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ABSTRACT
Program verification is the only way to be certain that a given piece
of software is free of (certain types of) errors — errors that could
otherwise disrupt operations in the field. To date, formal verification
has been done by specially-trained engineers. Labor costs have
heretofore made formal verification too costly to apply beyond
small, critical software components.

Our goal is to make verification more cost-effective by reducing
the skill set required for program verification and increasing the
pool of people capable of performing program verification. Our
approach is to transform the verification task (a program and a goal
property) into a visual puzzle task — a game — that gets solved
by people. The solution of the puzzle is then translated back into a
proof of correctness. The puzzle is engaging and intuitive enough
that ordinary people can through game-play become experts.

This paper presents a status report on the Verification Games
project and our Pipe Jam prototype game.

Categories and Subject Descriptors
D.2.4 [SOFTWARE ENGINEERING]: Software/Program Verifi-
cation—Correctness proofs; F.3.1 [LOGICS AND MEANINGS
OF PROGRAMS]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification; K.8.0 [PERSONAL COM-
PUTING]: General—Games

General Terms
Verification, Economics
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1. INTRODUCTION
Our aim is to change the way that software is verified, to en-

able inexpensive formal verification. Current approaches that rely
on testing are incomplete. Current approaches that rely on man-
ual verification by skilled users are extremely expensive. None of
these approaches is capable of keeping up with the rate of software
production.
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Our approach is to remap the problem into a more accessible form,
and use an engaging game to develop a significantly larger number
of experts capable of solving verification problems in a remapped
domain. Instead of relying on software engineers, we will develop
a new skilled verification workforce, and use crowd-sourcing on a
much more general audience of people who enjoy the challenge of
playing a game.

The availability of inexpensive formal verification could change
the economics of software verification and validation, making for-
mally-correct software more cost-effective and thus more widespread,
and leading to systems that are more reliable and robust. These ben-
efits would extend throughout the software development lifecycle,
because formal specifications make code maintenance easier and
cheaper.

We have built a prototype end-to-end system that takes as input

• an arbitrary Java program and
• a security (or other) property, expressed as a type system

and produces as output

• a proof of correctness that the program satisfies the security
property, or

• a specific source location where the program violates the prop-
erty — that is, where the program may be insecure.

This system automatically converts the program and property
into a game that can be played by people with no knowledge of or
training in computing. When the player finishes a game challenge,
the final configuration of board elements can be translated into a
proof of correctness for the original program. More precisely, the
board configuration corresponds to a set of type annotations that can
be checked by a type-checker. The human player can be viewed as
doing type inference.

Because the game is designed to encode the same constraint
system as the type system, if the player solves a level of the game,
then the corresponding annotated program will type-check. The
type-checker gives a sound guarantee that the type annotations are
correct and the program is secure with respect to the specific security
property.

In many cases, the program will not type-check — equivalently,
the game cannot be solved. There are two main reasons for this.

1. The program is not secure — it contains a vulnerability.
2. The program is secure, but the reason that it is secure is beyond

the reasoning abilities of the underlying verification technology.
Every verification system — type checking, theorem proving,
model checking, abstract interpretation, etc. — issues warnings
about some secure programs.

There is no a priori way to know which of the two reasons lies be-
hind a verification failure — equivalently, an un-solvable game level.
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A fielded version of our system would present each verification fail-
ure to a human verification expert. The human examines the source
code and the type error, then determines which of two fixes to apply:
change the code to correct the bug, or add an assertion/assumption
indicating that the verification system should not issue a warning at
this particular location. As with any other conservative type checker,
a type error indicates an inconsistency between parts of the program,
but does not prove that an error exists, nor does it provide a defect
trace or test inputs that trigger a property violation at run time.

Even when players (who have become game experts over time)
cannot fully verify a program, partial verification has great value: it
permits the valuable time of highly-skilled engineers to be focused
on the most important and difficult-to-verify parts of the program.

1.1 Types for program verification
We use pluggable type-checking as the underlying verification

technology. Type systems are the shining success of program verifi-
cation. Types are used on a regular basis by ordinary programmers
who use them to verify the absence of certain types of errors. Pro-
grammers write a partial specification in the form of type annota-
tions, then a type-checker detects potential errors. No other formal
verification approach has seen such widespread adoption.

Pluggable type-checking provides an excellent foundation from
which to improve upon the limitations of current verification ap-
proaches. Type-checking is sound, so it offers a guarantee. Type-
checking is expressive: it is formally equivalent [33, 27, 13, 14, 17,
28] to any other verification technology, including model-checking
and theorem-proving. Type-checking is already familiar to every de-
veloper, and it fits well into the development process. Type-checking
is modular: it can be done on each component of a system individ-
ually, making it much more scalable. Related to the previous two
points, type-checking is transparent, which makes it easy to use: its
error messages tend to be clear, and a small change to the application
does not make a large, non-local change to the type-checking results.
This is relevant both to game players who will see the error messages
in a different guise, and to verification experts who will take over
when the game players get stuck. Type-checking is extensible: even
a non-expert can create a new, custom type-checker that verifies a
domain-specific property of interest; a type system that is extensible
in this way is called “pluggable” [7].

The downside of type systems is that they tend to be less expres-
sive than certain other verification techniques. A type system offers
partial verification — it is designed to detect a certain class of errors,
and the program may still be subject to other errors. This is the right
way to start, because full formal verification remains impractical for
realistic software. Furthermore, type-checkers are powerful and can
check a wide range of important properties. Our system is built upon
the Checker Framework [8], which has found hundreds of errors in
millions of lines of code [30, 19]. It can be easily adapted to new
verification problems and comes with type-checkers that prevent
errors due to: null pointers; initialization; map keys; equality tests
and interning; incorrect mutation (side effects); concurrency and
locking; fake enumerations; information flow (trust and security);
aliasing; regular expression syntax; property files; internationaliza-
tion; the string representation of data; and many more. We have
mapped the CWE/SANS Top 25 Most Dangerous Software Errors1

to type systems.
Our system maps source code’s typeflow properties into a net-

work of pipes. Pipe widths, which are controlled by the player,
directly map to type annotations in programs that can be mechan-
ically checked and provide a proof of partial correctness. The
constraints and relationships among game elements are represen-
1http://cwe.mitre.org/top25/?2011

tations of the constraints on program types and the relationships
among program variables. By playing the game, the programmer is
effectively choosing a type for each variable in the program. This is
valuable because general type inference with precise error messages
remains an unsolved problem that can benefit from crowdsourcing.

We believe that humans may have an edge over automated sys-
tems in certain situations, notably when the program is not verifiable.
A program is unverifiable when it has a bug, or when it is correct
for reasons that are beyond the power of the verification system. In
either case, the failure is communicated back to an expert, who only
considers cases that the crowd of players cannot resolve.

The remainder of this paper is organized as follows. Section 2
explains the Pipe Jam game mechanics. Section 3 discusses the
translation of a program and property into a Pipe Jam game. Finally,
Section 4 discusses related work and Section 5 concludes.

2. THE PIPE JAM GAME
Figures 1, 2, and 3 show screenshots of the Pipe Jam game. The

screenshots show Pipe Jam being used to verify that a part of our
system itself is free of null pointer errors. We now explain the
figures.

Pipe Jam presents the game player a set of related ball-and-pipe
puzzles. Each pipe is either narrow or wide, and the player is
allowed to control the width of some pipes. Each ball is either small
or large. A small ball can roll down any pipe without obstruction. A
large ball can roll down a wide pipe, but gets stuck if it ever tries to
roll down a narrow pipe. The player’s goal is to ensure that the balls
never get stuck.

A player might try to make all pipes wide, but this does not work
because some pipes are narrow and cannot be adjusted. (This is
sometimes represented as an obstruction, or pinch point, that only
permits a small ball; see Figures 1, 2, and 3 for examples of pinch
points.) Likewise, some balls are large and cannot be adjusted; see
Figures 2 and 3 for examples of balls (atop gray pipes) that are fixed
to be large. The puzzle is solved when the player has chosen widths
that are consistent with all the constraints. The constraints include
both fixed pipe sizes and which pipes flow into one another.

The basic idea behind Pipe Jam is simple and lends itself to quick
learning and enjoyable play. We now explain some additional game
mechanics that add interest and challenge. (These game mechanics
are much easier experienced than textually described. See a video
at the project homepage2.)

Boards A Pipe Jam game is divided into boards, levels, and worlds.
A board is a single network of pipes. Examples appear in
Figures 2 and 3.

Levels A level consists of a set of boards. The left side of Fig-
ure 1 shows a level being played. A level is solved when all
of the boards in it are solved. As explained below (“linked
pipes”), actions on one board can affect another board: the
player must solve all of them simultaneously, not one after the
other independently.

Worlds A world consists of multiple levels. A player proceeds
through the world, solving each level one by one. As shown in
the world map of Figure 1, the levels depend on one another,
which constrains the order in which the player may solve them.
It may sometimes be necessary for a player to backtrack to a
previous level to find a better solution for it, in order to solve a
subsequent level. “Embedded networks” below explains how
boards and levels depend on one another.

2http://www.cs.washington.edu/verigames
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Figure 1: A view of the Pipe Jam verification game being played. The underlying verification problem is to prove that a part of our system itself is free of null
pointer errors.
The left screenshot shows the player’s view of the game. In the upper right is the board that the player is currently working on (named “Earth MountRock”). The
bottom portion of the screen shows thumbnails of the other boards in the current level, together with a concise summary of which boards are solved and which
are unsolved (the row of red and green rectangles). The thumbnail at center left is for panning, which is not needed in this example. Above it are controls for
adding a buzzsaw and for viewing an animation. Above those are the current score; a back button, the collapsed world map.
The right screenshot shows the world map in its expanded state. The world map shows named levels and the dependencies between them, and permits the player
to navigate to a new level.

Linked pipes All the pipes of a given color (in a board or an entire
level) have the same width. (An example is the two orange
pipes in Figure 2.) When the player changes the width of
one of these pipes, then it also changes the width of all the
other pipes of that color. When the player changes the width
of a given pipe, that change may solve one board on a level
but unsolve a different, previously-solved board on the same
level. The player’s challenge is to find a set of pipe widths that
simultaneously solve the entire level.

Embedded networks One network can contain another network
as a subcomponent. For example, in Figure 2, the left board
“Metal SmeltCity” contains another board “Metal SteelTowne”
as a subcomponent. When balls roll through SmeltCity to the
subcomponent, they next traverse the subcomponent to its end
before returning to SmeltCity. Changes to the width of the
input or output pipes of the subcomponent, Metal SteelTowne,
can cause collisions in SmeltCity. This is another example of
relationships among boards that the player must satisfy. The
embedded network may come from the same level, or any level
that does not follow the current one on the world map. Mutually
dependent levels can be processed in either order. In the worst
case, a player may need to visit each one multiple times.

Buzzsaws: Exceptions to the laws of physics Not every Pipe Jam
game is solvable. It is possible that every combination of pipe
widths yields at least one collision. To let players proceed in
this case, Pipe Jam contains a “cheat” — the buzzsaw — that
any player is allowed to use at any time. A buzzsaw converts
any ball that passes by it to a small ball, which can then fit
through any pipe. See Figure 3 for an example. It would be
possible to solve any level using sufficiently many buzzsaws,
without changing the sizes of any pipes. However, placing a
buzzsaw costs a large number of points, so players desire to use
as few buzzsaws as possible.

Scoring A given board, level, or world may have multiple solutions.
Each configuration of pipe widths earns the player a different
number of points. Criteria in determining the score include

the number of unsolved levels in a world, unsolved boards in a
level, and collisions in a board; the number of buzzsaws used;
and widths of pipes (more points are earned for large pipes
entering a board and narrow pipes exiting a board). These crite-
ria favor solving the underlying verification problem; avoiding
assumptions or type loopholes in the proof; and creating type
annotations that favor reuse of components.

The natural modularity of object-oriented programs, which are
composed of classes that are composed of methods, enables a casual
gamer to do a little bit of work and then later come back to the game.
However, it is possible for interrelations to cross levels — because
of global variables that are used in multiple classes, or because of
calls from one class to another.

In Figure 1, the player has not yet solved the game. The green
or red outline color of each board/thumbnail indicates whether it is
solved. At any time, the player can animate the networks, making
balls flow along them and seeing the result, but the colored borders
give immediate visual feedback. We plan to support two different
types of animations: a type-theoretic one that reflects what the
underlying program verification tool can establish (this is already
implemented), and an execution-based one that illustrates what the
program actually does on some set of real executions. The latter
is more precise but incomplete [21], so the two approaches are
complementary.

3. MAPPING A PROGRAM AND A PROP-
ERTY INTO THE PIPE JAM GAME

We now explain, at a high level, our approach for translating a
verification problem — that is, a program and a property that may
be true of the program — into an instance of the Pipe Jam game.

A Pipe Jam game is analogous to a dataflow network for a pro-
gram. In this analogy, each ball represents a value, each pipe repre-
sents a variable, and assignment between variables is represented
as one pipe flowing into another. In actuality, a Pipe Jam game



Figure 2: Detail of two boards from the Pipe Jam game shown in Figure 1. The left board demonstrates wide and narrow pipes, pinch points, a merge (near the
bottom center), and a subnetwork. The right board demonstrates two collisions, each of which prevents the game from being solved. At the top, a large ball
collides with a pinch point. At the bottom, a wide ball gets stuck trying to merge into a narrow pipe. The collisions are highlighted by red circles. A pipe
segment is outlined in green if it contains no collision, and in red if it contains a collision. The gray pipe on the right board cannot be adjusted in width.

represents a relation we call “type flow”. For example, a parameter-
ized type Map<String, Integer> would be represented by three
pipes, one (or more) each for the type qualifiers on Map, String,
and Integer. The three pipes need not always flow in parallel,
depending on how the code uses values of the given type.

The width of a pipe stands for the type of the variable that the pipe
represents. These are not the underlying Java types, but the security
properties that are represented in the pluggable type system. For
concreteness consider a nullness type system: a wide pipe represents
a variable that is permitted to contain the value null, and a narrow
pipe represents a variable that is guaranteed to be non-null. More
generally, for a two-element type system, the wide pipe represents
the supertype and the narrow pipe the subtype.

Unmodifiable pipes stand for constraints arising from the source
code. For example, a field dereference such as x.f requires that the
reference x be non-null (narrow). The literal null yields a large ball,
and a new expression yields a small ball. Similar constraints arise
from secure sources and untrusted sinks in a security type system.

Each board represents a single procedure or method. Each level
represents a class. An embedded board represents a procedure call.
When there is a procedure call to a pre-annotated library routine,
then its constraints are integrated directly into the network, to avoid
a proliferation of subcomponents in the network.

The world map is a dependence graph among classes or, equiv-
alently, a call graph. It ensures that callees are annotated before
callers, though it accommodates mutual dependences. We take
advantage of the decomposition of object-oriented programs into
parts that can be specified, implemented, understood, and reused
individually. This should help players just as it helps programmers.
We may introduce new levels of abstraction (such as dividing the
world into continents) to leverage modules within a program that
are larger than classes.

Linked pipes that are of the same color represent different occur-
rences of the same variable or of two variables whose types must
be identical. For example, a global variable or a class’s fields flow
to every method and thus appear on every board, but each global
variable or field has only a single type that must be consistent across
all methods in the program.

A buzzsaw represents an assumption/assertion about a given value
— for example, a loophole, suppressed warning, or trusted cast in
the type system. A programmer writes these to indicate externally-
verified properties. Human insight is likely to be more effective
than any inference tool, as evidenced by the sorry state of error
messages for type inference systems. Once our system is fielded,
then whenever many players, or a known successful player, uses a
buzzsaw, a trained programmer can examine the code at that location.
The programmer determines whether the code is correct and needs a
trusted assumption, or the code has a bug and should be fixed. The
game players have focused the scarce, expensive resource (expert
programmer time) exactly where it is most needed.3

The names for levels and boards are chosen arbitrarily, but are
intended to be memorable. Names from the original source code
would not be meaningful to the players and might even confuse them.
The players have no knowledge of computing, of the application
domain of the program, or of its source code. The owner of the
source code also might not wish for its identity or details about its
design to be leaked to the players.

Distinction from dataflow.
The Pipe Jam game does not actually represent dataflow, but a

different concept that we call type flow. The notion of type flow and
our representation of it are novel, to the best of our knowledge. A
particular variable may be represented by multiple pipes if it has
a compound type. For instance, a variable of type List<String>
would be represented by two pipes because two type qualifiers are
possible, one on List and one on String. On the other hand,
other variables would not be represented at all. For example, in a
nullness type system, all primitive variables could be elided because
a variable of primitive type (e.g., int) can never hold null.

Although programs very frequently contain loops in their dataflow,
cycles in type flow on a single board do not occur, because the
3One can imagine other game mechanics for expert players, such as the ability to rewire
the network. This corresponds to changing the logic of the program or rearranging
assignments. It must be done in a way that respects the underlying Java types. Like the
buzzsaw, this mechanism would reduce the player’s score (though in most cases the
final score would be more than for a complete failure to solve the level), and would be
verified by a programmer.



Figure 3: The left board is unsolvable. The gray pipe cannot be adjusted in width, and the black ball will get stuck trying to merge into the narrow blue pipe.
Even if the blue pipe were made wide, the black ball would still get stuck at the pinch point.
The right screenshot shows how to solve the board by placing a buzzsaw. A buzzsaw cuts any ball that passes through it. The animation captured in the right
screenshot shows that the large ball has been transformed into a small one after passing through the buzzsaw, and the level is solved. Placing a buzzsaw reduces
the player’s score, so players will try to solve their puzzles with the minimal number of buzzsaws.

network is really about relationships and flows between types and
variables, not just between specific data values. Put more technically,
it encodes the type constraints that arise when syntax-directed type
constraint generation is performed on the program. While still
complex, these are much simpler than the original program.

3.1 Mapping security vulnerabilities to game
puzzles

We have set ourselves the initial goal of formally verifying that
Java programs are free of the errors listed in the CWE/SANS Top
25 Most Dangerous Software Errors4. It is, in its own words, “a list
of the most widespread and critical errors that can lead to serious
vulnerabilities in software.”

We now discuss how our pluggable type-checking approach can
be instantiated for the errors on the list. Instantiation requires creat-
ing a type system that can detect the error or verify its absence, and a
mapping from the type system to our Pipe Jam game. The mapping
into Pipe Jam is generally straightforward. We give three rules that
handle most situations.

• Many of the type systems have two qualifiers. The top qualifier
can be mapped into a wide pipe and large ball, and the bottom
qualifier can be mapped into a narrow pipe and small ball.

• When the type system consists of three type qualifiers in a chain
(that is, A :> B :> C, where :> is the supertype relation), then
three sizes of pipes/balls suffice.

• When the type system contains two types that are incomparable,
these can be thought of as orthogonal properties of an object.
Examples from the nullness type system include whether a
reference can be null; whether the referent is fully-initialized
(versus being this within a constructor); and whether the ref-
erent is a key in a given map (this enables precise analysis of
Map.get() calls). In this case, a different physical representa-
tion is required for the different orthogonal properties.
We represent the primary or most important property as pipe/ball
size, and the others as different colors or textures that are im-

4http://cwe.mitre.org/top25/?2011

posed on the pipe or ball. As a simple example, a value that
is not necessarily fully initialized gets gray stippling. A more
complex example is whether a value is present as a key in a
map. Suppose there is a map whose pipe is blue. Then keys
(pipes) that are guaranteed to be present in that map get a blue
stripe. This shows the relationship between different values.

In some cases, a particularly sophisticated type system requires
enhancements to the basic game mechanics. For example, consider
the map key example above, and recall that Map.get returns non-
null only if the key is in the map and all the map values are non-null.
Representing a call to Map.get requires a new game widget that
takes three input pipes and one output pipe. The widget has a narrow
output pipe if both the pipe representing the key’s type has a stripe
of the color of the pipe representing the map’s type and the pipe
representing the value’s type is narrow. In our experience with over
a dozen pluggable type-checkers, the nullness type system has the
most complexities such as these, because programmers use null to
represent many special cases and because they can check for it at run
time. Other type systems, such as those for security, are relatively
simpler.

3.2 Simplifying the type constraints and the
game puzzles

Even a multitude of game players would have trouble verifying
a 5-million-line program with respect to 25 distinct type systems.
Therefore, as future work we propose to simplify the problem before
presenting it to the players. We will do so by pre-determining the
types for a subset of variables in the program. Then, the players
only need to find types for the remainder of the program. We will
use the best program analysis tools available, and then the players
will take over.

We expect to significantly reduce the size of the games that play-
ers must solve. One reason is that some properties are not applicable
to many parts of the program. Nullness properties are not applicable
to primitive types, which can never have the value null. Untrusted
user inputs are strings, but most variables in a program are of other
types. A second reason is that many values are restricted to a small
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part of the program. In a correct program, user input strings are vali-
dated near where they are read, or at least do not flow into strings
used for other purposes. A third reason is that highly-effective
analyses exist that determine an answer for most of the program.

We plan to evaluate how much simplification is optimal for play-
ers. When a part of the code is difficult to verify, its context can
provide critical clues, and it would be counterproductive to remove
all of that and leave players just an abstract, unsolvable core. On
the other hand, players will become bored and jaded if they are
required to perform rote actions. At the same time, a game should
have some easily-solved parts, to keep players engaged and to give
them a feeling of forward progress.

The game player is accomplishing the task of type inference: cre-
ating an annotation for each variable declaration in the program, that
gives additional information about that variable’s type. Examples
are whether the variable is permitted to hold the value null, and
whether the variable is permitted to be mutated.

Whereas type checking is largely a solved problem, type inference
emphatically is not. Even the most precise available inference tools
leave much room for improvement. For example, the state of the
art tool for inferring nullness properties is the Julia [24, 34, 35, 36,
37] tool for Java. It can prove about 98% of all dereferences in
a program to be safe — that is, it proves that no null value ever
flows to those dereferences, so those dereferences cannot result in
a null pointer exception at run time. However, this leaves 2% of
dereferences for a programmer to manually check — some may be
erroneous code that might fail at run time, but most are probably safe
even though Julia is unable to infer such properties. Human insight
and higher powers of reasoning are required. As another example, a
state-of-the-art tool for inferring mutability (whether side effects are
permitted/performed) is Javarifier [31, 32] for the Javari [6, 39, 38]
type system, but it, too, suffers imprecision due to its conservative
analysis. An earlier inference system for Javari [22, 23] achieved
even worse results, with precision of about 70% (compared to Julia’s
100% precision and 98% recall).

Automated analysis and crowdsourcing are complementary. In
particular, we can run the best available practical inference tool
before the player starts, and use that as the initial configuration
that the player attempts to improve. This leverages human intuition
exactly where it is needed. In particular, every formal analysis has
a limited vocabulary of properties that it can express, which limits
the properties that it can prove. It is an unavoidable fact, related
to the undecidability of the halting problem, that for every conser-
vative (sound) program analysis, there are programs that never go
wrong at run time but that the program analysis rejects as potentially
erroneous. We hope that humans will be able to overcome these lim-
itations via higher-level reasoning, pattern-matching, and heuristics
to guide themselves through very large search spaces.

3.3 Human advantage and game-based expert
development

When the game has a buzzsaw-free solution, then that solution
can be found both automatically and very quickly: compute all pipes
reachable by any large ball, and make those wide. We do not believe
that game players will have any advantage over program analysis
in such circumstances. However, our experience with pluggable
type-checking so far leads us to expect that few if any programs will
verify without buzzsaws — that is, without any trusted assumptions
or suppressed warnings. It is our hope — yet to be validated exper-
imentally — that people will have an advantage when a program
is not verifiable. Perhaps people will observe the structure of the
game, observe animated executions, notice patterns (such as that
only small balls ever go down a particular chute, so the buzzsaw

wouldn’t actually have any effect and so can be placed for free), and
use their intuition to find the smallest number of buzzsaws that can
be placed. This will be more useful to the verification expert than an
automated tool that chooses an arbitrary location at which to report
a type conflict. The verification expert can also communicate back
to the players, if they choose poorly, by preventing a buzzsaw from
being placed at a particular location, or by adding a test case for the
players to observe.

We expect that in general, problems that are harder for verification
experts will be more challenging to players. We will evaluate which
problems are more difficult in each domain.

An engaging game is capable of drawing in many new players.
However, if the process of play does not produce increased skills,
and improvement (both individual and collective) on ability to solve
verification puzzles, then even a massive population of active players
will not achieve our software verification goal. We need significantly
more verification puzzle experts. This challenge is common to all
games that attempt to solve hard problems. Foldit [11, 12, 10, 9], a
proteomics game, effectively created the genre of games that solve
hard problems. Prior to Foldit, it has not been known whether it is
even possible to elevate human expertise on a particular domain to
the point that it can disrupt the current scientific process and produce
outcomes that present significant scientific advances. In the past
few years, based on the success of Foldit, several researchers have
developed games aimed at solving hard problems in science and
engineering. Still to date, Foldit remains the only game with indis-
putable evidence of emergent expertise and outcomes that advanced
the science.

The only way to accurately assess the emergence of expertise
in the player population is to measure their performance on hard
verification puzzles. Once assessed, the key game design question
is how to modify the game towards improved performance. We plan
an approach of iterative game sensitivity analysis, which will lead
us to modifications that improve performance over time, as it did
with Foldit.

4. RELATED WORK
Currently, there is no rapid, cost-effective approach for establish-

ing that an application is safe. Testing and dynamic analysis are
pragmatic and often effective, but they are unsound because tests
are never guaranteed to exercise all program behaviors. Another
common approach is to manually inspect the source code or machine
code, relying primarily on expert human insight augmented by rela-
tively low-level tools. This approach is slow, costly, and error-prone;
automation, as we propose, is preferable. Another possible approach
is formal verification via model-checking, theorem-proving, and
similar technologies. These approaches are attractive because they
have the ability to produce a proof of correctness that guarantees
a particular property. However, they are not practical, for several
reasons. They suffer a high false alarm rate, which is caused by
analysis approximations that are a necessary compromise to make
a sound analysis scale. For similar reasons, the properties they can
prove are relatively weak, and in practice, loopholes/assumptions
are required in strategic places. Even so, they require a high skill
level — 6 months of training is considered a lower bound to use a
theorem-prover, and model checkers also have a significant learning
curve.

Automatic verification is the gold standard. One good example is
Saturn [1], a precise and scalable static analysis tool that was used to
verify cast safety of 6 million LOC from the Linux kernel. This is an
impressive tool; however, custom analyses are written in a targeted
logical programming language and require deep understanding of
the analyses. Our approach is more flexible and general, and admits



both simpler and more sophisticated analyses, all written in Java.
Interactive verification of software has also seen recent impres-

sive results. The formal verification of an L4 operating system
microkernel [25] is a recent breakthrough of manual formal ver-
ification. The 8,700 lines of C code of an L4 microkernel were
verified using the Isabelle/HOL interactive proof assistant [29]. The
group co-designed the kernel and proof and started from scratch;
they developed a Haskell prototype that was manually translated
into a high-performance C implementation. The verification effort
is huge: over 22 person-years of effort by highly-trained researchers.
Another recent example is the manual verification of the Compcert
C compiler [26] using the Coq proof assistant [5]. The compiler
is written in 42,000 lines of Coq (note that this is both the imple-
mentation and proof) and took about 3 person-years. In contrast, by
continuing to use Java as underlying development language and ex-
tending the type system with expressive, high-level types, we hope
to allow even average software engineers to verify their software,
with the help of the crowd.

A shining example of software model checking is the SLAM/Static
Driver Verifier (SDV) tool [4, 2, 3] from Microsoft, which is used to
show the correctness of kernel-mode drivers and is a standard part
of the development process. The tool is applied to device drivers of
between 1K and 30K LOC. This success is due to clever ideas, good
engineering, and not least the choice of a very constrained domain
with specific properties to check. Our goals are considerably more
general.

Abstract interpretation [16, 15] serves as a foundation for several
verification approaches. The Astrée tool is used to show the absence
of runtime errors in safety-critical, embedded control code of up to
a million lines of C code. Astrée runs not on programmer-written
source code, but on generated code, which uses a limited subset of
C (Astrée does not handle expressions with side effects, dynamic
memory allocation, or recursion) and has properties that make the
specific properties that Astrée checks easy to verify.

See our previous work on a type inference algorithm [20] for
the Generic Universe Types ownership type system [18] and the
Javarifier type inference algorithm [38, 32] for the Javari language
for reference immutability [6, 39] for additional pointers to relevant
literature.

5. CONCLUSIONS
This paper summarized the current status of the Verification

Games project. Future work will focus on both the verification
and game play aspects, for example, expressing more properties,
scaling up, adjusting game play difficulty and interest, and play
testing. More information and a demonstration video can be found
at the project homepage5.

Acknowledgments
Brian Britigan and Marianne Lee drew the Pipe Jam art. We thank
Drew Dean for his encouragement and feedback.

This material is based on research sponsored by Defense Ad-
vanced Research Project Agency (DARPA) under agreement number
FA8750-11-2-0221. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of Defense Advanced Research
Project Agency (DARPA) or the U.S. Government.
5http://www.cs.washington.edu/verigames

REFERENCES
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, P. Hawkins, and

B. Hackett. An overview of the Saturn project. In PASTE, pages
43–48, 2007.

[2] T. Ball, E. Bounimova, R. Kumar, and V. Levin. SLAM2: static
driver verification with under 4% false alarms. In FMCAD,
pages 35–42, 2010.

[3] T. Ball, V. Levin, and S. K. Rajamani. A decade of software
model checking with SLAM. CACM, 54:68–76, July 2011.

[4] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programs. In PLDI, pages
203–213, June 2001.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development; Coq’Art: The Calculus of Inductive
Constructions. Springer-Verlag, 2004.

[6] A. Birka and M. D. Ernst. A practical type system and
language for reference immutability. In OOPSLA, pages 35–49,
Oct. 2004.

[7] G. Bracha. Pluggable type systems. In RDL, Oct. 2004.
[8] Checker Framework website. http:

//types.cs.washington.edu/checker-framework/.
[9] S. Cooper. A Framework for Scientific Discovery through Video

Games. PhD thesis, University of Washington, Seattle, WA,
2011.

[10] S. Cooper, F. Khatib, I. Makedon, H. Lu, J. Barbero, J. Fogarty,
Z. Popović, and Foldit Players. Analysis of social gameplay
macros in the Foldit cookbook. In FDG, 2011.

[11] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen,
A. Leaver-Fay, D. Baker, Z. Popović, and Foldit Players.
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