CSE 421 Algorithms

Richard Anderson Lecture 24 Network Flow Applications

Today's topics

- Problem Reductions
 - Undirected Flow to Flow
- Bipartite Matching
- Disjoint Path Problem
- Circulations
- · Lowerbound constraints on flows
- Survey design

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance Problem B
 - Use a solution of Problem B to get a solution to Problem A
 - Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Problem Reduction Examples Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem

Bipartite Matching

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

Formal reduction

- L_{in}(v): sum of lowerbounds on incoming edges
- L_{out}(v): sum of lowerbounds on outgoing edges
- Create new demands d' and capacities c' on vertices and edges

```
-d'(v) = d(v) + I_{out}(v) - I_{in}(v)
```

-c'(e) = c(e) - l(e)

Application

Customized surveys

Ask customers about products

- Only ask customers about products they use
- Limited number of questions you can ask each customer
- Need to ask a certain number of customers about each product
- Information available about which products each customer has used

Details

- Customer C_1, \ldots, C_n
- Products P_1, \ldots, P_m
- S_i is the set of products used by C_i
- Customer C_i can be asked between c_i and c^\prime_i questions
- Questions about product P_j must be asked on between p_i and p'_i surveys

Circulation construction

Today's topics

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T The capacity of an S, T cut is the sum of the capacities of all edges going from S to T

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Min cut algorithm for profit maximization

 Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Computing the Profit

- Cost(W) = Σ_{w in W; p(w) < 0}-p(w)
- Benefit(W) = $\sum_{\{w \text{ in } W; p(w) > 0\}} p(w)$
- Profit(W) = Benefit(W) Cost(W)
- Maximum cost and benefit
 - -C = Cost(V)
 - -B = Benefit(V)

Summary

- Construct flow graph
 - Infinite capacity for precedence edges
 - Capacities to source/sink based on cost/benefit
- Finite cut gives a feasible set of tasks
- Minimizing the cut corresponds to maximizing the profit
- Find minimum cut with a network flow algorithm

Today's topics

- More network flow reductions
 - Airplane scheduling
 - Image segmentation
 - Baseball elimination

Airplane Scheduling

- Given an airline schedule, and starting locations for the planes, is it possible to use a fixed set of planes to satisfy the schedule.
- Schedule
- [segments] Departure, arrival pairs (cities and times) Approach
- Approach
- Construct a circulation problem where paths of flow give segments flown by each plane

Example

- Seattle->San Francisco, 9:00 11:00
- Seattle->Denver, 8:00 11:00
- San Francisco -> Los Angeles, 13:00 14:00
- Salt Lake City -> Los Angeles, 15:00-17:00
- San Diego -> Seattle, 17:30-> 20:00
- Los Angeles -> Seattle, 18:00->20:00
- Flight times:
 Denver->Salt Lake City, 2 hours
 Los Angeles->San Diego, 1 hour
 - Can this schedule be full filled with two planes, starting from Seattle?

Ŧ.

Compatible segments

- Segments S₁ and S₂ are compatible if the same plane can be used on S₁ and S₂
 - End of S_{1} equals start of $S_{2},$ and enough time for turn around between arrival and departure times
 - End of S₁ is different from S₂, but there is enough time to fly between cities

Image Segmentation

• Separate foreground from background

Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- \mathbf{p}_{ij} penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \sum_{\{i \text{ in } A\}} a_i + \sum_{\{j \text{ in } B\}} b_j \sum_{\{(i,j) \text{ in } E, i \text{ in } A, j \text{ in } B\}} p_{ij}$

Baseball elimination

- Can the Fruit Flies win the league?
- Remaining games:
 AC, AD, AD, AD, AF, BC, BC, BC, BC, BC, BD, BE, BE, BE, BE,

BF, CE, CE, CE, CF,

CF, DE, DF, EF, EF

		-
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

WL

Network flow applications summary

- Bipartite Matching
- Disjoint Paths
- Airline Scheduling
- Survey Design
- Baseball Elimination
- Project Selection
- Image Segmentation