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Disrupting Machine Learning:
Emerging Threats and Applications for Privacy and Dataset Ownership

Ivan Evtimov

Chair of the Supervisory Committee:
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Convolutional neural networks (CNNs) can be trained with machine learning techniques by using

large datasets of images to solve a multitude of useful computer vision tasks. However, CNNs also

suffer from a set of vulnerabilities that allow maliciously crafted inputs to affect both their inference

and training. A central premise of this dissertation is that these vulnerabilities exhibit a duality

when it comes to security and privacy. On the one hand, when computer vision models are applied

in safety-critical settings such as autonomous driving, it is important to identify failures that can be

exploited by malicious parties early on so that system designers can plan for novel threat models.

On the other hand, when machine learning models themselves are being used in a malicious or

unauthorized manner, such vulnerabilities can be leveraged to protect data creators from harmful

effects of these models (such as privacy degradation) and enforce finer-grained “access” controls

over the data. This work studies security and privacy issues in three scenarios where machine

learning is applied for visual tasks. The first contribution of this work is to identify a vulnerability in

models that are likely to be deployed to identify road signs in autonomous vehicles. It demonstrates

that an attacker with no digital access to a self-driving car’s computers can nevertheless cause

dangerous behavior by modifying the appearance of physical objects. Next, this dissertation

considers scenarios where machine learning models are applied in a way that degrades individual

privacy. The dissertation proposes a scheme – nicknamed FoggySight – in which a community



of users volunteer adversarial modified photos (“decoys”) that poison the facial search database

and throw off searches in it. Finally, machine learning models may be trained on data without

authorization to do so. This dissertation considers scenarios where image owners might wish to

share their visual data widely for human consumption but do not wish to enable its use for machine

learning purposes. It develops a protective mechanism that can be applied to datasets before they

are released so that unauthorized parties cannot train their models on them.
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Chapter 1

INTRODUCTION

Convolutional Neural Networks (CNNs) have been the cornerstone of a series of important

advances in computer vision. In classification, they can correctly predict what type of object is

depicted in a picture out of a thousand possibilities with accuracy above 80% [52]. In detection and

segmentation, they can determine the location, shape, and class of objects with high precision [111,

112]. And in face recognition, they can identify the correct identity of an individual in a photo

from a set of 12 million identities with error rates less than 0.2% [48], far surpassing human

performance [72]. This success on standard computer vision tasks has led to their deployment

in a broad array of areas of human activity. To name just a few, CNNs are used for perception

and control in cyber-physical systems such as cars [40, 81], UAVs [14, 96], and robots [155], for

analyzing medical images [91, 101], and for filtering hateful, harmful, or illegal content on social

networks [70, 139, 144].

As with any broadly adopted technology, CNNs have created a new set of security and privacy

challenges. Perhaps more so than with other technologies, however, these challenges exhibit an

important duality. On the one hand, when CNNs are used in software with safety-critical functions,

their proper and reliable operation is an asset to be protected. On the other hand, CNNs are often

used with detrimental consequences to individual privacy or against the will of the owners of data

used to train them. In those cases, these models become a threat themselves and vulnerabilities can

be exploited to reduce harm stemming from their operation.

This dissertation contributes three studies that each resolve an important security and privacy

issue related to the processing of visual data with CNNs.
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1.1 Novel Vulnerabilities in Computer Vision Models Applied in Critical Settings

As with many computer program, CNNs and machine learning models in general are vulnerable to

exploitation through maliciously crafted inputs that cause mistakes in their operation. A particular

class of such inputs is known as “adversarial examples” [20, 46, 136] and has garnered a lot of

attention in the research community. In addition to inducing errors in the operations of models,

adversarial examples are often surreptitious and hard to distinguish from legitimate inputs.

When CNNs are applied in the perception pipeline of cyberphysical systems, this creates a

potential threat from a new class of adversaries. Attackers who do not have digital access to a system

nevertheless might be able to influence its behavior by modifying the physical world and placing

adversarial examples that mislead the computer vision component of such a system. Consider the

case of autonomous driving. In this situation, it is critically important for the computer of the car to

identify what road signs are in front of it so that it can make correct driving decisions.

Chapter 3 tackles the question of whether it is possible to induce errors in the classification

of road signs solely by modifying the physical object in a hard-to-detect manner. It answers that

question by developing a new algorithm – Robust Physical Perturbations (RP2) – that can produce

physical alterations to objects that consistently induce mistakes in road sign recognition models

and in state-of-the-art object classification models. As one particularly evocative example, RP2 can

produce stickers that, when applied to stop signs, cause models to classify them as speed limit signs.

Robust experiments in different viewing conditions show that this threat is to be taken seriously and

that relying on the variations from the real world is not enough to prevent exploitation.

1.2 Restoring Privacy from Facial Lookups

While Chapter 3 focuses on security issues when it is desirable that computer vision models operate

well in the presence of adversaries, this is not always the case. The problem of ubiquitous facial

search has recently become acute with the appearance of services such as ClearView [55, 57]

and PimEyes [51] that link photos of individuals to their social media identities and other online

presences. This is achieved by building up a database of facial photos associated with profiles on
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websites such as Facebook, Twitter, and even Venmo. A photo taken from anyone anywhere can

then be processed by a CNN face recognition model to match it up with the photos in the database.

When such services are used by law enforcement, this raises a host of civil liberties questions around

involuntary inclusion in criminal databases and reasonable search [33]. When they are available to

the broader public, more nefarious applications of this easily accessible technology become possible,

such as stalking and doxxing.

Therefore, the “proper” operation of CNN models in that case is undesirable for many individuals

whose privacy may suffer from facial searches. Chapter 4 proposes a methodology by which the

vulnerabilities in machine learning models can be leveraged effectively in order to regain privacy

against ubiquitous facial searches. The approach is named FoggySight and is meant to poison the

database used for facial search in a collaborative manner such that existing photos of individuals

are crowded out by “decoys” (adversarial examples). This work studies the conditions needed for

FoggySight to be successful and finds that individuals can meaningfully increase their privacy when

other “protectors” feed adversarially modified photos (“decoys”) in the facial database.

1.3 Protecting Data From Unauthorized Use For Machine Learning

Finally, there is a third scenario with unique security problems stemming from the application of

machine learning that require a finer-grained access control mechanism for visual data. There are

two different levels of privileged access to large collections of images: (1) semantic understanding

access – the ability of a human to view and understand images in a dataset; and (2) machine learning

access – the ability to train machine learning models on that data. A lot of research and several

mature fields of computer science have developed mechanisms that allow for machine learning

access while withholding semantic understanding access. For example, differential privacy and

homomorphic encryption may allow a model to be learned by an untrusted party that is not given

access to the raw image data. However, no mechanism exists to grant semantic understanding access

while withholding machine learning access.

Chapter 5 work proposes and thoroughly evaluates a method for disrupting machine learning

training while maintaining the semantic quality of images. It proposes three different approaches,
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studies their feasibility in preventing training on common computer vision benchmarks, and com-

pares the effectiveness of each against previously published, gradient-based methods. Among other

conclusions, the findings increase our understanding of how CNN training fails in the presence of

simple correlations in the training set. A central finding of this work is that CNNs prefer to fit a

broad variety of simple patterns to the true semantics of the task at hand.

1.4 Summary of Contributions

Here, we summarize the findings of each of the chapters.

In Chapter 3:

• We introduce Robust Physical Perturbations (RP2) to generate physical perturbations for

physical-world objects that can consistently cause misclassification in a CNN-based classifier

under a range of dynamic physical conditions, including different viewpoint angles and

distances (Section 3.2).

• Given the lack of a standardized methodology in evaluating physical adversarial perturbations,

we propose an evaluation methodology to study the effectiveness of physical perturbations in

real world scenarios.

• We evaluate our attacks against two standard-architecture classifiers that we built: LISA-CNN

with 91% accuracy on the LISA test set and GTSRB-CNN with 95.7% accuracy on the

GTSRB test set. Using two types of attacks (object-constrained poster and sticker attacks)

that we introduce, we show that RP2 produces robust perturbations for real road signs. For

example, poster attacks are successful in 100% of stationary and drive-by tests against LISA-

CNN, and sticker attacks are successful in 80% of stationary testing conditions and in 87.5%

of the extracted video frames against GTSRB-CNN.

• To show the generality of our approach, we generate the robust physical adversarial example

by manipulating general physical objects, such as a microwave. We show that the pre-trained

Inception-v3 classifier misclassifies the microwave as “phone" by adding a single sticker.
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In Chapter 4:

• We propose FoggySight: a collaborative facial privacy approach meant to poison the database

used for facial search. We study the conditions needed for FoggySight to be successful and

find that individuals can meaningfully increase their privacy when other “protectors” feed

adversarially modified photos (“decoys”) in the facial database.

• We compare and evaluate different approaches for generating adversarial examples/decoys

in the metric learning space defined by face recognition neural networks and find the most

effective approach to be to target the mean of an individual’s available facial vectors. In that

scenario, protected individuals only need protectors to provide decoys numbering 2-4 times

the number of unmodified photos of the protected, when protectors have access to the facial

search model.

• We study the effectiveness of FoggySight when protectors do not have access to the facial

search model. In those cases, protectors need to increase both the magnitude of modifications

in the decoys and the number they provide relative to the clean photos of the protected. But

they can still meaningfully increase the privacy of the protected: under the right parameters,

we show that our scheme can decrease the identification rate on the Azure Face Service to

under 10%.

In Chapter 5:

• We introduce the notion of adversarial shortcuts and propose three dataset modification

techniques to prevent CNNs from learning useful classification functions.

• We evaluate each technique on the popular CIFAR-10 [76] and ImageNet [113] datasets and

find that the proposed techniques severely limit the test-set accuracy of state-of-the-art models.

We also verify that our techniques are robust to certain simple countermeasures.

• We compare our approach to a concurrent proposal [37] and show that our simpler approach

based on adversarial shortcuts proves more effective at disrupting model training.
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Each of these studies increase our understanding of security and privacy issues in machine

learning-based computer vision. These contributions also provide the basis for further research into

securing models when they applied benignly and disrupting their operation or creation when they

are not.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter provides definitions of concepts related to the work in the following chapters.

We begin with an overview of the work on adversarial examples that is the basis for the study

in Chapter 3. Next, we introduce terms and concepts specific to face recognition as it relates to

Chapter 4 and summarize work on disrupting face recognition with adversarial machine learning.

Finally, we summarize relevant work on how modifications to datasets impact security and privacy

during model training and describe how those studies relate to Chapter 5.

2.1 Adversarial Examples

While machine learning models in general have long been known to be vulnerable to adversarial

inputs [25, 85, 86], the majority of recent work has focused on the study of adversarial examples.

Given a classifier fθ(·) with parameters θ and an input x with ground truth label y for x, an

adversarial example x′ is generated so that it is close to x in terms of certain distance, such as

Lp norm distance. x′ will also cause the classifier to make an incorrect prediction as fθ(x′) 6= y

(untargeted attacks), or fθ(x′) = y∗ (targeted attacks) for a specific y∗ 6= y.

2.1.1 Digital Adversarial Examples.

Adversarial examples were first observed in [136]. More sophisticated approaches to develop them

followed quickly [46, 95] and the literature since then has followed an attack/defense cycle. While

multiple works have put forward techniques to disrupt the adversarial nature of such inputs, nearly

all of them have been followed by “attack” papers that produce stronger adversarial examples. This

led to several “standard” methods to develop adversarial examples: optimizing a regularized loss

function with standard gradient descent [20] and using projected gradient descent [88]. Adaptations
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of those approaches have repeatedly defeated state-of-the-art “defenses” [8, 19, 20, 140].

Much research work has also observed that adversarial examples can be generated without

knowledge of the internals of the model simply by querying it [64, 106] or by attacking a similar

model and relying on transferability, the ability of adversarial examples that are effective against

one model to mislead another one [83].

In short, adversarial examples are fundamental vulnerabilities in DL models that have not been

remedied reliably to this day. They allow their creators to control the output of neural network

models while preserving visual similarity to non-adversarial images.

In Chapter 3, we focus on the setting where adversaries have full access for two reasons: (1) In

our chosen autonomous vehicle domain, an attacker can obtain a close approximation of the model

by reverse engineering the vehicle’s systems using model extraction attacks [141]. (2) To develop a

foundation for future defenses, we must assess the abilities of powerful adversaries, and this can

be done in a white-box setting. Given that recent work has examined the transferability of digital

adversarial examples [105], physical query-only or transferable attacks may also be possible. In

Chapter 4, we examine transferability for adversarial examples against face recognition models.

2.1.2 Physical Adversarial Examples.

Kurakin et al. showed that printed adversarial examples can be misclassified when viewed through

a smartphone camera [78]. Athalye and Sutskever improved upon the work of Kurakin et al. and

presented an attack algorithm that produces adversarial examples robust to a set of two-dimensional

synthetic transformations [7]. These works do not modify physical objects—an adversary prints out

a digitally-perturbed image on paper. However, there is value in studying the effectiveness of such

attacks when subject to environmental variability. Our object-constrained poster printing attack is a

reproduced version of this type of attack, with the additional physical-world constraint of confining

perturbations to the surface area of the sign. Additionally, our work goes further and examines how

to effectively create adversarial examples where the object itself is physically perturbed by placing

stickers on it.



9

Concurrent to our work,1 Athalye et al. improved upon their original attack, and created 3D-

printed replicas of perturbed objects [9]. The main intellectual differences include: (1) Athalye

et al. only use a set of synthetic transformations during optimization, which can miss subtle

physical effects, while our work samples from a distribution modeling both physical and synthetic

transformations. (2) Our work modifies existing true-sized objects. Athalye et al. 3D-print small-

scale replicas. (3) Our work simulates realistic testing conditions appropriate to the use-case at

hand.

Sharif et al. attacked face recognition systems by printing adversarial perturbations on the

frames of eyeglasses [123]. Their work demonstrated successful physical attacks in relatively stable

physical conditions with little variation in pose, distance/angle from the camera, and lighting. This

contributes an interesting understanding of physical examples in stable environments. However,

environmental conditions can vary widely in general and can contribute to reducing the effectiveness

of perturbations. Therefore, we choose the inherently unconstrained environment of road-sign

classification. In our work, we explicitly design our perturbations to be effective in the presence of

diverse physical-world conditions (specifically, large distances/angles and resolution changes).

Finally, Lu et al. performed experiments with physical adversarial examples of road sign images

against detectors and show current detectors cannot be attacked [87]. In this work, we focus on

classifiers to demonstrate the physical attack effectiveness and to highlight their security vulnerability

in the real world. Attacking detectors are out of the scope of this paper, though recent work has

generated digital adversarial examples against detection/segmentation algorithms [24, 92, 151], and

our recent work has extended RP2 to attack the YOLO detector [129].

2.2 Face Recognition

Automated face recognition has had a long history in the computer vision community [15]. Some of

the earliest approaches to face recognition made use of basis decompositions [54, 142], local binary

patterns [4] and SIFT features [11]. More recent approaches have made use of deep neural networks

1This work appeared at arXiv on 30 Oct 2017.
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to automatically classify faces into known identities [132, 138]. These approaches are limited to

only being able to classify faces from a known, preset list (e.g., the faces the model was trained

on). To overcome this, state of the art approaches have cast face recognition as a metric learning

problem. In this view, the goal is to learn an embedding space in which two faces of the same person

are close and two faces of different people are far away. There exist many proposed loss functions

to learn such an embedding space, including paired [59, 133] and triplet losses [56, 107, 117] —

which directly optimize distance between pairs of faces — and clustering or max-margin style

losses [30, 82, 146, 148], which aim to classify faces with an additive or multiplicative margin.

This more modern paradigm of metric learning differs from traditional classification in that the

neural network models don’t produce direct identity predictions. Rather, they produce embedding

vectors of each input image such that images belonging to a given identity are clustered in the

embedding space (see Fig. 2.1). This allows rapid face verification and lookup for identities that are

not necessarily included in the network’s training set via k-nearest neighbors.

A modern pipeline for face recognition using such a neural network might look as follows. First,

the face recognition company either downloads a pre-trained, publicly available neural network

designed for face recognition, or trains one themselves on an existing dataset where the identities

are labeled. Then, they scrape the internet for publicly available photos from social media. They

release an application combining their dataset and network. A user of the app takes a photo of a

stranger in public. That photo is uploaded to the face recognition company’s server, where it is

cross-referenced against the photos collected from social media websites. The most similar faces

according to the neural network are returned to the user of the app, along with the associated social

media profiles. This is the approach used by the companies described in [55].

2.3 Adversarial Examples and Face Recognition

There exist many works demonstrating the vulnerability of deep learning face recognition systems

to adversarial examples. One set of works seeking to fool facial recognition models has focused on

creating physical adversarial examples in the form of objects – such as glasses frames [123,124] and

hats [74] – that change the output of a model processing images of a person wearing them. Others
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Figure 2.1: Simplified visual representation of the metric space learned by state-of-the-art face recognition

neural networks. When a tightly cropped facial image is processed by a neural network, it produces an

embedding vector (here, represented by a dot in R2). Pairs of vectors belonging to different identities are

far away from each other while those belonging to the same identity are close together. In practice, neural

networks produce vectors in R128 or R512 and metrics such as Euclidean distance and cosine similarity define

“closeness.”

showed that generating adversarial examples is also possible without possession of the weights and

biases of the neural network but only with query-based oracle-like access to the model [31].

Of particular interest are works by [39] and [23] that develop transferable adversarial examples

by optimizing in the metric space of facial recognition networks and study how much distortion

individuals are willing to accept in their photos. In addition, [110] and [102] develop new approaches

for generating adversarial examples against facial recognition that do not rely on the “standard”

methods from [20, 88] and show that they are robust even in the face of countermeasures.
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These works certainly indicate that adversarial examples and adversarial objects are particularly

attractive mechanisms for protecting privacy from facial recognition. However, if individuals are to

act as “attackers” of the neural network under the assumptions of the literature so far, they should

be able to modify the query photo used to perform the search, or change their own appearance

permanently. Neither of these is possible in a real-world scenario. Individuals can hardly control

the photos others take of them. Anybody can snap a picture of anybody in a public space and CCTV

and well-meaning web cams are pervasive. Furthermore, wearing adversarial accessories – such as

hats and glasses – is not always practical or fashionable and restricts the individual’s freedom to

control their own appearance. This is why we explore a scheme that does not assume control of the

photo used to de-anonymize the individual.

A concurrent conference submission by [121] explores a similar solution to ours. This proposal,

named Fawkes, also uses adversarial examples – named “cloaks” in that work – to disrupt the

performance of facial classification. Cloaks have the same purpose as decoys in our work and are

like adversarial examples from the adversarial machine learning literature. The authors also discuss a

“Sybil attack” which corresponds to our communal defense strategy in which protector users upload

cloaks/decoys/adversarial examples modified so that facial recognition models output a vector or

classification corresponding to another user. Our work adds additional perspective by exploring

what vector targets are best to use by the protectors and by applying an alternative transferable

adversarial examples generation mechanism. In Section 4.4.3, we propose a number of possible

mechanisms to select vectors in the metric learning space to use as targets for protectors and discuss

their tradeoffs; in Section 4.6, we evaluate and compare those different approaches quantitatively.

Furthermore, transferable cloak generation in Fawkes requires the protectors to use a robust neural

network model trained on adversarial examples. In Section 4.4.2, we discuss an alternative method

that does not require retraining and uses “out-of-the-box” models available online; we evaluate this

method and find it to be successful in Section 4.6.3. A tradeoff of our method relative to Fawkes is

that it requires larger perturbations to achieve privacy protections. Together, [121] and our paper

provide a robust foundation for protecting face recognition under our shared threat model.

More broadly, our line of inquiry also fits in with studies on applying adversarial machine
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learning for beneficial goals, such as [5, 28, 58, 145]. In most adversarial machine learning research,

the party performing adversarial modifications is often referred to as the adversary. However, looking

toward Section 4.3, we note that in our work – as in these other works – the party performing these

modifications is not the adversary, but the party seeking defense against an adversary. Because

FoggySight’s participants perform these “attacks” against the adversary’s capabilities, we may

sometimes use the word “attack” to refer to the actions of the privacy protectors.

2.4 Other Attacks on Face Recognition Models

There exists a limited amount of work that attempts to fool face recognition systems by modifying

photos at training time rather than at test time. [22] introduce a set of data poisoning attacks that

modify a small number of the training photos in a face dataset. They show that a model trained on

the poisoned dataset learns a back-door key: a pattern that, when presented to the model, gets the

model to categorize that pattern as belonging to a particular face for impersonation purposes. They

further demonstrate that they can instantiate this back-door key in the physical world by making the

learned pattern a specific pair of glasses. Not specific to face recognition, there exists a body of

work on attacking neural network systems using data poisoning attacks [49, 84, 97, 120]. A broader

survey of data poisoning and backdooring attacks is given in [45].

There exists a subset of work on designing face recognition systems to be private [34,89,115,150].

Those, in turn, are similar to work aiming to preserve the privacy of training set members and

individual features of training set examples in machine learning more broadly [68,69]. These works

aim to design machine learning systems that don’t expose the model or database or (features of the)

training set to the user and don’t expose the user to the model or server running the model. We

view these works as tangential to ours: they still aim to design systems that are fundamentally able

to identify individuals. Our main goal is to thwart such systems, with the assumption that those

employing face recognition technology are not interested in our privacy.

Finally, the computer vision community has developed multiple approaches to anonymization

that do not preserve the content of the original photo for human viewers – including some that apply

adversarial modifications [80]. Those approaches are best used when stronger privacy guarantees
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are required, such as when humans – and not just facial search services – are not supposed to be

able to deidentify the individual in the photo. Therefore, we believe they are orthogonal to this

work, as we aim to allow individuals to continue to derive utility from their facial photos.

2.5 Data Poisoning

In Chapter 5, we are interested in “attacks” that happen at training time; we seek to modify the

training set of a model in order to degrade its performance at inference time to an unusable level.

The closest directions of research to that goal are those of data poisoning and backdooring. A

useful recent survey of these attacks is provided in [45]; additionally, [118] aim to standardize

the measurement and evaluation of successful attacks of this nature. In backdooring attacks, the

adversary aims to tamper with the training procedure to produce a model that performs well on most

of its test data at inference but when presented with specific instances with a specific trigger, the

model’s behavior changes in a way chosen by the attacker. For example, [49] develops a method

to influence the training of road sign classification models such that when they are presented with

a stop sign with a sticky note, those models produce a wrong prediction (not a stop sign). This is

achieved by modifying the training set to include examples that shift the trained model’s behavior

on inputs with the trigger. These methods have been refined and extended in subsequent work, such

as [22, 116, 143]. In [84], the authors study an attacker that can train the model themselves and

provides it for reuse publicly (a common practice in machine learning research) and call this threat

model “trojaning.” Backdooring and trojaning attacks are distinct from the methods we seek to

develop in Chapter 5 in that we do not assume that the adversary controls any inputs to the model at

inference time. Instead, we seek to degrade model performance at inference time on any unmodified

input.

In Chapter 5, our goal and level of adversarial access are most similar to the setup in data

poisoning attacks. In this setting, adversaries also seek to influence the behavior at test time on

unmodified inputs by tampering solely with the training set of a model. Data poisoning attacks can

be differentiated along two axes: the adversary’s intention for test-time errors and the nature of

training set modifications the adversary is allowed to make. First, adversaries can seek to induce
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either targeted errors (e.g., they wish for a particular image to be classified in a certain way),

untargeted (they wish that a particular image is misclassified without a particular direction of the

error), or indiscriminate (they wish for the trained model to not perform well on any examples).

Second, adversaries can modify the training dataset by adding poisoned samples, by perturbing a

subset of existing training samples, or by modifying the labels of training set examples. An example

of a targeted attack that modifies the labels of certain training points in order to induce errors in

Support Vector Machine (SVM) classifiers was developed in [12]. The first work to use the term

“poisoning” in referring to its attacks is a targeted attack that adds malicious data points to the

training set that shift the decision boundary of an SVM classifier [13].

Of most interest to us are targeted attacks that perturb existing training set examples. In particular,

a subset of the recent literature studying poisoning attacks against deep learning models has focused

on “clean-label” perturbations. “Clean-label” perturbations do not alter the semantics of the poisoned

points and, hence, are labeled correctly either when published or by the entity performing model

training. The first work to tackle this problem is [120] and subsequent improvements were developed

in [156] and [3]. All three of these works focus on a restricted setting: transfer learning based on a

publicly available feature extractor. In other words, the poisoning victim is not assumed to perform

training from scratch on the poisoned dataset but rather downloads and reuses a publicly available

feature extractor (e.g., a network trained on the ImageNet dataset [29] with its last layer replaced

for a specific task).

Within the targeted setting, other works have demonstrated more powerful methods that can

influence the behavior of a network even when it is trained from scratch: [97] use back-gradient

optimization, [98] use generative adversarial nets, [61] simulate and unroll the training procedure and

compute poisoning perturbations based on that, and [41] align the gradients of poisoned examples

with those of a target inference example.

Work relying on second-order adversarial gradients to disrupt training appears in [37]. We

carry out experiments that compare the effectiveness of the approach to ours in Chapter 5. A major

distinction between our work and this one is that we rely on hand-crafted approaches and do not use

gradient information.
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Several other data poisoning methods bear discussion for completeness. A popular category

of approaches to poisoning involves computing so-called influence functions that measure which

training examples and which features of theirs contributed to a classification of an inference

example [36, 73]. However, such approaches have been found to be fragile for state-of-the-art deep

models used in computer vision [10] and they require knowledge of the exact inference sample that

should be disrupted, so they do not allow for indiscriminate disruption. Next, TensorClog [125] is a

method developed to artificially induce the vanishing gradient problem by poisoning the training

dataset; however, this approach has had limited success and also assumes knowledge of a fixed

feature extractor. Finally, [66] and [128] demonstrate that the fairness of models at test time can

be degraded when the training set is poisoned. However, [128] only works with SVM models

(which enable a different kind of poisoning algorithms not applicable to deep vision models) and

the method from [66] is meant to do only targeted damage to predictions on a subset of the test set

while retaining performance on the full one.

2.6 Biases and Other Causes of Failure in Training Models

Convolutional neural networks do not fail just in adversarial scenarios. Indeed, the machine learning

and computer vision research communities have long been exploring “natural” causes of failure.

Since those indicate a different set of weaknesses in the current machine learning pipeline that we

may wish to exploit, we discuss several important works that observe how training can fail to yield

robust and well-generalizing models.

To begin with, a well-observed finding from adversarial machine learning is that retraining

models on adversarial examples returns models with decreased accuracy on a “clean” test set. This

was first observed in [88]. More recently, [65] conjectured that this phenomenon can be explained by

the presence of “non-robust” features in natural training sets. Those refer to features that do not align

with human understanding but help models generalize better to the test distribution. Experiments

from that work show that models trained solely on non-robust features of the original training set

images can achieve good accuracy on the standard test sets, indicating that these features do have

a substantial contribution to the good performance of models trained in the standard way. Since
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models trained on adversarial examples cannot make use of these non-robust features, they do not

perform as well. Similar observations have been made on high-frequency features in images (that

humans cannot see): neural networks seem to learn to use correlations in that part of the feature

space to make proper predictions, according to [71] and [147]. This may even help explain why

neural networks are capable of fitting an entirely random dataset with no meaningful semantic

correlations between the data and its labels (as first observed in [154]).

Even with the realm of semantic features, neural network models are known to fit correlations

that are present in the training data but may not be true predictors of an image’s class. For

example, [42] claim that neural networks are biased towards using texture (e.g., the fur of a cat

versus the scales on a crocodile) over shape information (e.g., a cat’s ears and whiskers over a

crocodile’s snout) in their predictions. Thus, an image of a cat with the texture of a crocodile would

be more likely to be classified as a crocodile without training on specially-designed datasets to

account for that bias. Another well-known result is that convolutional classifiers may prefer the

background in making predictions over the object of interest: for example, if sheep appear in a tree,

they are more likely to be classified as birds [122]. In more realistic settings, cows that appear on

sandy backgrounds are more likely to be classified as camels and camels with green backgrounds

are more likely to be classified as cows. Work in [99] attempts to explain this occurrence through

the lens of out-of-distribution generalization and failures of empirical risk minimization (ERM)

and attributes it to geometric and statistical skews in the training data. Interestingly, they create

datasets yielding models with degraded test-time performance by introducing these exact skews:

for example, inserting colored lines in the training set spuriously correlated with the training label

induces a 10% accuracy drop on the test set. Cases where neural networks prefer to fit simpler but

spurious features correlated with the label were also recently observed in the wild; [26] show that

chest radiography image classifiers fail for similar reasons. In Chapter 5, we leverage observations

from these works to create our own version of datasets with malicious correlations between the

training examples and the true label that cause more severe degradations in test performance. We

seek to create malicious features that induce even stronger test-time failures than those observed

natural failings. It is also worth mentioning that learning methods have been proposed to deal with
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natural generalization failures [6, 50].

2.7 Miscellaneous and Orthogonal Work on Dataset Security and Privacy

A problem orthogonal to the one explored in Chapter 5 has long been a subject of interest to the

machine learning and privacy research communities: how we can enable the learning of useful

models or statistical inference from datasets without revealing the raw data. Differential privacy is

an approach that was originally developed to enable statistical conclusions about individual data

records without revealing the exact values of all fields [32] and it has also been adapted for training

deep models [2]. Additionally, InstaHide [62] provides an alternative method for releasing datasets

that are “learnable” by an ML model but appear gibberish to humans. Deficiencies in that approach

were pointed out in [18], which demonstrates that raw images protected with InstaHide can be

recovered with relatively little computational resources. Finally, there is ongoing work on federated

learning [75, 90] and homomorphic encryption [47] that allow computation of machine learning

models in a decentralized way or only by revealing encrypted versions of the dataset to the party

performing training. The goals of Chapter 5 differ from that line of work in that we aim to make

training sets that are usable by humans but cannot be used for training machine learning models.

Since before the rise of machine learning in computer vision, image watermarking has been

used to enforce ownership of visual data. Two useful surveys in this area are [127] and [109]. Of

particular relevance to the goals of Chapter 5 are techniques for visible watermarking: [27] studied

methods to remove such watermarks and make more robust ones with deep learning methods.

We also point out that a different version of the goals in Chapter 5 might be to make it detectable

that a machine learning model has used a particular piece of data in its training procedure. To that

end, [114] introduce the concept of “radioactive data;” when data of this nature is used to train a

model, this fact is detectable and provable.
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Chapter 3

ROBUST PHYSICAL-WORLD ATTACKS ON DEEP LEARNING
VISUAL CLASSIFICATION

3.1 Introduction

The threat adversarial examples pose to systems using deep learning-based computer vision has

gained recent attention, and previous work has made great progress in understanding the space of

adversarial examples, beginning in the digital domain (e.g. by modifying images corresponding to a

scene) [46, 94, 100, 137], and more recently in the physical domain [7, 9, 78, 123]. Along similar

lines, our work contributes to the understanding of adversarial examples when perturbations are

physically added to the objects themselves. We choose road sign classification as our target domain

for several reasons: (1) The relative visual simplicity of road signs make it challenging to hide

perturbations. (2) Road signs exist in a noisy unconstrained environment with changing physical

conditions such as the distance and angle of the viewing camera, implying that physical adversarial

perturbations should be robust against considerable environmental instability. (3) Road signs play

an important role in transportation safety. (4) A reasonable threat model for transportation is that an

attacker might not have control over a vehicle’s systems, but is able to modify the objects in the

physical world that a vehicle might depend on to make crucial safety decisions.

The main challenge with generating robust physical perturbations is environmental variability.

Cyber-physical systems operate in noisy physical environments that can destroy perturbations

created using current digital-only algorithms [87]. For our chosen application area, the most

dynamic environmental change is the distance and angle of the viewing camera. Additionally, other

practicality challenges exist: (1) Perturbations in the digital world can be so small in magnitude

that it is likely that a camera will not be able to perceive them due to sensor imperfections. (2)

Current algorithms produce perturbations that occupy the background imagery of an object. It is
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extremely difficult to create a robust attack with background modifications because a real object can

have varying backgrounds depending on the viewpoint. (3) The fabrication process (e.g., printing of

perturbations) is imperfect.

Informed by the challenges above, we design Robust Physical Perturbations (RP2), which can

generate perturbations robust to widely changing distances and angles of the viewing camera. RP2

creates a visible, but inconspicuous perturbation that only perturbs the object (e.g. a road sign) and

not the object’s environment. To create robust perturbations, the algorithm draws samples from a

distribution that models physical dynamics (e.g. varying distances and angles) using experimental

data and synthetic transformations (Figure 3.2).

Figure 3.1: The left image shows real graffiti on a Stop

sign, something that most humans would not think

is suspicious. The right image shows our a physical

perturbation applied to a Stop sign. We design our

perturbations to mimic graffiti, and thus “hide in the

human psyche.”

Using the proposed algorithm, we evaluate

the effectiveness of perturbations on physical

objects, and show that adversaries can physi-

cally modify objects using low-cost techniques

to reliably cause classification errors in CNN-

based classifiers under widely varying distances

and angles. For example, our attacks cause a

classifier to interpret a subtly-modified physical

Stop sign as a Speed Limit 45 sign. Specifi-

cally, our final form of perturbation is a set of

black and white stickers that an adversary can

attach to a physical road sign (Stop sign). We

designed our perturbations to resemble graffiti,

a relatively common form of vandalism. It is

common to see road signs with random graffiti

or color alterations in the real world as shown in Figure 3.1 (the left image is of a real sign in a

city). If these random patterns were adversarial perturbations (right side of Figure 3.1 shows our

example perturbation), they could lead to severe consequences for autonomous driving systems,

without arousing suspicion in human operators.
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Figure 3.2: RP2 pipeline overview. The input is the target Stop sign. RP2 samples from a distribution that

models physical dynamics (in this case, varying distances and angles), and uses a mask to project computed

perturbations to a shape that resembles graffiti. The adversary prints out the resulting perturbations and sticks

them to the target Stop sign.

Given the lack of a standardized method for evaluating physical attacks, we draw on standard

techniques from the physical sciences and propose a two-stage experiment design: (1) A lab test

where the viewing camera is kept at various distance/angle configurations; and (2) A field test where

we drive a car towards an intersection in uncontrolled conditions to simulate an autonomous vehicle.

We test our attack algorithm using this evaluation pipeline and find that the perturbations are robust

to a variety of distances and angles.

3.2 Adversarial Examples for Physical Objects

Our goal is to examine whether it is possible to create robust physical perturbations for real-world

objects that mislead classifiers to make incorrect predictions even when images are taken in a

range of varying physical conditions. We first present an analysis of environmental conditions that

physical learning systems might encounter, and then present our algorithm to generate physical

adversarial perturbations taking these challenges into account.
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3.2.1 Physical World Challenges

Physical attacks on an object must be able to survive changing conditions and remain effective at

fooling the classifier. We structure our discussion of these conditions around the chosen example

of road sign classification, which could be potentially applied in autonomous vehicles and other

safety sensitive domains. A subset of these conditions can also be applied to other types of physical

learning systems such as drones, and robots.

Environmental Conditions. The distance and angle of a camera in an autonomous vehicle with

respect to a road sign varies continuously. The resulting images that are fed into a classifier are

taken at different distances and angles. Therefore, any perturbation that an attacker physically adds

to a road sign must be able to survive these transformations of the image. Other environmental

factors include changes in lighting/weather conditions, and the presence of debris on the camera or

on the road sign.

Spatial Constraints. Previous algorithms focusing on digital images add adversarial perturbations

to all parts of the image, including background imagery. However, for a physical road sign, the

attacker cannot manipulate background imagery. Furthermore, the attacker cannot count on there

being a fixed background imagery as it will change depending on the distance and angle of the

viewing camera.

Physical Limits on Imperceptibility. An attractive feature of current adversarial deep learning

algorithms is that their perturbations to a digital image are often so small in magnitude that they are

almost imperceptible to the casual observer. However, when transferring such minute perturbations

to the real world, we must ensure that a camera is able to perceive the perturbations. Therefore,

there are physical limits on how imperceptible perturbations can be, and is dependent on the sensing

hardware.

Fabrication Error. To fabricate the computed perturbation, all perturbation values must be valid

colors that can be reproduced in the real world. Furthermore, even if a fabrication device, such as a

printer, can produce certain colors, there will be some reproduction error [123].

In order to successfully physically attack deep learning classifiers, an attacker should account for
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the above categories of physical world variations that can reduce the effectiveness of perturbations.

3.2.2 Robust Physical Perturbation

We derive our algorithm starting with the optimization method that generates a perturbation for a

single image x, without considering other physical conditions; then, we describe how to update

the algorithm taking the physical challenges above into account. This single-image optimization

problem searches for perturbation δ to be added to the input x, such that the perturbed instance

x′ = x+ δ is misclassified by the target classifier fθ(·):

min H(x+ δ, x), s.t. fθ(x+ δ) = y∗

where H is a chosen distance function, and y∗ is the target class.1 To solve the above constrained

optimization problem efficiently, we reformulate it in the Lagrangian-relaxed form similar to prior

work [20, 83].

argmin
δ

λ||δ||p + J(fθ(x+ δ), y∗) (3.1)

Here J(· , ·) is the loss function, which measures the difference between the model’s prediction

and the target label y∗. λ is a hyper-parameter that controls the regularization of the distortion. We

specify the distance function H as ||δ||p, denoting the `p norm of δ.

Next, we will discuss how the objective function can be modified to account for the environmental

conditions. We model the distribution of images containing object o under both physical and digital

transformations XV . We sample different instances xi drawn from XV . A physical perturbation

can only be added to a specific object o within xi. In the example of road sign classification, o is the

stop sign that we target to manipulate. Given images taken in the physical world, we need to make

sure that a single perturbation δ, which is added to o, can fool the classifier under different physical

conditions. Concurrent work [9] only applies a set of transformation functions to synthetically

sample such a distribution. However, modeling physical phenomena is complex and such synthetic

transformations may miss physical effects. Therefore, to better capture the effects of changing

1For untargeted attacks, we can modify the objective function to maximize the distance between the model prediction
and the true class. We focus on targeted attacks in the rest of this chapter.
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physical conditions, we sample instance xi from XV by both generating experimental data that

contains actual physical condition variability as well as synthetic transformations. For road sign

physical conditions, this involves taking images of road signs under various conditions, such as

changing distances, angles, and lightning. This approach aims to approximate physical world

dynamics more closely. For synthetic variations, we randomly crop the object within the image,

change the brightness, and add spatial transformations to simulate other possible conditions.

To ensure that the perturbations are only applied to the surface area of the target object o

(considering the spatial constraints and physical limits on imperceptibility), we introduce a mask.

This mask serves to project the computed perturbations to a physical region on the surface of

the object (i.e. road sign). In addition to providing spatial locality, the mask also helps generate

perturbations that are visible but inconspicuous to human observers. To do this, an attacker can

shape the mask to look like graffiti—commonplace vandalism on the street that most humans expect

and ignore, therefore hiding the perturbations “in the human psyche.” Formally, the perturbation

mask is a matrix Mx whose dimensions are the same as the size of input to the road sign classifier.

Mx contains zeroes in regions where no perturbation is added, and ones in regions where the

perturbation is added during optimization.

In the course of our experiments, we empirically observed that the position of the mask has an

impact on the effectiveness of an attack. We therefore hypothesize that objects have strong and weak

physical features from a classification perspective, and we position masks to attack the weak areas.

Specifically, we use the following pipeline to discover mask positions: (1) Compute perturbations

using the L1 regularization and with a mask that occupies the entire surface area of the sign. L1

makes the optimizer favor a sparse perturbation vector, therefore concentrating the perturbations on

regions that are most vulnerable. Visualizing the resulting perturbation provides guidance on mask

placement. (2) Recompute perturbations using L2 with a mask positioned on the vulnerable regions

identified from the earlier step.

To account for fabrication error, we add an additional term to our objective function that models

printer color reproduction errors. This term is based upon the Non-Printability Score (NPS) by

Sharif et al. [123].
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Given a set of printable colors (RGB triples) P and a set R(δ) of (unique) RGB triples used in

the perturbation that need to be printed out in physical world, the non-printability score is given by:

NPS (δ) =
∑
p̂∈R(δ)

∏
p′∈P

|p̂− p′| (3.2)

Based on the above discussion, our final robust spatially-constrained perturbation is thus opti-

mized as:
argmin

δ
λ||Mx · δ||p + NPS

+ Exi∼XV J(fθ(xi + Ti(Mx · δ)), y∗)
(3.3)

Here we use function Ti(·) to denote the alignment function that maps transformations on the object

to transformations on the perturbation (e.g. if the object is rotated, the perturbation is rotated as

well).

Finally, an attacker will print out the optimization result on paper, cut out the perturbation (Mx),

and put it onto the target object o. As our experiments demonstrate in the next section, this kind of

perturbation fools the classifier in a variety of viewpoints.2

3.3 Experiments

In this section, we empirically evaluate the proposed algorithm RP2. We first evaluate a safety

sensitive example, Stop sign recognition, to demonstrate the robustness of the proposed physical

perturbation. To demonstrate the generality of our approach, we then attack Inception-v3 to

misclassify a microwave as a phone.

While results are discussed here, detailed tables and figures are only given in Appendix A in

order to aid with readability.

3.3.1 Dataset and Classifiers

We built two classifiers based on a standard crop-resize-then-classify pipeline for road sign classifi-

cation as described in [106, 119]. Our LISA-CNN uses LISA, a U.S. traffic sign dataset containing

2For our attacks, we use the ADAM optimizer with the following parameters: β1 = 0.9, β2 = 0.999, ε = 10−8,
η ∈ [10−4, 100]
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47 different road signs [93]. However, the dataset is not well-balanced, resulting is large disparities

in representation for different signs. To alleviate this problem, we chose the 17 most common signs

based on the number of training examples. LISA-CNN’s architecture is defined in the Cleverhans

library [104] and consists of three convolutional layers and an FC layer. It has an accuracy of 91%

on the test set.

Our second classifier is GTSRB-CNN, that is trained on the German Traffic Sign Recognition

Benchmark (GTSRB) [130]. We use a publicly available implementation [152] of a multi-scale

CNN architecture that has been known to perform well on road sign recognition [119]. Because we

did not have access to German Stop signs for our physical experiments, we replaced the German

Stop signs in the training, validation, and test sets of GTSRB with the U.S. Stop sign images in

LISA. GTSRB-CNN achieves 95.7% accuracy on the test set. When evaluating GTSRB-CNN on

our own 181 stop sign images, it achieves 99.4% accuracy.

3.3.2 Experimental Design

To the best of our knowledge, there is currently no standardized methodology for evaluating physical

adversarial perturbations. Based on our discussion from Section 3.2.1, we focus on angles and

distances because they are the most rapidly changing elements for our use case. A camera in a

vehicle approaching a sign will take a series of images at regular intervals. These images will be

taken at different angles and distances, therefore changing the amount of detail present in any given

image. Any successful physical perturbation must cause targeted misclassification in a range of

distances and angles because a vehicle will likely perform voting on a set of frames (images) from a

video before issuing a controller action. Our current experiments do not explicitly control ambient

light, and as is evident from experimental data (Section 3.3), lighting varied from indoor lighting to

outdoor lighting.

Drawing on standard practice in the physical sciences, our experimental design encapsulates the

above physical factors into a two-stage evaluation consisting of controlled lab tests and field tests.

Stationary (Lab) Tests. This involves classifying images of objects from stationary, fixed positions.
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1. Obtain a set of clean images C and a set of adversarially perturbed images ({A (c)},∀c ∈ C)

at varying distances d ∈ D, and varying angles g ∈ G. We use cd,g here to denote the

image taken from distance d and angle g. The camera’s vertical elevation should be kept

approximately constant. Changes in the camera angle relative the the sign will normally occur

when the car is turning, changing lanes, or following a curved road.

2. Compute the attack success rate of the physical perturbation using the following formula:∑
c∈C

1
{fθ(A(cd,g))=y∗ ∧fθ(cd,g)=y}∑

c∈C
1{fθ(cd,g)=y}

(3.4)

where d and g denote the camera distance and angle for the image, y is the ground truth, and

y∗ is the targeted attacking class.3

Note that an imageA (c) that causes misclassification is considered as a successful attack only if

the original image c with the same camera distance and angle is correctly classified, which ensures

that the misclassification is caused by the added perturbation instead of other factors.

Drive-By (Field) Tests. We place a camera on a moving platform, and obtain data at realistic

driving speeds. For our experiments, we use a smartphone camera mounted on a car.

1. Begin recording video at approximately 250 ft away from the sign. Our driving track was

straight without curves. Drive toward the sign at normal driving speeds and stop recording

once the vehicle passes the sign. In our experiments, our speed varied between 0 mph and 20

mph. This simulates a human driver approaching a sign in a large city.

2. Perform video recording as above for a “clean” sign and for a sign with perturbations applied,

and then apply similar formula as Eq. 3.4 to calculate the attack success rate, where C here

represents the sampled frames.

3For untargeted adversarial perturbations, change fθ(ed,g) = y∗ to fθ(ed,g) 6= y.
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An autonomous vehicle will likely not run classification on every frame due to performance

constraints, but rather, would classify every j-th frame, and then perform simple majority voting.

Hence, an open question is to determine whether the choice of frame (j) affects attack accuracy. In

our experiments, we use j = 10. We also tried j = 15 and did not observe any significant change in

the attack success rates. If both types of tests produce high success rates, the attack is likely to be

successful in commonly experienced physical conditions for cars.

3.3.3 Results for LISA-CNN

We evaluate the effectiveness of our algorithm by generating three types of adversarial examples on

LISA-CNN (91% accuracy on test-set). For all types, we observe high attack success rates with high

confidence. Table 3.1 summarizes a sampling of stationary attack images. In all testing conditions,

our baseline of unperturbed road signs achieves a 100% classification rate into the true class.

Object-Constrained Poster-Printing Attacks. This involves reproducing the attack of Kurakin et

al. [78]. The crucial difference is that in our attack, the perturbations are confined to the surface area

of the sign excluding the background, and are robust against large angle and distance variations. The

Stop sign is misclassified into the attack’s target class of Speed Limit 45 in 100% of the images taken

according to our evaluation methodology. The average confidence of predicting the manipulated

sign as the target class is 80.51% (second column of Table A.1).

For the Right Turn warning sign, we choose a mask that covers only the arrow since we intend to

generate subtle perturbations. In order to achieve this goal, we increase the regularization parameter

λ in equation (3.3) to demonstrate small magnitude perturbations. We achieve a 73.33% targeted-

attack success rate (Table 3.1). Out of 15 distance/angle configurations, four instances were not

classified into the target. However, they were still misclassified into other classes that were not

the true label (Yield, Added Lane). Three of these four instances were an Added Lane sign—a

different type of warning. We hypothesize that given the similar appearance of warning signs, small

perturbations are sufficient to confuse the classifier.

Sticker Attacks. Next, we demonstrate how effective it is to generate physical perturbations in
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the form of stickers, by constraining the modifications to a region resembling graffiti or art. The

fourth and fifth columns of Table 3.1 show a sample of images, and Table A.1 (columns 4 and

6) shows detailed success rates with confidences. In the stationary setting, we achieve a 66.67%

targeted-attack success rate for the graffiti sticker attack and a 100% targeted-attack success rate for

the sticker camouflage art attack. Some region mismatches may lead to the lower performance of

the LOVE-HATE graffiti.

Drive-By Testing. Per our evaluation methodology, we conduct drive-by testing for the perturbation

of a Stop sign. In our baseline test we record two consecutive videos of a clean Stop sign from

a moving vehicle, perform frame grabs at k = 10, and crop the sign. We observe that the Stop

sign is correctly classified in all frames. We similarly test subtle and abstract art perturbations for

LISA-CNN using k = 10. Our attack achieves a targeted-attack success rate of 100% for the subtle

poster attack, and a targeted-attack success rate of 84.8% for the camouflage abstract art attack. See

the supplemental materials for sample frames from the drive-by video.

3.3.4 Results for GTSRB-CNN

To show the versatility of our attack algorithms, we create and test attacks for GTSRB-CNN

(95.7% accuracy on test-set). Based on our high success rates with the camouflage-art attacks,

we create similar abstract art sticker perturbations. The last column of Table 3.1 shows a subset

of experimental images. Table A.4 summarizes our attack results—our attack fools the classifier

into believing that a Stop sign is a Speed Limit 80 sign in 80% of the stationary testing conditions.

Per our evaluation methodology, we also conduct a drive-by test (k = 10, two consecutive video

recordings). The attack fools the classifier 87.5% of the time.

3.3.5 Results for Inception-v3

To demonstrate generality of RP2, we computed physical perturbations for the standard Inception-v3

classifier [77, 135] using two different objects, a microwave and a coffee mug. For the microwave,

our adversarial sticker causes the classifier to misclassify it as our target class, “phone,” in 90% of
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the tests (Table A.5). For the coffee mug, our adversarial sticker causes the classifier to misclassify

it as our target class, “cash machine”, in 71.4% of the tests. Figure A.7 shows an example of the

adversarial sticker for microwave and Table A.8 presents examples for the mug.

Note that for both attacks, we have reduced the range of distances used due to the smaller size

of the cup and microwave compared to a road sign (e.g. Coffee Mug height: 11.2cm, Microwave

height: 24cm, Right Turn sign height: 45cm, Stop Sign: 76cm). Table A.5 summarizes our attack

results on the microwave and Table A.6 summarizes our attack results on the coffee mug. For the

microwave, the targeted attack success rate is 90%. For the coffee mug, the targeted attack success

rate is 71.4% and the untargeted success rate is 100%.

3.4 Discussion

Black-Box Attacks. Given access to the target classifier’s network architecture and model weights,

RP2 can generate a variety of robust physical perturbations that fool the classifier. Through studying

a white-box attack like RP2, we can analyze the requirements for a successful attack using the

strongest attacker model and better inform future defenses. Evaluating RP2 in a black-box setting is

an open question.

Image Cropping and Attacking Detectors. When evaluating RP2, we manually controlled the

cropping of each image every time before classification. This was done so the adversarial images

would match the clean sign images provided to RP2. Later, we evaluated the camouflage art attack

using a pseudo-random crop with the guarantee that at least most of the sign was in the image.

Against LISA-CNN, we observed an average targeted attack rate of 70% and untargeted attack rate

of 90%. Against GTSRB-CNN, we observed an average targeted attack rate of 60% and untargeted

attack rate of 100%. We include the untargeted attack success rates because causing the classifier

to not output the correct traffic sign label is still a safety risk. Although image cropping has some

effect on the targeted attack success rate, our recent work shows that an improved version of RP2

can successfully attack object detectors, where cropping is not needed [129].
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Table 3.1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Dist./Angle Subtle Poster
Subtle Poster

Right Turn

Camouflage

Graffiti

Camouflage

Art (LISA-

CNN)

Camouflage

Art (GTSRB-

CNN)

5’ 0◦

5’ 15◦

10’ 0◦

10’ 30◦

40’ 0◦

Targeted-

Attack

Success

100% 73.33% 66.67% 100% 80%
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Chapter 4

FOGGYSIGHT: A SCHEME FOR FACIAL LOOKUP PRIVACY

4.1 Introduction

Unfortunately, CNNs are not always applied with good intentions in mind. The progress in face

recognition in particular has also enabled unprecedented invasions of individual privacy. At least

two services are currently being pioneered that offer face search databases for law enforcement

agencies and even for the broader public [51, 55, 57]. It is easy to imagine nefarious applications of

this easily accessible technology. Stalkers, who have only seen potential victims online, could apply

this technology to identify individuals in public web cam video streams; see [131] for a motivating

example. Criminal or other illegal organizations could also use this technology to identify people in

news media photos and then target those people for physical harm or retaliation; see [103] for a

motivating example. These examples illustrate that individuals uploading pictures to social media

websites are exposing themselves to the risk of future identification in new photos via DL-enabled

facial searches.

Any solution to protect individual privacy must acknowledge these realities: that facial search

databases already contain previously publicly available tagged photos of many (possibly millions

of) individuals, that individuals cannot predict when they are at risk of being targeted by a face

recognition system, and those photos being used for face recognition may come from sources

external to the social media platforms. In this chapter, we propose a new framework for protecting

against face recognition that takes these issues into account. We propose using adversarial examples

– small perturbations to images that fool DL models but are imperceptible to humans – to poison the

lookup database of facial search services. This involves coordination of adversarial modifications

among many users: a large number of adversarial photos uploaded by many different individuals

may protect privacy by “crowding out” previously scraped “clean” photos of individuals in response



33

to queries without those individuals needing to obscure their identity when in public.

4.2 Definition of Terms

To aid with further discussion of face recognition, we introduce several terms and notations. We

denote the face recognition model as f : Rw×h×c 7→ Rd for some latent embedding space of

dimension d and images of size w× h× c. In this embedding space, similarity between two faces is

computed using normalized distance in the embedding space. That is, for two images x1, x2, the

distance function D between them is evaluated as:

D(x1, x2) =

∣∣∣∣∣∣∣∣ f(x1)

||f(x1)||2
− f(x2)

||f(x2)||2

∣∣∣∣∣∣∣∣2
2

In addition, we define the following terms:

• Lookup Set: The set of photos that a face recognition company scrapes from social media.

These photos, along with their associated profiles or links, are those that are cross-referenced

against when identifying an individual in a new photo. Each photo in the lookup set represents

an embedding vector in the neural network’s output space – the nearest lookup set photos to

the query photo are returned when performing a search. We denote the lookup set by L.

• Query Photo: The photo that the user of face recognition technology (the adversary in our

model, see Section 4.3) wants to match to an identity. This photo may be a photo of, for

example, a stranger in a public place. This photo is processed by the neural network and a

vector is produced in the embedding space that can be compared against the vectors of the

lookup set photos. The closest neighbors of the lookup set photos in embedding space are

returned as candidate matches.

• Top k Recall Set The set of k closest neighbors in the lookup set to the embedding vector

corresponding to the query photo. k is a parameter that can be adapted for broader or narrower

searches. For some query photo q, lookup set L and distance metric D, we use the following
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notation to denote this set:

N(q, k) := arg top-kx∈L(D(q, x))

Some facial recognition services – such as the Microsoft Azure Face Service that we study –

only expose N(q, 1) in their API responses.

4.3 Goals and Assumptions

Our objective is to prevent previously scraped public photos of social media users from being useful

to facial search services by poisoning the database of facial images.

In striving for this goal, we make the following assumptions, which we believe correspond to

the real-world deployment scenario of such face recognition services.

The Face Recognition Service is the Adversary. We treat the company supplying face recognition

technology — one that scrapes public photos of users from various social media websites — as

the adversary. The source of such scraped photos may include such services as Facebook, Twitter,

LinkedIn, Venmo, and others. This adversary records which account each photo came from or

who was tagged so that the lookup photos can be linked to identities or the account that the photo

was tagged for, if available. When a third party performs a face lookup through the adversary, the

system processes the query photo with a neural network, computes the photo’s closest neighbors,

and returns the accounts associated with those. In this model, we do not restrict how the third party

obtains the query photo; it could be an untagged photo from a different social media company (one

not scraped by the adversary), from a surveillance camera photo, or from other sources.

Importantly, we assume this scraping has already taken place for millions of users and is ongoing

for others and for future photos of those already in the database. Our solution seeks to improve

privacy, given that the adversary possesses some fixed amount of unmodified photos associated with

individuals and that the adversary will only pick up modified photos of individuals participating in

our scheme once our solution is fully deployed.

Social Media Users Seek Privacy. Users of the platforms enumerated above seek to frustrate the

search by ensuring that links to their profiles are not returned when the query photo truly is of them.



35

Where that is not possible, users prefer that many other identities are returned by the search so that

theirs does not stand out. Users may collaborate to achieve this goal and the platforms hosting the

photos might also participate in the privacy enhancing scheme. We discuss different collaboration

models in section 4.4.

No User Control over the Query Photo. Crucially, we assume that individuals do not control the

query photos that malicious parties might submit to the face recognition service to identify them.

Individuals may not be in full control of their appearance whenever photos of them might be taken in

public. In addition, they might not wish to permanently modify their physical appearance whenever

they are in public spaces, but might be willing to participate in a scheme such as ours that involves

digital modifications that do not lower the quality of their digital photos.

Limited Control over the Lookup Set. Individuals have the ability to control future photos that

get scraped by the facial lookup service because they control the photos they upload to social media.

It is useful to distinguish between two types of individuals here. One is individuals who do not have

photos already scraped by the adversary. This might be because all of their photos were private

or because they never uploaded any photos in the first place. Another is individuals who already

have images in the adversary’s database. These individuals can begin participating in our privacy

protection scheme and modify their future uploads, which the adversary then scrapes. However,

they cannot modify the photos that were previously scraped. Thus, the adversary possesses a “core”

set of clean images for those individuals. Untagging, delisting and otherwise hiding previously

scraped photos is unlikely to be an effective protection for these people, as the links between their

images and their profiles already exist in the adversary’s database. Our solution aims to increase the

privacy of this second group of individuals.

Access to the Model. We assume that the protectors have access to the adversary’s model and

weights so that they can perform so-called “white-box” adversarial examples modifications. This

assumption is not unreasonable by itself, as models often leak even from highly secure organizations.

In this particular scenario, the adversary may even be forced by regulators to release the model

publicly for accountability and transparency purposes. It is also possible that the adversary is
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outright using a public face recognition model that the protectors also have access to. Without such

a level of access, protectors can rely on the transferability property of adversarial examples to carry

out their attacks.

We study how protectors can adapt their decoy generation and the effects on our scheme’s

privacy protections in Section 4.6.3.

No Quality Degradation of Social Media Photos. We wish to apply a privacy defense mechanism

that does not degrade the quality of photos that users post. Legitimate human users should still be

able to recognize people they know in modified photos. Any modifications introduced to encumber

computational processing of facial images should not impede human understanding. Our system

provides a tunable knob for defense, whereby tuning the knob for increased privacy can lead to

more visual artifacts. The knob settings we consider in this paper are still effective for privacy, even

though they introduce only minor artifacts. Although outside the scope of this paper, a user study

could evaluate the visual impact of these artifacts, for large knob settings. For one such existing

study, we refer readers to [39].

4.4 The FoggySight Design

As facial lookup is primarily enabled through DL algorithms, we propose using adversarial exam-

ples1 for providing privacy for social media users. These are modifications to photos that shift the

output of neural networks according to the modifier’s choosing. Usually, such “adversarial” changes

are imperceptible to humans, making them particularly attractive tools for our use case.

While the generation of adversarial examples has been well-studied in the literature, we explore

how they can be used for privacy enhancements. Thus, we explore questions around picking

adversarial targets and coordination among users in doing so to achieve their privacy defense goals.

Instead of focusing on how the outputs of a model or a face recognition service are affected by

individual adversarial examples, we consider the broader facial search process and optimize for

1Recall that for FoggySight, the adversary is the facial lookup service. The “adversarial” designation in “adversarial
examples” refers to adversaries against the neural network model. In our case, the adversaries against the neural
network model are the users seeking privacy from their adversary — the facial lookup service.
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privacy in the recall set. That is, images associated with the true protected individual in the lookup

set should not be returned when the service is queried with their photo or they should be returned

only along a multitude of other identities.

In order to discuss how we generate adversarial examples, we will first introduce some notation.

For specific identities i and j, we will denote the photos that depict identity i and j in the lookup

set as Li and Lj respectively. We will use xi and xj to denote elements of Li and Lj , and qi and

qj to denote query photos depicting identities i and j, respectively. With this terminology, we can

summarize the face recognition pipeline as follows:

1. The face recognition company scrapes a lookup set from publicly available sources and

obtains a trained network f .

2. The user of the face recognition technology takes a query photo qi of some identity i.

3. The face recognition technology computes the top k recall set N(qi, k) with respect to qi

and returns them to the user (i.e., the adversary in our model), along with associated links or

profiles associated with those photos in N(qi, k).

4. The user (the adversary in our model) manually examines the set of identities in N(qi, k) and

uses their own judgment to recover the true identity of the person depicted in qi. If many of

the photos in N(qi, k) are also in Li, then the user will be able to match qi to the identity i.

With this in mind, the goal of our adversarial examples is to prevent many of the photos in the

set Li ⊂ L from being in N(qi, k).

4.4.1 Overview

As we discuss in Section 4.3, an individual i that cannot modify all of their photos in Li, for example

because they have already been scraped by the adversary. Clean photos in Li will be close to future

query photos qi and will likely be contained in N(qi, k), thus deanonymizing the individual.
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In order to protect privacy in this scenario, we propose instead to “crowd out” as many of the

clean lookup set photos as possible. That is, we propose embedding as many decoy photos as

possible with different identities into the embedding space near an individual’s clean lookup photos

such that those decoy photos show up in future queries, rather than the lookup photos themselves. If

the lookup set contains many photos of other identities that are closer to a future query photo than

the clean lookup photos are, then the search will fail to recover who is truly depicted in the query.

To better describe how this scheme operates, let us introduce several new terms:

• Protected users: Those are users whose identity the scheme aims to protect or hide from the

facial lookup.

• Protectors: Those are the users who choose to volunteer photos for the crowding out effect.

By volunteering these photos, they achieve minimal additional privacy for themselves (similar

to the privacy benefits from the “solo action” solution). However, they contribute to the

privacy of protected users. Users can be both protected and protectors but we highlight these

different groups to show that the benefit is concentrated on the protected whereas the action is

needed from the protectors.

• Decoy photos: Photos that depict the protectors in reality but for which neural networks

produce embeddings in the region of the protected. We aim to ensure that decoy photos —

as opposed to clean photos of the protected — are returned in the recall set in response to a

query.

With these terms in mind, the scheme operates as follows:

1. Protectors create decoy photos by means of adversarial examples-generation algorithms.

2. Protectors upload those photos to their social media profiles and make them public.

3. The adversary (the facial lookup company) scrapes those decoy photos and pre-computes

their embeddings, as usual for all photos.
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Figure 4.1: Visual illustration of the FoggySight privacy defense strategy. Decoy photos are pictures

belonging to different identities that are adversarially modified so that face recognition neural networks

produce embedding vectors close to those of the identity being protected (denoted as “A”). Therefore, decoy

photos appear as the closest neighbors of a query photo of A and the real identity is not revealed in response

to the query.

4. When a query is run on a protected identity, the closest matches are decoy photos belonging

to a different identity.

For a visual representation of this idea, see Fig. 4.1.

4.4.2 Adversarial Examples Generation

To generate targeted adversarial examples, given a face recognition model f , a target vector v ∈ Rd

and an image x ∈ Rw×h×c users can solve this optimization problem for an adversarial perturbation

δ:

arg min
δ
D (f(x+ δ), v) such that ||δ||∞ ≤ ε .
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This can be solved with projected gradient descent, as proposed in [88]. Note that δ is unique to

each image x. Also, note that this optimization procedure may not converge ideally and there might

be a gap in the vector space between the target v and f(x+ δ). In the next section, we discuss how

pairs of x and v are to be selected for maximum effectiveness of the strategy.

In some cases, the face recognition model f that the protectors have access to may not match the

model that the facial search provider uses. For those situations, the protectors can generate robust

adversarial examples by applying the Expectations-over-Transformations (EOT) algorithm [9]. This

boils down to solving the following optimization objective:

arg min
δ

Ei [D (f(Ti(x+ δ)), v)] such that ||δ||∞ ≤ ε

where Ti are image transformations – such as cropping, brightness shifts, additive Gaussian noise,

etc. – applied with randomly sampled parameters. In practice, we solve this objective by drawing the

parameters for the transformation randomly at each step of the projected gradient descent algorithm.

This boosts transferability of adversarial examples because they acquire more universal features

that two different models learn to use in computing their predictions. In our experiments, we use

random brightness shifts, random cropping, and additive Gaussian noise for this purpose.

A further way to boost transferability is to generate decoys against an ensemble of face recogni-

tion models (see [83]). This works by solving the following objective for models f1, ..., fj, ..., fn:

arg minδ Ei
[∑n

j=1D (fj(Ti(x+ δ)), v)
]

such that ||δ||∞ ≤ ε

4.4.3 Selecting Targets

For an individual with identity i and lookup photos Li, the overall goal is to have others embed many

decoy photos near the photos in Li such that a new query photo’s neighbor set N(qi, k) contains

mostly decoy photos rather than photos from Li. Ideally then, the targets v chosen for adversarial

example generation should be embedding vectors corresponding to photos that either belong to Li,

or points close to such vectors. In this section we enumerate several different strategies for picking



41

such targets.

Same Universal Target. First, all users contributing decoy photos could select a single photo of the

protected user and modify all of their images so that they embed close to that one photo. This has

two benefits: simplicity and an extra layer of privacy for the defended individual. When everybody

creating decoy photos has the same target, there is no problem of coordination. Everybody knows

exactly how to modify their photos and does not need to check with anybody else in the scheme

on what target to use. Such a mechanism also reveals the least amount of information about the

protected user. This is particularly important as previous work has established that facial embedding

vectors can be reversed to obtain the original appearance of the individual [38].

Unfortunately, this poisoning scheme is unlikely to be very effective. A single sample from the

distribution of photos of the defended individual is probably not a good representative for the entire

distribution. If the defenders are “lucky” and this is the most probable sample, then many other

lookup images will be crowded out by the decoys. However, if they are not, the crowding out effect

will be limited as the query photo is likely to land far away from all the decoys and closer to other

clean images of the target.

Randomly Sampled Lookup Set Photo as Target. As a second approach, each user in the decoy-

generating group could pick a random lookup set photo of the protected user as their target. The

benefits of this scheme is that with large enough numbers of decoy photos, the community can easily

crowd out every single lookup set photo of the user. In fact, if the run of the adversarial examples

generation algorithm converges perfectly, then a linear number of decoy photo is sufficient to crowd

out the clean photos, no matter where the query photo lands. This will happen because the closest

photo — along with its decoys — will fill the search result set (assuming the embeddings of the

decoy photos land exactly on top of the clean photos).

Unfortunately, adversarial examples algorithms do not converge perfectly in practice. Thus,

to achieve perfect crowding out, the final error of the decoy photos needs to be in a favorable

direction to the defenders (the decoy photos need to land between the query photo and the lookup

set photos). Since neither the exact position of the query photo nor the error in the adversarial
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examples generation are easily predictable, the scheme might need more than a linear number of

decoys to achieve its goals. Even worse, this targeting approach requires honest cooperation by all

defenders in drawing the target photos uniformly at random. Any intentional or unintentional bias

in the selection of the targets (a deviation from the uniform sampling) for the decoys reduces this

scheme’s effectiveness.

The deficiencies of the solutions proposed above reveal that the community generating decoy

photos should make use of the fact that the defenders know the structure of the lookup set a priori.

They can take advantage of this fact in two ways. First, they could use the lookup set to estimate the

most likely point where the query photo will land. Then, the decoy photos could be concentrated in

that region. Alternatively, they could attempt to distribute the decoy photos so that they are closest

to the lookup set photos that are highest likelihood. We present instantiations of these ideas next.

Targeting the Mean Vector of the Lookup Set. Assuming that query photos and lookup set photos

are drawn from the same distribution and that it is sufficiently similar to the normal distribution,

the most likely point for the query photo to land on is the mean of that distribution. This is easily

estimated with the mean of the lookup set, assuming it is sufficiently large. Further, if the variance

of the distribution of photos of the same identity is low, the identity photo is unlikely to be far away

from the mean. Therefore, a large concentration of decoy photos around the mean should easily

crowd out most lookup set photos.

Targeting a Sample from a Fitted Distribution. Another conjecture is that the distribution that

query photos are drawn from might have higher variance than the distribution of the lookup set

(but the same mean). Certainly, this is possible as query photos are likely to be sourced from

uncontrolled environments that might be very different from the social media photos used to build

up the lookup set (e.g., CCTV). In this situation, it is preferable to introduce decoys that do not land

exactly on the mean of the lookup set. We explore drawing targets from a Gaussian distribution

with mean and variance matching that of the lookup set.
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4.4.4 Collaboration Models

Regardless of the targeting strategy, protectors need to collaborate in order to achieve maximum

effectiveness. We describe collaborations ranging from no collaboration at all to a fully decentralized

approach with everyone participating.

No Collaboration. In this setting, protected users are their own protectors. They can flood Internet

websites that are to be scraped or create fake accounts with decoy photos. A limitation of this

approach is that a user acting alone is unlikely to be able to generate enough decoy content without

violating other policies.

Centralized Assignment. In this setting, a trusted central party (e.g., a social media company)

endeavors to protect the privacy of its own users from facial lookups. The company could apply all

alterations automatically to users who opt in or to all users by default. This has the benefit that users

need not coordinate or trust each other at all.

The company can make centralized decisions for targeting and adapt the scheme as necessary.

The problem with this model is that the solution is not platform-agnostic and users can still be

deanonymized from photos on websites that do not apply this protection.

Decentralized Collaboration. Users can collaborate with each other to select targets and modify

their photos. This could be mediated by a browser extension or a phone app that automatically

applies the needed modifications for the photos to act as decoys. Indeed, this approach does not

require the consent of the protected individual at all, as protectors could even scrape the protected’s

public photos themselves. The downside to this approach is that coordination is difficult. Protectors

may not follow the protocol correctly, they might be running outdated versions of the software, they

could outright go rogue and pick arbitrary targets or not participate at all. Protectors also might not

be aware if they are picking decoy photos of other protectors or if they are using the clean photos as

targets.
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4.4.5 Matching Protectors and Protected

In all cases, the matching of protected and protectors need only follow a simple rule: No single

protector should provide too many of the decoys for a given protected individual, relative to the

number of decoys by other protectors. To illustrate why this rule is important, consider an extreme

scenario with only one protector for a given protected individual. When a query is run for the

protected individual, the single protector will appear as the most likely individual whose face

belongs to that user. This means that the protector will now suffer whatever negative consequence

were targeted at the protected. By contrast, if many different protectors are returned, then the facial

search user will not be able to identify any individual in the query photo (mistakenly or otherwise)

with any reasonable degree of certainty. This is captured by our “identity uniformity” metric (see

Sections 4.5 and 4.6). Beyond this rule, FoggySight is agnostic to how protectors are matched up

with protected users.

4.5 Experimental Setup and Metrics

In the experiments that follow, we aim to study and understand which strategy performs best in

terms of protecting individual privacy. In order to do so, we need to define quantitative metrics that

represent success when it comes to privacy protection.

4.5.1 Metrics

The first metric we call recall percentage at k. Intuitively, it is defined as the percent of the target’s

photos that appear in the top k matches from the lookup set. This is meant to reflect a scenario in

which the user of a face recognition system has a limited ability to look through the top k matches.

It is formally defined as:

RPk(A, qi) =

∑
x∈N(qi,k)

I[x ∈ Li]
k

(4.1)

where qi is a query image depicting individual i, Li is the photos in the lookup set that also depict

individual i, and I denotes the indicator function. We assume that procedure A has been used to
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modify some portion of the images in the lookup set L.

The second metric we call discovery rate at k. Intuitively, it is defined as the percentage of the

time that any photo from the target identity appears in the top k matches from the lookup set. This

is meant to reflect the scenario in which the user of the face recognition system has the resources to

look through and investigate every single photo in the top k matches. Formally, we define it as:

DRk(A, qi) = I [∃x ∈ N(qi, k) such that x ∈ Li] (4.2)

That is, it is 1 if there exists at least one photo of individual i in the neighborhood around qi.

Although the discovery rate for a single image x is either 0 or 1, we can take the expectation over

many images from a single identity to get the expected discovery rate for that identity, or over all

images in L to get the expected discovery rate for the adversarial procedure A.

The third metric we call identity uniformity at k. Intuitively, it captures how many different

identities are present in the recall set (subject to normalization). Lower identity uniformity (close to

0.0) means that every possible identity is included in response to a query. Thus, privacy is protected

because the privacy adversary cannot be reasonably certain which identity of all the possible ones

is depicted in the query (it could be any of them). Higher identity uniformity means the privacy

adversary can reasonably examine all returned identities closer to violate the privacy of the person

in the query. Formally, we define identity uniformity for a query photo qi as:

IDUnifk(qi) = 1− ID(N(qi, k))

ID(L)
(4.3)

where ID is a function that maps a set of images to the number of unique identities depicted in those

images. As with recall and discovery, we take the expectation over all photos serving as queries.

4.5.2 Dataset and Models

In our exploration, we use the VGGFace2 test dataset [17] for evaluation. In order to make the

exploration tractable given limited computational resources, we sampled 19 identities and 50 photos

of each uniformly at random and performed all experiments on them. The original test dataset that

we sample from has 500 identities. The full VGGFace2 dataset consists of 9,000 identities in total
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with an average of 362 faces per subject. During our explorations, we additionally ran some of our

experiments on the full dataset and did not find the results to be substantially different. Therefore,

we believe the results that we present are more broadly applicable, despite the subsampling.

To perform our experiments, we modify each of the 50 photos of each of the 19 identities 18

times – one for each other identity – by using the algorithms and targeting schemes set out in

Section 4.4.2. The 50 clean photos of each identity are also used to compute the targets as set out in

Section 4.4.3. Then, we sample from the resulting decoys and from the original (subsampled) set of

clean photos to build up a lookup set. This set corresponds to the poisoned dataset that the facial

search system would scrape from the Internet to provide its service. Query photos are selected at

random from the remaining photos (that were not included in the 50) in each identity to simulate an

image that was taken of the target in public. All metrics reported are averaged over multiple query

photos.

We perform all experiments on the Inception-ResNet v1 network [134] trained on the VG-

GFace2 training set [17] and originally implemented at the following GitHub repository: https:

//github.com/nyoki-mtl/keras-facenet, which is itself a reimplementation of this

repository: https://github.com/davidsandberg/facenet. For transferability ex-

periments (Section 4.6.3), we use the original implementations at https://github.com/

davidsandberg/facenet and use a second network with the same architecture but trained on

the Casia-Webface dataset [153]. We do not process any images from the Casia-Webface dataset

but merely use the pretrained network.

We also study transferability to the Microsoft Azure Face API service available here: https:

//azure.microsoft.com/en-us/services/cognitive-services/face/. This

service allows its users to specify a training set of images associated with a set of identities. For this

purpose, users create “person groups.” These person groups are loaded with images for each person

and then trained, but the documentation does not provide details on what kind of model is used for

this purpose. When a person group is queried, the service responds with the identity of the person it

believes is in the photo or with an empty response if it does not identify anybody from the person

group’s members. In our measurements, we consider only a response with the correct identity as a

https://github.com/nyoki-mtl/keras-facenet
https://github.com/nyoki-mtl/keras-facenet
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
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correct response and empty responses and responses with an identity not matching the ground truth

of the query photo are considered wrong. Thus, for experiments on the Azure Face Service, we only

report the equivalent of recall at k = 1.

4.5.3 Implementation Details

For the results in Sections B.1, 4.6.1, and 4.6.2, we use a learning rate of α = 0.1 and batch size

of 128, and run PGD for up to 400 iterations. We interrupt the optimization if the loss value has

not declined for 10 consecutive iterations. ε is set as indicated in the figures. Experiments in

these sections are implemented in Tensorflow 2.0 [1] and use the network provided at https:

//github.com/nyoki-mtl/keras-facenet.

For the results in Section 4.6.3, we use α = 0.01 and run the PGD algorithm for 2000 iterations

without early stopping. We apply the following transformations with parameters sampled at random

at each gradient step: random flip left or right, random brightness shift by up to 0.25, random crop of

a rectangle of size 150×150, with resizing to the network input size of 160×160, additive Gaussian

noise with µ = 0.0 and σ = 0.5. Experiments in this section are implemented in Tensorflow

1.15 [1] and use the Inception ResNet-v4 networks implemented at https://github.com/

davidsandberg/facenet and trained on VGGFace2 [17] and Casia-Webface [153].

In order to be able to carry out experiments in a reasonable amount of time, we have sampled 19

identities uniformly at random from the VGGFace2 test dataset. Those identities are as follows:

n000958, n001683, n001781, n002503, n002647, n002763, n003215, n003356, n004658, n005303,

n005359, n005427, n007548, n008613, n008655, n009114, n009232, n009288, n000029. We have

further sampled 50 photos from each identity to include in our lookup sets and to serve as the

basis for generating decoys. This list of 1,000 photos is too large to include in the appendix, but is

available upon request. During evaluation, we sample another set of 5 photos (distinct from the 50)

and use them as “query photos.” All metrics reported are averaged over each of these 5 photos for

each of the 19 identities.

https://github.com/nyoki-mtl/keras-facenet
https://github.com/nyoki-mtl/keras-facenet
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
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4.6 Evaluation

In this section, we report results of our experimental evaluation of FoggySight. For readability, we

present some results later in Appendix B.

4.6.1 Privacy Protection Success as a Function of ε

We analyze how well the decoys fare based on our metrics: recall, discovery, and identity uniformity.

In this section, we consider two parameters: the size of the recall set k and the perturbation

magnitude ε. Note that k is set by the adversary whereas the protectors get to pick ε. We seek to

understand what ε achieves the optimal tradeoff between degrading the image quality and achieving

the privacy protection goals under enough various settings for k. Here, we present results with the

two most effective strategies: targeting a randomly sampled lookup set photo and targeting the mean

of the lookup set.

Randomly Sampled Lookup Set Photo as Target. We first explore using a random sample from

the entire lookup set as targets for the decoy photo optimization by the protectors. The results

are presented in Fig. 4.2. For ε ≥ 0.04, recall at k = 1 is only 20%, indicating that the closest

neighbor of the query belongs to the true identity less than a fifth of the time. For higher k’s, only

a small percentage of the recall set ends up truly belonging to the protected identity, as can be

seen by values for recall close to 0 in Fig. 4.2a. This success can also be confirmed by the low

values for the discovery rate – indicating that the protected identity is present in the recall set in

only a fifth of the cases (see Fig. 4.2b). An exception to be observed is that the discovery rate at

k = 100 remains 100% no matter the perturbation magnitude. This can be explained by the fact

that at these values of k, the search casts a very wide net which catches at least one photo of the

protected. However, as can be seen in Fig. 4.2c, at ε ≥ 0.06, almost all photos in such large recall

sets belong to different individuals (identity uniformity is close to 0.0). Therefore, this defense

strategy successfully achieves its goal of preserving the privacy of the protected individuals.

Targeting the Mean of the Lookup Set. While targeting a randomly sampled lookup set photo is

successful, it does come with some downsides, as discussed in section 4.4.3. Therefore, we also
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(a) Recall when targeting a randomly sampled lookup set

vector

(b) Discovery when targeting a randomly sampled lookup

set vector

(c) Identity uniformity when targeting a randomly sam-

pled lookup set vector

Figure 4.2: Plots of privacy strategy success when targeting a randomly sampled lookup set vector. Observe

that perturbation magnitudes of ε ≥ 0.06 achieve low recall, low discovery, and high identity uniformity,

thereby successfully preserving the privacy of the protected individuals.

experiment with using the mean of the lookup set as a target. Comparing every panel of Fig. 4.3

to every panel of Fig. 4.2 reveals that this targeting strategy is not as effective. For any given

combination of ε and k values, targeting a randomly selected photo of the lookup set of the protected

yields more effective decoys. Recall is between 10 and 20% higher, indicating that there’s more
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(a) Recall when targeting the mean of the lookup set (b) Disc. when targeting the lookup set mean.

(c) Identity unif. when targeting the mean of the lookup set

Figure 4.3: Plots of privacy strategy success when targeting the mean of the lookup set. While this defense

leaks less information to the protectors and is easier to coordinate, it does not achieve results as good as when

targeting a randomly sampled lookup set photo.

photos of the query identity being returned and less decoy photos, on average, in response to queries.

Similarly, identity uniformity rises for this same reason.

There is one exception, however. For high values of k (e.g., k = 100), the discovery rate is

consistently lower when targeting the mean of the lookup set (compare Figs. 4.3b and 4.2b). This

indicates that targeting the mean does perform one function well — it places decoy photos close to
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where the query photo lands in the embedding space. Thus, as k grows, less photos belonging to the

protected individual are included in favor of decoy photos. To see this, observe that recall falls with

k in Fig. 4.3a whereas it grows with k in Fig. 4.2a. Unfortunately, the closest photos to the query

do still belong to the protected, thereby hurting the metrics for low values of k (see the values for

k = 1, 5, 10).

Takeaways From All Experiments. There are several patterns to observe that are common across

the experiments with different targeting mechanisms. First, the higher the perturbation magnitude,

the more effective the protection scheme is across all metrics and across all targeting approaches.

More importantly, the “optimal” value of ε appears to be 0.06 (see, e.g., Fig. 4.2b; the lowest

discovery is achieved at ε = 0.06). Increasing the perturbation magnitude to 0.08, or 0.1 only

improves the protection scheme by marginal amounts. Thus, to achieve the best tradeoff between

degrading image quality and achieving the privacy goals, we recommend using ε = 0.06.

Second, at high k’s, it is impossible to drive the discovery rate to 0 no matter the perturbation

magnitude and the targeting strategy. This is probably because the search casts a very wide net at

such high values of k. However, in terms of privacy, this is not a problem. In fact, at high k’s, our

protection schemes manage to insert a large number of different identities into the top recall set

(compare the b and c panels in the figures in this section). When there are many different identities

returned in response to a query, the person performing the search through the adversary’s services

does not know with any reasonable degree of confidence who is depicted in the query. Therefore,

the discovery rate is perhaps a bit too harsh and the ultimate goal — of preventing the identification

of the person in the query photo — is achieved.

4.6.2 Privacy Protection Success as a Function of the Number of Decoy Photos

We also explored another approach to analyze the effectiveness of the different targeting strategies.

The more decoy photos are needed, the harder it is for the privacy protection to succeed. Therefore,

we ideally want a targeting strategy that achieves its goal more easily if there are less decoy photos

needed. In Fig. 4.4, we present results for ε = 0.06 and k = 50 on this metric. Observe that the
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(a) Recall vs. the number of decoy photos as a proportion

of k

(b) Discovery vs. the number of decoy photos as a propor-

tion of k

(c) Identity uniformity vs. the number of decoy photos as a

proportion of k

Figure 4.4: Graphs of privacy strategy success versus the number of decoy set photos.

recall drops most quickly when targeting the mean of the lookup set. Hence, it might be more

desirable to apply this targeting mechanism with a higher ε. That way, the protection scheme can

reap the benefits for discovery rate and identity uniformity discussed in the previous section and

achieve them with less decoy photos.
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4.6.3 Privacy Protection Success When Protectors Do Not Have Access to the Face Recognition

Model

We also explore privacy protections with FoggySight in the scenario where the protectors do not

have access to the exact face recognition model used to perform the facial search. As discussed in

Section 4.4.2, we adopt two techniques for ensuring that decoys transfer from the model they were

generated with to an unknown other model: Expectation over Transformations (EOT) for generating

robust adversarial examples and ensemble adversarial examples generation. In all experiments in

this section, we employ the most successful method from the previous sections – targeting the mean

of the Lookup Set.

We first present results on transferability of decoys generated with the EOT algorithm in

Figure 4.5a and we give sample decoy images in Figure 4.6. First observe that in both cases, the

recall of the network is severely impeded both in the “direct” and the “transfer” cases. The average

recall drops below 0.4 with a sufficient number of decoys for both methods. In other words, a

protected person has less than a 40% chance of being the nearest neighbor to their query photo – as

opposed to 90% chance without the FoggySight defense. This indicates that adversarial example

transferability is an effective method to poisoning the facial lookup database to increase individual

privacy.

However, we also note that this defense is not 100% effective and that there remains a gap

between how effective the “direct” and the “transfer” defenses are. This suggests that stronger

methods for generating transferable decoys are needed in order to ensure their effectiveness on

unseen models. That is why we explore ensemble generation of adversarial examples and test the

results on a commercial face recognition service – one whose internals we do not have access to.

In particular, we include both networks implemented in the FaceNet library for our ensemble and

measure the results of the scheme on the Azure Face Recognition service.

Results for this transferability to an unseen system are given in Figure 4.5b. They indicate

a successful scheme: when ε = 0.5 and there are 36 times more decoys than clean photos,

the probability of the service identifying the protected individual is less than 10%. Therefore,
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FoggySight can be successful in increasing individual privacy against facial searches, even against

unseen systems.

(a) Recall (95% confidence intervals) at k = 1 vs. the

number of decoy photos as a proportion of the unaltered

photos of an individual.

(b) Recall at k = 1 on the Azure Face Service plotted

against the number of decoy photos as a proportion of the

unaltered photos of the individual

Figure 4.5: Experimental results when protectors do not have access to the face recognition model

4.7 Discussion

Practical Deployment Considerations The major step necessary for the effectiveness of Fog-

gySight is wide community adoption. Our experiments – though with a limited set of identities –

show that FoggySight requires at least 5 times more decoys than the number of unaltered photos

already scraped by the facial search service to reduce the occurrence of the protected identity as a

nearest neighbor to the query photo (recall at k = 1) to less than 50%. To drive that number even

further down to less than 10% on a commercial face service, large perturbation amounts and 36

times more decoys than clean photos are required.

Based on these results, we believe FoggySight is best suited when used to frustrate facial search

and create plausible deniability about who a person in a query photo is. With enough decoys, many

different identities are returned as a response to a facial search and the true one comprises a small
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(a) ε = 0.1 (b) ε = 0.25 (c) ε = 0.5

Figure 4.6: Illustration of final transferable decoy images under different perturbation magnitudes ε. These

are images of subject n000957 in the VGGFace2 dataset modified to serve as decoys for other identities.

portion of them. Thus, users of the facial search service cannot be sure with a high degree of

confidence that the person in the query photo is any one person from the recall set. This level of

protection is reasonable for the individuals similar to those represented in our dataset who may wish

to increase their general level of privacy. However, it is absolutely not sufficient for users wishing to

prevent discovery. The best solution for those users remains to not have their photos included in the

database in the first place or to prevent query photos of themselves from being useful (e.g., through

blurring or more advanced obfuscation approaches).

Facial Search Service Countermeasures (Adaptive Privacy Adversaries) Our method relies

on the ability of adversarial examples to affect the output of the facial search provider’s neural

network model and on their ability to remain undetected. There has been research on providing a

variety of defenses to adversarial examples. Some of it has shown qualified empirical success [88],

some has provided certification guarantees about very specific adversaries [149] and some has

even focused on top-k classification [67]. However, the adversarial examples research literature

has also found that robust performance (on adversarial examples) often comes at the cost of clean

performance (on regular test set examples) [65]. Therefore, we believe it is unlikely that robust

neural networks are going to be applied at scale for facial search, as that will trade off the system’s

overall reliability on unprotected and protected individuals alike. Furthermore, it is possible that the

facial search provider detects and filters some of our decoys. We believe this is out of scope for
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our proposal and future work should aim to quantify the effectiveness of such out-of-distribution

detection. Our scheme remains effective as long as the ratios of decoys to clean images of a given

protected individual can be maintained.

Incentives and Risks for Protectors In volunteering to provide decoys, protectors increase their

own privacy but also take on an added level of risk. First, even with FoggySight, protected individuals

have an incentive to modify any future public photos of themselves so that face recognition models

produce embeddings away from their “true” region in the space. This helps maintain the ratio of

adversarial to clean images in the facial search provider’s database. The fewer “clean” images the

facial search provider has, the harder it is to identify an individual. Thus, protected individuals

continue to have an incentive to also serve as protectors for others and participate in FoggySight

actively – as opposed to merely receiving protections. We emphasize that this is different from

the finding that individuals cannot achieve meaningful protections on their own. In Appendix B.3,

we explored cases where individuals wishing privacy modify their future photos in an arbitrary

direction and found that that is not enough to increase privacy, given a clean query photo and some

clean lookup set photos. FoggySight suggests that they should instead modify their photos in a

specific direction.

This, however, introduces a risk for the protector. If a protector participates with an unbalanced

number of decoys targeted at a given protected individual, the user of the facial search tool may

misidentify the protected as the unbalanced protector. However, this risk can be mitigated by

centralized coordination among protectors so that no single one of them is providing a larger-than-

average proportion of the decoys for a given protected individual.

Untagging and Other Defenses against Facial Search FoggySight is not meant to be a stan-

dalone solution. In fact, the less clean photos any given user has in a database, the better decoy-based

protection will work for them. Thus, individuals wishing to increase their facial privacy should

continue to untag, take down, or otherwise delist their photos from the public Internet. However,

we also note that none of these solutions can succeed on its own, either. Reports on facial search

providers [57] suggest that millions of individuals already have faces in those databases with links

to their (possibly cached) online presence. No amount of untagging, delisting, or removal of photos
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can remedy this. FoggySight aims to remedy that through poisoning the database of the facial search

provider and is aided by future untagging but neither solution can work on its own.

Dataset Limitations While we believe the work in this paper establishes a proof of concept

for a collaborative defense approach, all our findings are subject to the limitations of our dataset.

For reasons of constrained computational resources, we have worked with a random sample of a

bigger dataset of faces that is standard in facial recognition research (see Section 4.5) and our results

inherit all limitations of the original dataset. Furthermore, we acknowledge that for full deployment

of FoggySight, the scheme would need to undergo rigorous at-scale testing and evaluation. In

particular, such testing needs to ensure that different populations of users are represented properly

and that protections apply to every group equally well – and especially to groups that may suffer

worse consequence of diminished facial privacy than others. We further refer the reader to recent

works on ethical auditing of face recognition technology [16] and encourage future work that also

considers facial search protection works, such as this one.

Impact of Transferable Adversarial Examples (Decoys) In our experiments, we found that

FoggySight protectors need to introduce both higher-magnitude perturbations to their images and

provide more decoys when they do not have access to the adversary’s model. For example, where

protectors acting with access to the facial search model needed to inject 2-4 times more decoys with

ε = 0.04 than unaltered, previously scraped images of the protected, protectors need to inject 36

times more decoys with ε = 0.5 to be really effective against commercial face recognition services

with unknown internals. This suggests that a potential policy response that may enable individuals

to apply FoggySight more effectively might be to mandate disclosure of the facial search model.

The best policy responses to facial search adversaries are beyond the scope of this work, but we

highlight this finding as a possible remediation mechanism that may provide individuals with more

agency in protecting their privacy.
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Chapter 5

DISRUPTING MODEL TRAINING WITH ADVERSARIAL SHORTCUTS

5.1 Introduction

Machine learning capabilities have not always been put to good use. The ubiquity of face recognition

technology has reduced the privacy of individuals using web services to share photos. Generative

models have blurred the line between real and fake content. And the failures of machine learning

have disproportionately affected historically marginalized communities. Even when the use of

machine learning does not cause harm to society and privacy, not all stakeholders in the creation of

a functioning model agree to participate in that process.

This tension is most obvious in the compilation and use of image datasets. Visual data shared

online often gets applied for machine learning uses that the data creator did not envision. For

example, copyright holders do not always consent to having their content included in the training

set of models. Additionally, individuals who share facial photos online do not wish for those photos

to be used to train biometric models or – worse – for “deepfake” images of them to be created

and used to frame them for embarrassing or illegal activity. However, in many of these scenarios,

publishers of content do wish for that content to be useful to other humans. Social media users share

their photos for the enjoyment of their friends and family. Professional photographers post pictures

online in order to promote their work and make it available for purchase.

In this chapter, we explore how creators and/or publishers of visual content can prevent unau-

thorized uses of their data for machine learning while retaining the data’s utility to other humans.

One approach to achieving this goal is to prevent the automated collection of such data by unautho-

rized parties. For example, social media companies and photo sharing websites deploy technical

mechanisms against scraping and they disallow such activity in their legal agreements with users.

However, both of those methods only partially achieve the goal. Despite anti-scraping technology,
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unauthorized third parties have been able to collect large datasets of photos from social media: for

instance, Clearview.AI collected millions of facial images of individuals from a variety of online

services [57]. Legal agreements, in turn, cannot be enforced on a technical level once the data has

been scraped and rely on legal compliance, which cannot always be guaranteed (e.g., if the party

training the model is in a different jurisdiction than the data creator).

We, therefore, wish to develop methods for protecting datasets from being used to train machine

learning models for undesired purposes even when untrusted parties can obtain the data. Because

this is a broad and challenging problem, our initial focus is the canonical setting of multi-class

image classification. Our goal is to modify a clean dataset so that ML models, and primarily deep

neural networks (DNNs), achieve high training accuracy while failing to generalize to unmodified

test examples. As a mechanism for such modifications, we explore adversarial shortcuts, a method

that encourages DNNs to lazily rely on spurious signals rather than robust, semantic features.

The idea of adversarial shortcuts is partially inspired by earlier work on blindspots in CNN

model training. First, studies have observed that neural networks often leverage non-semantic

features to achieve good test set performance For example, high-frequency features and non-robust

features correlated with the true class can help explain the ability of neural networks to generalize

to their test set, even though such features do not correspond to human understanding [88]. Second,

prior work has shown that convolutional classifiers can use spurious correlations that are “simpler”

than the true semantics in order to output predictions. [26, 122] This is most evident in failures of

the models: for example, animals on green backgrounds are more often classified as cows (even

if they are something else) with models that were trained on datasets with only cows on green

backgrounds. The green background appears to be a stronger and simpler signal for the model than

the detailed features of the particular animal. In this chapter, we identify a potential use case of

these observations as a security measure that prevents training.

5.2 Setup and Goals

In order to aid further discussion, we begin with a few formal definitions of our setup and goals.

Assume that we are in possession of a dataset Dtrain = {(xi, yi)}ni=1 where xi ∈ Rw×h×c are RGB
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images of width w, height h and channels c and yi ∈ [0, ..., N ] are their corresponding true, semantic

labels (expressed as indices in a list of N classes) for a classification task. D is assumed to be drawn

from a true data-generating distribution D. As in standard supervised learning, we assume that

models trained on Dtrain will be used to classify samples Dtest drawn independently from D. We

denote such models with parameters θ as fθ and assume that θ is obtained via the standard training

procedure using stochastic gradient descent to achieve

θ∗ = arg min
θ

∑
i

L(fθ(xi), yi)

for a loss function L measuring the distance between the outputs of f and the true labels (such as

cross-entropy). Models are further evaluated in terms of their accuracy on the test data:

Acc(f, θ,Dtest) =
1

|Dtest|
∑
Dtest

1 (arg min fθ(xi) = yi)

We wish to create a protected dataset D′ = {(x′i, yi)} such that:

• Semantics in D′ are preserved.

The modified images x′i differ from their corresponding original images xi minimally. In other

words, dist(xi, x′i) is low for a given distance metric dist. The labels yi are not modified from

their original version in Dtrain and correspond to the true semantics of xi. We assume that a

party obtaining our modified dataset may reconstruct yi even if we do not provide them.

• Models trained on D′ achieve low test accuracy.

If we obtain θ′ such that θ′ = arg minθ′
∑

i L(fθ(xi), yi) is achieved, fθ′ only achieves low

test accuracy: Acc(f, θ′, Dtest) << Acc(f, θ,Dtest) for θ obtained from the unmodified

Dtrain.

5.3 Proposed Methods for Protective Dataset Modifications

In this section, we introduce dataset modifications that encourage CNNs to rely on spurious signals

rather than robust, semantic features. We propose three approaches: a sparse pixel-based pattern, a
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visible watermark, and a brightness modulation. All three generate modifications that are unique

to each class k ∈ {1, . . . , K}, creating a shortcut that the DNN can use to quickly achieve high

accuracy on the training data while failing to generalize to unmodified examples. We refer to such

modifications as adversarial shortcuts, and each technique is tuneable, allowing us to control the

tradeoff between disrupting training and preserving visual features in the data.

5.3.1 Sparse Pixel-Based Patterns

The first approach we introduce is a sparse, pixel-based modification. We generate random pertur-

bation masks ∆k ∈ {0, 1}w×h×c for each class k ∈ {1, . . . , K} with entries determined as follows:

for each value, we sample δ ∼ N (µ, σ) and set the value to one if δ exceeds the middle of the pixel

brightness range (e.g., 0.5 with 0-1 normalization), and zero otherwise. In practice, we fix σ = 0.2

and experiment with different µ values.

With the masks fixed, we then modify images in the pixels indicated by their corresponding

perturbation masks. Assuming that the maximum pixel value in the dataset is given by xmax ∈ R,

we generate the modified image x′i with label yi = k using the formula

x′i = (1−∆k)� xi + ∆k · xmax. (5.1)

Examples from the CIFAR10 dataset are given in Figure C.3 and an ImageNet-sized image with

these modifications at µ = 0.01 is given in Figure 5.1b.

5.3.2 Visible Watermarks

The next approach we introduce is a visible, class-specific watermark. If the watermark is prominent

and easy to detect, a DNN can use it as a shortcut to achieve high accuracy without relying on robust

features. To efficiently generate shapes with a sufficient degree of variation, which is known to

make watermarks more difficult to remove [27], we create watermarks by enumerating the class

indices using digits from the MNIST dataset [79].

For example, in CIFAR-10 [76] the “airplane” class has index 0, so we create a watermark for



62

(a) Original, unmodified

image

(b) Image modified with pixel-based approach with µ =

0.01

(c) Image modified with visual watermark approach with

α = 0.50

(d) Image modified with brightness modulation approach

with γ = 0.90

Figure 5.1: Example of an ImageNet-sized image with the various modification techniques applied. The

image depicted here was originally available at https://www.flickr.com/photos/volvob12b/

9797687423, was accessed on June 3, 2021, and is distributed in the Public Domain. To the best of our

knowledge, this image is not actually part of the ImageNet dataset but if it were, it would have class index

263 for ‘Pembroke, Pembroke Welsh corgi.’

https://www.flickr.com/photos/volvob12b/9797687423
https://www.flickr.com/photos/volvob12b/9797687423
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each airplane example by randomly sampling a zero from the MNIST dataset. For ImageNet, which

has 1000 classes, the watermarks require up to three randomly selected digits. The watermark

generation process for each class k ∈ {1, . . . , K} can be understood as sampling a binary image

M ∈ {0, 1}w×h×c from a random variableM(k), which we then blend with the original image xi

using a parameter α ∈ [0, 1] as follows:

x′i = α ·M + (1− α) ·M · xi + (1−M) · xi. (5.2)

The blending parameter α controls how visible the watermark is, with α = 0 having no effect

and α = 1 overlaying the watermark on the original image. An example with α = 0.5 is shown in

Figure 5.1c, with index 263 for the “Pembroke, Pembroke Welsh corgi” class.

5.3.3 Brightness Modulation Patterns

While the previous two approaches provide shortcuts that can successfully disrupt model training,

they may prove easy to remove with basic countermeasures. Our next approach is designed to be

more difficult to circumvent. Rather than creating a localized, visually distinguishable perturbation,

we now modify images using a randomized brightness modulation that either brightens or darkens

pixels identically for images in each class.

The brightness modulation for each class is generated as follows. At the start, we randomly

sample a location in the image that serves as the center of a square; we then decide, with equal

probability, whether to darken or brighten the corresponding pixels. Given a parameter γ ∈ [0.5, 1],

we darken pixels by multiplying them by γ or brighten them by multiplying by 2− γ. We perform

T iterations of this process with T distinct squares, which can and do overlap, resulting in a

checkerboard-type pattern.

This process is equivalent to sampling a class-specific mask Bk ∈ Rw×h×c, where an image xi

with class yi = k is modified using the following formula:

x′i = Bk � xi. (5.3)
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An example of this modification is shown in Figure C.5 with the parameter γ = 0.7 and T = 600

iterations. For all experiments with ImageNet we set T = 600, and for CIFAR-10 we use T = 32.

5.4 Experimental Setup

We experiment with two standard computer vision datasets: CIFAR10 [76] and ImageNet [113]. In

both cases, we apply our protective modifications to the training set and keep the validation set intact.

By measuring accuracy on the validation set, we can observe how well the trained models solve

their intended classification task. If our protections are successful, the best achievable accuracy

would be low.

For the experiments with CIFAR10, we run training for 50 epochs at a batch size of 1024 and vary

the learning rate, the architecture of the classifier used, and the random seed. Specifically, we experi-

ment with learning rates 0.1, 0.01, 0.001, 0.0001; with classifiers ResNet18 [53], DenseNet201 [60],

VGG11 [126], and SqueezeNet [63]; and with seeds 3525462, 15254521, 63246662, 32542462. We

then report the best achievable accuracy across all the runs for several different settings of each of

our intensity parameters (µ for pixel-based patterns, α for watermarking-based patterns, and γ for

the brightness modulation pattern). All networks are as implemented in torchvision [108] and are

trained from scratch, with no pretraining.

For ImageNet, we use the training script available at https://github.com/pytorch/

examples/tree/master/imagenet and the ResNet18 [53] architecture. We only train at

default hyperparameter values due to our limited computational resources.

5.5 Evaluation

In this section, we evaluate our proposed techniques for disrupting model training. Although we do

not reach state-of-the-art training accuracy on CIFAR-10 and ImageNet, either due to computational

constraints or insufficient hyperparameter tuning, we ensure a fair comparison by using identical

training procedures across all experiments.

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
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Figure 5.2: Best achievable test accuracy after 50 epochs when training ResNet18 on CIFAR-10 with different

dataset modifications.

5.5.1 Training on modified CIFAR-10

We first test our dataset modifications on CIFAR-10. Figure 5.2 summarizes the results from training

a ResNet18 architecture with various dataset modifications. Figures C.1a, C.1b, and C.1c provide

more ablations and details, including different model architectures and more parameter settings

for each adversarial shortcut. The best achievable validation accuracy after 50 epochs with the

unmodified version of CIFAR-10 is above 70% accuracy, while all of our modifications, even at the

weakest settings we tested, have a significant impact on model performance.
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Relatively small pixel-based perturbations are enough to nearly halve the accuracy: with

µ = 0.01, CIFAR-10 classifiers achieve at best no more than 40% accuracy. This setting corresponds

to modifying only 22 out of 3,072 pixels, on average. Similarly, visible watermark perturbations

with a blend factor of α = 0.5 and brightness modulations with parameter γ = 0.9 succeed in

reducing the validation accuracy to less than 40%.

Fowl et al. [37] shared a version of CIFAR-10 protected with their proposed approach, which we

compared with our methods.1 While the validation accuracy does not reach 70%, as with training on

the unprotected version of the dataset, models trained on the dataset with [37] protections manage to

achieve up to 60% accuracy, which is significantly higher than our methods (also see Figure C.1d).

We also tested the stability of our proposed modifications for disrupting training when certain

countermeasures are in place. For this purpose, we considered two categories of countermeasures:

aggressive training set augmentations and the addition of Gaussian noise. Results for the pixel-based

approach with these countermeasures are shown in Figures C.2b, C.2c and C.2d. Our findings

generalize, and the best achievable accuracy across the same set of hyperparameters and random

seeds remains the same. However, for the brightness modulation method with γ = 0.9, aggressive

augmentations are effective at undoing the modifications and allowing effective training (see

Figure C.2d). We suggest using a stronger setting of γ = 0.70 that makes the brightness modulation

more visible.

5.5.2 Training on modified ImageNet

Next, we perform experiments on ImageNet. Although we do not have the computational re-

sources to train with a variety of hyperparameter and random seed choices, several takeaways are

apparent from Figure 5.3a and additional results in Figure 5.3b. First, sparse pixel-based pattern

protections and visible watermark protections remain effective. In both cases, the best achievable

validation accuracy is less than 30%, whereas training on the unprotected version of ImageNet

easily achieves more than 50% accuracy with the same setup. This is again achievable with fairly

1The version of their defense that the authors shared with us for this test has parameters ε = 8/255, and we note
that stronger training disruptions may be achieved with different parameters.
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minor modifications, such as pixel-based with µ = 0.01 and visible watermarking with α = 0.5.

Furthermore, the plots of accuracy on the clean validation set and the protected training set in

Figure 5.3c reveal an interesting dynamic. While the model can fit the training set extremely well,

achieving up to 90% accuracy, it does not generalize to the validation set. This suggests that our

objective of disrupting training with a non-robust shortcut is successful, and that the models fits

the simple class-specific pattern as opposed to the true semantics. This divergence in training and

validation accuracy, or the rapid increase in the generalization gap, does not manifest when training

with the unmodified ImageNet data (Figure 5.3c).

5.6 Discussion

Our experiments show that it is possible to disrupt DNN training by modifying datasets with

simple patterns, such as our adversarial shortcuts, that discourage models from relying on robust,

generalizable features. These modifications can reduce model accuracy on clean data while having

minimal impact on the image semantics. Our work focuses on the narrow setting of multi-class

image classification, but there is great potential for future work that considers more effective dataset

modifications, attempts to undo protective modifications, and develops new approaches for different

ML tasks, e.g., preventing the unauthorized development of deepfakes or facial recognition systems.

We hope that future work considers how to remove adversarial shortcuts, develops tools to

compare different methods’ tradeoffs between preserving semantics and disrupting training, and

that these insights help inform more resilient methods. We are confident that, over time, such

attack/defend iterations will lead to robust measures to disrupt training on a variety of tasks.
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(a) Validation accuracy at different levels of pixel-based

protections

(b) Validation accuracy at different levels of visible wa-

termarking protections

0 5 10 15 20 25
epoch

0

20

40

60

80

Ac
cu

ra
cy

@
1

Acc. Type
Training
Validation

Train. Modifications
None
Pixel-Based 0.01

(c) ResNet18 train and validation accuracy on ImageNet

protected with the pixel-based modification at µ = 0.01,

compared with unmodified ImageNet. Validation accu-

racy can reach up to 70% with unmodified data, but our

modified dataset prevents effective learning within the

first several epochs.

Figure 5.3: Validation accuracy progress when training ResNet18 on a protected ImageNet with standard

augmentations during training.
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Chapter 6

CONCLUSION

In Chapter 3, we introduced an algorithm (RP2) that generates robust, physically realizable

adversarial perturbations. Using RP2, and a two-stage experimental design consisting of lab and

drive-by tests, we contribute to understanding the space of physical adversarial examples when

the objects themselves are physically perturbed. We target road-sign classification because of its

importance in safety, and the naturally noisy environment of road signs. Our work shows that it

is possible to generate physical adversarial examples robust to widely varying distances/angles.

This implies that future defenses should not rely on physical sources of noise as protection against

physical adversarial examples.

Furthermore, companies today are scraping photos from social media sites and are using those

photos to build powerful systems capable of identifying people from newly taken photos [55].

Therefore, in Chapter 4, we proposed FoggySight, a community-based approach for modifying

future photos provided publicly on the Internet so that they crowd out previously scraped photos.

Our experiments demonstrate that FoggySight can meaningfully increase privacy. As with any

early proposal, many practical questions need to be answered for full deployment and desired

effectiveness. However, we are convinced that this work both highlights the limitations of facial

privacy protection schemes and proposes a solid basis for future work in this space to build on.

Finally, in Chapter 5, we posit that there are settings where it is desired that machine learning

training not succeed, such as when data owners want to prevent unauthorized uses of their data.

For those situations, we develop and study a set of modifications to training sets that prevent

state-of-the-art models from achieving meaningful classification accuracy on the true distribution.

Our results suggest that hand-crafted approaches might be better for achieving the goal of dataset

protection than gradient-based approaches, such as those applied for data poisoning. Taken together,
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these three studies address important issues of security and privacy when machine learning models

are used for computer vision.

As the technology continues to evolve and new uses for it are discovered, these issues will

likely evolve as well. On the security side of the duality, machine learning models applied for

computer vision are likely to remain vulnerable to a range of attacks. In addition to digital and

physical adversarial perturbations, more accessible attack vectors remain a threat to current computer

vision systems [43]. Additionally, novel architectures and self-supervised learning are emerging as

potential next steps in the growth of the field [21] but they have also proven to be susceptible to fairly

counterintuitive attacks. For example, recent work has shown that deep neural networks can learn to

associate visual and textual concepts [44]. This promises to align neural network processing closer

with human reasoning. Yet such multimodally trained models fall pray to so-called “typographic

attacks,” where the model prefers to use a pen-and-paper label in the image for its prediction over

the shape and texture of the object at hand. For these reasons, researchers and practitioners should

approach the security of machine learning as a systems level problem. They should consider how

appropriate safeguards can be built around vulnerable models for their concrete application scenario

and think of securing the system as a whole rather than relying on the (possibly unreachable)

infallibility of the model itself. I am convinced that a continuation of the attack/defense cycle of

finding novel vulnerabilities and not-so-sophisticated blindspots in models and designing systems to

be secure in the face of such failures is the best path forward to improving the security of computer

vision systems.1

Unfortunately, technology is never solely a force for good and its “proper” operation can cause

harm in some cases and machine learning is no exception. However, the imperfection in technology

also offers the ability to reduce the negative effects of new technological capabilities. I am excited

to see how the ideas studied in Chapters 4 and 5 can be expanded to provide stronger guarantees for

privacy and protection against unwanted uses of data for machine learning. Moreover, I believe that

technological advancements in this space will ultimately need to be backed by cultural and legal

1For further discussion of this topic, see [35]
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norms. If we consider facial search technology to be too invasive and dangerous, then we should

regulate and perhaps restrict its use, in addition to disrupting its operation on a technical level. If we

want to enforce what our data can be applied for, we need to have the legal basis for asserting our

ownership, in addition to preventing the training of machine learning models on it.

As machine learning gets applied in more and more different fields, new security and privacy

issues may emerge. I look forward to doing and reading the research that explores those in the

future.
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Appendix A

ADDITIONAL TABLES AND FIGURES FOR ROBUST
PHYSICAL-WORLD PERTURBATIONS
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Table A.1: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign

(subtle attacks) and a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image,

the top two labels and their associated confidence values are shown. The misclassification target was Speed

Limit 45. See Table 3.1 for example images of each attack. Legend: SL45 = Speed Limit 45, STP = Stop,

YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

Distance & Angle Poster-Printing Sticker

Subtle Camouflage–Graffiti Camouflage–Art

5’ 0◦ SL45 (0.86) ADL (0.03) STP (0.40) SL45 (0.27) SL45 (0.64) LE (0.11)

5’ 15◦ SL45 (0.86) ADL (0.02) STP (0.40) YLD (0.26) SL45 (0.39) STP (0.30)

5’ 30◦ SL45 (0.57) STP (0.18) SL45 (0.25) SA (0.18) SL45 (0.43) STP (0.29)

5’ 45◦ SL45 (0.80) STP (0.09) YLD (0.21) STP (0.20) SL45 (0.37) STP (0.31)

5’ 60◦ SL45 (0.61) STP (0.19) STP (0.39) YLD (0.19) SL45 (0.53) STP (0.16)

10’ 0◦ SL45 (0.86) ADL (0.02) SL45 (0.48) STP (0.23) SL45 (0.77) LE (0.04)

10’ 15◦ SL45 (0.90) STP (0.02) SL45 (0.58) STP (0.21) SL45 (0.71) STP (0.08)

10’ 30◦ SL45 (0.93) STP (0.01) STP (0.34) SL45 (0.26) SL45 (0.47) STP (0.30)

15’ 0◦ SL45 (0.81) LE (0.05) SL45 (0.54) STP (0.22) SL45 (0.79) STP (0.05)

15’ 15◦ SL45 (0.92) ADL (0.01) SL45 (0.67) STP (0.15) SL45 (0.79) STP (0.06)

20’ 0◦ SL45 (0.83) ADL (0.03) SL45 (0.62) STP (0.18) SL45 (0.68) STP (0.12)

20’ 15◦ SL45 (0.88) STP (0.02) SL45 (0.70) STP (0.08) SL45 (0.67) STP (0.11)

25’ 0◦ SL45 (0.76) STP (0.04) SL45 (0.58) STP (0.17) SL45 (0.67) STP (0.08)

30’ 0◦ SL45 (0.71) STP (0.07) SL45 (0.60) STP (0.19) SL45 (0.76) STP (0.10)

40’ 0◦ SL45 (0.78) LE (0.04) SL45 (0.54) STP (0.21) SL45 (0.68) STP (0.14)
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Table A.2: Poster-printed perturbation (faded arrow) attack against the LISA-CNN for a Right Turn sign at

varying distances and angles. See example images in Table 1 of the main text. Our targeted-attack success

rate is 73.33%.

Distance & Angle Top Class (Confid.) Second Class (Confid.)

5’ 0◦ Stop (0.39) Speed Limit 45 (0.10)

5’ 15◦ Yield (0.20) Stop (0.18)

5’ 30◦ Stop (0.13) Yield (0.13)

5’ 45◦ Stop (0.25) Yield (0.18)

5’ 60◦ Added Lane (0.15) Stop (0.13)

10’ 0◦ Stop (0.29) Added Lane (0.16)

10’ 15◦ Stop (0.43) Added Lane (0.09)

10’ 30◦ Added Lane (0.19) Speed limit 45 (0.16)

15’ 0◦ Stop (0.33) Added Lane (0.19)

15’ 15◦ Stop (0.52) Right Turn (0.08)

20’ 0◦ Stop (0.39) Added Lane (0.15)

20’ 15◦ Stop (0.38) Right Turn (0.11)

25’ 0◦ Stop (0.23) Added Lane (0.12)

30’ 0◦ Stop (0.23) Added Lane (0.15)

40’ 0◦ Added Lane (0.18) Stop (0.16)
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Table A.3: Drive-by testing summary for LISA-CNN. In our baseline test, all frames were correctly classified

as a Stop sign. We have added the yellow boxes as a visual guide manually.

Perturbation Attack Success A Subset of Sampled Frames k = 10

Subtle poster 100%

Camouflage abstract art 84.8%
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Table A.4: A camouflage art attack on GTSRB-CNN. See example images in Table 3.1. The targeted-attack

success rate is 80% (true class label: Stop, target: Speed Limit 80).

Distance & Angle Top Class (Confid.) Second Class (Confid.)

5’ 0◦ Speed Limit 80 (0.88) Speed Limit 70 (0.07)

5’ 15◦ Speed Limit 80 (0.94) Stop (0.03)

5’ 30◦ Speed Limit 80 (0.86) Keep Right (0.03)

5’ 45◦ Keep Right (0.82) Speed Limit 80 (0.12)

5’ 60◦ Speed Limit 80 (0.55) Stop (0.31)

10’ 0◦ Speed Limit 80 (0.98) Speed Limit 100 (0.006)

10’ 15◦ Stop (0.75) Speed Limit 80 (0.20)

10’ 30◦ Speed Limit 80 (0.77) Speed Limit 100 (0.11)

15’ 0◦ Speed Limit 80 (0.98) Speed Limit 100 (0.01)

15’ 15◦ Stop (0.90) Speed Limit 80 (0.06)

20’ 0◦ Speed Limit 80 (0.95) Speed Limit 100 (0.03)

20’ 15◦ Speed Limit 80 (0.97) Speed Limit 100 (0.01)

25’ 0◦ Speed Limit 80 (0.99) Speed Limit 70 (0.0008)

30’ 0◦ Speed Limit 80 (0.99) Speed Limit 100 (0.002)

40’ 0◦ Speed Limit 80 (0.99) Speed Limit 100 (0.002)
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Table A.5: Sticker perturbation attack on the Inception-v3 classifier. The original classification is microwave

and the attacker’s target is phone. See example images in Table A.7. Our targeted-attack success rate is 90%

Distance & Angle Top Class (Confid.) Second Class (Confid.)

2’ 0◦ Phone (0.78) Microwave (0.03)

2’ 15◦ Phone (0.60) Microwave (0.11)

5’ 0◦ Phone (0.71) Microwave (0.07)

5’ 15◦ Phone (0.53) Microwave (0.25)

7’ 0◦ Phone (0.47) Microwave (0.26)

7’ 15◦ Phone (0.59) Microwave (0.18)

10’ 0◦ Phone (0.70) Microwave (0.09)

10’ 15◦ Phone (0.43) Microwave (0.28)

15’ 0◦ Microwave (0.36) Phone (0.20)

20’ 0◦ Phone (0.31) Microwave (0.10)
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Table A.6: Sticker perturbation attack on the Inception-v3 classifier. The original classification is coffee mug

and the attacker’s target is cash machine. See example images in Table A.8. Our targeted-attack success rate

is 71.4%.

Distance & Angle Top Class (Confid.) Second Class (Confid.)

8” 0◦ Cash Machine (0.53) Pitcher (0.33)

8” 15◦ Cash Machine (0.94) Vase (0.04)

12” 0◦ Cash Machine (0.66) Pitcher (0.25)

12” 15◦ Cash Machine (0.99) Vase (<0.01)

16” 0◦ Cash Machine (0.62) Pitcher (0.28)

16” 15◦ Cash Machine (0.94) Vase (0.01)

20” 0◦ Cash Machine (0.84) Pitcher (0.09)

20” 15◦ Cash Machine (0.42) Pitcher (0.38)

24” 0◦ Cash Machine (0.70) Pitcher (0.20)

24” 15◦ Pitcher (0.38) Water Jug (0.18)

28” 0◦ Pitcher (0.59) Cash Machine (0.09)

28” 15◦ Cash Machine (0.23) Pitcher (0.20)

32” 0◦ Pitcher (0.50) Cash Machine (0.15)

32” 15◦ Pitcher (0.27) Mug (0.14)
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Table A.7: Uncropped images of the microwave with an adversarial sticker designed for Inception-v3.

Distance/Angle Image Distance/Angle Image

2’0◦ 2’15◦

5’0◦ 5’15◦

7’0◦ 7’15◦

10’0◦ 10’15◦

15’0◦ 20’0◦
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Table A.8: Cropped Images of the coffee mug with an adversarial sticker designed for Inception-v3.

Distance/Angle Image Distance/Angle Image

8”0◦ 8”15◦

12”0◦ 12”15◦

16”0◦ 16”15◦

20”0◦ 20”15◦

24”0◦ 24”15◦

28”0◦ 28”15◦

32”0◦ 32”15◦
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Appendix B

ADDITIONAL MATERIAL FOR FOGGYSIGHT

B.1 Adversarial Examples Success

In this appendix, we analyze how well the adversarial examples generation algorithm achieves its

goal of shifting the output of the neural network while producing images indistinguishable from the

original photo. To do so, we begin by measuring the final distance in the embedding space between

the vectors produced by the neural network for decoy photos and their respective targets. The results

are given in Fig. B.1.

As expected, we can observe that all perturbation amounts manage to shift the output of the

neural network. Furthermore, higher perturbation amounts are more successful at bringing the final

neural network loss close to their target. Note that even at the highest perturbation amounts, there

is a level of “irreducible” loss and the optimization algorithm does not always achieve its goal

perfectly. It is also useful to understand how these perturbations look visually. We show the final

decoy images with different perturbation amounts in Fig. B.2. Even high perturbation amounts do

not distort the image to an unrecognizable amount. Therefore, we do not believe that this will have

a high impact on user experience.

B.2 Alternative Targeting Mechanisms

We also analyzed alternative targeting mechanisms in addition to those presented in Section 4.4.3

and present the results from those experiments here.

Same Universal Target. We begin with the strategy of selecting the same single photo of the

protected to serve as a target for the decoys of all protectors. The results are given in Fig. B.3. While

this is the simplest strategy that exposes the least information about the protected to the protectors,

these benefits come at a large cost. We can observe that recall is only moderately impacted (an ideal
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Figure B.1: Magnitude of final optimization loss after decoy photo generation under different perturbation

magnitudes ε. Note that the case where ε = 0.0 corresponds to the unmodified photos. As expected, the

higher the perturbation amount, the better the PGD algorithm for adversarial examples generation achieves its

goal.

protection scheme brings recall down to 0.0). In fact, even at high perturbation magnitudes, a photo

with the real identity of the protected is the closest neighbor to the query between 80% and 90%

of the time. (See Fig. B.3a and the values for recall at k = 1. When the recall set contains only

one photo, that photo is the closest neighbor to the query.) The discovery rate remains consistently

high for all perturbation amounts and recall set sizes, which indicates that at least one photo of the

protected is available in a high percentage of the searches (> 90%).

Targeting a Sample from a Gaussian Model. As another alternative, we evaluate targeting a

sample from a Gaussian model with mean and standard deviation matching that of the lookup

set. Results are given in Fig. B.4. The results at all settings of k and ε are as good or worse
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(a) no mods. (b) ε = 0.02 (c) ε = 0.04

(d) ε = 0.06 (e) ε = 0.08 (f) ε = 0.1

(g) ε = 0.2 (h) ε = 0.5 (i) ε = 0.7

(j) Target image

(n000958)

Figure B.2: Illustration of final decoy images under different perturbation magnitudes ε. These are images

of subject n000029 in the VGGFace2 dataset modified according to the “randomly sampled target from the

lookup set” strategy to produce vectors in the region of subject n000958.

than the results when targeting the mean. For example, for ε = 0.06 and k = 5, discovery (in

Fig. B.4b) remains up to 10% higher. This is likely because the residual loss from not achieving
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(a) Recall when targeting the same photo of the protected

user

(b) Discovery when targeting the same photo of the pro-

tected user

(c) Identity uniformity when targeting the same photo of

the protected user

Figure B.3: Privacy strategy success when targeting the same photo of the protected user universally. All

results averaged over all identities an all photos. While this strategy does manage to bring recall down, it is

less effective at reducing the discovery rate and the uniformity of identities in the top recall set.

the optimization objective perfectly introduces enough variation when targeting the mean to scatter

the decoys well. By contrast, when we purposefully introduce additional error through targeting a

sample from a non-0 variance Gaussian, the decoys land farther away from the query photo.
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(a) Recall when targeting a sample from a Gaussian

model

(b) Discovery when targeting a sample from a Gaussian

model

(c) Identity uniformity when targeting a sample from a

Gaussian model

Figure B.4: Graphs of privacy strategy success when targeting a sample from a Gaussian model. Observe that

this scheme fares just as well as when targeting the mean lookup set by comparing with Figure 4.3.

B.3 Solo Action Defenses with Untargeted Adversarial Examples

B.3.1 Setup and Motivation

Here, we consider the most natural strategy for an individual with identity i trying to protect their

own privacy while acting alone. Recall that the face recognition pipeline has a dataset of lookup
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photos L. Those photos in Li ⊂ L depict identity i, and correspond to photos of individual i from

social media websites. To protect their privacy, individual i aims to modify the photos xi ∈ Li such

that D(xi, qi) is large for some future query qi. The individual must modify their photos prior to

those photos being scraped by the face recognition system; this is a key issue that we discuss in more

detail later. Unfortunately, the individual cannot predict future query photos qi. However, future

query photos will by definition be close to the unmodified xi ∈ Li. Thus, it is natural to instead

modify xi to be far away from itself. We do this by solving the following optimization problem:

A(xi) = arg max
z
D(xi, z) such that ||xi − z||∞ ≤ ε

where xi is the image that depicts individual i — one that the individual is potentially trying to

upload to social media — A is the adversarial modification that transforms xi, and ε is a pre-defined

perturbation amount. This attack aims to make sure that, to the network, xi is not recognizable as

the identity of the individual depicted in it, while maintaining via the constraint that it appears like a

normal photo to a human observer.

To optimize this function, we use projected gradient descent, which was introduced in the

context of adversarial examples by [88]. Although usually adversarial examples are initialized as the

target image z0 = xi doing so results in the optimization getting stuck D(z0, xi) = 0. We therefore

follow the strategy outlined by [88] and initialize the attack with a small amount of random noise

z0 = xi + N̂ε(0, σ) for the truncated normal distribution N̂ε truncated at [−ε, ε].

The motivation behind this attack is presented in Fig. B.5. By maximizing the distance in

embedding space to the original, clean lookup photos, the target minimizes the chance that a new,

clean photo will match any of the modified lookup set photos.

B.3.2 Experimental Evaluation

The result of applying the self distance attack to all photos belonging to the user in the database

is shown in Fig. B.6. The graph averages the recall percentage and discovery rate over all images

and all identities in the lookup set. The chart shows that perturbation amount of 0.04 relative to an
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Figure B.5: A visual illustration of the solo action defense. A user aims to shift his or her face images far

away from their original location in the embedding space. This fills the recall set with other identities.

image standard deviation of 1 suffices the drop the recall percentage to almost 0 and the discovery

rate at k = 100 to approximately 10%.

However, it is not always reasonable to assume that users control 100% of their photos in the

database. Therefore, we next study the performance of the solo action attacks if only the target

can only modify some fraction of their photos in the lookup set. We define the subsample rate as

the percentage of the target’s photos in the lookup set that the target can modify. That is, if the

adversary has 100 photos of the target in their lookup set, and the target can modify 70 of them, then

the subsample rate is 70%. We plot the result of subsampling using the self distance and target pair

strategies in Fig. B.7. The plots show that subsampling even at a rate of 75% drastically increases

the expected discovery rate, which indicates that face recognition systems need only a few photos

of a target out of hundreds of thousands in order to identify them. This indicates that our proposed
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(a) Recall for the solo action attack (b) Discovery rate for the solo action attack

Figure B.6: Recall and discovery rate at various levels of k and ε when assuming the protected has 100%

control of their own lookup set. The perturbation amount is normalized to represent percentage relative to

standard deviation (images have unit standard deviation). For both metrics, a perturbation amount of 0.04

suffices to evade recognition. “Top Hits” refers to the recall set of nearest neighbors to the query photo that is

returned by the facial search service to its user.

attacks may not be effective enough in the case that the adversary has photos of the protected that

the protected cannot modify. In this case, different strategies that involve many protectors acting in

coordination may be needed.
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(a) Recall for the solo action attack with limited control

of the lookup set

(b) Discovery rate for the solo action attack with limited

control of the lookup set

Figure B.7: Recall and discovery rate at various levels of k and ε when assuming the protected only has

limited control of their own lookup set (as controlled by the subsample rate). The perturbation amount is

normalized to represent percentage relative to standard deviation (images are have unit standard deviation).

Only having access to a fraction of the lookup data drastically degrades privacy protection. This indicates

that other strategies are needed in the case that we cannot modify 100% of the target’s data. “Top Hits” refers

to the recall set of nearest neighbors to the query photo that is returned by the facial search service to its user.
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Appendix C

ADDITIONAL FIGURES FOR DISRUPTING UNAUTHORIZED USES
OF MACHINE LEARNING
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(a) Best achievable accuracy after 50 epochs across a

range of hyperparameters and random seeds for the pixel-

based disruption approach. µ = 0.0 corresponds to the

unmodified, clean dataset for this approach.

(b) Best achievable accuracy after 50 epochs across a

range of hyperparameters and random seeds for the visi-

ble watermark disruption approach. α = 0.0 corresponds

to the unmodified, clean dataset for this approach.

(c) Best achievable accuracy after 50 epochs across a

range of hyperparameters and random seeds for the

brightness modulation pattern disruption approach. γ =

1.0 corresponds to the unmodified, clean dataset for this

approach.

(d) Best achievable accuracy after 50 epochs across a

range of hyperparameters and random seeds for the Fowl

et al. [37] approach

Figure C.1: Results on training a modified CIFAR10 with no countermeasures.
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(a) Best achievable accuracy after 50 epochs across a

range of hyperparameters and random seeds for the pixel-

based disruption approach after applying Gaussian noise

to the images. µ = 0.0 corresponds to the unmodified,

clean dataset for this approach.

(b) Best achievable accuracy after 50 epochs across

a range of hyperparameters and random seeds for the

pixel-based disruption approach after applying aggres-

sive training-time augmentations. µ = 0.0 corresponds

to the unmodified, clean dataset for this approach.

(c) Best achievable accuracy after 50 epochs across a

range of hyperparameters and random seeds for the visi-

ble watermark disruption approach after applying aggres-

sive training-time augmentations. α = 0.0 corresponds

to the unmodified, clean dataset for this approach.

(d) Best achievable accuracy after 50 epochs across

a range of hyperparameters and random seeds for the

brightness modulation patterns disruption approach after

applying aggressive training-time augmentations. γ =

1.0 corresponds to the unmodified, clean dataset for this

approach.

Figure C.2: Results when applying countermeasures to the modified CIFAR10 training set.
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Figure C.3: Examples of the perturbed CIFAR10 training set with a pixel-based perturbation approach at

various settings of the parameter µ.
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Figure C.4: Examples of the perturbed CIFAR10 training set with a visual watermarking approach at various

settings of the parameter α.
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Figure C.5: Examples of the perturbed CIFAR10 training set with a brightness modulation approach at

various settings of the parameter γ.
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