
Recursive Decomposition for Nonconvex Optimization !
Abram L. Friesen and Pedro Domingos	 {afriesen, pedrod}@cs.washington.edu	

X2	

X1	
X3	

X5	

X4	

X7	

X10	

X8	

X6	

X9	

X12	

X0	

X13	

X16	

X15	
X17	 X11	 X14	

X2	

X1	
X3	

X5	

X4	

X7	

X10	

X8	

X6	

X9	

X12	

X0	

X13	

X16	

X15	
X17	 X11	 X14	

X2	

X1	
X3	

X5	

X4	

X7	

X10	

X6	

X12	

X0	

X13	

X16	

X15	
X17	 X11	 X14	

X2	

X1	
X3	

X5	

X4	

X7	

X10	

X6	

X12	

X0	

X13	

X16	

X15	
X17	 X11	 X14	

Choose variables xc ⊆ x1

Choose and set values xc=vc2

Simplify f(xc=vc, xu)3

Decompose f(xc=vc, xu)4

Recurse!5

RDIS: Approximate global minimization of a nonconvex function !
by dynamic and (R)ecursive (D)ecomposition into locally (I)ndependent (S)ubspaces !

•  Choose variables xc (giving xu = x \ xc)
that induce local decomposition.!
•  Any heuristic is possible (e.g., VSIDS).!
•  We use hypergraph partitioning

because it ensures decomposition.!

•  Use S to choose vc ← S(f(xc, x =vu)).

•  S could be any nonconvex optimizer,
including grid search, EM, or L-BFGS. We
use conjugate gradient descent and
Levenberg-Marquardt with restarts.!
•  Remove nodes corresponding to !
 assigned variables from graph.!

Loop to until done!6 2

•  Recursively call RDIS on each
connected component. !
•  Globally optimizes f(xc=vc, xu)

•  Set terms (or factors) with narrow
bounds to constants (locally).!
•  Remove edges corresponding to

assigned terms (or factors) from graph.!

Input: Objective function f(x), initial state x0, approximation error 𝜖, subspace optimizer S.!
Output: fmin such that |fmin – f*| ≤ 𝜖, where f* is the global minimum of f(x).!

•  Divide dependency graph into its
connected components.!
•  Connected components can be

optimized independently.!

•  Either restart or terminate upon
convergence. !

1
2

3
4

5 5

Nonconvex Optimization !
Global optimization of nonconvex functions is generally intractable because of
the combinatorial number of modes in the objective function. Recursive
decomposition algorithms can explore a combinatorially large space in sub-
exponential time but only exist in discrete domains (e.g., SAT, model counting,
probabilistic inference).!
!
We introduce RDIS, a local, recursive decomposition algorithm for continuous
optimization. Existing continuous methods are non-recursive, and require that
the decomposition be pre-specified, global, and static. However, many
problems exhibit local structure (i.e., dependencies change as a function of the
state space). !
!
Recursive decomposition allows RDIS to exploit local structure. We show it is
able to find the global minimum in exponentially less time than standard
algorithms for nonconvex optimization for a class of functions that exhibit local
structure.!
!
Other benefits of RDIS include: !
•  RDIS optimizes small, independent blocks of variables, resulting in updates

that are faster, more consistent, and move further. !
•  RDIS simplifies the objective function, resulting in both reduced computation

and smoothing. !
•  Locality guarantees more decomposition than alternatives. !
•  Nested restart behavior plus local decomposition leads to exponential

reductions in complexity while retaining global convergence guarantees.!

Local Structure!
Goal is to minimize f(x) for . Fully decomposable functions, f(x) = ∑i fi(xi),
are easy to optimize because min f(x) = ∑i min fi(xi), but rare. !
!
Conversely, non-decomposed functions require exponentially more exploration
than the decomposed function. For example, consider f(x) = ∑i fi(xi) and let Mi
be the modes of fi. Then the number of modes to explore is |M| = Σi |Mi|.
However, if f is instead optimized directly, then Πi |Mi| modes must be explored,
which is exponential in n.!
!

To maximize decomposition, we define the following types of structure.!
!
Definition 1. f(x) is globally decomposable if there exists a partition x = {x1, x2, x3}
such that, for every value a ∊ dom(x1), f(a, x2, x3) = f1(a, x2) + f2(a, x3).!!
Definition 2. f(x) is locally decomposable in the subspace x1 = a if there exists a
partition x = {x1, x2, x3} such that f(a, x2, x3) = f1(a, x2) + f2(a, x3).!!
Definition 3. f(x) is approximately locally decomposable in a neighbourhood of
the subspace x1 = a if there exists a partition x = {x1, x2, x3} and 𝛿, 𝜖 ≥ 0 such that
if ||b – a|| ≤ 𝛿 then | f(b, x2, x3) – [f1(b, x2) + f2(b, x3)] | ≤ 𝜖.!

Theoretical Results !
At each recursion level, let d be the number of variables chosen, k > 1 be the
number of independent sub-functions the function decomposes into, and 𝜉(d) be
the number of iterations required for the subspace optimizer to find the global
minimum of a space of dimension d. !
Proposition 1. The time complexity of RDIS is .!
!
Grid search, with S steps per variable, has complexity . !
Proposition 2. RDISGS has complexity , which is
exponentially faster than grid search.!
!
If DR is a descent method with restarts, ln is the volume of the global basin of
attraction, and Ln is the volume of the space, then the probability of randomly
restarting in the global basin is (l/L)n = pn and the expected number of restarts for
DR to find the global basin is p-n. If the number of iterations to reach the stationary
point of the current basin is 𝜏, then the expected complexity of DR is !, then the expected complexity of DR is !
 . !
Proposition 3. RDISDR has expected complexity !
 , which is exponentially faster than DR.!
!!
RDISDR behaves like an inexact Gauss-Seidel method, so we can state the
following, where v = ln and V = Ln.!
Proposition 4. If the subspace optimizer satisfies standard
progress conditions and 𝜖 = 0, then RDISDR returns the global
minimum after t restarts with probability .!

Experimental Results !
Structure from Motion !
Bundle adjustment requires minimizing the squared error between a set of
2-D image points and a projection of fitted 3-D points from a scene’s
geometry onto fitted camera models.!
!
!
!
!
!
!
!
!
!
!
!
High-dimensional Sinusoid!
A high-dimensional sinusoid in a quadratic basin. Functions with higher
arities have more dependencies and are more challenging to optimize.!
!
!
!
!
!
!
!
!
!
!

Number of cameras

5 10 15 20 25 30 35 40 45

M
in

im
u
m

 v
a
lu

e
 f
o
u
n
d

10
0

10
10

10
20

LM

BCD-LM

RDIS-RND

RDIS

Time (seconds)
0 500 1000 1500 2000 2500 3000 3500

(R
e

la
ti
v
e

)
M

in
im

u
m

 v
a

lu
e

 f
o

u
n

d

×105

0

0.5

1

1.5

2

2.5

3

3.5
CGD
BCD-CGD
RDIS-NRR
RDIS
arity 4
arity 8
arity 12

 !
Protein Folding – Continuous Sidechain Placement !
Task is to predict the placement of the protein side-chains when the
backbone atoms are fixed. This is equivalent to finding the MAP
assignment of a continuous pairwise Markov random field, where the
conformations are Boltzmann distributed.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Protein ID, ordered by increasing number of terms
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

M
in

im
u

m
 v

a
lu

e
 f

o
u

n
d

-1500

-1000

-500

0

500

1000

1500
CGD
BCD-CGD
RDIS(ϵ=1)
RDIS(ϵ=2)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−500

0

500

1000

1500

2000

2500

Epsilon

E
n

e
rg

y

10
−2

10
0

10
2

0

2

4

6

8

10

12
x 10

4

T
im

e
 (

se
co

n
d

s)

Min. energy found

Total time (s)

x 2 R

O
⇣n
d
⇠(d)logk(n/d)

⌘

O
⇣n
d
Sd logk(n/d)

⌘O (Sn) = O
⇣
Sd(n/d)

⌘

O
�
⌧p�n

�
= O

⇣
⌧p�d(n/d)

⌘

O
⇣n
d
(⌧p�d)logk(n/d)

⌘

1� (1� (v/V))t

