
Analysis of RMAC

Lars R. Knudsen1 and Tadayoshi Kohno2

1 Department of Mathematics, Technical University of Denmark, lars@ramkilde.com
2 Department of Computer Science and Engineering

University of California at San Diego, tkohno@cs.ucsd.edu

Abstract. In this paper the newly proposed RMAC system is analysed.
The scheme allows a (traditional MAC) attack some control over one of
two keys of the underlying block cipher and makes it possible to mount
several related-key attacks on RMAC. First, an efficient attack on RMAC
when used with triple-DES is presented, which rely also on other findings
in the proposed draft standard. Second, a generic attack on RMAC is
presented which can be used to find one of the two keys in the system
faster than by an exhaustive search. Third, related-key attacks on RMAC
in a multi-user setting are presented. In addition to beating the claimed
security bounds in NIST’s RMAC proposal, this work suggests that, as
a general principle, one may wish to avoid designing modes of operation
that use related keys.

1 Introduction

RMAC [6, 2] is an authentication system based on a block cipher. The block
cipher algorithms currently approved to be used in RMAC are the AES and
triple-DES.

RMAC is based on a block cipher with b-bit blocks and k-bit keys. RMAC
takes as inputs: a message D of an arbitrary number of bits, two keys K1,K2
each of k bits and a salt R of r bits, where r ≤ k. It produces an m-bit MAC
value, where m ≤ b. The method is as follows (see also Figure 1). First pad D
with a 1 bit followed by enough 0 bits to ensure that the length of the resulting
string is a multiple of b. Encrypt the padded string using the block cipher in
CBC mode using the key K1. The last ciphertext block is then encrypted with
the key K3 = K2 + R where ‘+’ is addition modulo 2. The resulting ciphertext
is then truncated to m bits to form the MAC. The two keys K1,K2 may be
generated from one k-bit key in a standard way [6].

There are five parameter sets in [6] for each of two block sizes.

Parameter Set b = 128 b = 64
(r,m) (r,m)

I (0, 32) (0, 32)
II (0, 64) (64, 64)
III (16, 80) n/a
IV (64, 96) n/a
V (128, 128) n/a

E E E

+ +

D1 D2 · · · Dn

E

K1 K1 K1

+

K2

R

M

Fig. 1. The RMAC algorithm with keys K1, K2 on input a padded string
D1‖D2‖ · · · ‖Dn and salt R. E is the underlying block cipher and ‘+’ denotes addi-
tion modulo 2. The resulting MAC is M . We assume for illustrative purposes m = b
and k = r.

In Appendix A of [6] it is noted that for RMAC with two independent keys K1
and K2 an exhaustive search for the keys is expected to require the generation
of 22k−1 MACs, where k is the size of one key. However, for the cases with
m = b this can be done much faster under a chosen message attack with just
one known message and one chosen message. Independently of how the two keys
are generated, an exhaustive search for the key K2 requires only an expected
number of 2k decryptions of the block cipher [5]. Given a message D and the
MAC using the salt R, request the MAC of D again. With a high probability
this MAC is computed with a salt R′, such that R′ 6= R. For these two MACs,
the values just before the final encryption will be equal and K2 can be found
after about 2k decryption operations. Subsequently, K1 can be found in roughly
the same time.

The rest of this paper is organized as follows. In §2 an attack on RMAC
used with three-key triple-DES is presented. The attack finds all three DES keys
in time roughly that of three times an exhaustive search for a DES key using
only a few MACs. §3 presents an attack on RMAC used with any block cipher.
The attack finds one of the two keys in the system faster than by an exhaustive
search. In §4 we present a construction-level related-key attack against RMAC
and in §5 we describe some ways to exploit the related-key attack of §4 when
attacking multiple users.

2 Attack on RMAC with three-key triple DES

One of the block cipher algorithms approved to be used in RMAC is triple-
DES with 168-bit keys. Consider RMAC with parameter set II, that is with

64-bit MACs and a 64-bit salt. The key for the final encryption is then K3 =
K2 + (R‖0104). However, it is not specified in [6] how the three DES keys are
derived from K3. Assume that the first DES key is taken as the rightmost 56
bits of K2 + (R‖0104), the second DES as the middle 56 bits, and the third
DES as the leftmost 56 bits. Assume an attacker is given two MACs of the same
message D but using two different values, R and R′ of the salt. Assume that the
rightmost eight bits of both R and R′ are equal. Then the encryption of the last
same block for the two MACs is done using triple-DES where for one MAC the
key used is (a, b, c), and where for the other MAC the key used is (a, b, c ⊕ d).
Since the attacker knows d, he can decrypt through a single DES operation, find
c in 256 operations and derive one of the three DES keys[3]. This attack has a
probability of success of 2−8. If the attack fails, it is repeated for other values
of D, R, and/or R′. After the third DES key has been found, it is possible to
find the second DES key with similar complexity. Note that eight bits of the
salt affect the second DES key. Request the MAC of a message D2 using two
different values of the salt. Decrypt through the final DES component with the
third DES key. With a probability of 1 − 2−8 the two second DES keys in the
final encryption will be different as a result of different salt values. Since the salts
are known by the attacker, one finds the second DES in about 256 operations.
Subsequently, the final DES key can be found using 256 MAC verifications [4] as
follows. Assume one is given the MACs, M1 and M2, of two different messages
D1 and D2, each consisting of an arbitrary number of bits. Let P1 and P2 be
the padding bits used in the respective MAC computations. Request the MAC,
M3, of the message D1‖P1‖E, where E is a one-block message. Let x1, x2 and x3

be the values just before the final triple DES encryptions in the computations
of M1,M2 and M3. Given the value of the final single-DES key of K2 one can
compute also the MAC of the message D2‖P2‖(E ⊕ x1 ⊕ x2). Note that the
value just before the final triple DES encryptions in this case is x3. Also note
that the attacker has full control over the key bits which are modified using the
(random) salts. Therefore this last part of the attack works regardless of how the
salts are chosen, as long as the attacker knows them. In total, with 2 known and
1 chosen MAC, one finds the third DES key of K2 using 256 MAC verifications
or alternatively using 256 chosen messages.

3 A generic attack

In this section we present an attack on the RMAC system with parameter set
II for b = 64 and RMAC with parameter set V for b = 128. The attack finds
the value of K2 after which RMAC reduces to a simple CBC-MAC for which
it is well-known that simple forgeries can be found. In the following, let dK(x)
denote the decryption of x using the key K for the underlying block cipher.

The attack is based on multiple collisions.

Definition 1. A t-collision for a MAC is a set of t messages all producing the
same MAC value.

We shall make use of the following lemma which is easily proved.

Lemma 1. Let A,B, and C be boolean variables. Then

A ⇒ B ⇔ not(B) ⇒ not(A), and

A ⇒ (B AND C) ⇔ not(B) OR not(C) ⇒ not(A).

Let D be some message (with an arbitrary no. of blocks). Then the MAC of
D, MACK1,K2(D,R), is the last block from the CBC-encryption using K1, en-
crypted once again using the key K2+R, where R is the salt. The attack goes as
follows. Request the MACs of D for s different values of the salt R. Assume that
the attacker finds a t-collision, where the salts are R0, . . . , Rt−1 and denote the
common MAC value by M ′. For simplicity denote K2+R0 by K, and K2+Ri by
K+ai−1 for i = 1, . . . , t−1. The attacker guesses a key value L and computes the
decryptions of the MAC value M ′ using the keys L,L+a0, . . . , L+at−1. Then it
holds for i = 0, . . . , t−1, that if L = K or L = K+ai then dL(M ′) = dL+ai(M

′).
Using Lemma 1 one gets that if dL(M ′) 6= dL+ai(M

′) then L 6= K and L 6= K+ai

for 0 ≤ i < t. Similarly, if dL+ai(M
′) 6= dL+aj (M

′) then L 6= K + ai + aj for
0 ≤ i 6= j < t. In this way an exhaustive search for K2 can be made faster than
brute-force.

In some rare cases one gets equal values in the inequality tests. As an ex-
ample, if dL(M ′) = dL+ai(M

′) for some i, then one needs to check if dL(M ′) =
dL+a0(M

′) = dL+a1(M
′) = ... after which all false alarms are expected to be

detected. The expected number of false alarms is t +
(

t− 1
2

)
.

Let us show the case of a 3-collision in more details. Assume that the random
numbers, the salts used, are R0, R1, and R2 (which are known to the attacker).
Since the messages are the same for all MACs and since the MACs are equal,
say M ′, one knows that the keys K2 + R0,K2 + R1, and K2 + R2 all decrypt
M ′ to the same (unknown) message z, thus

dK(M ′) = dK+a0(M
′) = dK+a1(M

′),

where K = K2 + R0, a0 = R0 + R1 and a1 = R0 + R2.
The following implications are immediate.

L = K ⇒ dL(M ′) = dL+a0(M
′) AND

dL+a0(M
′) = dL+a1(M

′)

L = K + a0 ⇒ dL+a0(M
′) = dL(M ′) AND

dL(M ′) = dL+a0+a1(M
′)

L = K + a1 ⇒ dL+a1(M
′) = dL+a0+a1(M

′) AND
dL+a1(M

′) = dL(M ′)

L = K + a0 + a1 ⇒ dL+a0+a1(M
′) = dL+a1(M

′) AND
dL+a1(M

′) = dL+a0(M
′)

Table 1.

t u = t +

�
t− 1

2

�
u/t

3 4 1.3
4 7 1.8
5 11 2.2
6 16 2.7
7 22 3.1
8 29 3.6
9 37 4.1
10 46 4.6
17 136 8.0

Lemma 1 enables us to rewrite the above implications as follows.

dL(M ′) 6= dL+a0(M
′) ⇒ L 6= K

dL+a0(M
′) 6= dL(M ′) ⇒ L 6= K + a0

dL+a1(M
′) 6= dL(M ′) ⇒ L 6= K + a1

dL+a1(M
′) 6= dL+a0(M

′) ⇒ L 6= K + a0 + a1

Take (guess) a key value, L and compute dL(M ′), dL+a0(M
′), and dL+a1(M

′).
If dL(M ′) 6= dL+a0(M

′), then L 6= K and L 6= K + a0, if dL+a0(M
′) 6=

dL+a1(M
′), then L 6= K+a0+a1, and if dL(M ′) 6= dL+a1(M

′), then L 6= K+a1.
Summing up, with a 3-collision (provided a0, a1 are different) one can check

the values of four keys from three decryption operations.
Let us next assume that there is a 4-collision. Let the four keys in the

4-collision be K, K + a0,K + a1,K + a2. Then from the results of dL(M ′),
dL+a0(M

′), dL+a1(M
′), and dL+a2(M

′), one can check the validity of four keys.
Moreover, by arguments similar to the case of a 3-collision, from the four de-
cryptions, one can check the values of all keys of the form K + ai + aj , where

0 ≤ i 6= j ≤ 2. Thus from four decryption operations one can check 4+
(

3
2

)
= 7

keys.
This generalizes to the following result. With a t-collision one can check the

values of u = t+
(

t− 1
2

)
keys from t decryption operations. Table 1 lists values

of t, u and u/t. It should be clear that t-collisions can be used to reduce a search
for the key K2, one question is by how much. How many values of L need to
be tested before the sets of keys {L,L + a0, . . . , L + at−1, L + a0 + a1, . . . , L +
at−2 + at−1} cover the entire key space?

Consider the case t = 3. One can assume a0 6= a1 (otherwise there is no
collision), and that with a high probability there are two bit positions where
a0 6= a1. Without loss of generality assume that these are the two most significant
bits and that these bits are “01” for a0 and “10” for a1. Then a strategy is the

following: Let L run through all keys where the most significant two bits are
“00”. Then clearly the sets

{L, L + a0, L + a1, L + a0 + a1}

cover the entire key space and an exhaustive search for K2 is reduced by a factor
of 4

3 , since in the attack one can check the value of four keys at the cost of three
decryptions.

Consider the case t = 4. With a high probability the b-bit vectors a0, a1, and
a2 are pairwise different. Also, with a high probability there are three bit posi-
tions where a0, a1, and a2 are linearly independent (viewed as three-bit vectors).
Without loss of generality assume that the bits are the three most significant
bits and that these are “001” for a0, “010” for a1 and “100” for a2. Then a
strategy is the following: Let L run through all keys where the most significant
three bits are “000”. Then clearly the sets

{L,L + a0, L + a1, L + a2, L + a0 + a1, L + a0 + a2, L + a1 + a2}

cover 7/8 of the key space. Next fix the most significant three bits of L to “111”,
find other bit positions where a0, a1, and a2 are different and repeat the strategy.
Thus, in the first phase of the attack one chooses 2b−3 values of L, does 4×2b−3 =
2b−1 encryptions, and one can check 7×2b−3 keys. In the next phase of the attack
one chooses 2b−6 values of L, does 4 × 2b−6 = 2b−4 encryptions, and one can
check 7×2b−6 keys. At this point, a total of 7×2b−3+7×2b−6 = 2b−2b−3−2b−6

keys have been checked at the cost of about 2b−1 + 2b−4 encryptions. In total,
an exhaustive search for K2 is reduced by a factor of almost two.

For higher values of t the attacker’s strategy becomes more complex. We
claim that with a high probability (“good” values of ai) the factor saved in an
exhaustive search for the key is close to the value of u/t (see Table 1).

The following result shows the complexity of finding t-collisions [7].

Lemma 2. Consider a set of s randomly chosen b-bit values. With s = c2(t−1)b/t

one expects to get one t-collision, where c ≈ (t!)1/t.

If it is assumed for a fixed message D and a (randomly chosen) salt R that the
resulting MAC is a random m-bit value, one can apply the Lemma to estimate
the number of texts needed to find a t-collision.

Consider a few examples. With s = 2(b+1)/2 one expects to get one pair
of colliding MACs, that is, one (2-)collision. With s = (1.8)22b/3 one expects
to get a 3-collision, that is, three MACs with equal values (61/3 ≈ 1.8). With
s = (2.2)23b/4 one expects to get one 4-collision (241/4 ≈ 2.2).

From Stirling’s formula n! =
√

2πn(n/e)n(1 + Θ(1
n)), one gets that (t!)1/t ≈

t/e for large t. Thus, with s = (t/e)2(t−1)b/t one expects to get a t-collision.
Table 2 lists the complexities of finding t-collisions depending on the block size
b.

There are many variants of this attack depending on how many chosen texts
the attacker has access to. Table 3 lists the complexities of some instantiations

Table 2. The estimated number of texts needed to find a t-collision.

t #texts needed
b = 64 b = 128

3 244 286

4 249 297

5 253 2104

6 255 2108

7 257 2112

8 258 2114

9 259 2116

10 260 2118

17 263 2123

Table 3. Expected running times and chosen texts of attacks finding K2 of RMAC.

Algorithm k b Parameter t Expected # chosen
sets running time texts

3-DES 112 64 II 12 2108 263

AES 128 128 V 20 2124 2123

of the attacks, where for triple-DES the number of chosen texts has been chosen
to be less than 264 (since the salt can be a maximum of 64 bits) and for AES
the time complexity and the number of chosen texts needed have been made
comparable. In both cases an exhaustive search for the key has been reduced by
a factor of eight, so the correct value of the key can be expected trying half of
that number of values. As a final remark, note that the message D in the attack
need not be chosen nor known by the attacker. Therefore one can argue that
this attack is stronger than a traditional “chosen-text” attack.

4 Construction-level related-key attacks

Another consequence of adding the salt to K2 is that it exposes the RMAC
system to a construction-level related-key attack. Consider the RMAC system
with parameter set II for b = 64 and RMAC with parameter set III, IV, or V for
b = 128. Let K1,K2 and K1,K2′ be two pairs of RMAC keys that are related
by the difference K2′ + K2 = X‖0k−r for some r-bit string X.

If D is some message, then MACK1,K2(D, R) = MACK1,K2′(D, R+(X‖0k−r))
with probability 1. An attacker can use this property to, for example, take a mes-
sage MACed by one user (with keys K1, K2), change the salt by adding X‖0k−r,
and then trick the second user (with related keys K1,K2′) to accept the new
MAC–salt pair as an authenticator for D.

5 Key-collision attacks

Even if an attacker cannot control or does not (a priori) know the difference
between multiple users’ keys, an attacker can still exploit the related-key attack

in §4. Consider RMAC with parameter set II for b = 64 and parameter set V for
b = 128. Assume k = r (if r < k then treat the bits of K2 not affected by the
salt as part of K1).

Let us start by assuming that we have two users who share the first key K1
but whose second keys K2 and K2′ have some unknown relationship. To mount
the construction-level related-key attack from §4 the attacker must first learn
the relationship between K2 and K2′. One way to learn this difference would
be to first force each user to MAC some fixed message 2k/2 times. Let Ri be the
i-th salt used by the first user and let Mi be the i-th MAC. Let R′i be the i-th
salt used by the second user and let M ′

i be the i-th MAC.
If K2 + Ri = K2′ + R′j for any indices i, j, then we have a key-collision for

the key to the last block cipher application and Mi = M ′
j with probability 1.

The attacker cannot observe the values K2+Ri directly, but if he sees a collision
Mi = M ′

j , then he guesses that the difference between K2 and K2′ is Ri + R′j .
Once this difference is known, the attacker can modify the MACs generated
with K1,K2 to be valid MACs for K1, K2′. We expect to observe one collision
Mi = M ′

j due to the key collision K2 + Ri = K2′ + R′j , and we expect 2k−m

collisions Mi = M ′
j at random, but recall that we are assuming that k = m.

Note that if Mi = M ′
j occurs at random but K2 + Ri 6= K2′ + R′j , then with

very high probability an attacker’s subsequent forgery attempt will fail, and this
is how we filter the signal from the noise.

Now consider a group of 2k/2 users, each with independently-selected random
keys, and assume that the adversary forces each user to MAC some fixed message
2k/2 times. Note that, given a group of users this size, we expect two users to
share the same first key K1 and, by the above discussion, we expect one collision
K2 + Ri = K2′ + R′j for this pair of users. By looking for collisions Mi = M ′

j

across different users, an attacker can guess the relationship between two users’
keys, and thereby force a user to accept a message that wasn’t MACed with its
keys.

Unfortunately, this attack against 2k/2 users has a much lower signal-to-
noise ratio than the attack against two users who are known to share the first
key K1. In particular, we expect approximately 22k−m collisions Mi = M ′

j at
random. We filter the signal from the noise as before. The filtering step does
not significantly slow down the attack since the attacker must already force 2k/2

users to each MAC 2k/2 messages and since we are assuming that k = m. As a
concrete example, for AES with 128-bit keys, this attack works by forcing 264

users to each MAC some message 264 times. We expect 2128 collisions in the
MAC outputs and one of those collisions will allow an adversary to take the
messages MACed by one user and submit them as MACs to another user.

Another way to exploit the related-key property of §4 is based on the key-
collision technique of [1]. For this attack let n denote the number of users an
attacker is attacking, and let n′, q, q′ be additional parameters. The attack begins
by the attacker picking keys L1u, L2u for u ∈ {1, . . . , n′} (these keys correspond
to “fake” users; these keys do not have to be random, but we assume that each
L1u is distinct). Then, for each u, the attacker MACs some fixed message D q′

times; let M
u

i be the i-th MAC produced using keys L1u, L2u, and let Ri be the
i-th salt value. We assume that each Ri is distinct, but not necessarily random.

Now assume that the attacker has each real user, indexed from 1 to n, MAC
the message D q times, and let Mv

i be the i-th MAC produced by the v-th user,
and let Rv

i be the i-th salt value for the v-th user (here we assume that all the
salt values are chosen uniformly at random). Let K1v,K2v denote the keys of
the v-th real user. If nn′ ≥ 2k and qq′ ≥ 2k, we expect at least one collision
of the form L1u = K1v and L2u + Ri = K2v + Rv

j to occur and, when this
occurs, M

u

i = Mv
j . If an adversary sees a collision of this form, it will learn

both K1v and K2v. We do, however, expect approximately nn′qq′2−m collisions
M

u

i = Mv
j at random. This time, since we are guessing both RMAC keys, we can

filter by recomputing the MAC of different messages using the key guess. (As
an aside, note that the basic (total) key-collision attack approach of [1] would
require nn′ ≥ 22k.)

We can instantiate this attack in different ways. If n = n′ = q = q′ = 2k/2,
then we get a key recovery attack (against one of the 2k/2 users) with resources
similar to our previous attack against 2k/2 users. If n = 1, n′ = 2k, q = q′ = 2k/2,
then we get an attack against a single user that uses 2k/2 chosen-plaintexts and
approximately 23k/2 steps. As a concrete example, if we consider AES with 128-
bit keys, then the first instantiation attacks one of 264 users using 264 chosen-
plaintexts per user, and 2128 offline RMAC computations (broken down into
264 standard CBC-MAC computations and 2128 final RMAC block cipher ap-
plications). The attack also requires approximately 2128 additional block cipher
applications as part of the filtering step. The latter instantiation attacks 1 user
using 264 chosen-plaintexts and approximately 2192 offline RMAC computations
(broken down into 2128 standard CBC-MAC computations and 2192 final RMAC
block cipher applications). The filtering phase requires an additional 2128 block
cipher computations. As an additional note, we point out that the cost of the
offline computations can be amortized across multiple attacks, thereby reducing
the cost per attack.

6 Conclusions

There are several conclusions to draw from this work. The first and most obvious
conclusion is that RMAC fails to satisfy the security claims in [6]. In particular,
although NIST [6] claims that a key-recovery attack should require generating
22k−1 MACs, we have presented a number of ways to extract RMAC keys using
much less work.

We believe, however, that there are more important lessons to be learned
from this research. First, our results suggest that one needs to be extremely
careful when using and interpreting “provable security” results. What is being
proven? And what assumptions are being made? In the case of RMAC we note
that the proof of security is in the ideal cipher model. This is an extremely
strong model and, unfortunately, not a good model for use with some popular
block ciphers. For example, consider the attack against RMAC with triple-DES

in §2. The attack in §2 worked because triple-DES is vulnerable to related-
key attacks, whereas in the ideal cipher model there is no relationship between
the permutations associated with different keys (each key corresponds to an
independently selected random permutation). This suggests that the ideal cipher
model is not a good model to use when designing a mode of operation.

Our results also show that, even when the underlying block cipher is secure
against related-key attacks, interesting interactions can occur if a mode of oper-
ation uses related keys. For example, the attack in §3 reduces the search space of
an exhaustive search attack by exploiting the fact that RMAC uses related keys.
The construction-level related-key property in §4 also exists because RMAC uses
related keys. And §5 shows the key-collision attacks become more serious when
a mode of operation uses a large number of related keys. These attacks further
support our recommendation that modes of operation should not use related
keys.

Acknowledgments

We thank David Wagner for pointing out the relationship between the attacks
in §5 and Biham’s paper [1]. Tadayoshi Kohno was supported by a National
Defense Science and Engineering Graduate Fellowship.

References

1. E. Biham. How to decrypt or even substitute DES-encrypted messages in 228 steps.
Information Processing Letters, 84, 2002.

2. E. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. In J. Daemen and V. Ri-
jmen, editors, Fast Software Encryption 2002. Springer-Verlag, 2002.

3. J. Kelsey, B. Schneier, and D. Wagner. Key-schedule cryptanalysis of IDEA, G-
DES, GOST, SAFER, and triple-DES. In Neal Koblitz, editor, Advances in Cryp-
tology: CRYPTO’96, LNCS 1109, pages 237–251. Springer Verlag, 1996.

4. L.R. Knudsen and B. Preneel. MacDES: a new MAC algorithm based on DES.
Electronics Letters, April 1998, Vol. 34, No. 9, pages 871–873.

5. Chris Mitchell. Private communication.
6. NIST. DRAFT Recommendation for Block Cipher Modes of Operation: the RMAC

Authentication Mode. NIST Special Publication 800-38B. October 18, 2002.
7. R. Rivest and A. Shamir. Payword and Micromint: Two simple micropayment

schemes. Cryptobytes, 2(1):7–11, 1996.

