
Open Data Kit 2.0: A Services-Based Application
Framework for Disconnected Data Management

Waylon Brunette, Samuel Sudar, Mitchell Sundt, Clarice Larson, Jeffrey Beorse, Richard Anderson
Department of Computer Science and Engineering

University of Washington
Box 352350, Seattle, WA 98195

{wrb, sudars, msundt, clarice, jbeorse, anderson}@cse.uw.edu

ABSTRACT
In resource-constrained communities, organizations often use in-
formation and communication technologies to amplify their limited
resources to improve education, health, and economic opportunity.
Over two-thirds of the world’s population have mobile phones, yet
less than half are connected to the Internet [23]. Organizations
helping disadvantaged populations often rely on mobile devices
as their primary computing resource because of their availability
in resource-constrained contexts. However, to reach under-served
populations, mobile applications often operate in areas with no
connectivity or challenged network environments. Unfortunately,
many mobile application frameworks are generally not well-suited
for long periods of disconnected data collection and management.
Furthermore, mobile application frameworks are generally aimed
at users with significant technical skills and resources. In this pa-
per, we discuss our experiences building, deploying, and refining
the Open Data Kit (ODK) 2.0 tool suite. ODK 2.0 is a modular ap-
plication framework that facilitates organizations with limited tech-
nical capacity to build application-specific information services for
use in disconnected environments. We discuss ODK 2.0’s flexible
abstractions that enable users of varying technical skill levels to cre-
ate customizable mobile data management solutions. We present
ODK 2.0 case studies involving multiple organizations and discuss
lessons learned from building a service-based mobile application
framework for disconnected data management.

Keywords
Open Data Kit; ICTD; mobile application framework; disconnected
operation; mobile databases; mobile data management

1. INTRODUCTION
Organizations focused on improving education, health, and eco-

nomic opportunity in under-served communities often operate in
areas with limited resources, power, connectivity, and infrastruc-
ture. According to a 2016 World Bank report, over 90% of the
world’s population live within mobile network coverage [23] mak-
ing mobile computing technologies one of the few technologies

MobiSys’17 June 19-23, 2017, Niagara Falls, NY, USA
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4928-4/17/06.

DOI: http://dx.doi.org/10.1145/3081333.3081365

well suited for use in global development interventions. There-
fore, organizations often rely on the mobile phone as their primary
computing device. While over two-thirds of the world’s popula-
tion have mobile phones, less than half the world’s population are
connected to the Internet [23]. This scenario where billions of peo-
ple have mobile phones but lack consistent Internet connectivity
will likely continue for years. Thus, organizations helping disad-
vantaged populations need to rely on mobile applications that can
operate in disconnected environments.

Various research projects focus on improving Internet connec-
tivity by extending infrastructures (e.g., long distance WiFi, village
base stations). However, a parallel approach is needed that focuses
on creating abstractions and frameworks for mobile applications to
operate in challenged network environments until affordable, uni-
versal connectivity is a reality. Unfortunately, many mobile appli-
cation frameworks are generally designed for relatively short pe-
riods of disconnected operation as they often only include basic
offline features with limited caching. Furthermore, existing mo-
bile application frameworks generally require programming skills
and focus on features for programmers, such as platform indepen-
dence across multiple mobile operating systems (e.g., iOS, An-
droid). However, in resource-limited settings there is often a short-
age of qualified programmers and limited funds to hire consultants.

Open Data Kit (ODK) [9, 20] is a mobile tools suite that operates
in disconnected environments with abstractions that lower technical
barriers. ODK enables governments, organizations, and individuals
to use technology to "magnify their human resources" and has ex-
perienced widespread adoption. ODK’s website has received over
700,000 unique visitors from 232 different countries/territories and
averages over 30,000 hits a month. ODK’s 1.x toolkit [20] is a suc-
cessful data collection platform enabling users to collect millions
of data points for a diverse set of domains (e.g., health, election
monitoring, disaster response). Over 210,000 users have installed
ODK Collect according to Google Play (excludes ODK derivative
apps distributed by other companies or installations directly from
the ODK website). Analytics reports ODK Collect is used daily by
thousands of users in over 130 distinct countries. However, ODK
1.x’s uni-directional data flow, linear navigation, and limited data
types of Java-Rosa’s XForm standard constrained its applicability
to certain categories of use cases. While ODK 1.x was designed to
enhance and replace paper-based data collection, the focus on sim-
plicity left certain requirements unmet. The 2.0 tool suite [9] ex-
panded ODK features to include two-way data synchronization, a
local database for disconnected operation, runtime modifiable user
interfaces, and a platform for customizable user applications.

Based on feedback from ODK 2.0 pilot deployments in over
18 countries by a variety of organizations, the 2.0 tool suite went
through a significant redesign from the original ODK 2.0 vision [9].

440

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


This paper summarizes the constraints and feedback that drove the
revision. ODK 2.0 was redesigned as a modular service-oriented
architecture, comprised of six tools, with framework abstractions
that were flexible enough to empower users of varying technical
skill levels to build mobile data management applications tailored
to their specific use cases. ODK 2.0 aims to create a data manage-
ment platform for resource-constrained environments that provides
greater functionality than the ODK 1.x’s data collection platform.

This paper discusses ODK 2.0’s revised framework and presents
the design considerations that led to its evolved modular service-
based architecture for disconnected data management. We describe
how system design decisions were influenced by the challenged
network environments and resource-constrained contexts. We ex-
amine the implications of the revised architecture and show it had
relatively minimal impact on performance. We also share feed-
back from multiple organizations that experienced limitations with
1.x and participated in ODK 2.0 pilots and discuss how the revised
framework has better met their deployment requirements.

2. DESIGN CONSIDERATIONS
The ODK 2.0 tool suite provides an Android application frame-

work that reduces the complexity organizations face when creating
a mobile data management application. Organizations in resource-
constrained environments often lack the technical personnel or re-
sources to build and customize information systems. Instead, orga-
nizations commonly use productivity software (e.g., Excel, Word)
to create solutions customized to their domain and context. Mi-
crosoft Office is an example of software that is adaptable to mul-
tiple domains by users with no programming expertise. Unfor-
tunately, productivity software is often designed for conventional
personal computers which are usually poorly suited to resource-
constrained environments. While personal-computer-based produc-
tivity applications generally have a broad focus for domain utility,
mobile apps (Android native executable applications that will be
referred to as ‘apps’ for the scope of this paper) tend to reduce their
scope to a single task (e.g., calendar, maps, email) and often lack
customization features.

ODK 2.0 enables creation and customization of domain indepen-
dent mobile applications that address organization’s needs within
constraints imposed by Android. ODK 2.0’s synchronization pro-
tocols and structures are designed to be adaptable in extreme mo-
bile networking conditions, such as long periods of disconnection
or low bandwidth and high latency. ODK 2.0 replicates data to the
mobile devices, enabling the framework to preserve full function-
ality in disconnected environments.

ODK takes a multi-perspective approach to the creation of cus-
tomizable abstractions for varying contexts [10]. The platform per-
spective incorporates the device and operating system perspective
on aspects such as connectivity, power, features, and mobility. The
application developer perspective encompasses the features and
functionality of an ‘app’ that executes on a specific platform. It also
incorporates the perspective of the software developer who writes
the ‘app’. The developer’s choices about what functionality and
platform features to expose constrain how the ‘app’ can be used.
Unfortunately, developers likely do not fully understand how fu-
ture users will want to deploy the framework in different contexts
with varying connectivity, budgets, laws, data policies, user edu-
cation level, etc. Therefore, ODK focuses on creating frameworks
that give flexibility to a deployment architect who has an appli-
cation deployment perspective that encompasses issues relating to
contextual deployment requirements that are often dynamic.

We identify the deployment architect as the non-programmer or
programmer with limited technical skills who adapts an ensemble

of off-the-shelf software (e.g., ODK 2.0) to create a data manage-
ment application. Unlike standard reusable model-view-controllers,
ODK attempts to create abstractions usable by deployment archi-
tects emulating productivity software that targets non-software de-
velopers. In addition to deployment architect, other ODK users
are often site managers, supervisors, and data collectors that use
the configured data management platform to complete their tasks.
For an organization to successfully implement a mobile application
in a resource-constrained context, deployment architects must be
able to scale their applications. ODK tool suites leverage commer-
cial cloud offerings and Android’s common APIs to simplify an
organization’s ability to scale. Building on Android OS enables or-
ganizations to easily purchase a diverse set of commercially avail-
able smartphones and tablets with varying form factors, battery life,
ruggedness, and prices. While there is a notion that the cloud “ef-
fortlessly scales,” in reality there are complex technical issues han-
dled by an army of software engineers at cloud companies (e.g.,
Amazon, Microsoft). ODK 2.0’s cloud-based components leverage
this army and work in concert with ODK’s Android application
framework with non-programmer abstractions to insulate the de-
ployment architect from technical details so that organizations can
“effortlessly scale” their mobile data management applications.

2.1 Limitations of ODK 1.x
The ODK 1.x tool suite is a successful data collection platform

used by many organizations to digitize their data collection in the
field. The system design focuses on collecting data via digital sur-
veys that are then aggregated in the cloud or on a PC for analysis.
However, ODK 1.x’s purposeful simplicity to enable a deployment
architect to replace paper data collection with mobile data collec-
tion meant the tool suite lacked features for certain use cases.

To illustrate, consider the common scenario in which organiza-
tions use previously collected data to influence their next action
when revisiting a specific location. Examples of such a scenario in-
clude logistics management, patient follow-up in medical care, and
environmental monitoring. In these scenarios, users often return
to locations and reference previously collected data that they either
verify or update. Each visit may require field workers to complete
multiple forms, produce multiple data records, and/or require mul-
tiple review steps. Each phase may draw upon data collected during
any other phase or data found in supporting information tables, this
data needs to be available even when disconnected. Revisiting data
from previous surveys is not supported in ODK 1.x.

The multi-visit scenario requires bidirectional synchronization
of data, support for complex workflows, references or updates to
previously collected data, and security and data isolation for spe-
cific users. Working with partner organizations, we constructed a
list of common requirements that were not met by the 1.x tools.
These were discovered both through initial design sessions as well
as lessons learned from field deployments. Some key requirements
for ODK 2.0 that were beyond the scope of ODK 1.x include:

• Complex / Non-Linear Workflows
• Linking Longitudinal Data to Collected Data
• Data Security and User Permissions
• Reuse of Data Fields across Forms
• Bidirectional Synchronization
• Customizable Form Presentation
• Custom Apps Built with a Runtime Language (JavaScript)
• Sensor Integration
• Paper Digitization
• Custom Data Types that Update Multiple Fields in a Single

User Action

441



To meet these requirements, ODK 2.0 expands its scope from ODK
1.x’s data collection platform to a data management platform. A
mobile “data management application” (designated as an ‘appli-
cation’ to delineate from the previously defined ‘app’) is the cus-
tomized set of activities created by an organization to perform its
data collection and management workflows to accomplish its busi-
ness objective.

2.2 Design Principles & Features
The ODK 2.0 tool suite is a parallel effort (not a replacement)

to the ODK 1.x tool suite; it provides the general-purpose tools for
a virtually unlimited set of use cases and enables organizations in
resource-constrained environments to build, deploy, maintain, and
ultimately own mobile data management applications and business
logic. While many of the details have evolved, the four design
principles that were outlined in the ODK 2.0 vision paper [9] for
refinement and expansion of ODK remain the same:

1. when possible, UI elements should be designed using a more
widely understood runtime language instead of a compile
time language, thereby making it easier for individuals with
limited programming experience to make customizations;

2. the basic data structures should be easily expressible in a
single row, and nested structures should be avoided when
data is in display, transmission, or storage states;

3. data should be stored in a database that can be shared across
devices and can be easily extractable to a variety of common
data formats;

4. new sensors, data input methods and data types should be
easy to incorporate into the data collection pipeline by indi-
viduals with limited technical experience.

Expanding on these basic design principles, a larger list of fea-
tures were generated based on specific use case requirements. For
example, dynamic value checking based on previous data was re-
quired to improve data integrity which is seen as a key benefit of
digital data collection. Consider agricultural longitudinal studies:
agricultural extension workers visit crops multiple times during a
growing season. They track the progress of the crop to compare
growing conditions and try to improve crop yields. However, the
validation logic in ODK 1.x uses static formulas so it has an abso-
lute min and max that would differ early in the season from later in
the season. Thus, to better support this type of longitudinal study,
ODK 2.0 should allow its data management applications to access
previous crop heights and use dynamic calculations to catch data
anomalies. The following includes a more detailed view of some
of the key design goals of the ODK 2.0 framework.

• Workflow navigation should use intuitive procedural constr-
ucts, function independent of data validation, and allow for
user-directed navigation of the form.

• The presentation layer must be independent of the navigation
and validation logic.

• The presentation layer must be customizable without recom-
piling the Android apps via HTML, JavaScript, and CSS.

• Partial validation of collected data should be possible and the
validation logic should be able to be dynamic.

• Local storage should be robust and performant for data cura-
tion and for longitudinal survey workflows using a relational
data model.

• Multiple data collection forms should be able to modify data
within a single, shared, data table.

• Foreground and background sensors should be supported for
data collection.

• Disconnected operation should be assumed as data must be
able to be collected, queried, and stored without a reliable In-
ternet connection. When the Internet becomes available, the
framework and cloud components should efficiently replicate
data across all devices.

• User and group permissions are needed to limit data access.
• Cloud components should be able to fully configure the data

management application remotely as well preserve a change
log of all collected data.

3. RELATED WORK
A variety of existing solutions and application frameworks at-

tempt to solve varied issues; however, ODK focuses on a certain
class of problems. What distinguishes ODK 2.0 from other solu-
tions is its focus on providing a suite of inter-operable tools that
work together to provide base functionality for a flexible infor-
mation management system. For example, Apache Cordova [1]
(the open-source version of Adobe’s PhoneGap) is a popular open-
source framework for building mobile applications with HTML
and JavaScript. It provides a native plugin-framework to access
hardware features of the mobile device. Many mobile application
frameworks wrap and augment Cordova in other products, such as
Ionic [3] and Intel XDK [2]. Similar to ODK, Cordova uses a cus-
tom native SQLite library; however, Cordova and ODK have dif-
ferent overall focuses. Cordova, designed for programmers, helps
solve the problem of cross compatibility for different OSes (e.g.,
iOS, Android, Windows, BlackBerry, Ubuntu, FireOS) to let pro-
grammers write code once and deploy it on multiple platforms.
ODK 2.0 instead focuses on making it simpler for non-programmers
to create mobile applications specifically for the Android platform.
ODK focuses solely on Android compatible devices because these
devices come in a variety of form factors with different price points,
making Android devices popular in economically constrained envi-
ronments, unlike more expensive iOS devices (Android had more
than 87% world smartphone market share in Q2 2016 [4]).

Computing for global development research has produced multi-
ple mobile application framework research projects. CAM [21],
one of the earliest mobile application frameworks for resource-
constrained environments, used J2ME phones with a custom script-
ing language and barcodes to augment paper forms and trigger cus-
tom prompts for manual data entry. Unfortunately, CAM was tied
to a specific phone model, and while hooks were exposed for cus-
tomization, the custom scripting language was seen as a barrier to
entry as it was a new skill someone had to acquire. In comparison,
ODK 2.0 exposed JavaScript as its customization language to al-
low the tools to have a pre-existing base of trained programmers.
Another early example was the E-IMCI project [15], which used
PDAs as the mobile computing device in resource-constrained en-
vironments to encode complex medical workflows. While E-IMCI
was not customizable, it provided an early example of how mo-
bile computing platforms could improve an organization’s work-
flow in remote locations. The Uju project [22] focused on making
it easier to create database-centric applications for SMS, but, un-
like ODK 2.0, it was not designed to integrate with multiple tools
that obtain data from various inputs (e.g., sensors, paper forms).
The CommCare framework with CaseXML [16] has design goals
similar to ODK; it enables organizations to customize their field
worker’s digital workflows. CommCare operates on both J2ME
and Android devices and uses Collect (an ODK 1.x tool) as the
base for the CommCare Android app by adding custom features
to work with CaseXML. CaseXML lets organizations specify an
application workflow and data exchange, enabling health workers
to share ‘cases’ through synchronization of atomic transaction in

442



an XForm. While CommCare has been a successful platform for
organizations with field healthcare workers, other organizations re-
ported problems adapting CaseXML to other domains. The limita-
tions reported by organizations with CaseXML contributed to the
decision to abandon XForms entirely in the ODK 2.0 design.

Several research projects have tried to simplify mobile develop-
ment by providing abstracted table APIs that assist mobile app pro-
grammers with data management. Two examples of such projects
that build database-table-like schematics are Izzy [19] and Mobius
[12]. Like ODK, Izzy tries to make application development eas-
ier by providing a simple API to access database tables; however,
these APIs are targeted at programmers. Mobius takes a different
approach and presents logical table extractions but uses a unified
messaging scheme for updates. This approach becomes problem-
atic for long periods of disconnected operation, which are expected
to be experienced by ODK 2.0 users.

4. MOBILE FRAMEWORK
The ODK 2.0 tool suite (individual tool names are italicized)

provides a platform for organizations to create customized data
management applications on Android devices. Based on feedback
from multiple pilot deployments (some are described in section 5),
the ODK 2.0 architecture went through a significant redesign to ad-
dress multiple issues. In the first iteration of the architecture, the
modular mobile tools were designed as completely independent ap-
plications that directly accessed a single shared Android database.
The basic concept was that all applications would individually read
and write data directly into a shared database, thereby enabling data
sharing and consistency. Unfortunately, the simplistic design led to
database contention problems, security issues, performance issues,
and limited code reuse. This section presents how the Android ap-
plications in the ODK 2.0 tool suite have been re-architected to
follow a services-based architecture running on the Android de-
vice. Key aspects of the architecture are: 1) Modular Design –
individual Android tools designed for particular tasks that, used in
concert, can achieve complex behaviors, 2) Data and Configuration
Management – the storage, sharing and protection of configuration
and data across mobile devices and cloud components, 3) Synchro-
nization Protocol – designed to adaptable in extreme networking
conditions, 4) Services Architecture – common functionality con-
solidated into a unifying services layer.

4.1 Modular Design
The ODK 2.0 framework seeks to satisfy an organization’s spe-

cific usage scenario through the composition of narrowly focused
tools rather than a single monolithic app. An app that tries to pro-
vide abstractions for every usage scenario can be overwhelming, so
ODK tools focus on a singular task and are designed to smoothly
transition between one another to give the feel of unified applica-
tion. The six apps shown in Figure 1 each contribute abstractions
to specific areas: Scan the paper digitization framework, Tables
the data curation framework, Survey the question rendering and
constraint verification framework, Sensors the device connection
framework, Services the common data services framework, and
Submit the communication framework. To fulfill complex require-
ments, the deployment architect uses the necessary subset of tools
in concert to build a customized data management application.

4.1.1 Services
The Android Services app contains common services that are

used by all ODK 2.0 apps running on the mobile device. One of
the key components of Services is the database service that ab-
stracts database access to a single shared interface that enables the

enforcement of consistency semantics and data-access restrictions.
Services also exposes interfaces to other shared functionality, in-
cluding a lightweight web server, user authentication, framework
preferences, and the cloud synchronization protocol. The ODK 2.0
the synchronization protocol is discussed in Section 4.3 and the
service-oriented architecture is discussed in detail in Section 4.4.

4.1.2 Survey
Survey focuses on data collection through the use of questions.

Users progress through question prompts as they capture data, sim-
ilar to the flow of an ODK 1.x form. However, departing from
the 1.x model, JavaScript and HTML are used to define a suite of
prompt widgets and to encapsulate the rendering, event handling,
and form navigation logic required for data collection. The presen-
tation layer can be easily customized by revising Survey’s templates
and CSS style sheets to create an organization-specific look-and-
feel. To simplify survey design, the XLSForm syntax from ODK
1.x was restructured to reduce the number of spreadsheet columns
and move complex programming syntax into a single column. The
aim is to make it easier for users to initially learn the simpler Sur-
vey definition structure and then ramp up their knowledge as they
require more advanced features. To help users keep complex work-
flows organized, the concept of ‘sections’ was added to enable log-
ical groupings of questions. The concept of ‘repeats’ is replaced by
the concept of ‘subforms’ to give users the full power of an inde-
pendent survey definition when dealing with repeated input sets.

Survey increases an organization’s ability to customize an appli-
cation by implementing the user interface with a run-time scripting
language that allows for customizing without recompiling. The en-
tire flow of Survey, from the opening screen to the outline/index
view of a form, can be redefined or extended, thereby enabling
more customization than XForm syntax of ODK 1.x’s Collect tool.
Organizations can extend standard widgets at runtime to: change
the rendering or workflow logic itself (e.g., complex types, value
constraints), customize event handling, or define new question wid-
gets. Survey has several new features that improve ODK’s mal-
leability to various application domains. Since the question widgets
are all modifiable at runtime, organizations can now define custom
question types with multiple input values but with a single question
prompt (e.g., blood pressure, pulse/oxygen) instead of being lim-
ited to the one-question/one-value model of ODK 1.x’s JavaRosa
XForm. Furthermore, users can use the new complex commands to
express non-linear workflow logic using ‘gotos’ in the survey defi-
nition. Buttons can be specified in Survey to perform user-directed
form navigation expressed, effectively, as computed ‘goto’ (switch-
like) statements. Users are also no longer limited to using one form
to edit a row of data. Survey allows multiple forms to edit a row of
collected data, which can assist in a variety of situations including
longitudinal studies.

4.1.3 Tables
While Survey focuses on collecting and editing data, Tables fo-

cuses on displaying collected data to the user [8]. Survey serves as
the primary tool to manipulate an individual row, while Tables pro-
vides functionality to display and interact with the entire data set.
Tables serves as a platform to host what is essentially a webpage,
allowing customizations via HTML, CSS, and JavaScript. Views of
the data can be both tabular or graphical depending on the context
and what is appropriate for an end user’s task. Views can also link
to other views or launch other ODK apps.

The flexibility provided by Tables greatly increases the usability
of the 2.0 tool suite. Deployment architects can capture complex
workflows and decision logic in Tables. For example, consider a

443



Figure 1: ODK 2.0 modular framework’s five mobile tools are used in concert to create customizable mobile data management
applications. The five ODK mobile ‘apps’ that comprise the framework are Services, Survey, Tables, Scan, Sensors, and Submit.

longitudinal study that needs to revisit subjects at multiple time
points within a deployment. The data collector might be expected
to follow different steps or complete a different set of forms when
enrolling new subjects than when following up with existing ones.
In an ODK 1.x deployment, the correct procedure must be imparted
to a data collector through training. As a workflow becomes more
complex, the training and support materials (e.g., flow charts) must
increase as well. With Tables, however, the correct logic can be en-
coded in the app, both lowering the training burden and increasing
compliance to the study protocol. Upon opening Tables, a collec-
tor would be presented with an HTML page with options to enroll
or revisit a subject. When selecting the correct option, a new page
would be opened that contains instructions and the set of forms re-
quired. Selecting one of these forms would then open Survey to per-
mit data collection. While Tables apps will typically reference files
(web content) stored on the device and synchronized via Services
(in support of disconnected operations), deployment architects can
also choose to issue network requests.

4.1.4 Scan
Scan bridges the gap between paper and digital data collection

without forcing organizations to wholly adopt either scheme [13].
Paper remains an integral component in the workflows and data
management processes of many development organizations, fill-
ing niches where digital systems are not currently appropriate [14].
Scan provides these organizations with a tool to quickly and eas-
ily digitize their paper forms in disconnected environments. Paper
forms are adapted by adding Scan-compatible data input compo-
nents, which include QR codes, multiple choice bubbles and check-
boxes, structured hand-written number boxes, and free-form hand-
written text boxes. Both digital and physical versions of this form
are generated: a Survey form definition and a JPEG image file that
can be used to print and distribute the Scan-compatible form. Scan
can digitize completed forms in the field by taking a picture with
the device’s camera. Computer vision algorithms, running on the
device, process and segment the form image into snippets corre-
sponding to the individual data components [13]. These snippets
(excluding free-form, hand-written text boxes that Scan cannot dig-
itize programmatically) are then fed into classifiers that digitize the
respective values. The digitized values can be reviewed and free-
form, hand-written text values transcribed by viewing the form in-
stance in Survey or Tables. All image processing is performed on

the device without the need for an Internet connection. Form im-
ages can be processed in real time, typically requiring less than one
minute per form, or saved and batch processed at a later time.

4.1.5 Sensors
Sensors simplifies the task of integrating external hardware sen-

sors into an organization’s data collection and management work-
flow [7]. For example, a medical application might use a pulse-
oximeter during screening, or a vaccine refrigerator might need to
report its temperature for regular audits. To address these require-
ments, Sensors provides a modular framework for organizations to
implement drivers and user-level applications for third-party sen-
sors that integrate into the ODK 2.0 ecosystem. The driver-level
implementation and the user application are developed indepen-
dently, and Sensors provides a common interface that abstracts com-
munication channels between the two domains. This lets frame-
work software programmers develop sensor drivers that can be re-
used by multiple user applications, while deployment architects can
abstract sensor particulars and focus on their particular usage sce-
nario needs. The Sensors app integrates with Services database
directly, providing easy integration of sensors into complex data
collection and management workflows.

4.1.6 Submit
The ODK 2.0 framework is built with performance in discon-

nected environments as a core tenant of its design philosophy. How-
ever, the synchronization service provided in Services requires In-
ternet connectivity before data can be shared among devices. De-
spite growing access to cell coverage throughout the world, suf-
ficient bandwidth to share the megabytes and gigabytes of data
generated by data management applications is not always avail-
able, convenient, or cost efficient. Submit provides a framework
for organizations to adapt their applications to share data using
appropriate technologies for their various network conditions and
data communication needs [10]. A variety of networking and data
transfer technologies are exposed, ranging from peer-to-peer com-
munications technologies (e.g., Bluetooth, WiFi Direct) to more
traditional cellular and WiFi access. Deployment architects can
prioritize which data should be shared using which technologies
under what circumstances. For example, a clinic might share pa-
tient records over Bluetooth connections, schedule high-priority
case files to be uploaded to the cloud over cell service as it becomes

444



available, and perform regularly scheduled full synchronizations at
Internet cafes. Submit separates networking implementations from
application logic by exposing a service API with which to schedule
data transfers or receive notifications about changing conditions.

4.2 Data and Configuration Management
ODK 2.0 data management applications consist of survey defini-

tions, web content, configuration files, data tables, and data rows.
These are consumed by the framework to define the control flow,
user interface, schema, data validation logic, and business logic of
the application. Departing from the ODK 1.x framework, which
uses an XForm-based hierarchical document model, the ODK 2.0
framework stores data in a relational database on the Android de-
vice. The presentation layer can execute arbitrarily complex SQL
queries (e.g., joins, unions), vastly increasing the expressive capa-
bility of the 2.0 framework. This expressiveness is required for
complex workflow decisions, such as the disaster response case
study in Section 5.4 that requires queries of previously collected
beneficiary data to determine future distributions. Relational data-
bases also permit more complex relationships between data sets.
Dependent data sets, similar to ODK 1.x’s ‘repeat groups’ concept,
that were previously store in the same document are now stored in
a separate data table allowing the deployment architect to define
business logic to maintain their linkage with other data sets.

The ODK 2.0 framework uses a cloud component to provide
robust permanent storage of data and configuration information.
The data management application interacts with the cloud com-
ponent through RESTful interfaces. The ODK 2.0 cloud com-
ponent manages the 1) user permissions (user authentication and
group membership), 2) slowly changing configuration (configura-
tion files, form definitions, data table definitions), and 3) frequently
changing data (content of the data tables and associated row-level
media attachments). To support disconnected operations Services
uses the ODK 2.0 synchronization protocol to maintain a filtered
snapshot of the user permissions and a full snapshot of its config-
uration and data onto each mobile device. Upon connecting to the
Internet, the mobile device initiates the synchronization protocol
to reconcile changes and update its local state to a new, reconciled
snapshot of the cloud component’s content.

On the device, a user’s identity is established via a successful
login to an ODK cloud component. Thereafter, the user’s identity
and permissions are cached until the user resets his or her creden-
tials or until the device is next synchronized with the cloud com-
ponent. During this disconnected period of operation, successfully
unlocking the device is considered sufficient to re-confirm a user’s
identity. There are 4 classes of users: (1) anonymous and/or unau-
thenticated users, (2) authenticated unprivileged users with permis-
sions to read and modify a subset of the data, (3) authenticated
superusers with permissions to read and modify all data, (4) au-
thenticated administrators can read and modify all data, update
user permissions, and change the configuration files that specify
the data management application. Administrators and superusers
can manage which authenticated users can see or modify which
rows. Unprivileged users may be given access and modification
rights to individual rows that unauthenticated or anonymous users
cannot access and/or modify.

4.3 Synchronization Protocol
The ODK 2.0 data synchronization protocol is designed to be

adaptable in extreme networking environments with high latencies,
low bandwidths, and long periods of disconnected operation. To
accommodate these varying conditions, the synchronization pro-
tocol was designed to use a small granularity of change-tracking

to enable smaller data transmission and simplify conflict resolu-
tion. A single database row was chosen as the base unit of the
synchronization protocol to follow the design principles of ODK
2.0 outlined in Section 2.2. Tracking synchronization state at the
data-row-level ensures the efficiency of the synchronization proto-
col by using a reasonably small unit of data. A common use case for
ODK 2.0 entails multiple enumerators collecting longitudinal data
over the span of many days with no network connectivity. Based
on feedback from partners, off-the-shelf file-based solutions (e.g.,
Dropbox, OneDrive) are not sufficient as the probability of hav-
ing multiple enumerators edit the same file during long periods of
disconnected operation is very high. In these file-based solutions,
resolving conflicts once connectivity is re-established is challeng-
ing. These issues are avoided with a row-based solution because
the probability that multiple enumerators touch the same rows (e.g.,
visit the same sites) decreases; thus, less conflicts are generated.

Data rows use globally unique primary keys to track the data
stored at the row level. If any data in the row changes, an new
ETAG (a universally unique identifier) is generated to identify that
changes have been made to the row. By tracking changes at the
row level, the bulk of the database content on the device can stay in
sync with the server without any communication overhead. Names
of any files attached to these data rows are also globally unique,
thus only a single instance needs to be transmitted for multiple
rows to reference it. The files themselves are stored on the de-
vice’s file system and treated as immutable once referenced by a
data row. The server maintains a manifest of the application-level
files, their hashes, and their size. It computes a unique ETAG from
this manifest content. If the ETAG of the last application-level file
manifest on the device does not match the corresponding ETAG
on the server, then the application-level files have changed. In this
case, the device then scans its folders to confirm that its local copies
match those in the server manifest, resolving any conflicts. A sim-
ilar interaction is repeated for table-level files.

The server assigns a schema ETAG and a version ETAG to each
data table when it is created. This lets the device verify that its
table schemas match those on the server and, if a version ETAG
differs but the schema ETAGs match, the client knows that the
device’s copy of the rows are out of sync with the server. Ev-
ery row is tracked with a version ETAG and a synchronization
state: ‘synced’, ‘new row’, ‘changed’, ‘deleted’, ‘in conflict’, or
‘synced pending files’. For each table, the rows in the ‘new row’,
‘changed’, and ‘deleted’ states are processed. If these rows do not
have conflicting changes on the server, the device’s synchronization
state for these data rows transitions into the ‘synced pending files’
state (or are removed, for those formerly in the ‘deleted’ state). Fi-
nally, for each data table, the data rows in the ‘synced pending files’
state are processed. Before beginning a synchronization, the user
can choose whether to perform a possibly bandwidth intensive up-
load and/or download file attachments from the server. The choice
enables users to optimize their use cases for the currently-available
communication bandwidth and cost. If bandwidth is low or cost is
high, they may elect to do nothing, leaving the rows in the ‘synced

pending files.’ This recognizes that transmission of files over
lower-bandwidth communications channels is generally both time-
and cost- prohibitive. However, users in extremely remote loca-
tions may decided that the few times they reach Internet connectiv-
ity it is worth the cost to perform a full synchronization based on
their business requirements. The change-tracking design enables
the synchronization protocol to adapt to currently-available com-
munication bandwidths and costs.

When a row change on the device conflicts with a row change on
the server, the change on the server is pulled down to the mobile

445



device and the data row is marked as ‘in conflict’. The user must
then resolve the conflict by either taking the server’s change, the
local change, or mix of the local change and the server change. If
the user does not take the server’s change, the synchronization state
of the data row is updated to either ‘changed’ or ‘deleted’. On the
next synchronization, the local updates will then update the state
on the server resolving the conflict.

4.4 Services Architecture
In the first iteration of ODK 2.0, tools were designed as com-

pletely independent Android apps that directly accessed a single
shared Android database. The shared database presented users with
a seamless data management application experience by smoothly
transitioning between the tools (e.g., from Tables to Survey and
back). The tools evolved to each include their own logic for ac-
cessing the database. From within the WebKit, the shared Android
database was directly accessed via WebSQL. Stress tests of ODK
app transitions exposed an instability between the WebKit and the
Java layer’s Android UI lifecycle1. Interleaving multiple Android
UI lifecycle events during transactions resulted in deadlock if the
outgoing activity did not release the transaction. The rate of dead-
lock occurrences varied by device model and OS version.

To resolve the deadlock issue the tools were re-architected to
access the database through Services. The Services app provides
a centralized database service that facilitates 1) an enhancement
of initialization with automatic pre-population of tables with data
rows from configuration files and 2) a reduction in overhead when
opening an already-initialized database since Services maintains
knowledge of the database state. After creating the database service
we uncovered deficiencies within the Android database implemen-
tation including reference counting issues, database locking, and
the database connection object being stored in thread local storage.
These concerns led us to use a custom build of the SQLite database
with a Java wrapper to eliminate the need to address behavioral dif-
ferences across Android OS levels, 2) enable direct management of
connections, 3) speed up opening of connections, 4) enable use of
write-ahead-logging, and 5) enable changes to the native interface
to minimize memory allocations.

While Services exposes content providers for a few basic static
queries, the primary access to stored data is through the database
service. The database service presents a restrictive API that does
not expose database transactions or cursors. Instead, it exposes
atomic-update primitives and queries that return snapshot-in-time
result sets. This atomicity eliminates the possibility of a misbehav-
ing client causing deadlock or leaking cursor resources. We chose
a service over a content provider because 1) insert/update/delete
operations would not capture the atomic update primitives used to
simplify database management, 2) the full capabilities of a SQL
query cannot be exposed without introducing our own expression
language embedded within that URL as opposed to a service API,
and 3) the ability to apply row-level access control cannot be ex-
pressed through a single content provider. To use a content provider
would require a custom defined URL parser for SQL syntax. This
would introduce custom non-standardized parsers causing a future
pain point similar to the custom JavaRosa XForm definition and
parser in ODK 1.x. Android Services have a 1 MB size limit on
remote-procedure calls which is insufficient for large result sets.
We implemented a primitive transport-level chunking interface us-
ing a client-side proxy to re-assemble chunks and only expose a

1The WebKit performs synchronous calls to the Java layer, but only
asynchronous calls from the Java layer to the WebKit are provided.
Android lifecycle event handlers are synchronous and provide no
mechanism for asynchronous resumption of lifecycle transitions.

higher-level abstraction to the tools. The client-side proxy provided
additional benefits, such as caching and typed exception throwing
across processes.

To create a unified user experience, all application-level settings
were consolidated into the Services app. Additionally, the local
web service and the synchronization service were centralized into
Services. By placing the synchronization service within the same
trusted layer as the database service, we could maintain a chain of
custody for the authenticated user identity gained through the in-
teractions with the cloud component. This authenticated user could
then be used when enforcing row-level and table-level permissions
inside the database service. More specifically, it enabled us to:
1) verify the active user’s identity, 2) fetch that user’s permissions
from the cloud component, and 3) cache the user’s identity and per-
missions within this trusted services layer where those permissions
could be used within the database service to enforce the visibility
and modification constraints on the data tables.

Services also simplifies tool updates. By effectively consolidat-
ing persistent state behind this service layer, individual tools can
be upgraded in a rolling-update fashion without affecting persis-
tent state. If the data representation (schema) needed to change,
only a single update of the Services tool is required. Other bene-
fits include defining our own service APIs makes it easier to port
ODK software to other platforms and increased code reuse allows
for improved testing and stability.

4.5 Experiments
To evaluate the revised architecture, six different variants of ODK

2.0 ‘apps’ were created to compare performance timings. The builds
differed by type of database, whether an Android service was used,
and whether the logic was separated into two different APKs or
combined into one. We performed the tests on three different An-
droid devices, across a spectrum of performance capabilities: a
~$40 Vodaphone purchased in Kenya, a Nexus 7 tablet (a device
commonly used by our partners), and a Nexus 6 phone. We used
Android OS versions commonly found in our target regions.

The setup used to evaluate performance consisted of an ODK 2.0
data management application and automated Android UI tests. The
application queried 200 rows of a 3000-row data set in succession
until 100 iterations had been performed. A timestamp was recorded
by the application before the query was issued, when the query
results returned, and when the application had finished rendering
the UI elements on the screen. Table 1 presents the average query
turnaround time, the average WebKit rendering time, and the over-
all (Full RTT) times. It compares queries performed through the
service API with the service and caller residing in separate APKs
(the standard ODK 2.0 configuration), queries performed through
the service API with the service and caller bundled into the same
APK, and queries performed directly against the database without
any service intermediary. These tests show that restructuring our
tools to use a service-oriented architecture (SOA) did not incur pro-
hibitive performance penalties. Comparing the SOA Multi APKs
timings and the Direct DB Access timings showed a ~150 ms over-
head with SOA; which is well below the 940 ms rendering time
incurred by the WebKit and is below the limit of perceivable delay.

An alternative architecture combines all tools (e.g., Tables, Ser-
vices) required for a particular usage scenario into a single large
multi-dex APK. The timings results in Table 1 (comparing SOA
Multi APKs timings and SOA Single APK) shows that there was
a performance penalty, perhaps due to the increased proportion of
available memory consumed by application code within a single
APK. Combining only Tables and Services incurred a 25-50 ms
penalty on a high-end device. If this penalty were driven by appli-

446



Table 1: Database Query Timing Comparison of Different Implementations on three different Android Devices. Service-Oriented
Architecture in Multiple APKs, vs Service-Oriented Architecture in Single APK, vs Direct Database Access.

Device &
Operating System Architecture

Database
Type

Query
Avg. (ms)

Query
Std. Dev

Webkit Render
Avg. (ms)

Full RTT
Avg. (ms)

Full RTT
Coeff. of Var.

Vodafone v4.4.2 SOA Multi APKs custom 2572 60 1474 4046 2.98
Vodafone v4.4.2 SOA Single APK custom 2635 222 1475 4110 6.81
Vodafone v4.4.2 Direct DB Access custom 2518 62 1446 3964 3.21
Vodafone v4.4.2 SOA Multi APKs default 2685 56 1509 4194 2.75
Vodafone v4.4.2 SOA Single APK default 2692 74 1539 4231 3.28
Vodafone v4.4.2 Direct DB Access default 2631 76 1504 4135 3.17
Nexus 7 v4.4.4 SOA Multi APKs custom 881 102 1049 1930 8.02
Nexus 7 v4.4.4 SOA Single APK custom 821 80 1063 1884 7.86
Nexus 7 v4.4.4 Direct DB Access custom 613 77 974 1587 8.58
Nexus 7 v4.4.4 SOA Multi APKs default 993 92 1047 2040 6.78
Nexus 7 v4.4.4 SOA Single APK default 1083 106 1067 2150 7.75
Nexus 7 v4.4.4 Direct DB Access default 1358 209 1043 2400 9.89
Nexus 6 v5.1 SOA Multi APKs custom 402 52 944 1347 17.63
Nexus 6 v5.1 SOA Single APK custom 425 53 968 1393 16.61
Nexus 6 v5.1 Direct DB Access custom 261 34 942 1202 17.87
Nexus 6 v5.1 SOA Multi APKs default 615 84 956 1571 14.54
Nexus 6 v5.1 SOA Single APK default 663 101 995 1658 13.36
Nexus 6 v5.1 Direct DB Access default 386 41 942 1328 14.52

cation code size, then an SOA would be more performant than a
monolithic APK should the six ODK 2.0 tools be combined. Tests
to determine how the SOA scales given changing database query
sizes were also performed. For this round of tests, the test setup
again consisted of an ODK 2.0 data management application and
automated Android UI tests. The application repeatedly queried a
3000-row data set with a fixed query size (one of 2, 20, 200 or 2000
rows) until 100 iterations had been performed via the Android UI
tests. In this case, no UI elements were rendered after the query
results were returned. The application recorded a timestamp be-
fore the query was issued and when query results returned. Table

Table 2: Avg Database Query RTT vs Number of Rows Queried

Rows

Nexus 6
Avg. RTT

(ms)

Nexus 6
Std. Dev

(ms)

Vodafone
Avg. RTT

(ms)

Vodafone
Std. Dev

(ms)
2 207 48 483 46
20 233 56 549 46

200 402 61 975 66
2000 2156 87 6008 139

Figure 2: Nexus 6 5.1 Average Java To JavaScript Transfer
Time vs. Number Of Rows Queried

2 shows the average round-trip time and standard deviation for the
database queries. Table 2 shows the times for a Nexus 6 running
the 5.1 version of the Android OS and a Vodafone running the 4.4.2
version of the Android OS. These results show that our query times
scale as expected with a lower end device taking proportionately
longer than a more powerful device.

Finally, the amount of time spent marshaling database query re-
sults between the Java layer and the JavaScript layer was measured.
To determine the transfer time between these layers, an ODK 2.0
application and automated suite of Android UI tests were used with
the 3000-row data set. A timestamp was recorded in a log file when
the Java layer obtained the query result and when the JavaScript
layer received the query result. Figure 2 shows the average time
difference between when the database query result was available
in the Java layer to when the database query result was returned to
the JavaScript layer for 100 test iterations. This data shows that the
transfer time from the Java to JavaScript layer did not have a major
performance impact.

5. CASE STUDIES
A guiding principle of ODK has been to work with field partners

during technology development to validate the suitability of the tool
suite in resource-constrained environments. This section presents
case studies from partners working in global health, disaster man-
agement, and other areas to demonstrate and verify the reuse, flexi-
bility, and extensibility of ODK 2.0 application framework, as well
as to report key lessons learned. We enumerate requirements for
each case study in Table 3 that were identified as necessary in the
ODK 2.0 framework but are not fulfilled by the ODK 1.x tools.

5.1 Childhood Pneumonia
The mPneumonia project is a partnership with PATH, a non-

government global health organization, that supports health work-
ers in low-resource environments. PATH sought to create a mobile
application to improve health care providers’ diagnosis and man-
agement of childhood pneumonia, a leading cause of disease deaths
for children under 5 [17]. The resulting diagnosis and treatment ap-
plication assisted lightly trained healthcare workers with screening

447



Table 3: Case Study ODK 2.0 Feature Requirement Summary

Childhood
Pneumonia

Chimpanzee
Behavior
Tracking

HIV
Clinical

Trial
Disaster
Response

Mosquito
Infection
Tracking

Tuberculosis
Patient
Records

Complex / Non-Linear Workflows X X X X X
Link Longitudinal Data To Collected Data X X X X X

Data Security and User Permissions X X X X X
Reuse of Data Fields Across Forms X X

Bidirectional Synchronization X X X X X
Customizable Form Presentation X X X

Custom JavaScript Apps X X X X X
Sensor Integration X
Paper Digitization X

Custom Data Types Update Multiple Fields
in a Single User Action X X X X

tasks. Survey was used to digitize complex medical workflows and
customize their form presentation, while Sensors was used to inte-
grate a USB sensor to record a patient’s oxygen saturation.

Previous projects found that digitizing the World Health Organi-
zation’s Integrated Management of Childhood Illness (IMCI) pro-
tocol on PDAs led to increased adherence while maintaining ex-
amination time [15]. However, when other organizations tried to
re-implement IMCI using ODK 1.x, they struggled to map IMCI’s
complex medical workflow to XForms. ODK 2.0 addressed the
complexity with Survey, which allowed a non-programmer global
health intern to digitize the IMCI protocol using an Excel workflow
description format. Furthermore, the layout, styling, and presenta-
tion of each prompt in the form was customized to meet the specific
needs of the mPneumonia project. These customizations were sim-
plified by making changes to HTML and CSS, which enabled a
rapid iterative design process.

The mPneumonia project added a pulse and a blood oxygen sat-
uration reading from the patient to IMCI. The Sensors framework
connected the pulse-ox sensor to the mobile device, allowing sensor
readings to be written directly to the patient record. ODK 1.x only
allows a single value to be recorded to the data model for an indi-
vidual user action. A pulse-ox sensor reads two values at a time,
requiring updates to two database columns. ODK 2.0 allows the
specification of custom data types with multiple database columns
enabling the pulse-ox data to be recorded in a single action.

To evaluate usability, feasibility and acceptability, PATH con-

Figure 3: The paper version of JGI’s chimpanzee behavior
tracking form (left) compared to Tables digital version (right)

ducted studies in Ghana and India. They interviewed 8 health ad-
ministrators, 30 health care providers, and 30 caregivers. PATH
found that mPneumonia was feasible to integrate into rural health-
care workers workflow and had the potential to improve patient
care. Interviewees reported mPneumonia was “easy to use” and
lent confidence to their diagnosis and treatments [18].

5.2 Chimpanzee Behavior Tracking
The Jane Goodall Institute (JGI), an early adopter of ODK 1.x,

successfully replaced multiple existing paper data forms with ODK
1.x. However, after several attempts, they were unable to digitize
one of their most important data collection efforts and needed an
alternative to form-based data entry to be able to track chimpanzee
behavior in real time. In this scenario, park rangers follow troupes
of chimpanzees through the jungle with a clipboard and a paper
form. The paper form is organized into a grid format, with names
of chimpanzees and boxes indicating presence or absence, proxim-
ity to the group leader, and estrus state. A new form is completed
every 15 minutes, and at the end of the day the information is tran-
scribed and added to a database. There was no way to enforce in-
ternal consistency or data quality when using paper. However, the
paper form’s grid structure prevented the conversion to an ODK 1.x
question based workflow. An example of the paper form is shown
in Figure 3. Maintaining the format of the data collected is very
significant to the organization, since it has been used for years and
the rangers feel comfortable with it.

Conceptualizing the workflow as a series of webpages let the
form be converted to an ODK 2.0 Tables application. The grid,
created using an HTML table, represents a database row that asso-
ciates the current time and the chimp ID. Edits to the data update
the corresponding database row. Additional value is added by pre-
populating information from the previous time point, lowering the
burden on the ranger by reducing the duplicate effort of re-entering
data every 15 minutes.

While more complex than other examples, this application was
able to written with a much smaller codebase than would be re-
quired using native Android. The database is defined declaratively
using CSV files. The application consists of a single page of HTML
and roughly 1200 lines of JavaScript. While this approach requires
some basic programming knowledge, to do the same task in An-
droid programming constructs would require extensive knowledge
of the Android persistence APIs, familiarity with the Android UI
framework, an understanding of Android’s activity lifecycle. A
Tables-based approach allowed developers to leverage ODK 2.0
framework for most functionality and focus on solely on the UI
to create an encapsulated and manageable mobile application.

448



5.3 HIV Clinical Trial
Adaptive Strategies for Preventing and Treating Lapses of Re-

tention in Care (AdaPT-R) is a multi-year University of California
San Francisco (UCSF) study that tracks HIV patient clinic visits.
The AdaPT-R case study demonstrates ODK 2.0’s applicability to
medical trials that are longitudinal and require patient follow-ups
at specific locations. The study requires daily synchronization of
a field worker’s mobile device so that the medical workflows and
study parameters can be updated appropriately.

AdaPT-R is deployed in three clinics in Kisumu County, Kenya
and two clinics in Migori County, Kenya that combined serve ap-
proximately 65,000 patients. It is a randomized control trial study-
ing 1,745 enrolled patients of the approximately 17,000 HIV pa-
tients. The non-linear workflow needed to ensure protocol adher-
ence along with historical data to track lapses in care required the
flexibility of ODK 2.0. The project also required an ODK 2.0 appli-
cation to integrate with their existing medical records systems. The
UCSF team uses the ODK 2.0 tool suite to collect and synchronize
patient data daily to an ODK Aggregate server. Once the data has
been synchronized, it is combined with information from a separate
medical records systems to determine patient status. The patient in-
formation is then synchronized to the field worker’s phone, where
it can be used during data collection the next day.

The AdaPT-R study has 18 employees using 17 Android devices
to interact with patients. Research assistants were provided 1-2
hours of initial training and receive two ~30 min refresher trainings
a year. Additional one-on-one training is provided by AdaPT-R’s
data manager in Kenya on an as-needed basis. Examples of one-on-
one training include: 30-60 min trainings to familiarize site leads
with ODK update process, and ~20-30 min to teach zipping files
and logs from devices to send to manager for troubleshooting.

Early in the study, field workers experienced issues such as pe-
riodic application freezes because of database locking issues and
sluggish navigation. The AdaPT-R workflow required users to move
back and forth between Tables and Survey, thereby increasing the
probability of database locking due to Android life cycle issues.
The revised ODK 2.0’s SOA, discussed in section 4.4, was built
in response to some of the problems experienced by the AdaPT-R
study. The AdaPT-R team deployed ODK’s revised framework to
one site initially and after experiencing immediate positive results
decided to expedited the upgrade of the remaining sites.

Having all study participants available on the mobile device let
the AdaPT-R team move devices between clinics without recon-
figuring them (or physically moving paper files). This was help-
ful when devices broke or when the AdaPT-R team needed to re-
allocate a device to another clinic if one site had a higher volume
of data entry compared to another. Additionally, AdaPT-R has re-
search assistants who cover tasks for more than one clinic; having
the data for multiple locations on a single device lets these employ-
ees use the same device for data entry at all locations.

When asked why they chose to use ODK 2.0, the co-primary
investigator of the randomized control trial noted "We needed a so-
lution for capturing data from multiple forms and that would allow
longitudinal follow-up of individual patients. We had experience
with earlier versions of ODK, so the new features of 2.0 made it
the only option for us if we wanted phone-based longitudinal form
completion. Would definitely recommend ODK 2.0!"

5.4 Disaster Response
The International Federation of Red Cross and Red Crescent

(IFRC) is the world’s largest humanitarian and development net-
work that has millions of volunteers in 190 member National Soci-
eties. The diversity of use cases and business requirements of the

Figure 4: Red Cross enumerator using ODK to distribute goods
in Belize after Hurricane Earl

National Societies demonstrate the need for a flexible, customiz-
able system like ODK 2.0. A disaster response platform used by
volunteers on the ground needs to be easily adaptable by a deploy-
ment architect since time is critical under these circumstances.

The IFRC created prototype disaster response software using
ODK 1.x for beneficiary registration and custom software for dis-
tributions. The IFRC then contacted us to figure out how ODK
could be used to create a single mobile application to handle both
registrations and distributions. ODK 1.x was not suited to the task
due to missing features (Section 2.1). Bidirectional synchroniza-
tion is required to maintain a consistent database of beneficiaries
and delivered distributions across all devices and distribution cen-
ters to prevent fraud, enable auditing, etc. User permissions are
required to ensure that field workers see only the appropriate list
of beneficiaries relevant to their work and cannot update data fields
beyond the scope of their responsibilities. Their complex workflow
that reuses certain data fields requires a more robust interface than
basic form based navigation provided by ODK 1.x.

We worked with the IFRC to prototype a solution using a combi-
nation of Survey forms a Tables data navigation. The IFRC’s goal
to build a reference disaster response/recovery and crisis manage-
ment application that leverages ODK 2.0 to handle common data
collection and field management tasks. This reference application
could then be adapted to the diverse use cases of its 190 member so-
cieties. The IFRC conducted an initial field feasibility study using
ODK 2.0 to distribute disaster-aid cash at two locations in Jamaica
involving 93 participants. The initial study had positive results, and
the IFRC plans to conduct deployment pilots during actual disas-
ter responses in the next few months to further evaluate ODK 2.0
usage for cash distributions during emergencies. ODK 2.0’s cus-
tomizable workflow, user permissions, rule and adherence enforce-
ment, disconnected operations, and eventual data synchronization
were critical features to successfully coordinate distribution of cash
and supplies.

5.5 Mosquito Infection Tracking
Led by Monash University, ‘Eliminate Dengue’ is an interna-

tional research collaboration focused on reducing the spread of
Dengue, Chikungunya, and Zika. The program operates across a
variety of countries, languages, terrains, and worker skill levels.
Currently, Eliminate Dengue ODK 2.0 application is deployed in
Brazil, Columbia, Indonesia, Australia, and Vietnam. Their oper-
ational workflow requires ODK 2.0’s bidirectional sync protocol

449



to provide historical as well as timely data to their field workers
during site visits to remote environments.

The Eliminate Dengue program is developing a method to re-
duce the spread of dengue by introducing the naturally occurring
Wolbachia bacteria into local mosquito populations. This bacte-
ria reduces the ability of mosquitoes to transmit dengue between
people. Workers monitor mosquito reproduction at field sites until
the bacteria is established in a critical mass of the local population
and propagation is self sustaining. This requires repeated weekly
visits to field collection sites. The ODK 2.0 framework is used to
provide workers with an interactive map of site locations, historical
data about each site, individualized instructions on what tasks to
perform at which sites, and a data capture application.

The Eliminate Dengue team designed and developed their own
custom ODK 2.0 Tables application using consultants specializing
in web development. They decided to use Tables because “develop-
ers don’t like to be restricted,” and Tables gave them the flexibility
to customize their solution to their needs without being in Survey’s
question rendering framework. Furthermore, Tables let them “fo-
cus on web dev” rather than worry about editing Android code, as
would have been necessary with an ODK 1.x solution. An example
of a customization is their eschewing the provided Google Maps li-
brary for a runtime library called Leaflet.js2 to serve their own map
files from ODK 2.0’s framework. This let them provide more accu-
rate and customized maps to their workers in disconnected settings.

A key component of the program is regular visits to multiple
sites over a period of weeks and months. These visits require his-
torical data to be available to field workers, who may not be the
only workers visiting the same site. This requirement was the driv-
ing factor in the Eliminate Dengue team’s decision to use ODK 2.0
over ODK 1.x: when describing ODK 2.0’s benefits, they said, “we
needed two-way synchronization” and that all other benefits were
discovered and leveraged later: “we had a requirement to send data
to the devices as well as receive from them.”

The greatest challenge to the team has been logistical: the veloc-
ity with which they are developing and deploying requires frequent
changes to the data model. Neither ODK 1.x nor ODK 2.0 is well
suited to this type of change. The Eliminate Dengue team is using
JSON objects in the database to work around the issue, but in gen-
eral changing data models remain an open problem in the ODK 2.0
framework. The trade-offs between a document based model stor-
age vs row based storage is further discussed in section 6. How-
ever, the program manager reports “the app is scaling quite well”
and that ODK 2.0 apps are “quite easy to use and we haven’t had
any acceptance issues.”

5.6 Tuberculosis Patient Records
Mercy Corps’ effort to combat tuberculosis in Pakistan provides

a case study for the ODK 2.0 framework’s ability to serve rural
medical facilities that maintain paper workflows. This project ex-
plored how to incorporate less expensive paper collection methods
into a hybrid workflow to reduce data collection and aggregation
times in disconnected environments. The large data sets generated
by these facilities, coupled with their unreliable Internet connectiv-
ity, provided scalability tests for the ODK 2.0 framework’s service
architecture and synchronization capabilities.

Mercy Corps maintains paper based patient records in local clin-
ics, which are subsequently aggregated and used to generate reports
for administrators. Paper records are valuable in this environment
since they are cheap, trusted, and easily understood. However, ship-
ping paper records to central facilities and transcribing data from

2JavaScript mapping library: http://leafletjs.com/

paper to digital systems hinders reporting efforts with significant
time delays and financial burdens [5]. We partnered with Mercy
Corps to pilot ODK 2.0 effectiveness at streamlining the digitiza-
tion and validation of their patient records and providing basic re-
porting to clinicians in the field. The pilot ran for three months
with four field workers in two districts in Pakistan working with
122 patients. Mercy Corps’ health register was converted to a Scan-
compatible format. Their register had 39 data input fields, which
expanded into 121 user data columns in the ODK database when
factoring in metadata and image snippets for each field. Field work-
ers used Scan to digitize patient records as they were filled in at the
clinics, then validated the digitization with Survey at the point of
capture. Additionally, a data reporting mechanism was developed
on Tables for field workers to track overdue patient visits.

When Internet connectivity became available, usually at an In-
ternet cafe, new data would be synchronized and used to generate
administrative reports. The wide rows and extensive metadata for
each patient caused the database size to grow, and with the spotty
connectivity offered by Internet cafes, health workers struggled to
upload the thousands of files generated each day. Our responses to
these challenges are discussed in Sections 4.3 and 4.4.

The custom data management application built on Tables pro-
vided health workers with a summary of patient data and reminders
of upcoming appointments. This required disconnected historical
queries of patients under the care of the health care worker using the
device. Additionally, workers would often delay their validation of
transcribed records until after a visit was complete, sometimes val-
idating an entire day’s worth of visits in a single batch. In this case
it was essential that they had disconnected access only to their own
patients to prevent them from mistakenly altering records of other
patients. To address this issue of filtering the database based on the
context of the user, user and group permissions were developed, as
discussed in Section 4.2.

At the conclusion of the pilot, Mercy Corps interviewed its field
workers about their experience and performed timing comparisons
between workflows. The interviews discussed by Ali [5] revealed
that workers were particularly enthused about the reporting on the
device, with one stating “follow up visit report has revolutionized
our work. Now, we will never miss out any patient.” Data collec-
tion was slowed by the need to validate transcribed data, but the
transfer process was reduced from days via courier to minutes via
connected synchronization [5]. The pilot showed that ODK 2.0
is robust enough to handle large datasets in disconnected environ-
ments and that organizations unable to fully adopt direct-to-digital
workflows can benefit from field digitization.

6. DISCUSSION
For computing technology to solve global problems, researchers

need to push not only the boundaries of technology, but also the
boundaries of how the technology can be applied in various en-
vironments with differing constraints. Two-thirds of the world’s
population have access to mobile phones; however, technical limi-
tations prevent billions of users from adopting some of the revolu-
tionary capabilities of these mobile devices [6, 23]. The concept of
“applied computer science research” is needed to extend the reach
of technology to include the billions of people in the world that cur-
rently have limited access to it. To address this, research is needed
to answer: “what are the proper abstractions and frameworks for
mobile devices that are appropriate for a broader range of technical
skills and familiarity?” In resource-constrained environments com-
mon assumptions used by designers and developers (e.g., connec-
tivity and power availability) can vary significantly between con-
texts. For example, the availability of power can vary from an

450



always-on grid connection, to sporadic grid connections, to having
to pay someone to use a generator or car battery to charge a mobile
device. Depending on your location in the world, mobile devices
move from disconnected environments to connected environments
with dramatically different bandwidths and latencies.

The ODK research project seeks to identify appropriate tech-
nologies for resource-constrained environments and identify bar-
riers that prevent existing solutions in high-resource contexts from
being similarly adopted in these settings. ODK 2.0 was created to
address the limitations uncovered through the widespread adoption
of ODK 1.x. Field experience with real organizations is needed to
understand the problems that prevent adoption of mobile data man-
agement solutions. Conceptually akin to testbeds (e.g., PlanetLab
[11]), by working with organizations to build real systems that are
deployed in regions with challenging constraints, we were able to
test ODK 2.0 in a way that far extends beyond the lab environment.
Deploying at scale reveals different classes of problems. ODK 2.0
has been piloted or is deployed in over 18 countries by more than
15 organizations. By listening to our partners and understanding
their needs, we addressed limitations of ODK 1.x. To understand
the contextual limitations, we developed and maintained a suite of
tools and gave them to non-programmers to use in their mobile
applications. While ODK is designed to operate in extremely di-
verse environments, the lessons learned can be applied generally to
system design to make mobile system platforms more resilient to
adverse and varying conditions.

A problem that has not been fully solved by the ODK 2.0 is
how to handle frequent changes to the data model, as experienced
by Eliminate Dengue (Section 5.5). Initial design discussions for
ODK 2.0 pitted a document-based data model against a row-based
model. The document-based model allows for easier updates to
the data model, but extracting results and generating reports af-
ter multiple data models have been used becomes difficult and of-
ten requires hiring a programmer to write code to merge the data
and perform data cleaning. The row-based model employed by
ODK requires organizations to establish a schema before deploy-
ing, front-loading the costs, and is difficult to update if the schema
must be altered, but it makes reporting simple. Ultimately, the row-
based model was chosen because organizations have more existing
expertise in understanding their business workflow and making a
flexible schema requires less programming knowledge than deal-
ing with data merging and cleaning issues. However, a scenario
like Eliminate Dengue’s, in which rapidly changing needs on the
ground require frequent changes confirmed that if you have pro-
gramming resources to handle the data merging and cleaning then
a document-based model can make for easier iterative design.

ODK 2.0 focuses on scale and adaptability instead of a novel
single purpose application useful only for limited cases. Through
the generalizable application framework, ODK 2.0 allows users of
varying technical skill levels to create custom solutions that sup-
port a wide range of scenarios. ODK 2.0 aims to create base APIs,
standards, and free reusable libraries to minimize the start-up costs
for organizations, researchers, and companies seeking to partici-
pate in the space. To create an ecosystem, ODK uses the permis-
sive Apache 2 open-source to enable free use and encapsulation of
the technology. This empowers companies to have business mod-
els based around both creating products with additional features or
providing consulting assistance to global aid workers.

7. FUTURE WORK
Future expansion of the ODK 2.0 framework will focus on se-

curity and usability improvements. Currently, the local database
contains a full copy of the data since the authenticated user may

change and have different access privileges. However, for sensi-
tive information it would be preferable to have a data wipe feature,
where on a user authentication the previously synchronized data
on the device would be deleted to increase security. This poses a
trade off between bandwidth to continually re-download the subset
of data versus data security. As ODK’s 2.0 framework’s abstrac-
tions mature from more successful deployments and the user base
grows, we plan to start creating additional graphical tools to fur-
ther reduce the skills needed to build and customize mobile data
management applications. For example, we are working on a PC-
based tool called "Application Designer" for creating, customizing
and previewing forms. It will include a theme generator to help
novice users graphically select basic styles and colors which will
then automatically generated into a basic CSS style file. Similarly,
the "Application Designer" will include a help wizard to generate
basic Table views that will auto generate the corresponding HTML
and JavaScript files.

8. CONCLUSION
ODK 2.0 provides development organizations with a new mo-

bile framework to build data collection and management services
for resource-constrained environments. This paper presents lessons
learned from creating an application framework that makes mobile
devices more useful in contexts where high-income countries’ en-
gineering assumptions do not necessarily match the infrastructure
realities in resource-constrained communities.

Building a real system used by development organizations in dif-
fering domains shows the general applicability of the mobile frame-
work. By piloting with these organizations and incorporating their
needs and feedback into the development process, the ODK 2.0
framework was made robust to a variety of challenges met in the
field including extreme mobile networking conditions such as low
bandwidth, high latencies, and long periods of disconnected ac-
tivity. ODK 2.0 provides a generalizable application framework
for users with varying technical skill levels to create customizable
mobile data management solutions that address global problems
in resource-constrained environments. Implementing ODK 2.0’s
framework as an SOA yielded benefits in the areas of upgradabil-
ity, security enforcement, management of global state, and future
portability, without incurring a significant performance cost. ODK
2.0 provides a second, complementary, open-source toolkit to the
ODK 1.x framework, that is targeted at deployment architects and
is easy to use and easy to scale. By expanding the variety of use
cases that ODK technology can be adapted to, the ODK 2.0 tool
suite helps to achieve ODK’s goal of “magnifying human resources
through technology.”

9. ACKNOWLEDGEMENTS
Both ODK 1.x and 2.0 were ideas of ODK visionary Gaetano

Borriello. ODK has been a team effort that involved many people at
the University of Washington. We would like to acknowledge Rohit
Chaudhri, Nicola Dell, Joshua Fan, Ori Levari, Shahar Levari, Li
Lin, Luyi Lu, Madhav Murthy, and Sang-Wha Sien for their work
on ODK 2.0. We also thank Adam Rea, Sandy Kaplan, and Kur-
tis Heirmerl for their insightful feedback on this paper. Addition-
ally, we would like to thank all the organizations (e.g., PATH, JGI,
ADAPT, IFRC, Eliminate Dengue, Village Reach, Mercy Corps)
who used ODK and provided feedback. Finally, we thank our
anonymous reviewers and our shepherd Rajesh Balan, for their
guidance and suggestions. The material in this paper is based upon
work supported by Bill and Melinda Gates Foundation Grant No.
OPP-1132099 and USAID Agreement AID-OAA-A-13-00002.

451



10. REFERENCES

[1] Apache Cordova. https://cordova.apache.org/, Dec 2016.
[2] Intel XDK. https://software.intel.com/intel-xdk, Dec 2016.
[3] Ionic Framework. http://ionicframework.com/, Dec 2016.
[4] Sartphone OS Market Share, 2016 Q2. https:

//www.idc.com/prodserv/smartphone-os-market-share.jsp,
Dec 2016.

[5] S. Ali, R. Powers, J. Beorse, A. Noor, F. Naureen, N. Anjum,
M. Ishaq, J. Aamir, and R. Anderson. Odk scan: Digitizing
data collection and impacting data management processes in
pakistan’s tuberculosis control program. Future Internet,
8(4):51, 2016.

[6] E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam,
S. Nedevschi, J. Pal, R. Patra, S. Surana, and K. Fall. The
case for technology in developing regions. Computer,
38(6):25–38, 2005.

[7] W. Brunette, R. Sodt, R. Chaudhri, M. Goel, M. Falcone,
J. Van Orden, and G. Borriello. Open data kit sensors: A
sensor integration framework for android at the
application-level. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 351–364, New York, NY, USA, 2012.
ACM.

[8] W. Brunette, S. Sudar, N. Worden, D. Price, R. Anderson,
and G. Borriello. Odk tables: Building easily customizable
information applications on android devices. In Proceedings
of the 3rd ACM Symposium on Computing for Development,
ACM DEV ’13, pages 12:1–12:10, New York, NY, USA,
2013. ACM.

[9] W. Brunette, M. Sundt, N. Dell, R. Chaudhri, N. Breit, and
G. Borriello. Open Data Kit 2.0: Expanding and Refining
Information Services for Developing Regions. In
Proceedings of the 14th Workshop on Mobile Computing
Systems and Applications, HotMobile ’13, pages 1–6, 2013.

[10] W. Brunette, M. Vigil, F. Pervaiz, S. Levari, G. Borriello, and
R. Anderson. Optimizing mobile application communication
for challenged network environments. In Proceedings of the
2015 Annual Symposium on Computing for Development,
2830644, 2015. ACM.

[11] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an overlay
testbed for broad-coverage services. SIGCOMM Comput.
Commun. Rev., 33(3):3–12, 2003.

[12] B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Madden, and
R. Ramakrishnan. Mobius: unified messaging and data
serving for mobile apps. In Proceedings of the 10th
international conference on Mobile systems, applications,
and services, pages 141–154, 2307650, 2012. ACM.

[13] N. Dell, N. Breit, T. Chaluco, J. Crawford, and G. Borriello.
Digitizing paper forms with mobile imaging technologies. In
Proceedings of the 2nd ACM Symposium on Computing for
Development, 2160604, 2012. ACM.

[14] N. Dell, T. Perrier, N. Kumar, M. Lee, R. Powers, and
G. Borriello. Paper-digital workflows in global development
organizations. In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work and Social
Computing, pages 1659–1669, 2675145, 2015. ACM.

[15] B. DeRenzi, N. Lesh, T. Parikh, C. Sims, W. Maokla,
M. Chemba, Y. Hamisi, D. S. hellenberg, M. Mitchell, and
G. Borriello. e-imci: improving pediatric health care in
low-income countries. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages
753–762, 1357174, 2008. ACM.

[16] B. DeRenzi, C. Sims, J. Jackson, G. Borriello, and N. Lesh.
A framework for case-based community health information
systems. In 2011 IEEE Global Humanitarian Technology
Conference, pages 377–382, Oct 2011.

[17] A. S. Ginsburg, J. Delarosa, W. Brunette, S. Levari,
M. Sundt, C. Larson, C. Tawiah Agyemang, S. Newton,
G. Borriello, and R. Anderson. mpneumonia: Development
of an innovative mhealth application for diagnosing and
treating childhood pneumonia and other childhood illnesses
in low-resource settings. PloS one, 10(10), 2015.

[18] A. S. Ginsburg, C. Tawiah Agyemang, G. Ambler,
J. Delarosa, W. Brunette, S. Levari, C. Larson, M. Sundt,
S. Newton, G. Borriello, and R. Anderson. mpneumonia, an
innovation for diagnosing and treating childhood pneumonia
in low-resource settings: A feasibility, usability and
acceptability study in ghana. PLOS ONE, 11(10), 2016.

[19] S. Hao, N. Agrawal, A. Aranya, and C. Ungureanu. Building
a delay-tolerant cloud for mobile data. In 2013 IEEE 14th
International Conference on Mobile Data Management,
volume 1, pages 293–300, 2013.

[20] C. Hartung, Y. Anokwa, W. Brunette, A. Lerer, C. Tseng,
and G. Borriello. Open Data Kit: Tools to Build Information
Services for Developing Regions. In Proceedings of the 4th
ACM/IEEE International Conference on Information and
Communication Technologies and Development, ICTD ’10,
pages 1–12, 2010.

[21] T. S. Parikh, P. Javid, S. K., K. Ghosh, and K. Toyama.
Mobile phones and paper documents: evaluating a new
approach for capturing microfinance data in rural india. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 551–560, 1124857, 2006. ACM.

[22] L. Wei-Chih, M. Tierney, J. Chen, F. Kazi, A. Hubard, J. G.
Pasquel, L. Subramanian, and B. Rao. Uju: Sms-based
applications made easy. In Proceedings of the First ACM
Symposium on Computing for Development, pages 1–11,
1926200, 2010. ACM.

[23] World Bank Group. World Development Report 2016:
Digital Dividends. International Bank for Reconstruction and
Development (World Bank), 1818 H Street NW, Washington
DC, 20433, 2016.

452




