CSE 421
Algorithms
Richard Anderson
Lecture 24
Network Flow Applications

Today's topics

- Problem Reductions
- Undirected Flow to Flow
- Bipartite Matching
- Disjoint Path Problem
- Circulations
- Lowerbound constraints on flows
- Survey design

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA \bigcirc	\bigcirc	303
PB \bigcirc	\bigcirc	321
CC \bigcirc	\bigcirc	326
DG \bigcirc	\bigcirc	401
AK \bigcirc	\bigcirc	421

Converting Matching to Network

 Flow

Theorem

- The maximum number of edge disjoint paths equals the minimum number of edges whose removal separates s from t

Circulation Problem

- Directed graph with capacities, $\mathrm{c}(\mathrm{e})$ on the edges, and demands $\mathrm{d}(\mathrm{v})$ on vertices
- Find a flow function that satisfies the capacity constraints and the vertex demands
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$
- fin $^{(v)}$ - fout $(v)=d(v)$
- Circulation facts:
- Feasibility problem
- d(v) < 0: source; d(v) > 0: sink
- Must have $\Sigma_{\mathrm{v}} \mathrm{d}(\mathrm{v})=0$ to be feasible

Find a circulation in the following
graph

Reducing the circulation problem to Network flow

Formal reduction

- Add source node s, and sink node t
- For each node v , with $\mathrm{d}(\mathrm{v})<0$, add an edge from s to v with capacity -d(v)
- For each node v, with $d(v)>0$, add an edge from v to t with capacity $d(v)$
- Find a maximum s-t flow. If this flow has size $\Sigma_{\mathrm{v}} \mathrm{cap}(\mathrm{s}, \mathrm{v})$ then the flow gives a circulation satisifying the demands

Circulations with lowerbounds on flows on edges

- Each edge has a lowerbound $\mathrm{I}(\mathrm{e})$.
- The flow f must satisfy $\mathrm{l}(\mathrm{e})<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$

Formal reduction

- $\mathrm{L}_{\text {in }}(\mathrm{v})$: sum of lowerbounds on incoming edges
- $\mathrm{L}_{\text {out }}(\mathrm{v})$: sum of lowerbounds on outgoing edges
- Create new demands d' and capacities c' on vertices and edges
$-d^{\prime}(v)=d(v)+I_{\text {out }}(v)-I_{\text {in }}(v)$
$-c^{\prime}(\mathrm{e})=\mathrm{c}(\mathrm{e})-\mathrm{l}(\mathrm{e})$

Removing lowerbounds on edges

- Lowerbounds can be shifted to the demands

Application

- Customized surveys
- Ask customers about products
- Only ask customers about products they use
- Limited number of questions you can ask each customer
- Need to ask a certain number of customers about each product
- Information available about which products each customer has used

Details

- Customer $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}}$
- Products $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{m}}$
- S_{i} is the set of products used by C_{i}
- Customer C_{i} can be asked between c_{i} and c_{i}^{\prime} questions
- Questions about product P_{j} must be asked on between p_{j} and p_{j}^{\prime} surveys

Today's topics

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem
S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Circulation construction

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Generalization

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each vin V has a profit $p(v)$
- A set F if feasible if when w in F, and (v, w) in E, then v in F.
- Find a feasible set to maximize the profit

Precedence graph construction

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges

Show a finite value cut with at least two vertices on each side of the cut

The sink side of a finite cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Setting the costs

- If $\mathrm{p}(\mathrm{v})>0$,
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=\mathrm{p}(\mathrm{v})$
$-\operatorname{cap}(s, v)=0$
- If $p(v)<0$
$-\operatorname{cap}(s, v)=-p(v)$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$
- If $p(v)=0$
$-\operatorname{cap}(s, v)=0$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

Computing the Profit

- $\operatorname{Cost}(W)=\Sigma_{\{w \text { in } w ; p(w)<0\}}-p(w)$
- Benefit $(W)=\Sigma_{\{w \text { in } w ; p(w)>0\}} p(w)$
- $\operatorname{Profit}(\mathrm{W})=\operatorname{Benefit}(\mathrm{W})-\operatorname{Cost}(\mathrm{W})$
- Maximum cost and benefit
$-\mathrm{C}=\operatorname{Cost}(\mathrm{V})$
$-\mathrm{B}=$ Benefit(V)
Express Cap(S,T) in terms of B, C, $\operatorname{Cost}(\mathrm{T})$, Benefit(T), and Profit(T)

His

Summary

- Construct flow graph
- Infinite capacity for precedence edges
- Capacities to source/sink based on cost/benefit
- Finite cut gives a feasible set of tasks

Today's topics

- More network flow reductions
- Airplane scheduling
- Image segmentation
- Baseball elimination

Airplane Scheduling

- Given an airline schedule, and starting locations for the planes, is it possible to use a fixed set of planes to satisfy the schedule.
- Schedule
- [segments] Departure, arrival pairs (cities and times)
- Approach
- Construct a circulation problem where paths of flow give segments flown by each plane

Example

- Seattle->San Francisco, 9:00-11:00
- Seattle->Denver, 8:00-11:00
- San Francisco -> Los Angeles, 13:00-14:00
- Salt Lake City -> Los Angeles, 15:00-17:00
- San Diego -> Seattle, 17:30-> 20:00
- Los Angeles -> Seattle, 18:00->20:00
- Flight times:
- Denver->Salt Lake City, 2 hours
- Los Angeles->San Diego, 1 hour

Graph representation

- Each segment, S_{i}, is represented as a pair of vertices ($\mathrm{d}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$, for departure and arrival), with an edge between them.

- Add an edge between a_{i} and d_{j} if S_{i} is compatible with S_{j}.

Setting up a flow problem

Result

- The planes can satisfy the schedule iff there is a feasible circulation

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning ito the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} p_{i j}$

Baseball elimination

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD,
$B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

Baseball elimination

- Can the Fruit Flies win the league?
- Remaining games: - AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$, $B D, B E, B E, B E, B E$, BF, CE, CE, CE, CF, $C F, D E, D F, E F, E F$

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC $B C, B C, B C, B D, B E, B E$, BE, BE, CE, CE, CE, DE

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$
(5)

(T)

Network flow applications summary

- Bipartite Matching
- Disjoint Paths
- Airline Scheduling
- Survey Design
- Baseball Elimination
- Project Selection
- Image Segmentation

