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Program analysis to the rescue! 



StatusQuo 

•  Express application logic in ways that 
programmers are comfortable with 
 

•  Job of compiler & runtime to determine 
the most efficient implementation 
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Two Key Technologies 

 
•  Infer queries from imperative code  

•  Migrate computation between servers 
for optimal performance 
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Relational Operations in 
Imperative Code 
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List getUsersWithRoles () { 
  List users = getUsersFromDB();  
  List roles = getRolesFromDB(); 

  List results = new ArrayList(); 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results.add(u); }} 

  return results; } 

 

SELECT * FROM user 

SELECT * FROM role 

List getUsersWithRoles () {  

  return executeQuery( 

   “SELECT   u FROM users u, roles r

 WHERE    u.roleId == r.id  

 ORDER BY u.roleId, r.id”; } 

 

convert to 
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convert to 

 
Goal  

Find a variable that  
we can rewrite into a  

SQL expression 
 

post-condition variable results 



Query By Synthesis (QBS) 

•  Identify potential code fragments 
–  i.e., regions of code that fetches persistent 

data and return values 

•  Find SQL expressions for post-condition 
variables 
 

•  Try to prove that those expressions 
preserve program semantics 
–  if so, convert the code! 
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Initial Code Fragments 
Identification 

 
•  Find program points that retrieve 

persistent data 

•  Run an inter-procedural analysis that: 
– determine where persistent data are used 
– delimit code fragment to analyze 
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Search for Post-Condition 
Expressions 
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List getUsersWithRoles () { 
  List users = query(select * from users);  
  List roles = query(select * from roles); 

  List results = []; 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results = results : [] }} 

  return results; } 

 Relations involved: 
users, roles 
 
Possible expressions to consider for results: 
     σf(users)        topf(users)      πf(users ⨝g roles) 
πf(σg(users) ⨝h roles)  other expressions involving users, roles 

Infinite search space size!  

users 
roles 

results 



Constraints for Post-Condition 
Expressions 

1/8/2013 CIDR '13 12 

List getUsersWithRoles () { 
  List users = query(select * from users);  
  List roles = query(select * from roles); 

  List results = []; 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results = results : [] }} 

  return results; } 

 

users 
roles 

results 

Hoare-style program verification 

If   

post-condition expression 

outer loop invariant 

outer loop invariant outer loop terminates 

then post-condition expression 

is  true and 

is  true 

Still need a smarter  
way to search 

results = πuser( users ⨝roleId = id roles ) 
 

results = πuser( users[0 .. i] ⨝roleId = id roles )  



Search for Post-Condition 
Expressions and Invariants 

•  Use program synthesis as search engine  
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Program synthesizer 

Symbolic desc. of 
search space 

Solution 
constraints 

Expression that 
satisfies all the 
constraints 

Symbolic manipulation  

Counter-example driven search 



Experiments 
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Real-world Evaluation 
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Wilos  (project management application) – 62k LOC 

Operation type # Fragments 
found 

# Fragments 
converted 

Projection 1 1 

Selection 13 10 

Join 7 7 

Aggregation 11 10 

Total 33 28 
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Performance Evaluation: 
Join Query 
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Nested-loop join     Hash join! 
        O(n2)                         O(n) 
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Running Example 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +             
          (credit – totalAmount) + " where id = "  + cid);  
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Actual Execution 
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Speeding up Execution 
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Introducing Pyxis 

•  “Store-procedurizes” DB apps and 
pushes computation to the DB 

•  Adaptively controls the amount of 
computation pushed to DB for optimal 
performance 
 

•  No programmer intervention required 
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Using Pyxis 
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How Pyxis Works 
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Generating Program Partitions 

•  Deploy and profile application as-is 
•  Construct a dependence graph of 

program statements 
– captures both control and data flow 

•  Formulate linear program from profile 
data and dependence graph 
– solution gives a partitioning of the source 

code 
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Executing Partitioned Programs 

•  Pyxis compiler translates partitioned 
code into standard Java code 

•  Pyxis runtime executes compiled Java 
code 
– runtime is just another Java program 

running on a standard JVM 
–  includes monitoring component to 

determine partition switching 
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Experiments 
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Experiment Setup 

•  TPC-C Java implementation 
– 20 terminals issuing new order transactions  
– DB server has 16 cores total 

 
– Compared against two implementations: 

•  JDBC: everything on app server except for JDBC stmts 
•  Manual: custom “store procedurized” 

implementation where everything is on the DB server 
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Pyxis generated implementation: 
3x latency reduction 
1.7x thruput increase 



StatusQuo 

Ease DB application development 
 

Convert imperative program statements 
into declarative SQL 

 
Fully automatic code partitioning using 

application and server characteristics 
 

db.csail.mit.edu/statusquo 
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