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Choose variables xc ⊆ x1

Choose and set values xc=vc2

Simplify f(xc=vc, xu )3

Decompose f(xc=vc, xu )4

Recurse!5

RDIS: Approximate global minimization of a nonconvex function !
by dynamic and (R)ecursive (D)ecomposition into locally (I)ndependent (S)ubspaces !

•  Choose variables xc (giving xu = x \ xc) 
that induce local decomposition.!
•  Any heuristic is possible (e.g., VSIDS).!
•  We use hypergraph partitioning 

because it ensures decomposition.!

•  Use S to choose vc ← S( f(xc, x =vu ) ).

•  S could be any nonconvex optimizer, 
including grid search, EM, or L-BFGS. We 
use conjugate gradient descent and 
Levenberg-Marquardt with restarts.!
•  Remove nodes corresponding to !
   assigned variables from graph.!

Loop to       until done!6 2

•  Recursively call RDIS on each 
connected component. !
•  Globally optimizes f(xc=vc, xu)

•  Set terms (or factors) with narrow 
bounds to constants (locally).!
•  Remove edges corresponding to 

assigned terms (or factors) from graph.!

Input: Objective function f(x), initial state x0, approximation error 𝜖, subspace optimizer S.!
Output: fmin such that |fmin – f*| ≤ 𝜖, where f* is the global minimum of f(x).!

•  Divide dependency graph into its 
connected components.!
•  Connected components can be 

optimized independently.!

•  Either restart or terminate upon 
convergence. !
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Nonconvex Optimization !
Global optimization of nonconvex functions is generally intractable because of 
the combinatorial number of modes in the objective function. Recursive 
decomposition algorithms can explore a combinatorially large space in sub-
exponential time but only exist in discrete domains (e.g., SAT, model counting, 
probabilistic inference).!
!
We introduce RDIS, a local, recursive decomposition algorithm for continuous 
optimization. Existing continuous methods are non-recursive, and require that 
the decomposition be pre-specified, global, and static. However, many 
problems exhibit local structure (i.e., dependencies change as a function of the 
state space). !
!
Recursive decomposition allows RDIS to exploit local structure. We show it is 
able to find the global minimum in exponentially less time than standard 
algorithms for nonconvex optimization for a class of functions that exhibit local 
structure.!
!
Other benefits of RDIS include: !
•  RDIS optimizes small, independent blocks of variables, resulting in updates 

that are faster, more consistent, and move further. !
•  RDIS simplifies the objective function, resulting in both reduced computation 

and smoothing. !
•  Locality guarantees more decomposition than alternatives. !
•  Nested restart behavior plus local decomposition leads to exponential 

reductions in complexity while retaining global convergence guarantees.!

Local Structure!
Goal is to minimize f(x) for            . Fully decomposable functions, f(x) = ∑i fi(xi), 
are easy to optimize because min f(x) = ∑i min fi(xi), but rare. !
!
Conversely, non-decomposed functions require exponentially more exploration 
than the decomposed function. For example, consider f(x) = ∑i fi(xi) and let Mi 
be the modes of fi. Then the number of modes to explore is |M| = Σi |Mi|. 
However, if f is instead optimized directly, then Πi |Mi| modes must be explored, 
which is exponential in n.!
!

To maximize decomposition, we define the following types of structure.!
!
Definition 1. f(x) is globally decomposable if there exists a partition x = {x1, x2, x3} 
such that, for every value a ∊ dom(x1),  f(a, x2, x3) = f1(a, x2) + f2(a, x3).!!
Definition 2. f(x) is locally decomposable in the subspace x1 = a if there exists a 
partition x = {x1, x2, x3} such that f(a, x2, x3) = f1(a, x2) + f2(a, x3).!!
Definition 3. f(x) is approximately locally decomposable in a neighbourhood of 
the subspace x1 = a if there exists a partition x = {x1, x2, x3} and 𝛿, 𝜖 ≥ 0 such that 
if ||b – a|| ≤ 𝛿 then | f(b, x2, x3) – [ f1(b, x2) + f2(b, x3) ] | ≤ 𝜖.!

Theoretical Results !
At each recursion level, let d  be the number of variables chosen, k > 1 be the 
number of independent sub-functions the function decomposes into, and 𝜉(d) be 
the number of iterations required for the subspace optimizer to find the global 
minimum of a space of dimension d. !
Proposition 1. The time complexity of RDIS is                                 .!
!
Grid search, with S steps per variable, has complexity                                       . !
Proposition 2. RDISGS has complexity                               , which is 
exponentially faster than grid search.!
!
If DR is a descent method with restarts, ln is the volume of the global basin of 
attraction, and Ln is the volume of the space, then the probability of randomly 
restarting in the global basin is (l/L)n = pn and the expected number of restarts for 
DR to find the global basin is p-n. If the number of iterations to reach the stationary 
point of the current basin is 𝜏, then the expected complexity of DR is !, then the expected complexity of DR is !
                                              . !
Proposition 3. RDISDR has expected complexity !
                                     , which is exponentially faster than DR.!
!!
RDISDR behaves like an inexact Gauss-Seidel method, so we can state the 
following, where v = ln and V = Ln.!
Proposition 4. If the subspace optimizer satisfies standard 
progress conditions and 𝜖 = 0, then RDISDR returns the global 
minimum after t restarts with probability                             .!

Experimental Results !
Structure from Motion !
Bundle adjustment requires minimizing the squared error between a set of 
2-D image points and a projection of fitted 3-D points from a scene’s 
geometry onto fitted camera models.!
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High-dimensional Sinusoid!
A high-dimensional sinusoid in a quadratic basin. Functions with higher 
arities have more dependencies and are more challenging to optimize.!
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 !
Protein Folding – Continuous Sidechain Placement !
Task is to predict the placement of the protein side-chains when the 
backbone atoms are fixed. This is equivalent to finding the MAP 
assignment of a continuous pairwise Markov random field, where the 
conformations are Boltzmann distributed.!
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Protein ID, ordered by increasing number of terms
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