
Using Program Synthesis for Social Recommendations

Alvin Cheung Armando Solar-Lezama Samuel Madden
MIT CSAIL

{akcheung, asolar, madden}@csail.mit.edu

ABSTRACT
This paper presents a new approach to select events of interest to
users in a social media setting where events are generated from mo-
bile devices. We argue that the problem is best solved by inductive
learning, where the goal is to first generalize from the users’ ex-
pressed “likes” and “dislikes” of specific events, then to produce a
program that can be used to collect only data of interest.

The key contribution of this paper is a new algorithm that com-
bines machine learning techniques with program synthesis technol-
ogy to learn users’ preferences. We show that when compared with
the more standard approaches, our new algorithm provides up to
order-of-magnitude reductions in model training time, and signifi-
cantly higher prediction accuracies for our target application. 1

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; I.2.2 [Automatic Program-
ming]: Program synthesis
Keywords
recommender systems, social networking applications, program synthesis

1. INTRODUCTION
At a high level, the problem of selecting interesting events in a

social media setting appears similar to recommendation problems
in other environments, such as offering movie recommendations
on Netflix. In each of these, a user’s previously expressed prefer-
ences are used to infer new items of interest; every time the user
interacts with the site, the system builds a more accurate picture
of what she likes and dislikes and uses it to improve recommenda-
tions. Social media, however, poses some unique challenges which
demand a different approach from standard collaborative filtering,
where other users’ preferences are used to infer what the user will
like [10].

To illustrate some of the new challenges that recommendation
systems face in this domain, we focus on an application called Life-
Join [5]. We designed this application to model the future of social
networking, where a person’s profile is continuously updated by an
automatically generated event stream from the user’s mobile de-
vices, including her location and activities. The system attempts to
discover interesting co-occurrences in friends’ event streams, such
as a meeting of two of the user’s friends in a nearby pub. In order
to deal with the data deluge, the system gives the user the ability

1The full paper is published as tech report MIT-CSAIL-TR-2012-025.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29 – November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10...$15.00.

to “like” and “dislike” both individual and combinations of events.
LifeJoin uses the expressed likes and dislikes to infer what kinds of
events are of interest to the user, which can then be used to auto-
populate the user’s newsfeed. Collecting events through a mobile
device can consume a lot of energy [6], so LifeJoin uses the in-
ferred user’s interest to drive subsequent event acquisition. For in-
stance, if LifeJoin infers that Mary’s friends are only interested in
the places she goes for a jog, then the system will save power on
Mary’s device by turning off data collection when she is not jog-
ging. Our initial experiments have shown that implementing the
data collection scheme in the scenario above can extend the phone
battery life by up to 40% [5]. Thus, the more accurately we can
detect the users’ real interests, the more energy we can save on data
collection.

Inferring interests in LifeJoin poses 4 challenges:
1. Decomposable Models: For applications such as LifeJoin,

models must be decomposable into simple classifiers that can be
pushed down to the individual devices to drive event acquisition.
One simple way to ensure a model is decomposable is to limit it to
only contain boolean combinations of simple predicates over the in-
put features, which can be decomposed in a straightforward way to
indicate the required data from phones. Such models are also use-
ful because they allow users to give explicit feedback about whether
the system actually understands their true interests, and to manually
tune the models to better suit their preferences as discussed in [10].
By contrast, many existing preference learning algorithms produce
black box classifiers that are difficult to decompose and understand.

2. Active Learning: Given the large number of incoming events
and the large number of ways in which they could be combined, it
is unreasonable to ask the user to rate any meaningful fraction of
them. Thus, the learner needs to intelligently choose a subset of
incoming events that can most improve the current model.

3. Skewed Data: Since each user’s definition of “interesting” is
different, it is difficult to make generalizations about the statistical
properties such as the anticipated degree of skew in users prefer-
ences. In fact, this is currently an active research topic [3].

4. Personalized Events: Unlike typical recommendation sys-
tems such as those for books or movies, where all users rate a com-
mon set of items, the events in LifeJoin tend to be highly person-
alized. For instance, a user might like an event because it involves
her best friend Peter, but the same event would be totally meaning-
less if it is shown to another user who does not know Peter. Thus,
we believe it is easier to learn a model for each user individually
rather than trying to discover the relationships between users and
design a model that is applicable to all.

These requirements preclude the use of collaborative filtering
(CF) techniques which have been successful in other recommen-
dation systems. In particular, these techniques tend to generate

models that are not easy to factor (req 1). For instance, a neigh-
borhood model-based approach might attribute a new rating based
on a set of previously rated events that are deemed similar, but it is
unclear how the system can easily generalize from the set of similar
events to determine what new events to collect. Furthermore, CF
techniques require a similarity measure between users or events. It
is unclear how that can be done in a setting where events are highly
personalized to a small set of users (req 4); this is an active re-
search topic [11, 12], and the proposed solutions require explicitly
modeling all social relationships between users.

We avoid the above issues by viewing the problem as inductive
learning with an active learning component: given a set of labeled
examples, the goal is to learn a set of rules that represents an indi-
vidual user’s preferences, and to choose new events for the user to
rate. Unfortunately, standard inductive learning algorithms such as
those based on entropy measures (e.g., decision trees) are known
have issues with skewed data (req 3) [4], and it is not clear how
active learning can be applied,

Recently, the programming languages community has been ex-
ploring inductive learning problems in the context of software syn-
thesis in programming-by-example systems [8], where the goal is
to infer a program from a set of sample behaviors. Unfortunately,
the learning problem in Lifejoin is different enough that none of
the previous techniques can be applied out of the box. In particu-
lar, the active learning problem has not been sufficiently addressed.
Nevertheless, these techniques provide a new set of tools that can
be leveraged to attack the problem.

In this paper, we present a new algorithm to infer users’ interests;
the algorithm combines new techniques in program synthesis with
traditional machine learning approaches to satisfy the requirements
listed above. Specifically, we make the following contributions:

1. We show that both the classical machine learning approach
and an approach based purely on program synthesis do not ade-
quately address the problem.

2. We describe a hybrid approach that employs program synthe-
sis to generate a number of classifying functions, and subsequently
asks an SVM to assign weights to the features in each generated
functions. When compared to pure machine learning or synthesis
approaches, this hybrid technique takes up to an order of magnitude
less time to encode the training data into a feature space represen-
tation, and improves upon traditional learning algorithms by 30%
in overall classification accuracy.

3. We show that we can use a program synthesizer to produce
more decomposable and human-understandable models than those
generated by traditional machine learning techniques, and provide
empirical evidence that the generated models are comparable to the
original intentions that the user has in her mind.

We have implemented the learning technique in the context of
the LifeJoin application. However, we believe that our approach is
applicable to other social networking applications as well, where
large amounts of data are collected from users. In the next section
we discuss the learning task in LifeJoin, and illustrate our approach
with an example.

2. OVERVIEW
In this section, we illustrate the recommendation problem with a

concrete example and present our solution. Consider the LifeJoin
event stream, which contains large numbers of events about the
activities of a user’s friends and family. Out of this event stream,
suppose the user is interested in events where her friend Joe is away
from home either late at night or early in the morning:
(user = Joe) ∧ (location 6= Home) ∧ (time < 9am ∨ time > 9pm)

The goal of the system is to infer this interest function from the

users’ rating of events. We want the interest function in the form
above because that helps ensure the decomposability described ear-
lier. When expressed in this form, the function can be decomposed
into predicates and pushed down to individual users’ phones to op-
timize the data acquisition process as described. Such expressions
are also comprehensible by users, and can be manually adjusted to
tune the results the user sees. We are not aware of any statistically-
based methods that can directly generate such models.

Without knowing the expected distribution of the events, the
naïve approach to generate an interest function is to exhaustively
explore the space of all possible predicates until a set is found
that matches all the previously labeled events. The obvious prob-
lem with this approach is that the space of possible predicates is
enormous—on the order of 1040 in some of our experiments. A
deeper problem with the naïve approach is that the predicates found
cannot be expected to have much generalization power—that is,
they are unlikely to correctly classify new events. Also, they will
not be of much use in determining the next event to present to the
user for labeling. In the following, we describe two approaches
based on combinatorial synthesis that address these problems, which
allows us to find matching interest function in a few seconds.

2.1 Synthesis-Based Approaches
The synthesis problem can be seen as a generalization of tra-

ditional curve fitting, where a space of possible curves—say, all
polynomials of degree less than k—is explored in search of one
that satisfies a given set of requirements. Modern synthesis sys-
tems go several steps beyond simple curve-fitting by providing rich
languages for describing requirements and spaces of candidate pro-
grams. The search for a correct solution in this space is performed
symbolically; i.e., the space of candidate programs is described
through a set of equations which are solved through a combina-
tion of inductive and deductive methods by a specialized solver.
LifeJoin uses a synthesis system called SKETCH [19], where the
space of possible predicates is specified in a grammar, and the la-
beled events are provided as requirements that the generated inter-
est function needs to fit. Fig. 1 shows a sample of the labeled data
and a few interest functions that were found this way.

Unfortunately, the interest functions generated by the synthesizer
cannot be used for active learning purposes. To address this, we
rely on the idea of boosting [17], where we first generate a num-
ber of interest functions using the synthesizer that are consistent
with the data. After the synthesis algorithm has found K interest
functions fi , each of these functions can be treated as a weak base
learner, and the group forms an ensemble.

The standard way to form an ensemble is to learn a linear func-
tion F (e) = Σwi ·fi (e), where an event is classified as interesting if
F (e) > 0. The ensemble allows us to follow a standard approach
for active learning, namely, to select those events that are closest
to the boundary where F (e) = 0 [21]. Normally, the weights wi

are computed using the training data, but in our case, all fi were se-
lected to agree on all the training events, thus each fi will have equal
weight. That reduces the ensemble to a majority vote, and active
learning reduces to selecting the event that causes the maximum
level of disagreement among all the candidate interest functions.
We refer to this pure synthesis based algorithm as the “ensemble”
approach. As we will see in Sec. 3, such an approach already out-
performs many standard learning techniques, but we can do better.

When defining the space of candidate interest functions, we re-
quire them to be in disjunctive normal form. This means that every
function fi can be seen as a disjunction of individual predicates pi ,j .
We exploit this structure when building the ensemble; instead of an
ensemble F (e) = Σwi · fi (e), we build an ensemble of the form

user location time preference
Joe Office 10am 7
Bill Home 3pm 7
Joe Office 11pm 3
Joe Bar 6am 3

Each line below denotes a potential classifier
(User = Joe) ∧ (location = Office ∨ location = Bar) ∧ (time < 7am ∨ time > 10pm)

(User 6= Bill) ∧ (time > 10pm ∨ location = Bar)
(User = Joe) ∧ (time < 9am ∨ time > 11am)

Figure 1: Learning example with labeled data (left) and candidate classifiers that are consistent with the labeled data (right)

F ′(e) = Σwi ,j · pi ,j (e). Finding weights for each predicate is no
longer trivial. We use an SVM to find weights for the function,
which has the additional benefit that the weights will be set in such
a way that the resulting classifier will be maximum-margin one.

We call this combination of program synthesis and machine learn-
ing techniques the “hybrid” approach, and our experiments show
that defining the ensemble in this way significantly improves active
learning. One remaining issue is that the SVM may find fractional
values for the weights, so the function F ′(e) will no longer be a
well-formed boolean predicate. Once again, we use synthesis tech-
nology to find a well-formed predicate P(e) that is closest to the
linear function F ′(e) using the support vectors that are found by
the SVM. Such predicates have the decomposability property we
desire as our experiments show next.

3. EXPERIMENTS
For experiments we use two event streams collected by LifeJoin;

one about the location of users, and the other about users’ activities.
The unary features describe those that involve only one compari-
son operation, otherwise they are conjunctive ones. Full refers to
both unary and conjunctive features together.

We implemented eight different learners. L1 and MI are both
classical machine learners based on an SVM classifier. L1 uses the
LASSO algorithm for feature selection and a linear SVM for clas-
sification. MI performs feature selection by computing the mutual
information between each of the features and the output label, and
picks the features with the highest scores for subsequent classifica-
tion using a linear SVM. Both methods enumerate the full feature
set before feature selection. The ensemble and hybrid learners
represent the program synthesis approach described in Sec. 2.1.

The tree learner learns a decision tree using the C4.5 [16] algo-
rithm in the Weka toolkit [1], and creates features by extracting the
path(s) from the root node that leads to the leaves that classify the
event as interesting, as in [20]. To avoid degenerate trees, we low-
ered the support for splitting and did not prune the generated tree.
We have also experimented with random trees and the results are
similar. The resulting features are then used to train an SVM for
classification.

Full is an SVM learner that uses no feature selection on the full
set of conjunctive features, unary is an SVM learner that has no
conjunctive features, poly uses the same set of non-conjunctive fea-
tures as unary except that the features are passed through a poly-
nomial kernel. We did not consider other types of kernels such
as radial basis kernel as they combine the input features in a way
that does not produce decomposable models. For the learners that
involve SVMs, we tuned the parameters (e.g., amount of regular-
ization) using crossfold validation, and we set the degree of the
polynomial kernel to be 6 after trying all kernels of degree 2 to 8.
We applied the polynomial kernel to other learners (full, L1, MI,
ensemble, tree) as well, but that did not improve the results.

3.1 Experiment Setup
We generated a synthetic data set which models 5 users, ran-

domly and uniformly selecting one of 5 location to visit. Each user
remains at the location for a random period of time from 1 to 10
hours, and randomly and uniformly selects one of 5 activities to
perform at the location. This is meant to model the type of input
data that LifeJoin produces. The experiments were run on a server

Learner Pred 1 Pred 2 Pred 3 Pred 4 Pred 5 Pred 6
full 100% 100% 85.5% 79.5% 77.5% 81%

unary 75% 75% 75% 75% 75% 75%
poly 76% 76.5% 76.5% 76% 75% 75%
L1 100% 100% 92.5% 88% 74.5% 81.5%
MI 100% 100% 83% 82.5% 78% 82%
tree 100% 100% 91.5% 89.5% 91% 81.5%

ensemble 100% 100% 98% 96.5% 93.5% 92.5%
hybrid 100% 100% 97.5% 95% 94% 93.5%
full 43k 43k 43k 43k 43k 43k

unary / poly / tree 344 344 344 344 344 344
L1 61.5 118.6 32.6 265.5 482.9 604.9
MI 6708.5 6906.5 6990 6696.7 6430.8 6650.8

ensemble 26.5 40.1 50.2 45.2 40.2 46.7
hybrid 27.9 43.8 43.2 39.4 39.5 41.8

Figure 2: (a) Cross validation accuracies (top) and (b) feature
set sizes (bottom)
with 32 cores and 30GB of RAM. We chose to evaluate our meth-
ods on synthetic data rather than actual data since no publicly avail-
able large data set is available, and using synthetic data decouples
us from the potential errors in data collection on the phones. The
data set is generated randomly and does not favor any particular
learner.

In addition to a data set, we need a way to generate user interests.
To do this, we manually created 6 interest functions of increasing
complexity and class imbalance in the input training data. For in-
stance, the first interest function labels about 40% of the events to
be positive, whereas the last (most complicated) interest function
labels only about 10% of the events as positive. This is to model
how class distribution can vary drastically among different user in-
terests.

For all the experiments we allow Sketch to learn a maximum of
14 different interests, and allow each interest to consist of a max-
imum of 7 different conjuncts. The numbers were picked from
initial sampling of 5 users. Limiting to 7 conjuncts is more than
needed in order to learn the actual predicates, but we used that
setting as we believe this level of interest complexity is a reason-
able approximation of the maximum complexity of interests a user
might have.

To generate training data, we labeled data points in our data set
using each of the interest functions, assigning a positive label to the
event for a given interest function if the interest function evaluates
to true.

3.2 Cross Validation Experiments
In the first set of experiments, we evaluate the accuracies of the

different schemes using cross validation. The goal is to evaluate
learner performance in the absence of any performance anomalies
the active learning methods may introduce.

For each of the predicates we first generated a dataset of 100
positively and 300 negatively labeled events. The events are uni-
formly sampled from a domain consisting of 5 users, 5 locations,
and 5 different types of activities. We ran 10-fold validation on the
dataset, where we divide the positive and negative events into 10
partitions. Figure 2(a) shows the average accuracies and Fig. 2(b)
shows the number of features that are used for classification.

The results show that our hybrid learner has similar accuracy as
compared to standard machine learning techniques, but does not
require using the full feature set as in learners such as LI or MI.
This is particularly important when comparing the number of fea-
tures that are used for classification. To achieve the same overall

accuracy, the number of features used by the hybrid and ensemble
learners are an order of magnitude smaller as compared to others,
as shown in Fig. 2(b).

3.3 Active Learning Experiments
Next, we evaluate the learners in the actual usage setting, where

the user is asked to label a few new data points each time she visits
her newsfeed. At the end of each round the learner is given the
newly rated events along with the previously rated ones to refine its
model about the user. The goal of the learner is to select the list of
events to present in each round so as to maximize the accuracy of
the model, and to do so with as few rounds as possible.

3.3.1 Basic Setting
We generate 100 positive and 300 negative events as a training

set to be presented during active learning. The events are generated
using the same settings as in the cross validation experiments. We
then generate an additional 10k events and ratings (which are not
given to the learners) to use as the test set. The events in the test
set are generated randomly without regards to the ratio of positive
and negative events. Initially, the learners are given 1 positive and
1 negative event to learn an initial model. During each iteration,
the learners choose 5 events from the training pool to query for
their ratings to rebuild the model. We measure the accuracy of the
model at the end of each round for 20 rounds. Figure 3(a) shows
the results on the most complex interest function averaged over 10
runs. The results for the others are similar.

The focus of these results is the learning rate, i.e., the rate at
which the accuracy increases. While the learners that use classical
feature selection mechanisms (L1 and MI) do have higher learning
rates as compared to those that do not (full and unary), our hybrid
and ensemble learners have a significantly higher learning rate than
others, since they pick features with higher predictive power.

Figure 3(b) shows the number of features that are used for clas-
sification in each round for the learners. While they all increase as
the number of rounds increases as expected, the growth rate for the
hybrid and ensemble learners that use Sketch for feature selection
is much slower than the others.

3.3.2 Making Use of Extended Labels
One of the advantages of the hybrid learner over the ensemble

learner is that the SVM in the hybrid learner is able to make use
of extended labels. This is because extended labels simply change
the problem from classification to regression, where instead of a
binary label (e.g., “like” or “dislike”), the goal is to predict ratings
on continuous a scale from -1 to +1. We repeat the same exper-
iment as in the basic setting but with extended labels for events.
For events that are of interest, the label remains as +1 as before.
For those that are not, the label is negative, but its value is com-
puted in the following way. Given the user’s interest expressed as
N disjuncts ∨di , where each di is a conjunction of predicates, if
the event e fails all disjuncts, the value of its label is computed as
min(#failed(di , e)/#(di , e)), where #failed(di , e) is the num-
ber of predicates that e has failed within di , and #(di , e) is the
total number of conjuncts in di . We choose to pick the minimum
since this represents the minimal number of changes in e that would
make the user happy. We present the accuracy results in Fig. 3(c)
for running on function 6, and they show that the learning rate for
the hybrid-regression learner is faster as compared to the ensem-
ble and original hybrid-binary learners. This makes sense since the
regression learner is able to make use of the extended information
that is embedded within the “near miss” cases in selecting better
samples during each round of active learning.

3.3.3 Large Domain
Next, we increase the number of users and the number of loca-

tions from 5 to 50, and the number of activities from 5 to 10. This
is to model a larger group of users. We generated the 100 positive
and 300 negative training events from the new domain using uni-
form sampling, and an additional 10k events for the test set. We
execute the same active learning experiment as before. Figure 4(a)
shows the results.

On the outset, it seems that all learners achieve high overall ac-
curacies on the test data, but close examination proves the contrary.
Unlike previous experiments where the ratio of positively and neg-
atively rated events is not heavily skewed, in this case, due to the
large domain size, only around 3% of the events in the test set are
positively rated, so the learners quickly learn to assign negative to
most test events to maximize overall accuracy. This results in high
precision on the negatively rated events but very low precision on
the positively rated ones. The decision tree based classifier, how-
ever, decided rather to generalize on the positively labeled events
and classifies almost all events as interesting. Thus, it achieves high
accuracy on the positive events and poorly on the negative ones, re-
sulting in low overall accuracy. To illustrate this, Figure 4(b) show
the accuracy results on just the positive events. The results show
that although the overall accuracies of the learners are comparable,
the hybrid and ensemble approaches actually perform much better
than the other learners on the positive events.

This experiment raises two important points when comparing
among the learners. First, all of the learners except for hybrid,
ensemble, poly, and tree require enumeration of the full feature set
for all events. In this large domain case, this takes a substantial
amount of time (2 hours for conversion into the feature represen-
tation) and disk space (300 MB needed to encode 10k events), as
compared to the synthesis-based feature selection approach used
in the hybrid and ensemble learners, which takes much less time
(10 min to finish the Sketch runs and seconds to convert the cho-
sen features into feature-space representation) and negligible disk
space (600 kB to encode 10k events). Secondly, the fact that the
classical machine learning based learners assign negative labels to
most events means that they will very likely not be able to identify
any interesting events for the user, which is the ultimate goal.

3.4 Model Explanation Experiments
In these experiments we test the effectiveness of using a program

synthesizer at producing a decomposable model. As discussed in
Sec. 2.1, we took the support vectors after model generation and
fed them into Sketch. We used the data from the cross valida-
tion experiments to learn 6 interest functions. The model for the
most complex function consists of 198 support vectors, and all the
models inferred by Sketch are very similar to the original interest
functions.

4. RELATED WORK
Many probabilistic modeling approaches have been proposed that

can also be applied to the learning problem discussed in this paper,
including Bayesian networks [9], statistical relational learning [7],
and probabilistic logic [14]. There are also work in building prob-
abilistic models predicting user behavior [22, 10, 2]. However, as
with SVMs, models learned using such techniques tend not to gen-
erate decomposable models.

Other inductive learning techniques, such as inductive logic pro-
gramming [15, 13], learn formulas from the training data and can
produce decomposable models. However, such tools still assume
the input data to have certain class distribution, and it is unclear
how feature selection can be done for such techniques.

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

round number

hybrid
unary

full
L1
MI

ensemble
tree
poly

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 #

 o
f
fe

a
tu

re
s
 (

lo
g
 s

c
a
le

)

round number

hybrid
unary

full
L1
MI

ensemble
 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

round number

hybrid-binary
hybrid-regression

ensemble

Figure 3: Active learning experiment on function 6, from the left: (a) avg. accuracies, (b) feature set sizes, (c) with extended labels

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

a
ve

ra
g
e
 a

cc
u
ra

cy
 (

%
)

round number

hybrid
unary

full
L1
MI

ensemble
tree
poly

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20

a
ve

ra
g
e
 a

cc
u
ra

cy
 o

n
 p

o
si

tiv
e
 s

a
m

p
le

s
o
n
ly

 (
%

)

round number

hybrid
unary

full
L1
MI

ensemble
tree
poly

Figure 4: Large domain experiment: (a) average overall accu-
racies (top) and (b) positive events only (bottom)

There are many feature selection algorithms in addition to mu-
tual information and LASSO. However, our synthesis-based ap-
proach differs from classification techniques in that most feature
selection techniques focus on the statistical properties of the train-
ing data, e.g., approximating the probability distribution of a fea-
ture from the training data. Such schemes perform well when fed
with a sufficiently large amount of training data, as evident in our
cross validation experiments, but do not do so well in cases when
the training data size is small, as in our active learning scenarios.

In recent years, the programming languages community has been
working on programming-by-example problems to synthesize dif-
ferent types of programs [8, 18]. Our work differs in that we require
a feature selection mechanism in place in order to provide reason-
able results. The work of Gulwani in [8] queries the user to provide
differentiating outputs when the synthesizer cannot decide between
multiple programs that satisfy the same input constraints. We gen-
eralize this concept and propose the ensemble learning scheme, and
show that a scheme that combines synthesis-based feature selection
with an SVM for classification can provide excellent performance
for social networking applications.

5. CONCLUSIONS
We presented a learning algorithm that combines the machine

learning techniques with program synthesis tools and focuses on
personalized social recommendation applications. The experiments
show that the hybrid approach can significantly outperform tradi-
tional classification schemes on synthetic data, but an important
next step is to validate the results on real-world data. Similarly,

more research is needed in analyzing the generalization proper-
ties of the synthesis-based approach. Understanding its theoretical
connections with classical machine learning-based techniques with
help develop further algorithms that leverage the advantages of the
two in improving results.

6. REFERENCES
[1] Weka toolkit. http://www.cs.waikato.ac.nz/ml/weka/.
[2] R. M. Bell, Y. Koren, and C. Volinsky. Modeling relationships at

multiple scales to improve accuracy of large recommender systems.
In proc. KDD, pages 95–104, 2007.

[3] H. Cao, E. Chen, J. Yang, and H. Xiong. Enhancing recommender
systems under volatile user interest drifts. In proc. CIKM, 2009.

[4] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue
on learning from imbalanced data sets. SIGKDD Explorations,
6(1):1–6, 2004.

[5] A. Cheung, A. Thiagarajan, and S. Madden. Automatically
generating interesting events with lifejoin. In proc. Sensys, pages
411–412, 2011.

[6] M. Dong and L. Zhong. Self-constructive high-rate system energy
modeling for battery-powered mobile systems. In proc. MobiSys,
pages 335–348, 2011.

[7] L. Getoor and B. Taskar. Introduction to Statistical Relational
Learning. The MIT Press, 2007.

[8] S. Gulwani. Automating string processing in spreadsheets using
input-output examples. In proc. POPL, pages 317–330, 2011.

[9] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[10] Y. Koren. Factor in the neighbors: Scalable and accurate
collaborative filtering. TKDD, 4(1), 2010.

[11] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. Predicting
positive and negative links in online social networks. In proc. WWW,
pages 641–650, 2010.

[12] K. Liu and L. Tang. Large-scale behavioral targeting with a social
twist. In proc. CIKM, pages 1815–1824, 2011.

[13] S. Muggleton. Inverse entailment and progol. New Generation
Computing, 13(3&4):245–286, 1995.

[14] N. J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71–87, 1986.
[15] J. R. Quinlan. Learning logical definitions from relations. Machine

Learning, 5(3):239–266, Sept. 1990.
[16] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.
[17] R. E. Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, July 1990.
[18] R. Singh and A. Solar-Lezama. Synthesizing data structure

manipulations from storyboards. In proc. FSE, pages 289–299, 2011.
[19] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.

Combinatorial sketching for finite programs. SIGOPS Oper. Syst.
Rev., 40:404–415, October 2006.

[20] V. Sugumaran, V. Muralidharan, and K. Ramachandran. Feature
selection using decision tree and classification through proximal
support vector machine for fault diagnostics of roller bearing.
Mechanical Systems and Signal Processing, 21(2):930 – 942, 2007.

[21] S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. In Journal of Machine Learning
Research, pages 999–1006, 2000.

[22] D. Yin, Z. Xue, L. Hong, and B. D. Davison. A probabilistic model
for personalized tag prediction. In proc. KDD, pages 959–968, 2010.

http://www.cs.waikato.ac.nz/ml/weka/

	Introduction
	Overview
	Synthesis-Based Approaches

	Experiments
	Experiment Setup
	Cross Validation Experiments
	Active Learning Experiments
	Basic Setting
	Making Use of Extended Labels
	Large Domain

	Model Explanation Experiments

	Related Work
	Conclusions
	References

