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Table 1. Some of the inference problems that correspond to summing an SPF on a specific semiring, with details on the variables and leaf
functions and a core algorithm that is an instance of SUMSPF. B = {0, 1}. N and R denote the natural and real numbers. Subscript +
denotes the restriction to non-negative numbers and subscript (�)1 denotes the inclusion of (negative) 1. Um denotes the universe of
relations of arity up to m (see Section E of the supplement). N[X] denotes the polynomials with coefficients from N. See the supplement
for information on MPE-SAT (Sang et al., 2007) and Generic-Join (Ngo et al., 2014).

Domain Inference task Semiring Variables Leaf functions SUMSPF
Logical
inference

SAT (B,_,^, 0, 1) Boolean Literals DPLL
#SAT (N,+,⇥, 0, 1) Boolean Literals #DPLL
MAX-SAT (N�1,max,+,�1, 0) Boolean Literals MPE-SAT

Constraint
satisfaction

CSPs (B,_,^, 0, 1) Discrete Univariate constraints Backtracking
Fuzzy CSPs ([0, 1],max,min, 0, 1) Discrete Univariate constraints -
Weighted CSPs (R+,1,min,+,1, 0) Discrete Univariate constraints -

Probabilistic
inference

Marginal (R+,+,⇥, 0, 1) Discrete Potentials Recursive
conditioningMPE (R+,max,⇥, 0, 1) Discrete Potentials

Continuous
functions

Integration (R+,+,⇥, 0, 1) Continuous Univariate functions -
Optimization (R1,min,+,1, 0) Continuous Univariate functions RDIS

Relational
databases

Unions of CQs (U

m

,[, ./,?,1

R

) Sets of tuples Unary tuples Generic-Join
Provenance (N[X],+,⇥, 0, 1) Discrete K-relation tuples -

by decomposing the NNF or by expanding it to a CNF and
using a SAT solver. DPLL (Davis et al., 1962), the stan-
dard algorithm for solving SAT, is an instance of SUMSPF
(see also Huang & Darwiche (2007)). Specifically, DPLL
is a recursive algorithm that at each level chooses a variable
X 2 X for CNF F (X) and computes F = F |

X=0_F |
X=1

by recursing on each disjunct, where F |
X=x

is F with X

assigned value x. Thus, each level of recursion of DPLL
corresponds to a call to DECOMPOSE.
Learning in the Boolean semiring is a well-studied area,
which includes problems from learning Boolean cir-
cuits (Jukna, 2012) (of which decomposable SPFs are a
restricted subclass, known as syntactically multilinear cir-
cuits) to learning sets of rules (Rivest, 1987). However,
learned rule sets are typically encoded in large CNF knowl-
edge bases, making reasoning over them intractable. In
contrast, decomposable NNF is a tractable but expressive
formalism for knowledge representation that supports a
rich class of polynomial-time logical operations, including
SAT (Darwiche, 2001). Thus, LEARNSPF in this semiring
provides a method for learning large, complex knowledge
bases that are encoded in decomposable NNF and there-
fore support efficient querying, which could greatly benefit
existing rule learning systems.

5.2. Constraint satisfaction
A constraint satisfaction problem (CSP) consists of a
set of constraints {C
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CSP and F is an SPF on the Boolean semiring B, i.e., an
OR-AND network (OAN), a generalization of NNF, and
a decomposable CSP is one with a decomposable OAN.
Solving F corresponds to computing

W
X F (X), which is

summation on B (see also Bistarelli et al. (1997); Chang &
Mackworth (2005); Rollon et al. (2013)). The solution for
F can be recovered with a downward pass that recursively
selects the (or a) non-zero child of an OR node, and all chil-
dren of an AND node. Corollary 4 follows immediately.
Corollary 4. Every decomposable CSP can be solved in
time linear in its size.
Thus, for inference to be efficient it suffices that the CSP
be expressible by a tractably-sized decomposable OAN;
a much weaker condition than that of low treewidth.
Like DPLL, backtracking-based search algorithms (Kumar,
1992) for CSPs are also instances of SUMSPF (see also
Mateescu & Dechter (2005)). Further, SPFs on a number of
other semirings correspond to various extensions of CSPs,
including fuzzy, probabilistic, and weighted CSPs (see Ta-
ble 1 and Bistarelli et al. (1997)).

LEARNSPF for CSPs addresses a variant of structured
prediction (Taskar et al., 2005); specifically, learning a
function F : X ! B such that arg

W
y

F (x

(i)
,y) ⇡ y

(i)

for training data {(x(i)
,y

(i)
)}, where x

(i) is a structured
object representing a CSP and y

(i) is its solution. LEARN-
SPF solves this problem while guaranteeing that the
learned CSP remains tractable. This is a much simpler and
more attractive approach than existing constraint learning
methods such as Lallouet et al. (2010), which uses induc-
tive logic programming and has no tractability guarantees.

We are interested in computing summations ⨁x∈X S(x) 
where (R,⊕,⊗,0,1) is a commutative semiring, S : X→R 
is a function on that semiring, and X = {X1, …, Xn} is a 
set of variables.  

We refer to S as a sum-product function (SPF). 
• e.g., 

In general, the cost of computing ⨁X S(X) is O(exp(n)).
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Inference, in general

These problems all have the same general form: summing a 
function over a semiring. [Bistarelli et al. (1997); Aji & McEliece (2000); 
Wilson (2005); Green et al. (2007); Dechter & Mateescu (2007)] 

We identify and prove the sum-product theorem, which states 
a simple sufficient condition (decomposability) for tractable, 
high-treewidth, exact inference in any problem with this form. 

Based on it, we show how to define and learn tractable, high-
treewidth representations for any such problem.

Key inference problems in AI
Marginal probability 

MPE 

Satisfiability 

Constraint satisfaction 

Integration 

Nonconvex optimization 

Database querying
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Learning efficiently-optimizable nonconvex functions
SPFs can be extended to continuous (real) variables. 

Corollary. The global minimum of a decomposable SPF on the min-sum 
semiring (i.e., a MSF) can be found in time linear in its size. 

RDIS implicitly constructs a decomposable MSF. [Friesen & Domingos (2015)] 

Typically, optimizing nonconvex functions is hard, and learning them is 
even harder; however, LearnSPF provides a method for effectively learning 
nonconvex functions that can then be efficiently optimized.  

Experiment: learning and optimizing a decomposable MSF with 
LearnSPF versus learning and optimizing a nonconvex function. 
• Problem is a continuous variant of structured prediction. 
• LearnSPF used K-means to cluster and correlation to decompose. 

• Sampled dataset                     of test functions, FX(Y). 
‣ Parameters X dictate the decomposability of the variables Y. 
‣ Dataset: 300 train, 50 test, with labels                                         .
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Applications to specific semirings

Learning tractable knowledge bases
SPFs on the Boolean semiring correspond to negation normal form (NNF), and 
summation of an NNF F is 

Corollary (Darwiche, 2001). The satisfiability of a decomposable NNF is 
decidable in time linear in its size. 

Learned rule sets are typically encoded in large CNF knowledge bases (KBs), 
making reasoning over them highly intractable. In contrast, LearnSPF provides 
a method for directly learning large, complex KBs that are encoded in 
decomposable NNF and therefore support efficient querying.

W
x2X

F (x) = SAT(F )

⨂

⨁

⨁ ⨁

⨁ ⨁

⨂

⨂ ⨂ ⨂ ⨂

⨂ ⨂ ⨂ ⨂

𝜙11(X1) 𝜙12(X1)

𝜙21(X2) 𝜙22(X2)

𝜙31(X3) 𝜙32(X3)𝜙41(X4) 𝜙42(X4)

S(X) =

Size(S) = #edges

Definition. A (commutative) semiring (R,⊕,⊗,0,1) 
is a nonempty set R on which operations sum (⊕) 
and product (⊗) are associative and commutative 
and have identity elements 0,1 ∈ R, such that  
1) product (⊗) distributes over sum (⊕), and 
2) 0≠1, a⊕0=a, a⊗1=a, and a⊗0=0 for all a ∈ R. 

Definition. A sum-product function (SPF) S : X→R 
over (R, X, 𝛷) is any of 
1) a function:                𝜙j(Xi), 𝜙j ∈ 𝛷 
2) a product of SPFs:   S1(X1) ⊗ S2(X2), or 
3) a sum of SPFs:        S1(X1) ⊕ S2(X2), 

where R is a semiring, X = {X1, …, Xn} is a set of 
variables with finite domains, and 𝛷 = {𝜙j} is a 
set of constant and univariate functions. 

Definition. A product node is decomposable iff the 
scopes of its children are disjoint. An SPF is 
decomposable iff all of its product nodes are 
decomposable.

The sum-product theorem

⨂

S1(X,Y) S2(W,Z)
Decomposable

⨂

S1(X,Y) S2(X,Z)
Non-decomposable

Decomposability is a simple condition that 
defines a class of expressive functions for which 
inference is tractable. 

Theorem (sum-product theorem).  
Every decomposable SPF S can be summed in 
time linear in its size. 

Proof: push outer summation to leaves.  
• Sum nodes: ⨁X ⨁i Si(Xi) 
• Product nodes: ⨁X ⨂i Si(Xi) 

• Leaf nodes can be summed in constant time 
• Sum S by summing each leaf node and then 

evaluating the remaining nodes bobom-up.

= ⨁i (⨁Xi Si(Xi)⊗C) 

       = ⨂i ⨁Xi Si(Xi)

Where C is a constant and i ∈ Children(node)

cost = dn cost = d⋅n
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Fig. 3. Average values of various folding metrics as a function of temperature/simulation time for the native REMD simulation and the conventional
simulations. For each conventional simulation the averaging interval was the final 10 ns of the simulation time. The vertical line in each panel is located at
315 K, the melting temperature from experiment (Qiu et al., 2002). (a) Ca RMSD from the SD minimized first of 20 member NMR models (Neidigh et al.,
2002) (PDB code 1L2Y) with a horizontal line at 2.0 Å, the metric employed by Pitera and Swope (Pitera and Swope, 2003) to denote the folded to
unfolded transition. (b) Q, the fraction of native contacts. Two heavy atoms are considered to be in contact if they are within for 4.6 Å of each other (or
within 5.4 Å if one or both of the atoms is a carbon atom). (c) Side-chain SASA of the Trp 6 residue, calculated using the algorithm of Lee and Richards
(Lee and Richards, 1971) normalized by the mean side-chain SASA of the central Trp from a 100 ns simulation of GGWGG at 298 K. The GGWGG side-
chain SASA reflects a fully exposed Trp. (d) Fraction of long-range NOEs satisfied as a function of temperature.
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Fig. 4. Multiple overlaid snapshots of Trp-cage mini-protein from NMR, conventional MD and REMD simulations at temperatures corresponding to
folded, Tm, and unfolded conditions. (a) The first ten models from the NMR structures (Neidigh et al., 2002) (PDB code 1L2Y). (b) The final 10 ns at 1 ns
granularity from 278, 315, and 498 K simulations. (c) and (d) Ten structures at 1 ns granularity from 280, 316, and 500 K replicas of REMD simulations
starting from (c) a native structure and (d) a nonnative structure. The protein main-chain is shown colored from blue (N-terminus) to red (C-terminus).
Image rendered with UCSF Chimera (Pettersen et al., 2004).
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315 K, the melting temperature from experiment (Qiu et al., 2002). (a) Ca RMSD from the SD minimized first of 20 member NMR models (Neidigh et al.,

2002) (PDB code 1L2Y) with a horizontal line at 2.0 Å, the metric employed by Pitera and Swope (Pitera and Swope, 2003) to denote the folded to

unfolded transition. (b) Q, the fraction of native contacts. Two heavy atoms are considered to be in contact if they are within for 4.6 Å of each other (or

within 5.4 Å if one or both of the atoms is a carbon atom). (c) Side-chain SASA of the Trp 6 residue, calculated using the algorithm of Lee and Richards

(Lee and Richards, 1971) normalized by the mean side-chain SASA of the central Trp from a 100 ns simulation of GGWGG at 298 K. The GGWGG side-

chain SASA reflects a fully exposed Trp. (d) Fraction of long-range NOEs satisfied as a function of temperature.MD
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Fig. 3. Average values of various folding metrics as a function of temperature/simulation time for the native REMD simulation and the conventional
simulations. For each conventional simulation the averaging interval was the final 10 ns of the simulation time. The vertical line in each panel is located at
315 K, the melting temperature from experiment (Qiu et al., 2002). (a) Ca RMSD from the SD minimized first of 20 member NMR models (Neidigh et al.,
2002) (PDB code 1L2Y) with a horizontal line at 2.0 Å, the metric employed by Pitera and Swope (Pitera and Swope, 2003) to denote the folded to
unfolded transition. (b) Q, the fraction of native contacts. Two heavy atoms are considered to be in contact if they are within for 4.6 Å of each other (or
within 5.4 Å if one or both of the atoms is a carbon atom). (c) Side-chain SASA of the Trp 6 residue, calculated using the algorithm of Lee and Richards
(Lee and Richards, 1971) normalized by the mean side-chain SASA of the central Trp from a 100 ns simulation of GGWGG at 298 K. The GGWGG side-
chain SASA reflects a fully exposed Trp. (d) Fraction of long-range NOEs satisfied as a function of temperature.
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Fig. 4. Multiple overlaid snapshots of Trp-cage mini-protein from NMR, conventional MD and REMD simulations at temperatures corresponding to
folded, Tm, and unfolded conditions. (a) The first ten models from the NMR structures (Neidigh et al., 2002) (PDB code 1L2Y). (b) The final 10 ns at 1 ns
granularity from 278, 315, and 498 K simulations. (c) and (d) Ten structures at 1 ns granularity from 280, 316, and 500 K replicas of REMD simulations
starting from (c) a native structure and (d) a nonnative structure. The protein main-chain is shown colored from blue (N-terminus) to red (C-terminus).
Image rendered with UCSF Chimera (Pettersen et al., 2004).
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Fig. 3. Average values of various folding metrics as a function of temperature/simulation time for the native REMD simulation and the conventional
simulations. For each conventional simulation the averaging interval was the final 10 ns of the simulation time. The vertical line in each panel is located at
315 K, the melting temperature from experiment (Qiu et al., 2002). (a) Ca RMSD from the SD minimized first of 20 member NMR models (Neidigh et al.,
2002) (PDB code 1L2Y) with a horizontal line at 2.0 Å, the metric employed by Pitera and Swope (Pitera and Swope, 2003) to denote the folded to
unfolded transition. (b) Q, the fraction of native contacts. Two heavy atoms are considered to be in contact if they are within for 4.6 Å of each other (or
within 5.4 Å if one or both of the atoms is a carbon atom). (c) Side-chain SASA of the Trp 6 residue, calculated using the algorithm of Lee and Richards
(Lee and Richards, 1971) normalized by the mean side-chain SASA of the central Trp from a 100 ns simulation of GGWGG at 298 K. The GGWGG side-
chain SASA reflects a fully exposed Trp. (d) Fraction of long-range NOEs satisfied as a function of temperature.
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Fig. 4. Multiple overlaid snapshots of Trp-cage mini-protein from NMR, conventional MD and REMD simulations at temperatures corresponding to
folded, Tm, and unfolded conditions. (a) The first ten models from the NMR structures (Neidigh et al., 2002) (PDB code 1L2Y). (b) The final 10 ns at 1 ns
granularity from 278, 315, and 498 K simulations. (c) and (d) Ten structures at 1 ns granularity from 280, 316, and 500 K replicas of REMD simulations
starting from (c) a native structure and (d) a nonnative structure. The protein main-chain is shown colored from blue (N-terminus) to red (C-terminus).
Image rendered with UCSF Chimera (Pettersen et al., 2004).
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From the sum-product theorem, identifying and exploiting 
decomposability is the key to learning a tractable model.  

To decompose, an algorithm must find a partition of X into 
{X1, X2} such that ⨁X S(X) ≈ (⨁X1 S1(X1))⊗(⨁X2 S2(X2)). 

Based on this, LearnSPF is able to learn tractable, high-
treewidth models in any semiring.

Specific choices for decomposition, clustering and leaf-creation subroutines 
depend on the domain. Instances with analogous decomposability structure can 
be clustered by virtually any algorithm, including naive Bayes and k-means. 
Correlation and independence tests can be used to identify decomposability.

The SPT is the most recent step in a long line of work on tractable inference, which includes Darwiche (2001, 2003); Darwiche & 
Marquis (2002); Bacchus et al. (2002, 2009), Dechter & Mateescu (2007); Poon & Domingos (2011); and Gens & Domingos (2013).

Corollary. Every SPF with n variables and 
treewidth bounded by a constant can be 
summed in time O(n), but not every SPF 
that can be summed in time O(n) has 
bounded treewidth. 
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Learning tractable representations with LearnSPF


