
StatusQuo: Making Familiar Abstractions 
Perform Using Program Analysis 

Alvin Cheung 
Samuel Madden 

Armando Solar-Lezama 
MIT 

 

Owen Arden 
Andrew C. Myers 

 
Cornell 

 



Developing Database Applications 

1/8/2013 CIDR '13 2 

Application Server SQL Database 

Java Application  
Logic 

SQL Query 



Developing Database Applications 

1/8/2013 CIDR '13 3 

SQL Database 

Java Application  
Logic 

PL/SQL Stored 
Procedures 

SQL Query 

Application Server 



Developing Database Applications 

1/8/2013 CIDR '13 4 

SQL Database 

Java Application  
Logic 

PL/SQL Stored 
Procedures 

SQL Query 

Application Server 

Language Choice for Application Logic 

Application Distribution 

Program analysis to the rescue! 



StatusQuo 

•  Express application logic in ways that 
programmers are comfortable with 
 

•  Job of compiler & runtime to determine 
the most efficient implementation 

1/8/2013 CIDR '13 5 



Two Key Technologies 

 
•  Infer queries from imperative code  

•  Migrate computation between servers 
for optimal performance 

1/8/2013 CIDR '13 6 



Relational Operations in 
Imperative Code 

1/8/2013 CIDR '13 7 

List getUsersWithRoles () { 
  List users = getUsersFromDB();  
  List roles = getRolesFromDB(); 

  List results = new ArrayList(); 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results.add(u); }} 

  return results; } 

 

SELECT * FROM user 

SELECT * FROM role 

List getUsersWithRoles () {  

  return executeQuery( 

   “SELECT   u FROM users u, roles r

 WHERE    u.roleId == r.id  

 ORDER BY u.roleId, r.id”; } 

 

convert to 



Relational Operations in 
Imperative Code 

1/8/2013 CIDR '13 8 

List getUsersWithRoles () { 
  List users = getUsersFromDB();  
  List roles = getRolesFromDB(); 

  List results = new ArrayList(); 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results.add(u); }} 

  return results; } 

 
List getUsersWithRoles () {  

  return executeQuery( 

   “SELECT   u FROM users u, roles r

 WHERE    u.roleId == r.id  

 ORDER BY u.roleId, r.id”; } 

 

convert to 

 
Goal  

Find a variable that  
we can rewrite into a  

SQL expression 
 

post-condition variable results 



Query By Synthesis (QBS) 

•  Identify potential code fragments 
–  i.e., regions of code that fetches persistent 

data and return values 

•  Find SQL expressions for post-condition 
variables 
 

•  Try to prove that those expressions 
preserve program semantics 
–  if so, convert the code! 

1/8/2013 CIDR '13 9 



Initial Code Fragments 
Identification 

 
•  Find program points that retrieve 

persistent data 

•  Run an inter-procedural analysis that: 
– determine where persistent data are used 
– delimit code fragment to analyze 

1/8/2013 CIDR '13 10 



Search for Post-Condition 
Expressions 

1/8/2013 CIDR '13 11 

List getUsersWithRoles () { 
  List users = query(select * from users);  
  List roles = query(select * from roles); 

  List results = []; 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results = results : [] }} 

  return results; } 

 Relations involved: 
users, roles 
 
Possible expressions to consider for results: 
     σf(users)        topf(users)      πf(users ⨝g roles) 
πf(σg(users) ⨝h roles)  other expressions involving users, roles 

Infinite search space size!  

users 
roles 

results 



Constraints for Post-Condition 
Expressions 

1/8/2013 CIDR '13 12 

List getUsersWithRoles () { 
  List users = query(select * from users);  
  List roles = query(select * from roles); 

  List results = []; 

  for (User u : users) { 

 for (Role r : roles) { 

     if (u.roleId == r.id) 

         results = results : [] }} 

  return results; } 

 

users 
roles 

results 

Hoare-style program verification 

If   

post-condition expression 

outer loop invariant 

outer loop invariant outer loop terminates 

then post-condition expression 

is  true and 

is  true 

Still need a smarter  
way to search 

results = πuser( users ⨝roleId = id roles ) 
 

results = πuser( users[0 .. i] ⨝roleId = id roles )  



Search for Post-Condition 
Expressions and Invariants 

•  Use program synthesis as search engine  

1/8/2013 CIDR '13 13 

Program synthesizer 

Symbolic desc. of 
search space 

Solution 
constraints 

Expression that 
satisfies all the 
constraints 

Symbolic manipulation  

Counter-example driven search 



Experiments 

1/8/2013 CIDR '13 14 



Real-world Evaluation 

1/8/2013 CIDR '13 15 

Wilos  (project management application) – 62k LOC 

Operation type # Fragments 
found 

# Fragments 
converted 

Projection 1 1 

Selection 13 10 

Join 7 7 

Aggregation 11 10 

Total 33 28 



100 

1K 

10K 

100K 

1000K 

0 20K 40K 60K 80K 100K 

Ex
ec

u
ti

o
n

 ti
m

e 
(m

s)
 

Number of roles / users in DB 

original (lazy) 

inferred (lazy) 

Performance Evaluation: 
Join Query 

1/8/2013 CIDR '13 16 

Nested-loop join     Hash join! 
        O(n2)                         O(n) 



Developing Database Applications 

1/8/2013 CIDR '13 17 

SQL Database 

Java Application  
Logic 

PL/SQL Stored 
Procedures 

SQL Query 

Application Server 

Application Distribution 



Running Example 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +             
          (credit – totalAmount) + " where id = "  + cid);  

1/8/2013 18 CIDR '13 



Actual Execution 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +         
              (credit – totalAmount) + " where id = "  + cid);  

1/8/2013 19 CIDR '13 

DB 

APP 

APP 

DB 

DB 



Actual Execution 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +        
              (credit – totalAmount) + " where id = "  + cid);  

1/8/2013 20 CIDR '13 

network communication 

network communication 

network communication 

network communication 

DB 

APP 

APP 

DB 

DB 



Speeding up Execution 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +        
              (credit – totalAmount) + " where id = "  + cid);  

1/8/2013 21 CIDR '13 

DB 

APP 

DB 



Speeding up Execution 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +             
              (credit – totalAmount) + " where id = "  + cid);  

1/8/2013 22 CIDR '13 

data dependency DB 

APP 

DB 

control dependency 



Speeding up Execution 

discount = executeQuery("select discount from customers 
       where id = " + cid); 

 

totalAmount = orderTotal * (1 – discount); 

 

credit = executeQuery("select credit from customers  
       where id = " + cid); 
 

if (credit < totalAmount) 

 printToConsole("Only " + credit + " in account!"); 

else 

 executeUpdate("update customer set credit = " +      
              (credit – totalAmount) + " where id = "  + cid);  

1/8/2013 23 CIDR '13 

DB Server 

DB 

APP 

DB 

control dependency 

data dependency 



Introducing Pyxis 

•  “Store-procedurizes” DB apps and 
pushes computation to the DB 

•  Adaptively controls the amount of 
computation pushed to DB for optimal 
performance 
 

•  No programmer intervention required 

1/8/2013 24 CIDR '13 



Using Pyxis 

1/8/2013 CIDR '13 25 



How Pyxis Works 

1/8/2013 CIDR '13 26 

Instrument 

Partition 

Monitor 

App Server DB Server 

Deploy 

Java 
SQL 
Java 
SQL 
Java 

Java 

Java 

SQL 
Java 
SQL 

SQL 
Java 

Java 
SQL 
Java 
SQL 
Java 
SQL 
Java 

SQL 

Java 

control transfer 



How Pyxis Works 

1/8/2013 CIDR '13 27 

Monitor 

App Server DB Server 

Deploy 
Java 

Java 

SQL 
Java 

SQL 

SQL 

Java 

control  transfer 

Instrument 

Partition 

Java 
SQL 
Java 
SQL 
Java 
SQL 
Java 

Java 
SQL 
Java 
SQL 
Java 
SQL 
Java 



Generating Program Partitions 

•  Deploy and profile application as-is 
•  Construct a dependence graph of 

program statements 
– captures both control and data flow 

•  Formulate linear program from profile 
data and dependence graph 
– solution gives a partitioning of the source 

code 

1/8/2013 CIDR '13 28 



Executing Partitioned Programs 

•  Pyxis compiler translates partitioned 
code into standard Java code 

•  Pyxis runtime executes compiled Java 
code 
– runtime is just another Java program 

running on a standard JVM 
–  includes monitoring component to 

determine partition switching 

1/8/2013 CIDR '13 29 



Experiments 

1/8/2013 CIDR '13 30 



Experiment Setup 

•  TPC-C Java implementation 
– 20 terminals issuing new order transactions  
– DB server has 16 cores total 

 
– Compared against two implementations: 

•  JDBC: everything on app server except for JDBC stmts 
•  Manual: custom “store procedurized” 

implementation where everything is on the DB server 

1/8/2013 31 CIDR '13 



5 

10 

15 

20 

25 

100 300 500 700 900 1100 1300 

A
ve

ra
ge

 L
at

en
cy

 (m
s)

 

Average Thruput (xact / s) 

JDBC 

Manual 

Pyxis 

All Cores Available 

1/8/2013 32 CIDR '13 

Pyxis generated implementation: 
3x latency reduction 
1.7x thruput increase 



StatusQuo 

Ease DB application development 
 

Convert imperative program statements 
into declarative SQL 

 
Fully automatic code partitioning using 

application and server characteristics 
 

db.csail.mit.edu/statusquo 

1/8/2013 CIDR '13 33 


