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Key inference problems in Al Inference, Iin general

Marginal probability 14 We are interested in Computing summations Px S ( X) Definition. A (commutative) semiring (R,®,®,0,1)
is a nonempty set R on which operations sum (®)

MPE 1 where (R7@7®7071) Is a commutative semiring, 5: X—=R and product (®) are associative and commutative
Satisfiability is a function on that semiring, and X = {Xj, .., X} isa and have identity elements 0,1 € R, such that
set of variables. 1) product (®) distributes over sum (®), and
Constraint satisfaction \ G 2) 0#1, a®0=a, a®1=a, and a®0=0 for all a € R.
, We refer to S as a sum-product function (SPF).
Integration | . e.g, S(X) Definition. A sum-product function (SPF) S : X—R
. . . 'y <y — @ .
Nonconvex optimization | over (R, X, ¢)is any of
- &) &) 1) a function: di(Xi), pie @
Database querying = Qi b11(Xy) D @ B1(X1) 51 gi;fipgigggz) 2) a product of SPFs: S;(X;) ® Ss(X3), or
q i 3) a sum of SPFs: Si1(X1) ® S2(X5),
These problems all have the same general form: summing a )h o Xl( 1{)X ! 2)} o
. o - | ) | X | where R is a semiring, X = {Xj, .., X,}isaseto
function over a semiring. [Bistarelli et al. (1997); Aji & McEliece (2000); ‘ variables with finite domains, and @ = {¢;}is a
Wilson (2005); Green et al. (2007); Dechter & Mateescu (2007)] P21(Xo) ‘ P22(X2) S1(,Y) So(,7) set of constant and univariate functions.
: : _ : f | Non-decomposable
We identify and prove the sum-product theorem, which states @ﬁ» @,@ Definition. A product node is decomposable iff the
a simple sufficient condition (decomposability) for tractable, > scopes of its children are disjoint. An SPF is
high-treewidth, exact inference in any problem with this form. b31(Xs) Pa1(Xa) Pa2(Xa) Ps2(X3) Size(S) = #edges decomposable iff all of its product nodes are

decomposable.

Based on it, we show how to define and learn tractable, high-

treewidth representations for any such problem. In general, the cost of computing ®x 5(X) is O(exp(n)).

The sum-product theorem

Learning tractable representations with LearnSPF

Decomposable From the sum-product theorem, identitying and exploiting

Decomposability is a simple condition that SPFs decomposability is the key to learning a tractable model.

defines a class of expressive functions for which

To decompose, an algorithm must find a partition of X into

inference is tractable. Bounded-treewidth Tractable
models inference {X1, X2} such that ®x S(X) = (®x; S1(X1))®(Bx, S2(X2)).
Theorem (sum-product theorem). Corollary. Every SPF with n variablesand = Based on this, LearnSPF is able to learn tractable, high-
Every decomposable SPF S can be summed in treewidth bounded by a constant can be treewidth models in any semiring.
time linear in its size. summed in time O(n), but not every SPF LearnSPF
Broof b out oo that can be summed in time O(n) has
roof: push outer summation to leaves. .
P bounded treewidth.
* Sum nodes: ®x = 0 (Bx; ®C)
Proof idea:
* Product nodes: ®x ®; Si(X;) = X, Dx; Si(X;) Q Dataset @ Ves
* Leaf nodes can be summed in constant time S QE Create leaf o g
< Q " t/‘ ﬂj
e Sum S by summing each leaf node and then Bounded-treewidth $21(Xz) Ps1(Xs) P32(Xs) P22(X2) @ %
evaluating the remaining nodes bottom-up. graphical models Pecomposable SPFs Recurse
Where Cis a constant and i € Children(node) Specific choices for decomposition, clustering and leaf-creation subroutmes

depend on the domain. Instances with analogous decomposability structure can

The SPT is the most recent step in a long line of work on tractable inference, which includes Darwiche (2001, 2003); Darwiche & be clustered by virtually any algorithm, including naive Bayes and k-means.
Marquis (2002); Bacchus et al. (2002, 2009), Dechter & Mateescu (2007); Poon & Domingos (2011); and Gens & Domingos (2013). Correlation and independence tests can be used to identify decomposability.

Applications to specific semirings Learning efficiently-optimizable nonconvex functions
Domain Inference task  Semiring Variables Leaf functions SPFs can be extended to continuous (real) variables.

Logical SAT (B, V, A,0,1) Boolean Literals Corollary. The global minimum of a decomposable SPF on the min-sum
inference  #SAT (N, +,%,0,1) Boolean Literals semiring (i.e., a MSF) can be found in time linear in its size.

MAX-SAT (N_oo,max +,—00,0) Boolean Literals RDIS imolicit] 1 Lle MSE
Constraint CSPs (B, V,A,0,1) Discrete Univariate constraints implicitly constructs a decomposable - [Friesen & Domingos (2015)]
satisfaction ~ Fuzzy CSPs (10, 1] max, min, 0, 1) Discrete Univariate constraints Typically, optimizing nonconvex functions is hard, and learning them is
Weighted CSPs (R+ oo, N, +, 00, 0) Discrete Univariate constraints even harder; however, LearnSPF provides a method for effectively learning

Probabilistic - Marginal (R, +,%,0,1) Discrete Potentials nonconvex functions that can then be efficiently optimized.

inference MPE (R4, max, x,0,1) Discrete Potentials

Continuous  Integration (Ry,+,x,0,1) Continuous Univariate functions Experiment: learning and optimizing a decomposable MSF with
functions Optimization (Roo, min, +, 00, 0) Continuous Univariate functions LearnSPF versus learning and optimizing a nonconvex function.
Relational Unions of CQs  (Uy,, U, >4, &, 1) Sets of tuples  Unary tuples * Problem is a continuous variant of structured prediction.

databases Provenance (N X], 4, x,0,1) Discrete K -relation tuples ,

* LearnSPF used K-means to cluster and correlation to decompose.
Learning tractable knowledge bases | ) = . . . —
o . L ——Learned MSF with multistart L-BFGS =
SPFs on the Boolean semiring correspond to negation normal form (NNF), and = 400 F| -~ Multistart L-BFGS I“Iﬁz---l /
summation of an NNF Fis \/ .y F'(x) = SAT(F) E I“_‘ﬂz"’"z
£ 200 P _
Corollary (Darwiche, 2001). The satisfiability of a decomposable NNF is = z_z..z'-z;-(k_r‘ka—rz
o0 -
decidable in time linear in its size. Z 0= ~ '
- : 0 50 100 150 200

Learned rule sets are typically encoded in large CNF knowledge bases (KBs), Contour plot of Fx(Y1,Y5) - Number of variables
making reasoning over them highly intractable. In contrast, LearnSPF provides * Sampled dataset {(="",4"")} of test functions, Fx(Y).
a method for directly learning large, complex KBs that are encoded in » Parameters X dictate the decomposability of the variables Y.
decomposable NNF and therefore support efficient querying. » Dataset: 300 train, 50 test, with labels y'") = argmin ¢y Fyi (y).
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