
DUCES: A Framework for Characterizing and Simplifying
Mobile Deployments in Low-Resource Settings

Samuel R Sudar
Unversity of Washington

Seattle, USA
sudars@cs.uw.edu

Richard Anderson
Unversity of Washington

Seattle, USA
anderson@cs.uw.edu

ABSTRACT
Mobile devices are increasingly being used in data-focused work-
flows in low-resource settings. These deployments are frequently
orchestrated by organizations with limited technical capacity, mak-
ing fundamental architectural decisions difficult. We present DUCES,
a framework for characterizing mobile deployments along five axes
of design. DUCES allows organizations to better understand de-
ployment requirements and simplify decisions regarding deploy-
ment architectures. It focuses on the workflow’s Data flow, User in-
terface, Connectivity model, Edit mode, and Server requirements.
We discuss five case studies of data-focused mobile deployments
and evaluate them using the DUCES framework. We conclude by
discussing how the DUCES framework can be used as a lens by
organizations and researchers to understand and simplify mobile
deployments.

Keywords
ICTD; mobile devices; application, app design

Categories and Subject Descriptors
H.4.0 [Information Systems Applications]: General; D.2.1 [Software]:
Software EngineeringRequirements/Specifications[methodologies]

1. INTRODUCTION
Mobile devices are deployed in many low-resource settings for

data-focused applications. Creating these applications is nontriv-
ial, consuming considerable time and resources [8]. Successful
custom-built deployments can require years of iterative refinements
to work out stable technical architectures [11]. Smaller scale de-
ployments often do not involve developers, making reasoning about
technology difficult. We present the DUCES framework, which can
be used to deepen understanding of a deployment and its require-
ments as well as to highlight which requirements are most challeng-
ing technically. If these can be altered in a way that simplifies the
architecture, the deployment will become more sustainable without
external expertise.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ACM DEV 2015, December 1–2, 2015, London, United Kingdom.
© 2015 ACM. ISBN 978-1-4503-3490-7/15/12 . . . $15.00.
DOI: http://dx.doi.org/10.1145/2830629.2830653.

We have observed that a number of common paradigms exist
in data-focused mobile deployments conducted by groups in low-
resource settings. Based on our experience, we characterize these
deployments along five axes of design: whether the Data flow is
unidirectional or bidirectional; whether the User interface (UI) is
form-based or non-form-based; if Connectivity is required to func-
tion; if Edits are non-transactional or transactional; and if the sup-
porting Server is merely a data repository or if it encapsulates logic.
Using technology always presents challenges. It is easy to argue for
simplification, but developing intuitions around how to do so can
take years of experience and can be specific to a single technology.
The DUCES framework provides a way to approach simplification
that is generalizable to a wide range of scenarios and tools.

DUCES is aimed at small and medium-sized organizations seek-
ing to leverage mobile technology in low-resource settings. These
organizations generally do not have the resources to devise a cus-
tom technical solution. They are not creating new technical frame-
works and they do not have a developer on staff. They are seeking
to build on top of existing solutions to leverage mobile technol-
ogy. Such organizations frequently face difficulties when trying to
reason about diverse requirements and their implications [4]. In
these organizations, deployment architects are generally not devel-
opers themselves. This frequently makes the implications of re-
quirements opaque. Many deployment architects lack even basic
intuitions about what is easy and what is hard. For example, sup-
porting two languages is a fundamentally different problem than
working in the absence of an internet connection. Sending SMS
reminders automatically based on HIV status is more challenging
than capturing GPS data. Organizations frequently treat all require-
ments as equal, even though disconnected operation or server-side
automation might complicate the deployment by orders of magni-
tude.

In this paper we explore five case studies of mobile deployments
that leverage technology in different ways. We analyze these de-
ployments to gain a comprehensive understanding of the various
technical requirements that exist in mobile workflows in low-resource
settings. The contributions of this paper are to formalize a frame-
work for understanding and simplifying these mobile-based work-
flows. This framework, which we refer to as DUCES, elucidates
characteristics and intuitions that are latent in many data-focused
mobile apps, including those in high-resource environments, but
that take on increased importance in low-resource settings. Us-
ing DUCES, organizations can identify early in their process what
components are likely to require outside technical support and what
should be able to be accomplished in-house.

The paper is structured as follows. In Section 2 we outline five
case studies of mobile deployments in low-resource settings. We
summarize the requirements and goals of each case study. In Sec-

23

tion 3 we describe the five axes of design that define the DUCES
framework. We revisit each case study, exploring how the require-
ments of the deployment impacted the deployment architecture. In
Section 4 we discuss how the traits of our framework highlight fun-
damental challenges that exist in mobile deployment architectures,
how certain features are in tension with one another, and the ram-
ifications of these considerations on mobile deployments. We re-
visit each case study to describe how DUCES was used to simplify
or could potentially simplify each architecture. We close by dis-
cussing the ramifications this work has on organizations deploying
mobile apps in low-resource settings.

2. CASE STUDIES
The goals of a mobile deployment define the technical require-

ments. This is not always a straight forward process. In this section
we present five data-focused mobile deployments to serve as case
studies. They were chosen to provide a broad sample of require-
ments. Characterizing them through the lens of the DUCES frame-
work lends insight into what sorts of technical solutions are appro-
priate given the constraints of the deployment. Three of these case
studies have been conducted by the authors, allowing insight into
how DUCES was used during development of the deployment.1

All have been deployed and used in the field. Two case studies are
based on published literature.

2.1 Longitudinal HIV Study
The first deployment is support for a study of HIV discordant

couples in Kenya [13]. The study itself was designed by global
health researchers in order to longitudinally monitor couples where
one partner is HIV-positive and the other is not. Participants are
screened, at which point data is collected, and at time points in
the future additional sets of data are collected. For both screening
and follow ups participants are administered a survey on a mobile
device. Different data is collected at different time points about
male and female participants. A particular form is administered to
a participant based on the time they have been enrolled in the study
and their gender. This model of an entry form with follow up forms
is common in research studies [7].

Each day study coordinators perform basic analysis and create
a list of participants that require follow up. This data includes
the subject’s unique identifier and the form that is required to be
completed. Enumerators are hired to take this information into the
field, locate the subject, and complete the specified form. They are
equipped with mobile devices that render the forms and provide a
simple app-like user interface. Upon opening the app, enumerators
arrive at a home screen and are trained that they can screen a new
participant, perform a follow up interview, or submit collected data
to the server. Sample screens are shown in Figure 1.

2.2 Tuberculosis Test Results
In 2009 a digital form-based workflow was deployed in Lima,

Peru to digitize tuberculosis (TB) test results [2]. Sputum smears
are collected at local health centers and the test results are written
in a ledger. Enumerators visit these health centers with personal
digital assistants (PDAs) that are equipped with digital forms. The
forms have been designed to collect the information that has been
written in the ledger, and enumerators transcribe the contents of
the ledgers to the digital forms on the PDA. Upon returning to
the central office, the data is uploaded from the PDAs to an Oracle
databased managed by Partners in Health, a non-governmental or-

1Two of these three deployments are presented here for the first
time.

Figure 1: Examples of the mobile app for the HIV study. The
participant list supports prepopulation of identifiers (left). If
not available, the identifier can be entered manually (right).

ganization (NGO) operating in Lima. Data upload takes place over
the internet using the open database connectivity (ODBC) standard.
The study designers also extended the database to include auto-
mated processing of the data as well as web pages that allow for
summaries of the data and provide data quality checks. With this
workflow, processing times for samples were greatly improved.

2.3 Supply Chains Using Mobile Phones
Mobile devices have been deployed to improve the performance

of rural supply chains in resource-constrained environments [12].
For this deployment an organization (Logistimo) noticed that stock
outs were occurring at health centers in large part due to poor infor-
mation management and communication. They created a Java ap-
plication for feature phones that allows pharmacists to enter stock-
related data, including the sale of items and stock counts. This data
is transmitted to a server via a cellular data connection or SMS.
The server component processes the data and removes duplicates
that have arisen due to network errors. The server is also respon-
sible for sending alerts to supervisors via SMS or voice calls. The
server also provides a “bulletin board” web application that shows
streaming information about the state of the supply chain. Synthe-
sizing data in this way created actionable items that resulted in a
drastic increase of availability of vaccines at local health centers.

2.4 Chimpanzee Monitoring
The Jane Goodall Institute (JGI) has employed a complex chim-

panzee monitoring system for a number of years. Under the system,
a ranger follows a group of chimpanzees through the forest over the
course of a day with a complex paper worksheet. This activity is
referred to as a “follow”, and is broken into 15 minute time inter-
vals. Data is collected about each interval. Various data is recorded,
including when chimps arrive and depart, the estrus state of the fe-
male chimps, the foods consumed by the chimps, and the presence
of other species. All this information is captured on a dense pa-
per worksheet consisting of a matrix with 15 minute intervals on
the y-axis and chimp identifiers on the x-axis. Arrivals and depar-
tures indicated by drawing a line in the corresponding 15 minute
interval. A copy of the paper form is shown in Figure 2 in order to
convey the density of information on the worksheet. These sheets

24

Figure 2: The Chimpanzee Monitoring Worksheet (left) and
Application (right) The left image shows the paper worksheet
employed by JGI rangers. It permits continuous review of data
as it is updated. The right image shows this technique repli-
cated in our application. This permits stylized reviews mimick-
ing the paper-based workflow.

are periodically sent to researchers that transcribe the data into a
database.

One of the strengths of this model is that rangers are able to see
a summary of the day’s data at a glance, making it easy to visually
audit data and revisit time points as the day progresses. It also facil-
itates non-standard data entry. For example, times are not recorded
by writing an hour and a minute. Instead the ranger draws a line
in the first third of the box representing 9:00 to 9:15 to show that
the chimp arrived or departed between 9:00 and 9:05. We designed
an application to run on a 10 inch tablet that mimics this work-
flow. The tablet was smaller than the normal paper form employed
by the rangers and displayed data of a single 15 minute interval at
a time instead of the whole day’s data. Crucially, however, data
is displayed as it can be edited, affording rangers similar auditing
power to the original paper form. The application also uses icons
to achieve the same pictographic data entry to represent time that
is provided by paper. The familiar tabular structure is preserved. A
comparison of the paper form and the tablet application is shown
in Figure 2.

2.5 Aid Distribution
The International Federation of Red Cross and Red Crescent So-

cieties in the Americas (IFRC) often handles aid distribution af-
ter natural disasters. They recently piloted a program where debit
cards were distributed instead of physical goods. We devised a mo-
bile system to support this workflow. The pilot took place over
two days in Kingston, Jamaica, and involved 93 participants at two
locations.

Registration and distribution are separated into two distinct phases.
In the registration phase, beneficiaries are entered into the system
using digital forms on four mobile phones. Basic data like name
and address are collected. Each beneficiary is also be assigned a pa-
per card with a bar code that will later entitle them to receive their
debit card. After screening and before distribution, each screened
patient is assigned a debit card number. Distribution occurs an hour
later. During the distribution phase, beneficiaries present their ben-
eficiary card and bar code, which is used by the mobile app to re-
trieve their information. After confirming that it is correct, they are

presented with the cash card and marked in the database as having
received the card.

3. THE DUCES FRAMEWORK
The DUCES framework provides a way to characterize mobile

deployments. The framework can be applied to mobile-based work-
flow, including applications produced by organizations with signif-
icant resources. However, it is most useful in low-resource contexts
where many simplifying assumptions appropriate in high-resource
settings are inadequate. DUCES consists of five axes of design:

1. Data Flow (Unidirectional vs Bidirectional)

2. User Interface (Form-Based vs Non-Form-Based)

3. Connectivity Model (Connected vs Disconnected)

4. Edit Mode (Non-Transactional vs Transactional)

5. Server Model (Bucket-Based vs Processed)

Understanding where a deployment falls along these axes pro-
vides meaningful insight into the technical requirements of a de-
ployment. Deployment architects without a strong technical back-
ground often lack sound intuitions surrounding mobile deployments.
For example, we have seen non-technical collaborators assume that
altering the text accompanying a question in a form will be as diffi-
cult as adding bidirectional data flow to an existing data entry tool.
DUCES is intended to better scaffold reasoning about deployment
requirements in order to prevent this sort of misunderstanding. If
a deployment requires a bidirectional data flow, a data entry tool
that does not support the bidirectional movement of data can be
discounted out of hand. Better still, the bidirectional data flow
requirement might be obviated by a slight change in deployment
protocol. DUCES provides a set of primitives that can guide an
understanding of technical requirements.

In the following sections, each axis of design is described in de-
tail. The case studies from Section 2 are used to illustrate how
DUCES can be used to describe a variety of mobile deployments.

3.1 Data Flow
Mobile devices are frequently used to collect and manage data,

aggregating it on a server. DUCES asks if this flow of data is unidi-
rectional or bidirectional. In other words, does collected data move
only from the mobile device to the server, or does it also move from
the server to the mobile device? A unidirectional data flow is sim-
pler to implement than a bidirectional data flow, but it is also less
versatile. Deployments can use each design to great effect.

3.1.1 Longitudinal HIV Study
The HIV study is a unidirectional data flow. Subject data is col-

lected using forms and later submitted to a central server. Data is
never sent from the server back to the device. Enumerators are es-
sentially replicating a paper-based data collection workflow, which
is a unidirectional data flow.

3.1.2 Tuberculosis Test Results
This too uses a unidirectional data flow. Data is transcribed

from the ledgers at health centers into the forms on the PDAs car-
ried by enumerators. At their central office they then submit data
to the server.

25

3.1.3 Supply Chains Using Mobile Phones
In this case the data flow is bidirectional. Pharmacists use a

Java-based application for feature phones that sends sale and stock
count information to the central server. The server processes this
data and broadcasts resultant information to all users of the system
via SMS. Further, the list of materials at each health center is pulled
from a central server. The authors of the tool took care to degrade
gracefully in the case of poor connectivity, but the flow of data in
the deployment is still bidirectional.

3.1.4 Chimpanzee Monitoring
Data collected by rangers is stored locally. It can be reviewed

and revised until it is pushed to the central server. No data is ever
sent from the server to the device. Further, this deployment is a
replacement for paper-based data collection. All of these charac-
teristics indicate that it employs a unidirectional data flow.

3.1.5 Aid Distribution
Beneficiary information is entered on mobile devices in a digital

form. Screening takes place on four mobile devices. During dis-
tribution, beneficiaries must be able to be processed on any device,
not just the device that screened them. This indicates that data must
be shared between devices, indicating that the data flow is bidirec-
tional.

3.2 User Interface
Mobile deployments can be described in terms of two distinct

modes defining their users’ interactions: form-based and non-form-
based. The distinction between these modes is motivated by two
factors. First, form-based data entry is extremely common in low-
resource deployments [7]. Second, a large number of tools exist
that facilitate form-based data collection on mobile devices. Many
are designed specifically to be leveraged by lightly technical users.
This host of data-entry applications includes Google forms, Cyber-
Tracker [1], Red Cap [9], Open Data Kit (ODK) Collect [10], ODK
Survey [3], Pendragon Forms, Magpi, CommCare, and many oth-
ers.

One hallmark of form-based tools is that deployment architects
do not normally need sophisticated control over the presentation
layer of form-based data entry: presenting a piece of text indicating
what data should be entered is usually sufficient. In a form-based
UI, a user is making changes to the database by stepping through a
series of questions, potentially with branching based on responses.
Non-form-based UIs do not have as clearly defined workflow. Al-
most all mobile applications produced by highly technical organi-
zations and aimed at high-resource settings (e.g. email apps, to-do
lists, calendars, and chat clients) do not use a form-based work-
flow. This stands opposed to the applications used by organizations
in low-resource settings, where workers are often employed to col-
lect data using mobile phones.

Any workflow can be viewed through these two modes, but they
have increased relevance in low-resource settings. Which of these
modes is appropriate and necessary for a given deployment can de-
fine immediately the types of interactions users will have with mo-
bile devices. Understanding and describing a deployment can be
greatly simplified if deployment architects identify early if they can
model their deployment’s user interface using a form-based work-
flow. In general, the more a deployment can be forced to follow
a form-based workflow, the easier it will be to manage by local
organizations with tools that have a relatively low barrier to entry.

3.2.1 Longitudinal HIV Study
The HIV study employs a predominantly form-based user in-

terface. Forms were designed for screening participants and for
a number of follow up visits. A lightweight non-form-based skin
was designed to present a list of existing participants, but the vast
majority of enumerators’ time is spent completing digital forms.

3.2.2 Tuberculosis Test Results
Here again the user interface is predominantly form-based. Pen-

dragon Forms was used to create forms mimicking the data col-
lected on paper ledgers and transcribed on PDAs. A non-form-
based component was used to perform data quality checks on the
server, but enumerators spent most of their time completing digital
forms.

3.2.3 Supply Chains Using Mobile Phones
Pharmacists in the supply chain deployment used a custom-built

Java app for feature phones. The bulletin board aggregating results
from pharmacists was written as a web page. Thus the user inter-
face was non-form-based.

3.2.4 Chimpanzee Monitoring
Although the JGI was replicating paper-based data collection,

the tablet-based app did not follow a standard digital form work-
flow. Unlike in conventional forms, the JGI had strict requirements
for the presentation layer: it must be tabular, show previously en-
tered data to allow visual auditing, and data entry must employ styl-
ized icons rather than text. This workflow was non-form-based.

3.2.5 Aid Distribution
Both screening and distribution phases took place using digital

forms, making this a form-based user interface.

3.3 Connectivity Mode
Mobile deployments can follow one of two connectivity models:

connected and disconnected. A disconnected model is one where
full functionality is capable without connecting to a central server.
In this model, workers would be able to go into the field for peri-
ods of time and use a mobile tool without degraded quality. For
example, data enumerators might leave the city for several weeks
at a time collecting data about the state of a country’s refrigeration
infrastructure at its health centers. When they return they submit
their information to their supervisor. The tasks they were expected
to perform were not dependent on a reliable connection to the in-
ternet or to their superior via a telephone.

Connected operation, on the other hand, requires a connection
to achieve the full functionality of an application. Mobile deploy-
ments in low-resource environments can adopt either model: orga-
nizations might have an enumerator in the field without connection
or a researcher working at a large hospital with a strong wifi con-
nection.

3.3.1 Longitudinal HIV Study
Many of the participants in the HIV study are expected to be

contacted in the field without internet connectivity. The mobile
app was designed to work entirely offline, with forms created using
ODK Collect. Collect permits data entry offline, storing data lo-
cally until it is uploaded when internet connectivity becomes avail-
able. Enumerators thus were able to use the app’s full functionality
without an internet connection, making this a disconnected con-
nectivity model.

3.3.2 Tuberculosis Test Results
Data was entered on PDAs using Pendragon Forms. This did

not require connectivity until data was uploaded at a central office.

26

This is a disconnected model, as full functionality did not require
a connection.

3.3.3 Supply Chains Using Mobile Phones
The authors of the supply chain intervention took great care to

ensure that their mobile devices would accommodate a discon-
nected connectivity model. After an initial download, data is per-
sisted locally. Service degrades gracefully, defaulting to SMS data
transfer if an internet connection is not available, and allowing full
offline entry if neither SMS or data is available.

3.3.4 Chimpanzee Monitoring
The mobile tool for the JGI was designed from the outset to em-

brace a disconnected connectivity model. Data can be collected
entirely offline and only requires an internet connection to send
data to a server.

3.3.5 Aid Distribution
The aid distribution deployment requires a connected connectiv-

ity model. Distribution cannot follow screening without first aggre-
gating all the data centrally, pairing beneficiaries with a debit card,
and downloading this new information to all the devices. Further,
without a connection workers cannot prevent double distribution—
a beneficiary might visit two distribution stations.

3.4 Edit Model
Data edits within a deployment can also be characterized as non-

transactional or transactional. Transactional data is data where ed-
its are dependent on one another. The order of edits matter and
are conceived of as a unit. Non-transactional data is data where
the order does not matter and edits are independent of each other.
For example, records of medical visits are non-transactional. Each
record refers to a separate visit. Reports may be submitted out of
order and remain coherent. Transactional data, meanwhile, places
stricter requirements on ordering. An example is financial data,
where a sequence of withdrawals and deposits must be ordered to
ensure that the balance is sufficient to address subsequent requests.

3.4.1 Longitudinal HIV Study
The HIV study treats data entry as a sequence of reports. The six

month follow up is not dependent on the six week follow up. This
is a non-transactional edit model.

3.4.2 Tuberculosis Test Results
Again each collected data point is isolated and independent of

the others, making this a non-transactional edit model.

3.4.3 Supply Chains Using Mobile Phones
In this case data collected from pharmacists consists of stock

counts and stock disbursements. This data is only useful if ordered.
If all stock disbursements were sent two days late, the functionality
of the bulletin board system would be severely impacted. Conse-
quently this deployment requires a transactional edit model.

3.4.4 Chimpanzee Monitoring
Data is collected about each time point and is independent of the

others, making this a non-transactional edit model.

3.4.5 Aid Distribution
A cagey beneficiary might try and cheat the system by visiting

two distribution systems in order to receive double aid disburse-
ment. This implies that ordering matters and edits are not indepen-
dent of each other, making this a transactional edit model.

3.5 Server Requirements
Broadly speaking, the server requirements for a mobile deploy-

ment can be bucket-based or processed. Bucket-based servers are
the simplest, acting as receptacles or sources for data. Processed
servers are everything else. This distinction is purposefully broad,
as the moment a server stops being bucket-based it becomes signifi-
cantly more complicated. Bucket-based servers are those where all
form data is submitted to a single location or pulled from a single
location. Processed servers might serialize data for consumption or
analyze data and perform notifications. Bucket-based server work-
flows can be replicated with a wide variety of tools, while processed
servers require more customization and configuration.

3.5.1 Longitudinal HIV Study
This is a classic bucket-based server configuration. Data from

each form is sent to a table on a server. No processing is re-
quired. The forms are written using ODK Collect and the bucket-
based workflow is facilitated by ODK Aggregate, which serves as
a bucket for form data.

3.5.2 Tuberculosis Test Results
This deployment uses Pendragon Forms to send data to an Oracle

database. A module was added to the back-end that supported vali-
dation of submitted data, highlighting errors in red. This represents
a processed server requirement.

3.5.3 Supply Chains Using Mobile Phones
The server in this deployment performs a number of tasks. It

supports bidirectional data flow of JSON data to the Java feature
phone application, it synthesizes data and presents it on a helpful
bulletin board, and it sends broadcasts to registered users of crit-
ical events. This represents a high degree of customization and
configuration and demonstrates what can be accomplished with a
processed server.

3.5.4 Chimpanzee Monitoring
Data is collected locally and sent to the server. Nothing is re-

quired of the server beyond being a receptacle for data, making it
bucket-based.

3.5.5 Aid Distribution
Screening and distribution data is entered using a digital form

and submitted using a bucket-based server configuration.

4. DISCUSSION
The power of the DUCES framework is twofold. First, it pro-

vides a schema by which to understand the requirements of a mo-
bile deployment. Second, it provides a means by which to simplify
a deployment.

4.1 Understanding
DUCES permits deep insight into the requirements of mobile

deployments in low-resource settings. With appropriately scoped
requirements, solutions can be created by leveraging existing tech-
nology. With sufficient technical knowledge and resources, custom-
built solutions can be created to meet any set of requirements. Elec-
tronic medical record systems have been deployed successfully on
custom technology using commercial-quality servers and custom
work stations in Haiti for thousands of patients [11]. Touchscreen
PCs running custom software have been used in Malawi to improve
point of care treatment and provide immediate reporting to doctors
in the field [5]. These are testaments to the potentially transforma-

27

tive power of technology, but unfortunately such technical feats are
not available to a number of organizations with fewer resources.

A crucial observation is that the axes of design underpinning
DUCES do not exist in isolation. A bidirectional data flow might
affect server requirements, for instance, perhaps necessitating a
processed configuration. The supply chain case study used bidirec-
tional data flow to send lists of items and alerts to mobile phones.
Consequently they required a processed server to synthesize data
and generate alerts as well as to present a list of items to mobile
phones in a specialized format (JSON). Unfortunately, however,
there are no hard and fast rules when reasoning about the impacts
of architectural decisions. The aid distribution case study, for ex-
ample, similarly uses a bidirectional data flow but manages to use
a bucket-based server. This seeming contradiction is one example
of why it can be difficult for organizations to hone their intuitions
surrounding technology requirements.

Why the discrepancy? In short, the supply chain case study re-
quired logic on the server that would create events and broadcast
them to registered devices. It also needed to expose data using a
custom format—JSON—that could be consumed by devices. The
aid distribution study, meanwhile, was implemented using ODK
Survey and Aggregate, which supports an out-of-the-box bucket-
based server for producing and consuming data. This is difficult to
recognize prima facie without extensive knowledge of the capabili-
ties of the tools being used to implement the study. For deployment
architects without a strong technical background, this will be an
especially difficult conclusion to draw.

Instead, DUCES claims that the most easily satisfied configura-
tion is unidirectional, form-based, connected, non-transactional,
and bucket-based. If a set of requirements can be modeled using
this configuration, it will be more likely to be managed successfully
without outside technical resources. Deviations from this model
will create additional dimensions and edge cases that will compli-
cate the deployment and potentially require technical assistance.

For example, consider trying to support transactional data using
a disconnected workflow. In the aid distribution scenario, the edit
model is transactional. This is necessary as it is important that aid
is not distributed twice to the same beneficiary. If errors cannot be
tolerated, this requires a connected connectivity model. This is a
familiar problem in distributed systems, as it is essentially an ex-
tension of the CAP theorem [6]. The CAP theorem states that a
system cannot be partition tolerant, available, and provide a con-
sistent view of the data simultaneously. In the context of the aid
distribution case study, no worker would be able to become discon-
nected (essentially partitioning the network) while the other users
are able to maintain a consistent view of the data (not double dis-
tributing) but not have to wait for all users to reconnect. This high-
lights a fundamental tension between a transactional edit model and
disconnected workflows. The supply chain case study was able to
use both transactional data and a disconnected workflow by adding
processing logic to their server and, in the worst case, simply toler-
ating late data that was no longer actionable. This was acceptable
in their deployment and was a necessary concession to support dis-
connected operation.

DUCES also provides insight into why mobile deployments in
low-resource settings are fundamentally challenging. The simplest
configuration can be at odds with the realities of the environment.
It is common for many deployments to require disconnected oper-
ation, for instance, because they occur in regions without reliable
data connectivity. As we have seen, this complicates the handling
of transactional data but is simply unavoidable in some settings. To
take another example, the chimpanzee monitoring study required a
non-form-based workflow to be effective. The JGI had previously

tried to encode the workflow using traditional form-based building
tools without success. In the end they required a custom solution
that could support their non-form-based workflow.

4.2 Simplification
DUCES can also be used to guide the simplification of mobile

deployments. It posits that deviations from the simplest configura-
tion of unidirectional, form-based, connected, non-transactional,
and bucket-based will invite technical complications that may be
insurmountable without the aid of a developer.

For example, bidirectional data flow is more difficult to support
than unidirectional data flow. If a bidirectional data flow require-
ment can be loosened to a unidirectional data flow, this will have
positive ramifications for the sustainability of the deployment. In
many cases it is easier to alter the requirements of a deployment
than to devise a sophisticated technological solution that will add
complexity and hurt sustainability. We now discuss the five case
studies in the context of simplification using the DUCES frame-
work.

4.2.1 Longitudinal HIV Study
This study has been running successfully for over 24 months in

a hospital in Kenya. The researchers first requested a bidirectional
data flow and a processed server model. Five to ten phones were to
be shared between enumerators and used to screen participants and
perform follow up interviews. The researchers had previously seen
enumerators make errors typing subject identifiers, making it diffi-
cult to perform post-hoc analysis. They reasoned that bidirectional
data flow would allow all participant records to exist on all phones.
Whenever a participant was contacted for follow up, enumerators
would not have to re-type the identifier, reducing the likelihood of
errors.

However, supporting bidirectional data flow would complicate
requirements. First, the server would have to support presenting
captured data in a machine-consumable way, similar to how the
supply chain example provided JSON. Second, it might require au-
thentication and access control to prevent the collected HIV data
from being visible to non-study devices. Third, enumerators would
have required a stable internet connection at headquarters before
leaving for the field. If a connection issue interrupted the bidirec-
tional data flow, the flow might be interrupted.

Instead, the study designers were able to refine their study pro-
cedures to work within the confines of a unidirectional data flow.
Enumerators were made responsible for the same cohort of patients
and assigned specific devices rather than a shared device. This
greatly increased the likelihood that a participant would already
be present on the device without requiring bidirectional data flow.
However, participants might still be seen for follow up interviews
on devices that were not used to screen them. This might occur
if the screening device was lost or stolen or if they were visited
by a new enumerator for logistical reasons. To accommodate this
eventuality, the follow up workflow was modified to allow entering
an existing patient identifier. This was not completely in-line with
the original requests of the researchers, as they requested that the
identifier not be entered manually more than once, but with the ad-
vent of individually assigned devices the likelihood of a manually
entered identifier was less common and was deemed acceptable.

A processed server was desired to calculate when participants
were due for follow up visits. This information would be gener-
ated each morning and provided to study coordinators. Automat-
ing this task would not be complicated for a computer scientist,
but the smooth operation of the study would depend on this task
functioning without interruption. This might prove difficult with-

28

out a technical staff capable of supporting the server. Instead, the
researchers directed study staff to manually review the data on the
bucket-based server and generate a list of follow up participants
each day by hand. This might seem less than elegant to a computer
scientist, but it is much more sustainable with local talent.

In this way a bidirectional, processed workflow was transformed
and simplified to use a unidirectional, bucket-based workflow. These
simplifications are a large part of the reason that the study has re-
mained in successful operation with limited involvement from out-
side technical staff for over two years.

4.2.2 Tuberculosis Test Results
The authors were not involved in this deployment, so DUCES

will be used to describe how the deployment might have been fur-
ther simplified from its current incarnation rather than how it was
simplified in practice. The configuration was almost an ideal DUCES
configuration, being unidirectional, form-based, disconnected, and
non-transactional. The server, however, was processed, perform-
ing validation logic and displaying it as a web page. This required
adding a module to an Oracle back end managed by an NGO [2].

Although the authors do not state it, this likely required a de-
veloper with the technical ability to create a web page and encode
validation logic. This processed server requirement may have been
able to yield to an unprocessed server if server-side validation was
not automated. Instead, data could have been exported to a for-
mat like comma-separated values (CSV) that can be consumed by
a number of programs. At that point it could be manually vali-
dated by a staff member, or validation logic could be encoded in
a Microsoft Excel worksheet rather than a web page. This would
slow the cycle of validation but would not require web program-
ming skills. Alternatively, validation logic is supported by a num-
ber of form-based data entry tools. The researchers could instead
have performed validation upon data entry rather than during server
auditing. Both of these solutions would yield a near optimal con-
figuration under the DUCES framework.

4.2.3 Supply Chains Using Mobile Phones
This deployment serves as a testament to the rich functionality

that can be achieved using custom solutions. A custom Java appli-
cation for feature phones communicated with a custom processed
server capable of performing analysis and broadcasting alerts to
users. Here again the authors were not involved with the deploy-
ment, so application of the DUCES framework will be aim to demon-
strate how an organization with less technical resources might try
to replicate the success of this workflow.

First, the non-form-based workflow for feature phones could be
replaced by a form-based data entry tool for smart phones. As dis-
cussed in Section 3.2, a number of form-based data entry tools have
been designed to support use by non-programmers.

The processed server model is crucial to this deployment. The
authors of the study argue that consumers of the information sub-
mitted by the mobile devices are too busy to synthesize the reports
without automation. This domain knowledge suggests that simply
converting to a bucket-based server model is inappropriate. The
authors also note explicitly that their edit model is transactional
and that their mobile application functions offline. It is informa-
tive to look at how they circumvent the requirement put forth in
Section 4.1 that transactional workflows require connectivity.

The answer is twofold. First, they apply server-side processing
to deduplicate and process errors that are created as a result of net-
work errors. Second, although their data is transactional, they are
able to tolerate errors. In terms of the CAP theorem, they are able
to tolerate a loss in consistency as long as the system remains avail-

able during periods of no data connectivity. The ramifications for
the deployment are that events might not be shown on their web-
based bulletin board in real-time. A stock out might be reported
late, but this is likely uncommon and is thus deemed acceptable.

4.2.4 Chimpanzee Monitoring
The chimpanzee monitoring case study attains a near-optimal

DUCES configuration. It fails by being non-form-based and dis-
connected. In reality the only simplification that might be afforded
by a connected model would be that a wider variety of tools could
be used to implement the framework. This would thus accommo-
date a wider range of user interface components and back ends,
including potentially a web-based application. Practical implica-
tions of this change are low due to the fact that the data is non-
transactional and thus ordering is not significant.

Arriving at this configuration was straight-forward, as the JGI
was seeking to replace an existing paper workflow. It is important
to note that the non-form-based workflow necessitated the involve-
ment of the assistance of developers, which is an added techni-
cal burden. The JGI has extensive experience creating form-based
workflows, but the creation of a non-form-based workflow requires
an additional skill set. In this case the DUCES framework did not
simplify the deployment, but it did clearly delineate where external
resources would be required.

4.2.5 Aid Distribution
The aid distribution case study was bidirectional, form-based,

connected, transactional, and bucket-based. In the HIV case study,
the bidirectional data requirement was able to be eliminated by hav-
ing participants ideally interact with only a single device, obviating
the need to share data between multiple devices. This was not pos-
sible in the aid distribution case study, as the nature of the distri-
bution environment required that beneficiaries not be confined to
an individual device. With this requirement, tools immediately had
to be chosen that could support bidirectional data flow. This elim-
inated some possibilities like Pendragon Forms, Magpi, and ODK
Collect, which support only unidirectional data flows.

A connected connectivity model was required to accommodate
the transactional nature of the data. In this case, if connectivity was
lost, workers might see an inconsistent view of the data. In other
words, a beneficiary may have received aid from one disconnected
distribution station and then received aid from a second station that
was not aware aid had already been distributed. To prevent this, the
system required a connected model. This would in turn require that
whatever tools were used to implement the deployment support an
online, connected workflow. However, this requirement was able
to be circumvented by the real-world details of the aid distribution.

In this case the aid itself was a debit card that had been uniquely
assigned to each beneficiary. Once distributed, it could not be dis-
tributed again, preventing double distribution. This relaxes the re-
quirement slightly, although at the cost of masking errors during
distribution. Coordinators would know a card was missing, but
they would not know if it had already been given to the correct
recipient or had simply been lost or misplaced. Further, this ap-
proach would not accommodate distribution of goods that were not
uniquely paired to beneficiaries.

5. CONCLUSION
Mobile devices are increasingly integrated into the workflows of

organizations working in low-resource settings. We have presented
the DUCES framework as a means to elucidate the requirements
of data-focused mobile deployments. We have described five case
studies with varying aims and requirements and discussed how they

29

can be evaluated under the DUCES framework, permitting both
a meaningful understanding of requirements and guiding simpli-
fying assumptions. Using this framework, deployment architects
can start to identify what requirements will add significant com-
plexity. This in turn facilitates the selection of technologies. If a
deployment requires bidirectional data flow and that requirement
cannot be loosened, technologies that do not support bidirectional
data flow can be discounted immediately.

It is important to note that the DUCES framework is not simply
an attempt at formalizing a series of known tradeoffs in system de-
sign. For example, encrypting data can result in decreased usability
while increasing data security. DUCES instead provides a mental
scaffold by which a single set of requirements can be described
and satisfied in a number of different ways. A processed server
might require a custom-built solution with a custom database and a
suite of scripts running every night. It instead might be transformed
into a bucket-based server by having an administrator copy rele-
vant rows between data sinks and data sources. This would seem
an ugly solution to a computer scientist that prefers to automate
all tasks. However, it would elegantly allow a lightly skilled de-
ployment architect to compose simple tools in a powerful way that
meets the needs of their deployment while remaining comfortably
within their skill set.

Some things will always remain difficult in mobile deployments
conducted by organizations and groups with limited resources. Trans-
ferring data between back-ends is a prime example. Inputting data
collected into another system will always be difficult. No choice of
tools will completely allay this difficulty unless a programmer has
already taken the time to create a method by which data can be ex-
ported in a form consumable by the tool in question. Organizations
are better off recognizing that this will require technical expertise
than they are limiting their technological solutions to one that will
be compatible with their current target repository out of the box.

The DUCES framework provides a useful set of considerations
for architects of mobile deployments and data-based workflows.
The framework can be applied to all systems, but it is most effec-
tive when considered by deployment architects operating in low-
resource settings. In these environments DUCES can be used to
re-imagine requirements in ways that will make mobile workflows
easier to deploy and maintain. The DUCES framework is a valu-
able tool that organizations in low-resource settings can use to char-
acterize and simplify their data-focused mobile deployments.

6. ACKNOWLEDGMENTS
The authors would like to thank USAID, NSF Grant IIS-1111433,

the Jane Goodall Institute, the IFRC of the Americas, and the open
source community that made this work possible.

7. REFERENCES
[1] Edwin H Blake. 2002. Extended abstract a field computer for

animal trackers. CHI 02 extended abstracts on Human
factors in computing systems CHI 02 (2002), 532. DOI:
http://dx.doi.org/10.1145/506461.506466

[2] Joaquín a. Blaya, Ted Cohen, Pablo Rodríguez, Jihoon Kim,
and Hamish S F Fraser. 2009. Personal digital assistants to
collect tuberculosis bacteriology data in Peru reduce delays,
errors, and workload, and are acceptable to users: cluster
randomized controlled trial. International Journal of
Infectious Diseases 13, 3 (2009), 410–418. DOI:
http://dx.doi.org/10.1016/j.ijid.2008.09.015

[3] Waylon Brunette, Mitchell Sundt, Nicola Dell, Rohit
Chaudhri, Nathan Breit, and Gaetano Borriello. 2013. Open

Data Kit 2.0: Expanding and Refining Information Services
for Developing Regions. HotMobile ’13 (2013), 6. DOI:
http://dx.doi.org/10.1145/2444776.2444790

[4] Kuang Chen, Akshay Kannan, Yoriyasu Yano, Joseph M.
Hellerstein, and Tapan S. Parikh. 2012. Shreddr: pipelined
paper digitization for low-resource organizations. ACM DEV
’12 (2012), 1. DOI:
http://dx.doi.org/10.1145/2160601.2160605

[5] Gerald P. Douglas, Oliver J. Gadabu, Sabine Joukes, Soyapi
Mumba, Michael V. McKay, Anne Ben-Smith, Andreas
Jahn, Erik J. Schouten, Zach Landis Lewis, Joep J. van
Oosterhout, Theresa J. Allain, Rony Zachariah, Selma D.
Berger, Anthony D. Harries, and Frank Chimbwandira. 2010.
Using Touchscreen electronic medical record systems to
support and monitor national scale-up of antiretroviral
therapy in Malawi. PLoS Medicine 7, 8 (2010). DOI:http:
//dx.doi.org/10.1371/journal.pmed.1000319

[6] Armando Fox and Eric Brewer. 1999. Harvest, yield, and
scalable tolerant systems. Proceedings of the Seventh
Workshop on Hot Topics in Operating Systems (1999). DOI:
http://dx.doi.org/10.1109/HOTOS.1999.798396

[7] Hamish SF Fraser, Christian Allen, Christopher Bailey,
Gerry Douglas, Sonya Shin, and Joaquin Blaya. 2007.
Information Systems for Patient Follow-Up and Chronic
Management of HIV and Tuberculosis: A Life-Saving
Technology in Resource-Poor Areas. Journal of medical
Internet research 9, 4 (2007).

[8] Abhishek Gupta, Jatin Thapar, Amarjeet Singh, Pushpendra
Singh, Vivek Srinivasan, and Vibhore Vardhan. 2013.
Simplifying and improving mobile based data collection.
ICTD ’13 - volume 2 (2013), 45–48. DOI:
http://dx.doi.org/10.1145/2517899.2517929

[9] Paul Harris, Robert Taylor, Robert Thielke, Jonathon Payne,
Nathaniel Gonzalez, and Jose Conde. 2009. Research
electronic data capture (REDCap)-A metadata-driven
methodology and workflow process for providing
translational research informatics support. Journal of
Biomedical Informatics 42, 2 (2009), 377–381. DOI:
http://dx.doi.org/10.1016/j.jbi.2008.08.010

[10] Carl Hartung, Yaw Anokwa, Waylon Brunette, Adam Lerer,
Clint Tseng, and Gaetano Borriello. 2010. Open Data Kit:
Tools to Build Information Services for Developing Regions.
Proceedings of the International Conference on Information
and Communication Technologies and Development (2010).
DOI:http://dx.doi.org/10.1145/2369220.2369236

[11] William B. Lober, Stephen Wagner, and Christina Quiles.
2010. Development and implementation of a loosely
coupled, multi-site, networked and replicated electronic
medical record in Haiti. ACM SIGOPS Operating Systems
Review 43, 4 (2010), 79. DOI:
http://dx.doi.org/10.1145/1713254.1713272

[12] Arun Ramanujapuram and Anup Akkihal. 2014. Improving
Performance of Rural Supply Chains Using Mobile Phones:
Reducing Information Asymmetry to Improve Stock
Availability in Low-resource Environments. ACM DEV
(2014), 11–19.

[13] Samuel Sudar, Saloni Parikh, Mitchell Sundt, and Gaetano
Borriello. 2013. ODK Tables : Case Studies in Deployment.
(2013), 12–14. DOI:
http://dx.doi.org/10.1145/2537052.2537077

30

http://dx.doi.org/10.1145/506461.506466
http://dx.doi.org/10.1016/j.ijid.2008.09.015
http://dx.doi.org/10.1145/2444776.2444790
http://dx.doi.org/10.1145/2160601.2160605
http://dx.doi.org/10.1371/journal.pmed.1000319
http://dx.doi.org/10.1371/journal.pmed.1000319
http://dx.doi.org/10.1109/HOTOS.1999.798396
http://dx.doi.org/10.1145/2517899.2517929
http://dx.doi.org/10.1016/j.jbi.2008.08.010
http://dx.doi.org/10.1145/2369220.2369236
http://dx.doi.org/10.1145/1713254.1713272
http://dx.doi.org/10.1145/2537052.2537077

	1 Introduction
	2 Case Studies
	2.1 Longitudinal HIV Study
	2.2 Tuberculosis Test Results
	2.3 Supply Chains Using Mobile Phones
	2.4 Chimpanzee Monitoring
	2.5 Aid Distribution

	3 The DUCES Framework
	3.1 Data Flow
	3.1.1 Longitudinal HIV Study
	3.1.2 Tuberculosis Test Results
	3.1.3 Supply Chains Using Mobile Phones
	3.1.4 Chimpanzee Monitoring
	3.1.5 Aid Distribution

	3.2 User Interface
	3.2.1 Longitudinal HIV Study
	3.2.2 Tuberculosis Test Results
	3.2.3 Supply Chains Using Mobile Phones
	3.2.4 Chimpanzee Monitoring
	3.2.5 Aid Distribution

	3.3 Connectivity Mode
	3.3.1 Longitudinal HIV Study
	3.3.2 Tuberculosis Test Results
	3.3.3 Supply Chains Using Mobile Phones
	3.3.4 Chimpanzee Monitoring
	3.3.5 Aid Distribution

	3.4 Edit Model
	3.4.1 Longitudinal HIV Study
	3.4.2 Tuberculosis Test Results
	3.4.3 Supply Chains Using Mobile Phones
	3.4.4 Chimpanzee Monitoring
	3.4.5 Aid Distribution

	3.5 Server Requirements
	3.5.1 Longitudinal HIV Study
	3.5.2 Tuberculosis Test Results
	3.5.3 Supply Chains Using Mobile Phones
	3.5.4 Chimpanzee Monitoring
	3.5.5 Aid Distribution

	4 Discussion
	4.1 Understanding
	4.2 Simplification
	4.2.1 Longitudinal HIV Study
	4.2.2 Tuberculosis Test Results
	4.2.3 Supply Chains Using Mobile Phones
	4.2.4 Chimpanzee Monitoring
	4.2.5 Aid Distribution

	5 Conclusion
	6 Acknowledgments
	7 References

