35–47. https://doi.org/10.1007/978-3-642-
40501-3_5 arXiv:1307.8067

[31] Mat Kelly, Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson. 2013. On
the Change in Archivability of Websites Over Time. CoRR abs/1307.8067 (2013).
http://arxiv.org/abs/1307.8067

[32] Library of Congress. 2017. Archived Web Site | Library of Congress. https:
//www.loc.gov/websites/. (2017). Accessed: 2017-05-12.

[33] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect : Fingerprinting Canvas
in HTML5. Web 2.0 Security & Privacy 20 (W2SP) (2012), 1–12. https://cseweb.
ucsd.edu/

[34] Jamie Murphy, Noor Hazarina Hashim, and Peter O’Connor. 2007. Take Me Back:
Validating the Wayback Machine. Journal of Computer-Mediated Communication
13, 1 (2007), 60–75. https://doi.org/10.1111/j.1083-6101.2007.00386.x

[35] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. ACM, 736–747.

[36] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. 2013. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. Proceedings - IEEE Symposium on
Security and Privacy (2013), 541–555. https://doi.org/10.1109/SP.2013.43

https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar54.html
https://www.epo.org/law-practice/legal-texts/html/epc/2016/e/ar54.html
https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/
https://blog.archive.org/2017/04/17/robots-txt-meant-for-search-engines-dont-work-well-for-web-archives/
https://web.archive.org/web/*/http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://web.archive.org/web/*/http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.lexisnexis.com/en-us/gateway.page
https://www.lexisnexis.com/en-us/gateway.page
westlaw.com
http://arxiv.org/abs/1212.6177
http://arxiv.org/abs/1212.6177
http://public.lanl.gov/herbertv/papers/Papers/2015/ht15-ainsworth-submission.pdf
http://public.lanl.gov/herbertv/papers/Papers/2015/ht15-ainsworth-submission.pdf
https://github.com/internetarchive/heritrix3
https://github.com/internetarchive/heritrix3
https://github.com/internetarchive/wayback
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
https://github.com/iipc/openwayback
https://github.com/iipc/openwayback
http://www.writediteach.com/images/Citing%20from%20a%20Digital%20Archive%20like%20the%20Internet%20Archive.pdf
http://www.writediteach.com/images/Citing%20from%20a%20Digital%20Archive%20like%20the%20Internet%20Archive.pdf
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-662-47854-7_7
https://doi.org/10.1145/1029014.1028638
https://archive.org/
https://archive.org/about/faqs.php#23
https://archive.org/about/faqs.php#23
https://web.archive.org
http://internetmemory.org/en/
http://internetmemory.org/en/
https://doi.org/10.1007/978-3-642-40501-3_5
https://doi.org/10.1007/978-3-642-40501-3_5
http://arxiv.org/abs/1307.8067
http://arxiv.org/abs/1307.8067
https://www.loc.gov/websites/
https://www.loc.gov/websites/
https://cseweb.ucsd.edu/
https://cseweb.ucsd.edu/
https://doi.org/10.1111/j.1083-6101.2007.00386.x
https://doi.org/10.1109/SP.2013.43

[37] US Department of Homeland Security. 2016. Homeland Security. http://
webarchive.loc.gov/all/20160205185026/https://www.dhs.gov/. (2016). Accessed:
2017-08-16.

[38] Mary Emily Ohara. 2017. Trump Administration Removes LGBTQ Content
From Federal Websites. https://web.archive.org/web/20170324052626/http:
//www.nbcnews.com/feature/nbc-out/trump-administration-removes-lgbtq-
content-federal-websites-n711416. (2017). Accessed: 2017-03-27.

[39] OpenGovData Russia Archive. 2017. Arhivacija gosudarstva (konservirovan-
noe gosudarstvo) | Otkrytye dannye v Rossii. http://opengovdata.ru/projects/
govarchive/. (2017). Accessed: 2017-08-16.

[40] James L Quarles III and Richard A Crudo. 2014. Using the Wayback Machine in
Patent Litigation. Landslide Magazine 6, 3 (Jan/Feb 2014).

[41] Achintya Rao. 2017. Using the Internet Archive to cite websites.
https://medium.com/@RaoOfPhysics/using-the-internet-archive-to-cite-
websites-89bd3f2ce0fd. (2017). Accessed: 2017-05-08.

[42] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting
and defending against third-party tracking on the web. Proc. of the USENIX
Conference on Networked Systems Design and Implementation (NSDI) (2012), 12.

http://www.franziroesner.com/pdf/webtracking-NSDI2012.pdf
[43] Ryan North. 2016. Dinosaur Comics - February 3rd, 2016 - awesome fun

times! http://webarchive.loc.gov/all/20160203203159/http://www.qwantz.com/
index.php. (2016). Accessed: 2017-08-16.

[44] Myriam Ben Saad and Stéphane Gançarski. 2011. Improving the quality of web
archives through the importance of changes. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 6860 LNCS, PART 1 (2011), 394–409. https://doi.org/10.1007/978-
3-642-23088-2_29

[45] Kyle Soska and Nicolas Christin. 2014. Automatically Detecting Vulnerable Web-
sites Before They Turn Malicious. 23rd USENIX Security Symposium (USENIX Se-
curity 14) (2014), 625–640. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/soska

[46] Stanford Libraries. 2017. Web Archiving | Stanford Libraries. http://library.
stanford.edu/projects/web-archiving. (2017). Accessed: 2017-08-16.

[47] Wikipedia. 2017. List of Web archiving initiatives. https://en.wikipedia.org/wiki/
List_of_Web_archiving_initiatives. (2017). Accessed: 2017-08-16.

http://webarchive.loc.gov/all/20160205185026/https://www.dhs.gov/
http://webarchive.loc.gov/all/20160205185026/https://www.dhs.gov/
https://web.archive.org/web/20170324052626/http://www.nbcnews.com/feature/nbc-out/trump-administration-removes-lgbtq-content-federal-websites-n711416
https://web.archive.org/web/20170324052626/http://www.nbcnews.com/feature/nbc-out/trump-administration-removes-lgbtq-content-federal-websites-n711416
https://web.archive.org/web/20170324052626/http://www.nbcnews.com/feature/nbc-out/trump-administration-removes-lgbtq-content-federal-websites-n711416
http://opengovdata.ru/projects/govarchive/
http://opengovdata.ru/projects/govarchive/
https://medium.com/@RaoOfPhysics/using-the-internet-archive-to-cite-websites-89bd3f2ce0fd
https://medium.com/@RaoOfPhysics/using-the-internet-archive-to-cite-websites-89bd3f2ce0fd
http://www.franziroesner.com/pdf/webtracking-NSDI2012.pdf
http://webarchive.loc.gov/all/20160203203159/http://www.qwantz.com/index.php
http://webarchive.loc.gov/all/20160203203159/http://www.qwantz.com/index.php
https://doi.org/10.1007/978-3-642-23088-2_29
https://doi.org/10.1007/978-3-642-23088-2_29
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/soska
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/soska
http://library.stanford.edu/projects/web-archiving
http://library.stanford.edu/projects/web-archiving
https://en.wikipedia.org/wiki/List_of_Web_archiving_initiatives
https://en.wikipedia.org/wiki/List_of_Web_archiving_initiatives

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 How Web Archives Work
	2.2 How are Web Archives Used?
	2.3 Legal Guidance on Web Archives
	2.4 Technical Work on or with Web Archives

	3 Threat Model
	3.1 Definitions
	3.2 Attacker's Goals
	3.3 Possible Attackers

	4 Analyzing the Wayback Machine for Vulnerabilities
	4.1 Archive-Escapes
	4.2 Same-Origin Escapes
	4.3 Never-Archived Resources and Nearest-Neighbor Timestamp Matching
	4.4 Generality

	5 Rewriting History: Our Attacks
	5.1 Attack #1: Archive-Escape Abuse
	5.2 Attack #2: Same-Origin Escape Abuse
	5.3 Attack #3: ``Same-Origin Escape'' + ``Archive-Escape''
	5.4 Attack #4: Anachronism-Injection
	5.5 Reflecting on Attacks

	6 Measuring Prevalence of Archive Vulnerabilities
	6.1 Measurement Methods
	6.2 How Often Are Archived Sites Vulnerable?
	6.3 How Many Potential Attackers Are There?
	6.4 Measurements of URLs Used in Court Proceedings

	7 Defenses
	7.1 Defenses Deployed by Website Publishers
	7.2 Defenses Deployed by Web Archives
	7.3 Defenses Deployed by Clients
	7.4 ArchiveWatcher: An End-User Defense

	8 Conclusion
	References

