
Proceedings on Privacy Enhancing Technologies ; 2018 (1):127–144

Lucy Simko*, Luke Zettlemoyer, and Tadayoshi Kohno

Recognizing and Imitating Programmer Style:
Adversaries in Program Authorship Attribution
Abstract: Source code attribution classifiers have re-
cently become powerful. We consider the possibility that
an adversary could craft code with the intention of caus-
ing a misclassification, i.e., creating a forgery of another
author’s programming style in order to hide the forger’s
own identity or blame the other author. We find that
it is possible for a non-expert adversary to defeat such
a system. In order to inform the design of adversarially
resistant source code attribution classifiers, we conduct
two studies with C/C++ programmers to explore the
potential tactics and capabilities both of such adver-
saries and, conversely, of human analysts doing source
code authorship attribution. Through the quantitative
and qualitative analysis of these studies, we (1) evaluate
a state-of-the-art machine classifier against forgeries, (2)
evaluate programmers as human analysts/forgery detec-
tors, and (3) compile a set of modifications made to cre-
ate forgeries. Based on our analyses, we then suggest fea-
tures that future source code attribution systems might
incorporate in order to be adversarially resistant.

Keywords: Authorship Attribution, Source Code Attri-
bution, Machine Learning, Adversarial Stylometry, Pri-
vacy, Computer Security

DOI 10.1515/popets-2018-0007
Received 2017-05-31; revised 2017-09-15; accepted 2017-09-16.

1 Introduction
With recent publicity surrounding cyber attacks and
corresponding investigations into attribution of the at-
tacks, the computer security research community has
renewed its attention on authorship attribution of pro-

*Corresponding Author: Lucy Simko: Paul G. Allen
School of Computer Science & Engineering, University of
Washington, E-mail: simkol@cs.washington.edu
Luke Zettlemoyer: Paul G. Allen School of Computer
Science & Engineering, University of Washington, E-mail:
lsz@cs.washington.edu
Tadayoshi Kohno: Paul G. Allen School of Computer
Science & Engineering, University of Washington, E-mail:
yoshi@cs.washington.edu

grams. This line of research seeks to answer the follow-
ing question: given source code (or a binary) of unknown
authorship, as well as examples of source code (or bi-
naries) from a set of authors, is it possible to identify
the original author of that program? Prior research on
this question has shown significant promise— it is pos-
sible to attribute the authorship of programs with a high
degree of accuracy under realistic assumptions. For ex-
ample, Caliskan-Islam et al. [5] propose a classifier that
achieves 96% accuracy over 250 programmers.

Computer security involves adversaries trying to de-
feat security mechanisms, and the designers of those
security mechanisms seeking to defend against adver-
saries. We argue that the next phase in the evolution of
program authorship attribution is therefore considering
potential adversaries—parties seeking to fool author-
ship attribution systems. Specifically, because strong
program authorship attribution systems now exist, al-
beit not designed for adversarial contexts, we can exper-
imentally explore how adversaries might seek to defeat
those systems and whether those adversaries might be
successful. This paper explores both the methods that
an adversary might use to intentionally subvert an at-
tribution system, as well as a conservative estimate of
the adversary’s capabilities. By understanding the ad-
versaries’ tactics and capabilities, as well as their effect
on a (public) state-of-the-art attribution system, our re-
sults can inform the design of adversarially resistant au-
thorship attribution systems.
Adversarial Goals. We consider two related goals for
an adversary: to create a forgery of another author, and
tomask the original author. A successfulmasking means
that an adversary has taken a program by some original
author and modified it to conceal the true authorship.
A successful forgery means that an adversary has fooled
an attribution system into believing that some program
was written by a targeted, victim author who did not
write the program. A forgery attack is a targeted attack,
while a masking attack is untargeted. Security under
the latter goal (masking) implies security under the for-
mer (forgery) because an adversary able to accomplish
forgery will by definition be able to accomplish masking.

For example, consider an attribution system trained
on five authors (A-E) with program Pa written by au-

Recognizing and Imitating Programmer Style 128

thor A, and program Pa′ written by author A but mod-
ified by an adversary. An adversary launching a forgery
attack with Pa′ would have the goal of Pa′ being labeled
as written by a specific author, say, C. An adversary
launching a masking attack with Pa′ has a goal of Pa′

being labeled as written by any of B, C, D, or E.
Our Forgery Studies. To study the capabilities and
methods of an adversary with these goals, we conducted
two studies with programmers; specifically, we study
forgery attempts, as a successful forgery implies a suc-
cessful masking. In our first study, the forgery creation
study, programmers play the adversary, modifying code
to fool a machine classifier. In our second study, the
forgery detection study, we present a different set of pro-
grammers, acting as human analysts, with a series of at-
tribution tasks over a set of code samples that include
forgeries.

With the results of these studies, we then conduct
quantitative analyses to explore the potential capabili-
ties of an adversary against both existing classifiers and
human analysts; we also conduct qualitative analyses to
understand the potential methods of both an adversary
creating attacks and a human analyst doing attribution.
Finally, we analyze the modifications from the point of
view of the machine classifier, to better understand the
success of the forgeries and suggest features that future,
robust machine classifiers might add.

Both these studies, along with our analysis of the
machine classifier, give us a greater richness in our un-
derstanding of how people might attempt to create forg-
eries—as well as a baseline of their success—and pro-
vide us with insights on how one might design adver-
sarially robust program authorship attribution systems,
including systems that one might design to work with
human analysts.
Contributions. We conduct the first public analysis of
the robustness of a state-of-the-art source code author-
ship attribution system to adversarial attempts at cre-
ating forgeries. We also conduct the first, to our knowl-
edge, public study of the efficacy of human analysts at
identifying forgeries. The following contributions arise
from these experiments and our resulting analyses.
– We experimentally evaluate the robustness of a pub-

lic state-of-the-art attribution system to adversarial
attempts at creating forgeries. In doing so, we find
that both expert and non-expert programmers can
successfully fool the attribution system.

– We provide a set of modifications that forgers made
to create their forgeries. We also identify the strate-

gies that human analysts (in our study) use to make
attribution decisions.

– We experimentally evaluate programmers as ana-
lysts for source code authorship attribution and
forgery detection. We find that forgery detection is
difficult for humans as well as for machines, but
that humans can adapt their strategies after be-
ing warned about adversarial input, without be-
ing specifically trained on it. From this analysis, we
draw lessons for machines.

– We analyze strategies from both the forgers and
the analysts, and provide recommendations to the
designers of future program authorship attribution
systems, in an effort to make them robust against
the type of adversaries we consider.

– We investigate the effect of the forgeries on the ma-
chine classifier and, through this analysis, suggest
lessons for future, more robust source code attribu-
tion classifiers

2 Related Work

Natural Language Processing: adversarial sty-
lometry and authorship obfuscation. Authorship
attribution is a well-studied topic within the Natural
Language Processing (NLP) community. See [25] for a
survey. In addition to attributing authorship of writ-
ten text, the NLP community has recently turned to
authorship obfuscation and forgery.

Kacmarcik and Gamon [15] explored the idea of pur-
poseful anonymization in NLP, with a focus on quantify-
ing the effort necessary to anonymize against attribution
systems. Later, Brennan et al. [4] introduced adversarial
stylometry: the notion that authors of natural language
text may intentionally obfuscate (mask) their identity,
or imitate (forge) another’s identity. They asked a group
of writers to obfuscate their own writing and then to
imitate a famous author, and found that classifiers that
typically had high accuracy did poorly on the obfus-
cated and imitated samples.

Our experiments and goals are similar to those of
Brennan et al. [4], except our domain is source code in-
stead of English. Just as code attribution research bor-
rows ideas from NLP, our research on subverting source
code attribution classifiers is both analogous to Brennan
et al. [4] and novel within the security community.

Afroz et al. [1] analyzed the data from [4] to identify
linguistic features that change when writers are being
deceptive about their identities. This work introduced a

Recognizing and Imitating Programmer Style 129

set of features with which they train a classifier to recog-
nize when an author is hiding their identity. Concurrent
work by Juola et al. [14] found similar results.

More recently, Potthast, et al. [20] published a sur-
vey of authorship obfuscation and imitation, as well as
large scale evaluation of obfuscation techniques and de-
tection algorithms.
Source code attribution. Compared to natural lan-
guages, authorship attribution for source code is a much
younger field. Early works include Spafford and Wee-
ber [23], Pellen [19], Kothari et al. [16], and Frantzeskou
et al. [10]. Recently, Caliskan-Islam et al. [5] improved
the state-of-the-art by using a combination of syntac-
tic, lexical, and layout features and achieved higher ac-
curacy over a much larger group of programmers than
previous works. We use this classifier when testing the
strength of forgeries.

Hayes and Offutt [13] suggest a number of high-level
features to distinguish programmers. They find that the
most distinguishing features are concerning the occur-
rence of operators, constructs, and lint warnings. They
consider high-level algorithmic and engineering features
such as testability and code coverage, but do not find
that these features distinguish amongst the five pro-
grammers in their study. Our results suggest revisiting
these high-level features in the context of forgeries.

Additionally, Dauber et al. [8] develop an ensem-
ble classifier to do highly accurate attribution on short
(partial) code samples.
Plagiarism detection for source code. Plagiarism
detection is a sub-problem of authorship attribution.
MOSS (“Measure Of Software Similarity”) [22], a well-
known publicly available tool, measures the similarity
between two sets of source code and outputs a percent
match. Forgery and plagiarism are related but also have
a clear difference: in plagiarism, multiple instances of
the plagiarized program are often available. In forgery
and masking, the adversary creates a new program, in-
tending to cause the attribution system to misattribute.
Classifying binaries. There is also work on attri-
bution of binaries. Rosenblum et al. [21] apply ma-
chine learning to style features extracted from binaries;
Caliskan-Islam et al. [6] build on this work. Muir and
Wikström [17] find that changing compiler settings and
linking statically can be used to decrease attribution ac-
curacy and obfuscate authorship on binary attribution
classifiers— the only other work, to our knowledge, fo-
cused on authorship obfuscation for programs.

3 Threat Model and Goals
We now elaborate on our goals and underlying threat
model, beginning with several motivating scenarios.

3.1 Motivating Scenarios

Consider the following scenarios. In each case, the pro-
grammer or adversary knows about the existence of pro-
gram authorship attribution systems but not the details.
The adversary is not necessarily malicious, but is always
acting adversarially to the attribution system.
1. Forgery. Suppose an adversary wants to insert ma-

licious code into an open-source code repository.
One avenue the adversary might take is to obtain
the credentials of an established contributor and
commit code that introduces a vulnerability. The
adversary’s goal is to commit code that appears to
have come from the legitimate programmer so as to
not raise the suspicion of the other contributors to
the repository, or trigger any automated alarms—
i.e., the adversary seeks to create a forgery.

2. Masking. Suppose that a programmer wants to
write and release code for a new digital currency
but does not want anyone to know who wrote the
program. The history of the Bitcoin digital currency,
and its anonymous inventor Satoshi, inspire this sce-
nario [3]. The programmer, desiring privacy, may
seek to intentionally modify their code to make it
unidentifiable— i.e., to mask their code.

3. Masking. Consider a programmer developing soft-
ware in a country where censorship is rampant. The
programmer wants to develop software that is ille-
gal in that country, such as anti-censorship messag-
ing apps, and may use Tor and other network tools
to obfuscate any network indicators. However, the
programmer also needs to ensure that the software
does not look like it was written by them— i.e., this
programmer seeks to mask their code, to protect
their anonymity. This example is inspired by Saeed
Malekpour [26], an Iranian web developer sentenced
to death for writing photo sharing software used to
distribute pornography.

4. Forgery. Suppose now that an adversary wants to
make it appear that a programmer developed anti-
censorship software. The adversary, perhaps a work
colleague or someone with access to software that
the intended victim had written, e.g., via Git, mod-

Recognizing and Imitating Programmer Style 130

ifies their own code to look like the victim’s, and the
victim is blamed. This represents a forgery attack.

In any of these scenarios, the adversaries may either
write their own code or modify code written by others,
depending on their skill levels and access to code that
already fulfills their purpose.

3.2 Threat Model

As captured in the preceding scenarios, we consider two
key (related) adversarial goals.
1. Forgery. An adversary creates a successful forgery

if they create code such that the attribution system
attributes that code to a specific target author.

2. Masking. An adversary successfully masks the au-
thorship of a program if the adversary modifies a
program written by some original author such that
the attribution system does not identify the original
author when given the modified program as input.

Actors. To fully understand the threat model, we define
several additional parties.
– Adversary: the party seeking to create a forgery or

mask and thwart the attribution system.
– Original Author: the person who first wrote the code

modified in an attack. The original author may or
may not be the adversary.

– Target Author: the victim of a forgery attack. The
adversary modifies code written by the original au-
thor to make the attribution system identify the tar-
get author. We envision adversaries who are not the
target authors.

– Attribution System: one or more classifiers that de-
termine the authorship of the code. Inspired by
prior works, we typically use this term to refer to
a machine classifier that does authorship attribu-
tion. However, as we discuss, human analysts may
augment these systems.

We next elaborate on our assumptions, drawn from our
goal of developing a conservative estimate of an adver-
sary’s capabilities.
Training set. First, we assume that both the adver-
sary and the attribution system have labeled samples
of code written by the original and target author (if a
forgery attack). Both parties may have samples from
other authors, i.e., the classifier may be trained on mul-

tiple authors. We assume the training set contains no
forgeries.
Classifier. We assume that the only information avail-
able to the attribution system are the programs in ques-
tion: network traces, memory dumps of machines, etc.,
could help detect authorship but are orthogonal to our
study of source code attribution.
Adversary skill. We assume adversaries with a solid,
but not necessarily expert, knowledge of the language
used by the authors (C/C++ in our case), and no spe-
cific training on forgery, masking, or attribution. We
think it advantageous to begin with the simple case (in
this case, experienced but not expert programmers): if
even these adversaries can fool a state-of-the-art attri-
bution system, then the attribution system will likely be
vulnerable to more sophisticated adversaries, and a less
sophisticated attribution system will probably be more
vulnerable to the same adversaries.
Adversary’s knowledge of the classifier. We as-
sume that the adversary lacks specific knowledge about
the classifier in question, e.g., classification algorithm,
features, size, or contents of training set. This assump-
tion gives the classifier the greatest power and likelihood
of success even in the face of an adversary.

3.3 Goals

Informed by these motivating scenarios and qualified by
the bounds of our threat model, we present our goals as
a series of guiding questions:
1. Deceptibility of classifiers under adversarial

input. What is a realistic conservative estimate for
the success of forgery attacks in the wild? Section 6
addresses this question using our experiments with
both a state-of-the-art classifier and human ana-
lysts.

2. Observed methods of forgery creation. What
modifications might adversaries make to code to cre-
ate forgeries? Section 7.1 explores the forgery cre-
ation process to inform the design of future attribu-
tion systems with increased resiliency to forgery.

3. Observed methods of forgery detection and
authorship attribution. What features might hu-
man analysts look for when making attribution deci-
sions? Are these sufficient for attribution when forg-
eries are not present? When forgeries are present?
Could these features be potentially adopted by ma-
chine classifiers? Section 7.2 explores the forgery de-
tection insights gleaned from human analysts.

Recognizing and Imitating Programmer Style 131

4. Effect of forgery on machine classifier fea-
tures. How do the code modifications made by forg-
ers affect the features that a machine classifier might
examine? Section 8 addresses this by comparing the
machine classifier’s view of original files and their
corresponding forgeries.

4 Classifier and Data
Before discussing our methodology, we give background
information on the classifier we use and our data set.
State of the art classifier. To facilitate the explo-
ration of our goals, we needed a classifier against which
to test forgeries. Industry attribution systems, to the ex-
tent that they exist, are proprietary, with little public
knowledge of their capabilities or methods. We therefore
focused on a publicly available attribution system.

A clear choice for a state-of-the-art code stylome-
try classifier was the classifier introduced by Caliskan-
Islam et al. [5], since it achieved remarkable increases
in accuracy over prior work on source code attribution.
This model performs attribution on C/C++ code by
extracting lexical, layout, and syntactic features, which
are derived from an abstract syntax tree of the code.

We replicated Caliskan-Islam et al.’s setup with the
open source version of the classifier available at [7] and
followed their directions to set up using the Code Sty-
lometry Feature Set. As they did, we used Weka’s im-
plementation of a Random Forest with 300 trees.
Dataset. For consistency, we used the same dataset as
Caliskan-Islam et al. [5], Google Code Jam (GCJ) [11],
a programming competition. GCJ invites participants
to code to solve a series of problems. GCJ data is well-
suited for code stylometry and authorship attribution
work because each program is guaranteed to be single-
author and it provides a body of functionally equiva-
lent programs as solved by different authors. However,
the programs differ from much code in the wild because
there are no style guidelines and the code is not meant
to be maintained or used over long periods, unlike much
professionally developed software. We used GCJ despite
this difference because it is consistent with previous
work and provided our participants with functionally
equivalent programs from which to learn authors’ styles.

We used C code because the classifier is built to at-
tribute C code. The dataset consisted of 8661 programs
from 3940 authors (averaging 2.2 each), but we primar-
ily used code from the five authors with the most files:
214 total, or an average of 42.8 files each.

C5 C20 C50

Precision 100% 87.6% 82.3%
Recall 100% 88.2% 84.5%

Table 1. Precision and recall for our classifiers, calculated using
10-fold cross-validation.

Data Modification. The forgery creation study aimed
to understand the methods and capabilities of poten-
tial adversaries. A secondary goal was respecting par-
ticipants’ time. Pilot experiments showed participants
created forgeries by making many tedious typographical
modifications and then losing interest and motivation.

To encourage participants to focus on other modifi-
cations, we normalized typographical style to a large ex-
tent by running all code though a code linter, astyle [2],
a simple static analyzer and code beautifier. By doing
this, we support our goal of understanding sophisticated
methods of forging and attribution rather than methods
that would be obliterated by a linter.
Our Classifiers. We created a suite of three training
sets on which this classifier achieved high accuracy in
order to (1) give the classifier an advantage where pos-
sible and realistic and (2) allow us to discuss general
trends over training sets.

The three training sets differ by the number of au-
thors in the sets: 5, 20, and 50. We name them accord-
ingly as C5, C20, and C50. All classifiers include data
from the five authors with the most files; additional au-
thors are chosen randomly from those with at least five
files (to ensure sufficient training data). We chose the
five most prolific authors because we wanted to give the
classifier as much training data as possible in order to
give it an advantage over the forgers. Table 1 gives the
precision and recall of each classifier.

Although we mirrored Caliskan-Islam et al.’s
methodology until this point, here we differ. Caliskan-
Islam et al. constructed training sets that had equal
amounts of code from each author in the training set
to investigate how the amount of training data affects
attribution success; for our goals, we wanted to have
a classifier with as high accuracy as possible in order
to obtain a conservative estimate of adversarial success.
We achieve this by not withholding training data from
any author and creating forgeries of the five most pro-
lific authors. We did not control the number of training
files per author, as downsampling would not improve
classification accuracy or fairness.

Additionally, we remove all programs that we gave
participants as a possible starting point for forgeries,

Recognizing and Imitating Programmer Style 132

a small subset of all code by each author. We remove
these files from the training sets because these original
files are similar to the forgeries created.

5 Methodology
This section explains our design decisions for the studies
and presents a summary of participants’ demographics.

We refer to the author or authors that we asked
a participant to focus on as ‘X’, ‘Y’, and ‘notX’. Recall
that there are five possible authors, A-E, so five possible
values for each X and Y. ‘notX’ takes on the value of the
other four authors; for example, if ‘X’ is author B, then
‘notX’ is the combination of A, C, D, and E. Addition-
ally, participants in the forgery creation study compared
different author pairs: some compared authors A and E
while others compared B and C (and so on).

Running studies that explored all possible combina-
tions of authors and participant skill with the number of
choices of code to forge and attribute would have proven
prohibitively large. Given the lack of prior work on code
style forgery, our intentions were two-fold: 1) develop a
conservative estimate of adversarial capabilities by mea-
suring forgeries against a state-of-the-art machine clas-
sifier, and, 2) qualitatively analyze the methods used to
forge and attribute, as well as the effects they had on
the features extracted by the machine classifier.

We designed and conducted both studies with the
ethical considerations required when working with hu-
man participants. Our institution’s human subjects in-
stitutional review board approved both studies. Neither
study asked participants to incur any risk greater than
normal while programming or reading code.

5.1 Forgery Creation Study Design

In our forgery creation study, we conducted sessions
with 28 programmers, who produced 29 forgery at-
tempts (one participant misunderstood the instructions
and created two forgeries). We excluded two forgeries
because they differed dramatically from the original
code in functionality, which was explicitly against the
instructions. Thus, we have 27 total forgeries.

The tasks in this study were:
1. Train. Given code from two authors, X and Y

(chosen from authors A-E), compare functionally
equivalent code by both authors to learn the au-
thors’ styles. Participants were not told how to think

about style, but they did know that subsequent
tasks would ask them to attribute and forge.

2. Attribute. Attribute 10 new samples of code to
either X or Y. We asked participants to: (1) give an
attribution decision, (2) indicate their confidence on
a scale of 1-10, (3) briefly state their reasoning.

3. Forge. Modify code written by one author to look
like it was written by the other author. We asked
participants to imagine the best possible classifier:
human, machine, or some combination thereof. Par-
ticipants chose whether to forge X’s style or Y’s. In
this task, we learn the level of success after partici-
pants think they have made enough transformations
to fool a classifier— i.e., the capabilities of an ad-
versary with no information about a classifier.

4. Forge with Oracle. Test the forgeries from the
previous step against the classifiers. Participants
then continued to modify their forgeries until all
versions of the classifier produced the target mis-
classification, or until they chose to stop. The pur-
pose of this task was to encourage participants to
continue making more transformations if their first
forgeries did not fool all the classifiers.

5.2 Forgery Detection Study Design

Our forgery detection study used the forgeries created in
our forgery creation study (Section 5.1) to explore both
the success of programmers as attribution analysts and
the methods used to successfully detect forgeries.

This study had 21 participants. We gave the par-
ticipants no specific instructions concerning attribution
or forgery detection, since we did not want to bias their
attribution methods with our preexisting knowledge of
the forgeries. At first, participants were not aware that
this study was about forgeries.

Participants completed the following tasks, in which
they acted as an analyst looking to detect forgeries of
a certain author, X; X varied between authors A-D (we
did not receive enough forgeries of E):
1. Train. Given code from the same five authors used

in the forgery creation study, with four of the au-
thors combined to be ‘notX’, and the remaining au-
thor as ‘X’, learn the style of author ‘X’. As in the
forgery creation study, there were two examples of
each problem, and there were no forgeries in the
training set. Participants did know that there were
multiple authors in the ‘notX’ category. We trained
participants on one author versus all the others, a
departure from the training phase in the forgery cre-

Recognizing and Imitating Programmer Style 133

ation study, because we thought it would be easier
for participants completing these tasks to focus on
only one author’s style— i.e., the one being forged.

2. Simple attribution. Given 12 new samples of
code, answer the question “who wrote this code?”
With possible answers ‘X’ and ‘notX’, random
guessing would be expected to achieve 50% accu-
racy. Four of the 12 samples were written by X, and
eight were written by one of the notX authors. Of
the eight, four were forgeries of X, and four were
not. We count a ‘notX’ label on ‘forgery of X’ as
correct, and an ‘X’ label incorrect, as the task was
to identify the person who wrote the code.

3. Attribution with knowledge of forgery. At-
tribute the same set of 12 samples again, with the
knowledge that some may be forgeries. Possible an-
swers were ‘X’, ‘notX’, and ‘forgery of X’. In this
task, random guessing would be expected to achieve
44%, as there are two correct labels for a forgery of
X: both ‘notX’ (the original author) and ‘forgery
of X’ (a forgery detection) are correct, since either
would be a win from a classifier.

4. Find the forgery. Given 3 or 4 pairs of function-
ally equivalent programs side by side, one written
by author X and the other a forgery of author X,
decide which is the forgery.

5.3 Recruitment and Demographics

Recruitment. For both studies, we required partic-
ipants to self-report a good working knowledge of
C/C++. As we elaborate below, participants in the
forgery-creation study were a mix of undergraduate
Computer Science students and current or former pro-
fessional software developers. Participants in our forgery
detection study were primarily upper-level undergrad-
uates and graduate students in Computer Science. No
one participated in both studies.
Demographics. Of the 28 forgery creation partici-
pants, 10 were students, 16 were professional computer
scientists, and two were unemployed or had an occu-
pation unrelated to computer science. Of the 21 forgery
detection participants, 14 were students, and three were
professional computer scientists.

We also asked participants to report experience as a
professional C/C++ programmer. Although the forgery
creation participants were, in general, more experienced
with programming, we can compare the relative skill
levels of the two groups at attribution specifically by

comparing their performance on the two attribution
tasks: the attribution task in the forgery creation study
(Step 2 in Section 5.1) was nearly identical to the sim-
ple attribution task in the forgery detection study (Step
2 in Section 5.2), if we count attribution decisions on
only non-forgeries. Despite their demographic differ-
ences, both groups of participants attained high accu-
racy on these tasks, suggesting that they were similarly
skilled at thinking about programming style.

6 Quantitative Results
We now turn to our results regarding the capabilities
of both the participants in the forgery study (the forg-
ers) and the participants in the forgery detection study
(the analysts). Broadly, we find that the forgeries cre-
ated by our participants, who had no specific training in
forgery creation, are largely successful against machine
classifiers and human analysts. However, when analysts
are told to look for forgeries, forgery success decreases
rapidly, suggesting that future, robust attribution sys-
tems should learn from the strategies that the human
analysts developed. In this section, we refer to success
as the success of the forgery attacks, not the success of
the classifier.

6.1 Deceptibility of machine classifier

We find that the current state-of-the-art machine clas-
sifier [5]— though it achieves high accuracy on large
numbers of programmers— is not robust to forgery at-
tempts. The ability of adversaries to defeat this classi-
fier is perhaps unsurprising given that the classifier was
not designed to be robust against adversaries. However,
we find it informative to study whether it actually fails
with adversarial input in practice and (later) evaluate
both how people created those forgeries and how the
forgeries affected the machine classifier features in or-
der to inform the design of future, adversarially-robust
classifiers.

Attack type Initial attack success Final attack success
Forgery 61.1% 70.0%
Masking 73.3% 80.0%

Table 2. The percent of attempts that were a successful attack
on both the forgers’ initial and final attempts.

Recognizing and Imitating Programmer Style 134

Attack type C5 C20 C50 Average
Forgery 66.6% 70.0% 73.3% 70.0%
Masking 76.6% 76.6% 86.6% 80.0%

Table 3. Breakdown of attack success of final attempts against
the machine classifiers.

Initial forgery attempts. Table 2 shows the per-
cent of forgery attempts that yielded successful forg-
eries or masks against the machine classifiers. On the
forgers’ first try, 61.1% of forgery attempts were suc-
cessful forgery attacks, and 73.3% of forgery attempts
resulted in successful masks. (Recall that forgery is a
subset of masking, so successful mask attempts include
all successful forgery attempts).
Final forgery attempts. Table 3 shows that 70.0% of
final forgery attempts were successful, and 80.0% of final
attempts were successful as masking attacks. That is,
for 80.0% of final forgery attempts, the classifier did not
identify the original author, meaning that the average
accuracy of the classifier on the forgeries was 20.0%.
Training data variation: number of authors. The
percentage of successful attacks increases with the num-
ber of authors in the classifier’s training; in our data,
the percent of successful forgery attacks increases from
66.6% on C5 to 73.3% on C50. Similarly, masking attacks
increase from 76.6% to 86.6% on the same classifiers. We
expect that as the number of authors in the classifier’s
training set rises, the ease of masking would continue
to rise, while the ease of forging would depend on the
strength of the classifier’s model of the target author.
Training data variation: presence of unmodified
forgeries. Recall, from Section 4, that the training sets
did not contain the original files from which the forg-
eries were created. We also test the forgeries against
three classifiers trained on the same authors, but with
the addition of the original forgery files, so the classi-
fiers have access to all authors’ entire body of work.
Intuitively, forgeries have a lower level of success when
attacking these versions of the classifier: forgery suc-
cess is 65.6% overall, and masking is 73.3% (down from
70.0% and 80.0%, respectively). This implies that the
classifier has a better chance of recognizing the original
author if the actual original file is in its training set.

6.2 Success against human analysts

The results of our forgery creation study, detailed in
Section 6.1, reveal that an adversary can deceive the

Task Simple attri-
bution

Attribution with
knowledge of
forgery

Find the
forgery

Forgery
attack
success

56.6 % 23.7% 53.1%

Table 4. The percent of forgeries that were a successful attack in
each phase of the forgery detection study.

state-of-the-art machine classifier. Our forgery detection
study finds that while our participants do not spot forg-
eries when given no information at all, they can develop
successful forgery detection strategies without examples
of forgeries or instructions about forgery creation. As
above, success refers to the forgery attack success, not
the success of the participants.

Recall, from Section 5.2, that in the forgery de-
tection study, participants had no knowledge of the
forgeries in the simple attribution task, and later knew
that there might be forgeries present in the next task,
the attribution-with-knowledge-of-forgery task. The final
task, find-the-forgery, presented participants with two
functionally equivalent programs, and instructed them
to determine which one was the forgery. Table 4 sum-
marizes the rate of success of forgery attacks in each of
the attribution tasks.

We find that attack success decreases dramatically
in the second task, after participants are told about the
possibility of forgeries. We also find that humans and
machines are not always fooled by the same forgeries.
Simple attribution task results. In the simple at-
tribution task, the forgeries fooled the humans 56.6%
of the time, meaning that the participants’ accuracy on
forgery was statistically equivalent to random guessing.
This indicates that in this task, when participants had
no reason to expect that some of the programs were forg-
eries, they were often fooled by the forgeries (as was the
machine classifier). The attribution accuracy on non-
forgeries attained by the participants, 92.7%, is high.
Attribution-with-knowledge-of-forgery task re-
sults. In the attribution-with-knowledge-of-forgery task
(Step 3 in Section 5.2), forgery attack success decreases
drastically, to 23.7%. That is, participants were able to
correctly detect 76.3% of forgeries. This dramatic drop
in forgery success shows that when analysts are made
aware of the possibility of forgery, they are more likely
to accurately detect or attribute forgeries. However, al-
though many forgeries were correctly detected, a num-
ber of code samples attributed as forgeries were not ac-

Recognizing and Imitating Programmer Style 135

tually forgeries: where previously the analysts correctly
attributed non-forgeries with 92.7% accuracy, they only
achieved 76.2% accuracy on non-forgeries in this task.
This can be attributed to increased suspicion about in-
consistencies in every program, as participants noted.
Find-the-forgery task results. The third and final
task of the study presented participants with two func-
tionally equivalent programs, one written by X, and the
other a forgery attempt of X solving the same prob-
lem. Success on this task was 53.1% overall, statisti-
cally equivalent to random guessing (50%). However,
the results were not random: some forgeries consistently
fooled the humans while others tended to be detected.
Furthermore, although some forgeries in this task fooled
the participants, they were not strictly the same forg-
eries that fooled the machine classifiers, or that fooled
the participants in the previous task.

6.3 Lessons

Our results enable us to draw the following lessons re-
garding the capabilities of forgers and analysts:
1. The current state-of-the-art attribution classifier [5]

is not robust to adversarial stylometry attacks, even
when those attacks are created by non-experts. This
suggests that other source code attribution classi-
fiers may be vulnerable to the same type of attacks.

2. Training sets matter: classifiers trained on fewer au-
thors are more robust, and classifiers that have the
original, unmodified files in their training sets are
more robust. This suggests having a variety of train-
ing sets on which to test new code.

3. Augmenting attribution systems with human ana-
lysts, though expensive, may increase the success
of the overall system’s forgery detection and attri-
bution capabilities. Attribution analysts are subject
to the same attacks that machine classifiers are, but
they may be sensitive to different attack strategies.

4. Telling the analysts about the potential adversarial
input was enough to significantly increase forgery
detection, though the increased suspicion caused
non-forgeries to be marked as forgeries. Attribution
systems employing human analysts should consider
how to train analysts to increase the rate of forgery
detection without decreasing attribution accuracy.

5. Some forgeries fooled all the machine classifiers and
many or all of the humans. Others fooled all the
machine classifiers and none of the humans, and
others still fooled many or all of the humans, but
none of the machine classifiers. Forgeries that fool

all the classifiers, human and machine, are the best
forgeries. However, the small number of forgeries
the fool either humans or machines but not both
suggests two things: (1) that as the quality of the
forgery declines, it may only fool some of the clas-
sifiers, but we cannot say which ones; and (2) some
forgeries are easier for different classifiers or people
to recognize.

7 Qualitative Results
To understand how to improve forgery detection, we
first analyze forgeries to understand the changes forgers
made. Second, we analyze the participants’ notes from
the attribution phases in both studies to understand
how they thought about author style, attribution, and
forgery detection.

7.1 Forgery Creation

Implementation involves three types of decisions: ty-
pographic, control structure, and information structure
[12, 18]. We further divide modifications into local, or
implementation-level changes, and higher-level algorith-
mic changes. These categories exist on a continuum, but
we define them roughly as follows: if one were imple-
menting a program from pseudocode, a local modifica-
tion would not be visible in the pseudocode, whereas an
algorithmic change would be a departure from the pseu-
docode. For example, imagine pseudocode for a nested
loop, along with the accompanying source code. In the
source code, modifying the type of loop— i.e., for to
while—would be a local control flow modification, since
it does not affect the pseudocode, but control flow key-
words are modified. Abstracting the inner loop to a
helper function would be an algorithmic control flow
modification, since it would affect the underlying pseu-
docode.

Type of change Total modifications Forgers who made
this change

Var. names 168 25
Lines of code copied 113 23
Libraries imported 53 22
Indent scheme 1024 19
Var. decl. location 85 19

Table 5. Common modifications made by forgers

Recognizing and Imitating Programmer Style 136

We find that modifications made to create successful
forgeries are overwhelmingly local control flow, local in-
formation structure changes, and typographical changes,
and that the vast majority of participants did not make
algorithmic modifications at all.

The current state-of-the-art classifier [5] achieves
high accuracy on non-adversarial input. However, our
participants—without knowing what features the clas-
sification algorithm was using—modified code in such a
way that they were able to fool the classifiers using only
these local modifications, suggesting that local code fea-
tures are not sufficient for an attribution system that
may receive adversarial input. Section 8 explores the
how these local code modifications affect the machine
classifier features.

Next, we detail the types of changes made to forg-
eries, citing examples from the studies. First, we present
an overview of the most common types of modifications;
then we explore specific changes using the examples
shown in Figures 1, 2, 3, and 4. Appendix A contains
the entire list of modifications.

7.1.1 Most Common Changes

Table 5 shows the most popular modifications, ranked
by the number of participants who made at least one
such modification. Changing variable names, variable
declaration location, and libraries imported are local in-
formation structure modifications (Section 7.1.3), and
modifying the indentation scheme is a typographical
change (Section 7.1.2).

Copying entire lines of code written by the target
author in the training set may be either a control flow
or an information structure change: often, participants
copied the logic of the main loop (control flow mod-
ification) and variable declarations for variables used
globally or at a high level in the main function (in-
formation structure modification), suggesting that par-
ticipants considered file- or function-level variables and
loop logic and structure an essential marker of style.

7.1.2 Typographical Changes

Recall from Section 4 that the code given to partici-
pants had been normalized typographically to a large
extent. Many participants still made some typograph-
ical changes, though some typographical modifications
may not have been intentional if participants were work-
ing in an IDE that enforced a certain style. There is no

[Original code]

for(i=0;i<a1-1;i++) printf("%d",r1[i]);printf("%d\n",r1[i]);
for(i=0;i<a2-1;i++) printf("%d",r2[i]);printf("%d\n",r2[i]);

[Modified code (forgery)]

for (i = 0; i < cmx - 1; i++)
{

printf("%d ",curmx[i]);
}
printf("%d\n", curmx[i]);

for (i = 0; i < cmy - 1; i++)
{

printf("%d ", curmy[i]);
}
printf("%d\n", curmy[i]);

Fig. 1. Original and modified code, showing typographical and
information structure modifications

way to determine which modifications were not deliber-
ate, so we include all modifications in our analysis.

The most common typographical modifications
were the usage or location of brackets and the inden-
tation scheme, while less common modifications were
comments and spacing between operators. Figure 1 il-
lustrates some of these modifications. In this original-
forgery pair, the forger added brackets, newlines, and
spaces between operators to transform the code to
look more like the target author’s code. These modifica-
tions make the code look significantly different at first
glance, but in reality these modifications could be easily
automated with a code linter.

7.1.3 Information Structure Changes

Information structure changes cover variables, syntax,
and data flow. Local modifications include changing the
variable name or declaration location, ternary opera-
tor usage, and macro addition and removal. Algorith-
mic changes, which no participants made, would include
modifications to the variable type, data structure usage,
and static and dynamic memory usage.

Nearly all participants modified variable names and
the location of variable declarations, typically either
from or to a global variable, or inside a for-loop in-
stantiation. Participants also frequently added or re-
moved macros, libraries included (more often added),
and swapped equivalent API calls, typically for I/O.
Less common modifications were syntactic, such as
ternary operator usage, the increment/decrement op-
erator, and array indexing.

Recognizing and Imitating Programmer Style 137

[Original code]

43 int main()
44 {
45 int i,j,k;
46 int cc,ca;
47 cin >> ca;
48 for(cc=1;cc<=ca;cc++)
49 {
50 cin >> D >> I >> M >> N;
51 for(i=0; i<N; i++)
52 cin >> original[i];

[Modified code (forgery)]

1 #define REP(i,a,b) for(i=a;i<b;i++)
2 #define rep(i,n) REP(i,0,n)

...
41 int main()
42 {
43 int i,j,k;
44 int size, count = 0;
45 scanf("%d", &size);
46 while (size--)
47 {
48 scanf("%d%d%d%d", &D, &I, &M, &N);
49 rep (i,N) scanf("%d", original+i);

Fig. 2. Information structure and control flow modifications

The transformation in Figure 2 illustrates changes
to variable names, API calls (specifically, this oc-
curred with I/O functions), and the addition of macros
used by the target author. Figures 1 and 2 show modi-
fied variable names.

7.1.4 Control Flow Changes

Control flow modifications relate to the path of execu-
tion in a program. Local modifications include modify-
ing the loop type, loop logic (i.e., increment to decre-
ment), putting multiple assignments per line, break-
ing up a complex if-statement, and adding or remov-
ing control flow keywords. Algorithmic modifications in-
clude refactoring functions and any major addition or
removal of control structures like loops and conditionals.

The majority of the control flow changes to forgeries
are implemented as local modifications. Most common
are changes to loop type or logic, breaking up an if-
statement, and the addition or removal of control flow
keywords (with minimal modifications to the surround-
ing algorithm). We do find some algorithmic changes,
though they are much less common than the local mod-
ifications: some participants added or removed inlined
versions of memset or common math functions. One par-
ticipant undertook a major refactoring of a helper func-
tion; we highlight this unusual but impressive series of
modifications after discussing local modifications.

8 int judge(int m) {
9 int j,k;
10 for(j=0;j<m;j++) for(k=0;k<m;k++) if (b[j][k]!=-1) {
11 if (b[k][j]==-1) b[k][j]=b[j][k]; else if

(b[j][k]!=b[k][j])
return 0;

12 if (b[m-1-j][m-1-k]==-1) b[m-1-j][m-1-k]=b[j][k]; else
if (b[m-1-j][m-1-k]!=b[j][k]) return 0;

13 if (b[m-1-k][m-1-j]==-1) b[m-1-k][m-1-j]=b[j][k]; else
if (b[m-1-k][m-1-j]!=b[j][k]) return 0;

14 }
15 return 1;
16 }
17
18 int cal(int m) {
...
21 memset(b,0xff,sizeof(b));

Fig. 3. Original code: algorithmic changes. The forger later refac-
tored the function, judge

Control flow: local changes. Figure 2 illustrates lo-
cal control flow modifications. Most prevalent is the ad-
dition or removal of control flow keywords, like break,
continue, assert. This may be because it is often trivial
to add or remove them by locally modifying the logic.

The modified code snippet in Figure 2 begins by
adding macros for for-loops that the imitated author
frequently used. Then, the loop type of the inner for-
loop (original line 51, modified line 48) is changed to
use the macro. The modified version also removes a
newline so that both the loop initialization and body
are on the same line, without brackets. The loop type
of the main loop (original line 48, modified line 46)
is changed from a for-loop to a while-loop. The logic
of the main loop is also modified: in the modified
version, the counter decreases; in the original version,
the counter increases. The input functions at original
lines 47/50 and modified lines 45/48 have been changed
to use scanf instead of cin. Finally, some entire lines
(44-46) in the modified version have been copied from
programs written by the target author.
Control flow: algorithmic changes. Control flow
changes that modify the underlying algorithm reflect
a deeper understanding of both the original and tar-
get programmers’ thought processes and goals. Only a
few participants made these types of changes— for ex-
ample, refactoring a function, replacing a goto with a
non-trivial series of conditionals, or adding or removing
inlined version of common math functions. Figures 3
and 4 show an example of inlining: the participant re-
moves a call to memset (original line 21) and replaces
it with an inlined version (modified line 41), a double
loop through the array where each element is set to 256,
as in the original version. This type of modification oc-
curs in a few other forgeries and also signifies a more

Recognizing and Imitating Programmer Style 138

2 #define REP(i,a,b) for(i=a;i<b;i++)
3 #define rep(i,n) REP(i,0,n)
...
10 int copy_maybe(int x, int y, int c, int d) {
11 if (b[x][y]==-1) {
12 b[x][y] = b[c][d];
13 }
14 else
15 {
16 if (b[x][y] != b[c][d]) return 0;
17 }
18 return 1;
19 }
20
21 int judge(int m) {
22 int j,k,id,ie,r;
23 rep(j,m) rep(k,m) if (b[j][k]!=-1) {
24 r = copy_maybe(k,j,j,k);
25 if (r == 0) return 0;
26 id = m - 1 - j;
27 ie = m - 1 - k;
28 r = copy_maybe(id,ie,j,k);
29 if (r == 0) return 0;
30 r = copy_maybe(ie,id,j,k);
31 if (r == 0) return 0;
32 }
33 return 1;
34 }
35
36 int calculate(int m) {
...
41 rep(o,256) rep(p,256) b[o][p] = MAX;

Fig. 4. Algorithmic changes to a forgery: the forger refactored
some logic into a new function, copy_maybe

significant change to the path of execution, though it
only requires only a local understanding of the code.

A more unusual, higher-level algorithmic modifica-
tion in Figures 3 and 4 is the addition of a helper func-
tion, showing deep analysis of the algorithm. To create
this forgery, the participant made significant changes to
the function judge, primarily by adding temp vari-
ables and abstracting away much of the logic in the
complex if-statements in the original code (lines 11-13)
to a new helper function, called copy_maybe. These
changes would require a forger to understand the func-
tion as a whole. This is the only forgery that shows a
forger delving slightly deeper in the design choices made
by both the original and target authors. The participant
who created this forgery wrote that “it required under-
standing the code more deeply than just at a stylistic
level and trying to rewrite it from scratch.”

7.2 Features Used for Attribution

Through analysis of our study results, we find that ana-
lysts focus primarily on local implementation details in-
stead of algorithmic decisions when making attribution
decisions, just as the forgers focused on these when cre-
ating forgeries. That is, participants overwhelmingly use
the same set of features when trying to detect forgeries,

but augment this set with higher-level reasoning about
stylistic inconsistencies and the forgeability of features.

These can be roughly divided into inconsistencies
regarding the presence of a feature and inconsistencies
regarding use of a feature. For example, imagine an au-
thor typically uses the variable name aa in their main
loops, as seen in the training set. In a forgery, a presence
inconsistency would be the lack of a variable named aa.
A usage inconsistency would be a variable named aa
used in a helper function and not in the main loop.
Noticing a usage inconsistency requires the analyst to
have a greater understanding of the author’s style.
Presence of features. The inconsistent inclusion or
exclusion of a feature indicative of the target author led
participants to label code a forgery. Although noting
these inconsistencies sometimes resulted in a correct la-
bel, it was not a reliable technique, as we discuss below.

A common reason for a correct forgery label was
inconsistencies in spacing and bracket use. The success
of these low-level typographic inconsistencies (in com-
bination with the other features) may be attributed, to
some extent, to the fact that style in the training set
was largely normalized, but we made no normalizations
to the forgeries because they reflect the forgers’ idea of
what will fool a classifier. So, if the forger did not at-
tempt to imitate typographic style at all, the participant
may have discerned typographical differences.

Sometimes, however, typographical inconsistencies
lead to an incorrect label: participants wrote, about
non-forgeries, that “everything matches except there is
a for loop missing its braces” ; and “the discrepan-
cies, particularly the multiple for-loop statements on
the same line, make me think it’s a forgery.”

Other participants justified the forgery label with
anomalies in the code, or features that match or might
have been copied from the target author’s training set:
“The use of unsigned long is something B never did
in the training data however the overall structure of the
code looks like it could be from person B. Maybe this per-
son didn’t understand the difference between unsigned
long and long and blindly copied over from code that
used unsigned long’s?”

Conversely, participants labeled as non-forgeries
code that contained features consistently present in the
training set. One participant wrote that the code “uses
_ and __, asserts, has no inconsistencies with D’s
style”, and assigned a ‘X’ label to a forgery of X. In both
this example and the previous one, participants who
based attribution decisions on the inconsistent presence
of features assigned incorrect labels.

Recognizing and Imitating Programmer Style 139

Forgeability of Features. Some participants reasoned
about the fact that typographical and local features
would be easy to forge but still falsely decided the code
was not a forgery: “For me this looked like D because
of the asserts and curly braces, but it would be pretty
easy to add those things in an attempted forgery....”
Similarly, another participant noted that the addition
of simple macros would be trivial to add but assigned a
non-forgery label because of the lack of unused variables.
This shows that participants thought about the process
of forgery creation—that is, that the addition of local
and typographical features is simple—but sometimes
still came to the wrong decision.
Usage of features. Some participants assigned correct
forgery labels because they noticed features not used as
the target author had. Higher-level features that par-
ticipants used to detect forgeries include differences in
modularity of the code, use of helper functions, and lines
that appear in the training set, all inconsistencies in the
usage of features.

A participant wrote “the use of underscores as vari-
able names suggests D, but normally D would only do
that if the function is very short and delegates all the
work to another helper function. Here, underscores are
used in a very long loop, and somewhere in the mid-
dle an underscore variable is used. This seems unlike
D’s style. Also, assert.h is included but there are no
asserts used, which seems like a sloppy imitation of
D.”

This participant noted three simple features—vari-
able names, function length, and libraries—and com-
bined information about higher-level indicators (like
typical variable names) with variable usage and infor-
mation flow to discover inconsistencies in the usage of
certain elements.

7.3 Lessons

Stepping back, we are now positioned to draw some key
implications and lessons regarding the potential tactics
and methods of forgers and analysts:
1. When creating forgeries, forgers may copy code from

other programs written by the target of the forgery.
This code, while visible in the source, might not ac-
tually be executed when the program is run. There-
fore, an adversarially resilient attribution system
might use a software analysis tool to determine
which portions of code are reachable or unreachable
and then treat these regions of code differently.

2. The vast majority of modifications made to create
forgeries required only a local understanding of the
code, and were made by forgers who had no knowl-
edge of the features that the classifier was using for
attribution. This suggests that forgeries in the wild,
to the extent that they exist, might contain the same
types of local modifications.

3. When told about forgeries, but without being
shown examples, some participants developed re-
liable methods of forgery detection. These arose
from the participants first considering how forgeries
might be created and then developing an under-
standing of the target author’s style at a higher level
than the modifications that the forger made. This
suggests that attribution system designers should
aim to develop a high level understanding of au-
thorship style.

4. Taken together, the previous two lessons sug-
gest that adversarially resistant attribution systems
might incorporate algorithmic features which re-
quire a deeper understanding of the target author’s
engineering process and programmatic goals.

8 Discussion
To extend the results in Sections 6 and 7, we analyze the
features modified by the forgers, and then summarize
our recommendations for a more robust classifier.

8.1 Machine Classifier Feature Analysis

To better understand the high rate of forgery success
against the machine classifier, we explore the machine
classifier’s features. Each forgery has an associated orig-
inal file that the forger modified to create the forgery;
we compare the features and analyze how the modifi-
cations made by the forgers affected the features that
the machine classifier extracted. In this section, we are
specifically discussing machine classifier features, not
‘features’ used by the forgers or analysts.
Overview of classifier features. Caliskan-Islam et
al’s [5] classifier extracts features from an abstract syn-
tax tree (AST) representation of the code. Leaf nodes
of the AST are unigrams of code: variable names, API
calls, strings, and literals (as well as C keywords). AST
nodes are snippets of the syntactic structure of code,
such as ‘AdditiveExpression’ or ‘ForInit’. The classifier

Recognizing and Imitating Programmer Style 140

Fig. 5. This is a proportional view of the average number of fea-
tures changed between the original and forgery. The large outer
circles represent the original (left) and forgery (right) files. The
sizes of the circles is proportional to the number of features that
the machine classifier extracts. The overlap in the middle repre-
sents features that the machine classifier extracted from both the
original and the forgery. The non-overlapped section of the left
circle is 49.4% of its area, and the non-overlapped section of the
right circle is 40.2% of its area. The small circle in the overlapped
section represents the small proportion of features that the ma-
chine classifier extracted from both files and whose values did not
change in either file: it is 43.0% of the overlapped portion.

traverses the AST to extract AST unigrams and bi-
grams. For an in-depth explanation, see [5].

On average, for classifier C5, 55.0% of features in-
clude a variable name, API call, macro, or literal. By
making small, local changes to only variable names,
macros, literals, or API calls, forgers had access to over
half of the features. Recall from Section 7.1 that swap-
ping variable names was the most common modification
that forgers made, and they also commonly modified
macros and API calls: these modifications had the po-
tential to alter half the features extracted from the file.
Overview of changes to features. Figure 5 shows an
overview of the proportion of features shared between
the original and the forgery. On average, 49.4% of fea-
tures extracted by the machine classifier from original
file are absent in the corresponding forgery, meaning
that the forgers’ modifications completely removed any
instances of nearly half of the features. Similarly, 40.2%
of the features in a forgery do not exist in the origi-
nal file. The type of features that exist in only one file
are proportional to the overall feature makeup, meaning
that forgers affected both a large percentage and vari-
ety of features: although forgers primarily made mod-
ifications to originals that did not require a high-level
understanding of the authors’ decisions, they were still
able to affect a vast majority and variety of features,
in line with the high rate of forgery success against the
classifier.

The small circle contained in the overlapping middle
portion of Figure 5 shows the proportion of features
whose values remained the same throughout the change:
43.0% of the features that exist in both files. Combined
with the features that were added to the forgery, this
means that of the features in the forgery, only 23.5%
have the same value as they did in the original. So, by
making primarily local changes, forgers created forgeries
that contained 76.5% features with different values.

Next, we take a deeper look at the features whose
values change most dramatically. Adding or removing
many instances of a feature changes its value more. For
example, a forger who changes all while-loops to for-
loops will increase the value of certain features (such as
the AST node ‘ForInit’) more than a forger who only
changes one while loop.
Features that exist in only one of the files. We
both examine features removed from original files and
features added to forgeries. Table 6 shows the most
commonly added and removed features for authors A-D
(there were not enough forgeries of author E). The ma-
jority of these features are variable names or macros,
reflecting the modifications that forgers made to vari-
able names and macros.

There are also AST unigrams such as ‘ShiftExpres-
sion’, ‘UnaryOp’, ‘ArrayIndexing’, and ‘Assignment-
Expr’, which are typically close to the leaf nodes and
thus more susceptible to local code changes. Moreover,
these AST nodes indicate low level programming de-
cisions, such as the use of a bitshift operator, or the
choice to use array indexing rather than pointer ad-
dition to access array elements. There are only two
AST bigrams that appear in these highly-changed fea-
tures. ‘ExpressionStatement AssignmentExpression’ in-
dicates assigning value to a variable, perhaps because
the forger broke up multiline statements. ‘ForInit Identi-
fierDeclStatement’ indicates that the forger added vari-
able declarations immediately after for-loops, another
common modification. The AST bigrams sometimes
capture programmatic elements across more than one
line of programming, but even when they do—as with
‘ForInit IdentifierDeclStatement’— they do not capture
the higher level observations that participants made
about the use of features rather than the presence of
features.
Features that exist in both files. We now examine
the features that exist in both files but have a high cu-
mulative change in value between original and forgery
files. Table 7 sorts these features by type and author. In
contrast to features that only exist in one file, these con-

Recognizing and Imitating Programmer Style 141

Feature Description Feature Authors

Var. name, macro, &
literal unigrams

ca (avg depth), cc, w, ca, pos, color, plate, best, N, N, k, t, T, cc, rr, best, j, r, D, T
(avg depth), t, c, N (avg depth), rep, size, count, tar, ll, mode, in, rep (avg depth),
tm, size (avg depth), r, res, lim, __, _, n, s, R, y, 2, tt, cmy, curmy, tn, MAXN, res

A, B, C, D

Var. name bigrams t T, i n B
API calls unigrams cin, cin (avg depth), scanf_s, scanf, assert A, B, C, D

AST unigrams ShiftExpression, MultiplicativeExpression, cc (avg depth), ShiftExpression (avg depth),
AndExpression, UnaryOp, AssignmentExpr, ArrayIndexing A, C, D

AST—AST bigrams ExpressionStatement AssignmentExpr, ForInit IdentifierDeclStatement A, B

Table 6. These are features that most often occur in either the original by an author, or the forgery of that author, but not both.

Feature Description Feature Authors
Var. name, macro, &
literal unigrams i, j, 0, 1, 1 all, C, D

AST unigrams

Argument, AssignmentExpr, ExpressionStatement, Condition, AdditiveExpression, Re-
lationalExpression, CallExpression, IncDecOp, Callee, ArgumentList, ArrayIndexing,
CallExpression, Callee, ArgumentList, IncDecOp, ArrayIndexing, CallExpression, Iden-
tifierDecl, Callee, ArrayIndexing, IdentifierDecl, IncDecOp, ForInit

all, A, B, C, D

C keyword unigrams int all

Table 7. These features often occur in both a forgery and its corresponding original, with the highest cumulative change in value.

tain no leaf nodes other than common variable names
and literals used by most programmers. The majority
of the features are AST unigrams.

Two of the AST nodes are typically relatively high
in the AST: ‘ExpressionStatement’ and ‘Condition’. A
change in the value of ‘ExpressionStatement’, a rela-
tively generic AST node, could indicate that the forger
has expanded or contracted lines of code, or simply
changed the length of the program, in part by adding or
removing lines of code that are expression statements.
Forgeries were commonly different lengths than the cor-
responding original files. A change in the value of ‘Con-
dition’ may reflect that some forgers trivially added or
removed if-statements.

One of the most popular AST unigrams, ‘Argument’
occurs for each argument in a function call, so its value
will change if the forger uses equivalent API calls that
have a different number of arguments, another common
modification we observed. The rest of the AST node
names are self explanatory and reflect code modifica-
tions that occur on one line only.

Combined with the features that occur in only one
file, we observe that the features highly affected by forg-
ers’ changes are variable names and AST unigrams, typ-
ically nodes close to the leaf nodes. As shown in Fig-
ure 5, these are 76.5% of the features in the forgery.
We now briefly turn our attention to the 23.5% of fea-

tures that typically do not change in value between the
original and the forgery.

There are only two features that occur in all
original-forgery pairs and never change value. They are:
AST—AST bigram ‘FunctionDefinition Compound-
Statement’, and ‘Max depth of AST leaf’. There is a long
tail of features that stay constant in the one file in which
they appear, primarily AST—AST and leaf—AST bi-
grams. Along with the high rate of feature modification,
this long tail indicates that the machine classifier fea-
tures are not unforgeable, and that a future, more robust
machine classifier should extract features that are more
difficult for forgers to modify.

8.2 Lessons

Based on our analysis of how the forgers affected the ma-
chine classifier’s features, we draw the following lessons.
1. Over half of the machine classifier features in-

cluded variable names, macros, literals, or API calls.
Because these are typically simple to change by
hand—and even to automate—we suggest that fu-
ture classifiers should consider fewer of these fea-
tures, or that these features could be contextual-
ized with their usage in the program, as successful
human analysts did in Section 7.2.

Recognizing and Imitating Programmer Style 142

2. AST bigrams can capture some information about
higher level programming decisions. Although these
are not unforgeable, they may be a valuable part of
a more robust classifier.

3. Combined with our finding from Section 7.3 that
thinking about the forgeability of code properties
helped analysts correctly label forgeries, we reiter-
ate that the unchanged machine classifier features
are not unforgeable and that the same common
strategies that changed other features could modify
them. This suggests that future, more robust classi-
fiers may benefit from extracting new features that
are not affected by the local modification strategies
that the forgers employed, for example by including
more complex AST features or by including forg-
eries (correctly labeled) in the training set.

9 Conclusion
We conduct two studies with C/C++ programmers in
order to better understand the potential capabilities and
methods of (1) adversaries creating forgery attacks, and
(2) machine classifiers and human analysts trying to at-
tribute source code which may have been modified by
an adversary.

Through our forgery creation and detection studies,
we find that programmers not specifically trained in at-
tribution or forgery can, in many cases, fool a state-of-
the-art source code attribution system. This work there-
fore provides a conservative estimate of the success of
more skilled or trained adversaries.

We find that successful forgeries primarily contain
modifications that required the forger to have only a lo-
cal understanding of the code, and that human analysts
who successfully detected forgeries understood style at a
higher level than the modifications, suggesting that fu-
ture adversarially robust attribution systems should ad-
ditionally include features that capture high-level style.

This work additionally paves the way for follow-on
research, such as research in which participants modify
their own code to look like a target’s style, or research
in which forgeries are included in the training set.

This work, an exploration of the capabilities and
methods of adversaries seeking to forge another pro-
grammer’s style, is a starting point for the design of
future adversarially resistant attribution systems. The
designers of such systems should consider the lessons
and implications detailed here, and build systems re-

silient to even more sophisticated forgery and masking
attacks.

10 Acknowledgements
We are very grateful to Camille Cobb, Karl Koscher,
Kiron Lebeck, Anna Kornfeld Simpson, Paul Vines,
Karl Weintraub, and Eric Zeng for helping us pilot these
studies and for their feedback on our paper drafts, and
to Sandy Kaplan, Franziska Roesner, Brian Rogers, and
Alison Simko for their feedback on drafts of this paper.
We also are extremely thankful for Yejin Choi’s early
discussions on this project, and her feedback on our fi-
nal paper.

We would also like to thank Aylin Caliskan and
Rachel Greenstadt for their personal help setting up
their classifier, and for some early conversations about
research directions. Finally, a sincere thank you to our
anonymous reviewers for their constructive feedback.

This work was supported in part by an NSF Grad-
uate Research Fellowship and the Short-Dooley Profes-
sorship.

References
[1] Afroz, Sadia, Michael Brennan, and Rachel Greenstadt. "De-

tecting hoaxes, frauds, and deception in writing style on-
line." IEEE Symposium on Security and Privacy. IEEE, 2012.

[2] astyle.sourceforge.net
[3] S, L. "Who Is Satoshi Nakamoto?" The Economist. The

Economist, 02 Nov. 2015. Web. 28 Feb. 2017.
[4] Brennan, Michael, Sadia Afroz, and Rachel Greenstadt. "Ad-

versarial stylometry: Circumventing authorship recognition
to preserve privacy and anonymity." ACM Transactions on
Information and System Security (TISSEC) 15.3 (2012): 12.

[5] Caliskan-Islam, Aylin, Richard Harang, Andrew Liu, Arvind
Narayanan, Clare Voss, Fabian Yamaguchi, and Rachel
Greenstadt. "De-anonymizing programmers via code stylom-
etry." 24th USENIX Security Symposium (USENIX Security
15). 2015.

[6] Caliskan-Islam, Aylin, Fabian Yamaguchi, Edwin Dauber,
Richard Harang, Konrad Rieck, Rachel Greenstadt, and
Arvind Narayanan. "When coding style survives compilation:
De-anonymizing programmers from executable binaries."
arXiv preprint arXiv:1512.08546 (2015).

[7] https://github.com/calaylin/CodeStylometry
[8] Dauber, Edwin, Aylin Caliskan-Islam, Richard Harang, and

Rachel Greenstadt. "Git blame who?: Stylistic authorship
attribution of small, incomplete source code fragments."
arXiv preprint arXiv:1701.05681 (2017).

[9] DeMillo, Richard A., Richard J. Lipton, and Frederick G.
Sayward. "Hints on test data selection: Help for the practic-

Recognizing and Imitating Programmer Style 143

ing programmer." Computer 11.4 (1978): 34-41.
[10] Frantzeskou, Georgia, Stephen MacDonell, Efstathios Sta-

matatos, and Stefanos Gritzalis. "Examining the significance
of high-level programming features in source code author
classification." Journal of Systems and Software 81.3 (2008):
447-460.

[11] https://code.google.com/codejam/
[12] Gray, Andrew, Stephen MacDonell, and Philip Sallis. "Soft-

ware forensics: Extending authorship analysis techniques to
computer programs." (1997).

[13] Hayes, Jane Huffman, and Jeff Offutt. "Recognizing authors:
an examination of the consistent programmer hypothesis."
Software Testing, Verification and Reliability 20.4 (2010):
329-356.

[14] Juola, Patrick. "Detecting stylistic deception." Proceedings
of the Workshop on Computational Approaches to Decep-
tion Detection. Association for Computational Linguistics,
2012.

[15] Kacmarcik, Gary, and Michael Gamon. "Obfuscating docu-
ment stylometry to preserve author anonymity." Association
for Computational Linguistics, 2006.

[16] Kothari, Jay, Maxim Shevertalov, Edward Stehle, and Spiros
Mancoridis. "A probabilistic approach to source code author-
ship identification." Information Technology, 2007. ITNG’07.
Fourth International Conference on. IEEE, 2007.

[17] Muir, Macaully, and Johan Wikström. "Anti-analysis tech-
niques to weaken author classification accuracy in compiled
executables." (2016).

[18] Oman, Paul W., and Curtis R. Cook. "A taxonomy for pro-
gramming style." Proceedings of the 1990 ACM annual con-
ference on Cooperation. ACM, 1990.

[19] Pellin, Brian N. "Using classification techniques to deter-
mine source code authorship." White Paper: Department of
Computer Science, University of Wisconsin (2000).

[20] Potthast, Martin, Matthias Hagen, and Benno Stein. "Au-
thor obfuscation: attacking the state of the art in authorship
verification." Working Notes Papers of the CLEF (2016).

[21] Rosenblum, Nathan, Xiaojin Zhu, and Barton P. Miller.
"Who wrote this code? identifying the authors of program
binaries." European Symposium on Research in Computer
Security. Springer Berlin Heidelberg, 2011.

[22] Schleimer, Saul, Daniel S. Wilkerson, and Alex Aiken. "Win-
nowing: local algorithms for document fingerprinting." Pro-
ceedings of the 2003 ACM SIGMOD international confer-
ence on Management of data. ACM, 2003.

[23] Spafford, Eugene H., and Stephen A. Weeber. "Software
forensics: Can we track code to its authors?" Computers &
Security 12.6 (1993): 585-595.

[24] Laskov, Pavel and Nedim Srndic. "Practical evasion of a
learning-based classifier: A case study." 2014 IEEE Sympo-
sium on Security and Privacy. IEEE, 2014.

[25] Stamatatos, Efstathios. "A survey of modern authorship
attribution methods." Journal of the American Society for
information Science and Technology 60.3 (2009): 538-556.

[26] "8 Years Later: Saeed Malekpour Is Still In An
Iranian Prison Simply For Writing Open Source
Software." Techdirt. Accessed February 20, 2017.
https://www.techdirt.com/articles/20161005/10584235719/8-
years-later-saeed-malekpour-is-still-iranian-prison-simply-
writing-open-source-software.shtml.

A All Modifications
In Section 7.1 we discuss the set of modifications that
participants made in our forgery creation study. In this
appendix (Table 8), we provide the complete list of the
different classes of modifications. This table splits mod-
ifications into three categories: control flow, information
structure, and typographical. See Section 7.1 for addi-
tional discussions.

Recognizing and Imitating Programmer Style 144

Type of change Total number of modi-
fications

Number of participants
who made this type of
change

Avg modifications per
participant who made
at least one

Control Flow modifications
Control flow keywords 32 14 2.3
Loop type 48 12 4
Conditional statements 21 10 2.1
Loop logic 12 11 1.1
Functions added/re-
moved 11 10 1.1

Multiple assignments
per line 10 5 2

API calls - usage vs in-
lining 4 4 1

Information Structure modifications
Variable names 168 25 6.7
Libraries included 53 22 2.4
Variable declaration lo-
cations 85 19 4.5

Macros 36 17 2.1
API calls - which one is
used 67 17 3.9

Usage/placement of
unary inc/dec operator 10 8 1.3

Array indexing vs
pointer addition 6 4 1.5

Ternary operator usage 5 3 1.7
Typographical modifications

Indent scheme 1024 19 53.9
Brackets - location 69 17 4.1
Brackets - use 78 13 6
Spaces between opera-
tors 628 12 52.3

Commented-out code 17 11 1.5
Comments (not code) 13 4 3.25

Other
Entire lines of code
copied 113 23 4.9

Table 8. All modifications made to forgeries

	Recognizing and Imitating Programmer Style: Adversaries in Program Authorship Attribution
	1 Introduction
	2 Related Work
	3 Threat Model and Goals
	3.1 Motivating Scenarios
	3.2 Threat Model
	3.3 Goals

	4 Classifier and Data
	5 Methodology
	5.1 Forgery Creation Study Design
	5.2 Forgery Detection Study Design
	5.3 Recruitment and Demographics

	6 Quantitative Results
	6.1 Deceptibility of machine classifier
	6.2 Success against human analysts
	6.3 Lessons

	7 Qualitative Results
	7.1 Forgery Creation
	7.1.1 Most Common Changes
	7.1.2 Typographical Changes
	7.1.3 Information Structure Changes
	7.1.4 Control Flow Changes

	7.2 Features Used for Attribution
	7.3 Lessons

	8 Discussion
	8.1 Machine Classifier Feature Analysis
	8.2 Lessons

	9 Conclusion
	10 Acknowledgements
	A All Modifications

