
Direct product via round-preserving compression

Mark Braverman?1 , Anup Rao??2, Omri Weinstein? ? ?1, and Amir
Yehudayoff†3

1 Princeton University
2 University of Washington

3 Technion IIT

Abstract. We obtain a strong direct product theorem for two-party
bounded round communication complexity. Let sucr(µ, f, C) denote the
maximum success probability of an r-round communication protocol
that uses at most C bits of communication in computing f(x, y) when
(x, y) ∼ µ. Jain et al. [12] have recently showed that if sucr(µ, f, C) ≤ 2

3

and T � (C − Ω(r2)) · n
r

, then sucr(µ
n, fn, T ) ≤ exp(−Ω(n/r2)). Here

we prove that if suc7r(µ, f, C) ≤ 2
3

and T � (C − Ω(r log r)) · n then
sucr(µ

n, fn, T ) ≤ exp(−Ω(n)). Up to a log r factor, our result asymptot-
ically matches the upper bound on suc7r(µ

n, fn, T ) given by the trivial
solution which applies the per-copy optimal protocol independently to
each coordinate. The proof relies on a compression scheme that improves
the tradeoff between the number of rounds and the communication com-
plexity over known compression schemes.

1 Introduction

We study the direct sum and the direct product problem for bounded-round ran-
domized communication complexity. The direct sum problem studies the amount
of resources needed to solve n independent copies of a task in terms of the cost of
solving one copy. It is the case that if one copy costs C resources, then n copies
can be solved using Cn ≤ n · C resources. Can one do better? Direct sum theo-
rems answer this question by giving lower bounds for Cn in terms of C and n —
aiming to give a tight Ω(n ·C) bound whenever possible. If the task is solved in a
randomized model, with some error allowed, the performance of a solution for a
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single copy of the task is characterized by its cost C and its success probability ρ.
Clearly, with n ·C resources a success probability of at least ρn is attainable, but
is it optimal? A direct product theorem is stronger than a direct sum theorem
in that in addition to asserting that a certain amount of resources is necessary
to compute the n copies, it also shows that using a smaller amount of resources
will lead to a very low (possibly exponentially small) success probability.

Direct product theorems have a long history in complexity theory, and in
communication complexity in particular [19,16,21,11,12,6]. See [12] for a discus-
sion of the various direct product theorems. In the context of communication
complexity, direct product results for specific lower-bound techniques were given
by a number of papers: for discrepancy in the two party case by Shaltiel [21] and
Lee, Shraibman and Spalek [17], by Sherstov for generalized discrepancy [22],
and by Viola and Wigderson for the multiparty case [23]. More recently, a direct
product theorem was given by Jain and Yao in terms of the smooth rectan-
gle bound [13]. Direct product results for specific communication problems such
as set disjointness include [15,2]. Famous examples for direct product theorems
for other models of computation include Yao’s XOR lemma and Raz’s parallel
repetition theorem [20]. For (unbounded-round) communication complexity, the
current state-of-the-art results are given by [6], which shows that n copies of
a function cost Ω(

√
n) times the cost of one copy, and any computation using

less communication will fail except with an exponentially small probability. [13],
building on [14], obtains a strong direct product theorem in terms of the smooth
rectangle bound – showing that a strong direct product theorem holds for the
communication complexity of a large number of commonly studied functions.

In this paper we focus on the bounded-round, distributional, two party com-
munication complexity model. Bounded-round communication complexity is used
extensively in streaming and sketching lower bounds (see e.g. [9,18] and refer-
ences therein). We prove a tight direct sum and direct product theorem for this
model. The two players are given inputs according to a distribution (x, y) ∼ µ
and need to compute a function f(x, y). The players perform the computation
using a communication protocol π. In the bounded-round model, the players are
allowed a total of at most r messages in their protocol π. The communication
cost ‖π‖ of a protocol π is the (worst-case) number of bits the players send
when running π. If π has r rounds then ‖π‖ ≥ r. The success probability of π,
denoted suc(µ, f, π), is the probability it outputs the correct value of f (for a
formal definition see Section 3.3). The probability that any r-round protocol of
communication cost C succeeds at computing f is denoted by

sucr(µ, f, C) := max
π is r-round and ‖π‖ ≤ C

suc(µ, f, π).

The unbounded round success probability suc(µ, f, C) is defined as sucC(µ, f, C)
(the trivial bound of C does not limit interaction, as r ≤ C by definition).

The function fn((x1, . . . , xn), (y1, . . . , yn)) is just the concatenation of n
copies of f . In other words, it outputs (f(x1, y1), . . . , f(xn, yn)). Assume that
sucr(µ, f, C) < 2/3. Both the direct sum and the direct product question ask
what can be said about the cost, and the success probability of solving fn. A



strong direct sum theorem for bounded-round computation would assert that
sucαr(µ

n, fn, αn · C) < 3/4, for some constant α > 0. A direct product the-
orem would further assert that sucαr(µ

n, fn, αn · C) < (2/3)αn. Clearly, the
latter statement is the best one can hope for up to constants, since trivially
sucr(µ

n, fn, n · C) ≥ sucr(µ, f, C)n.
Prior to the present work, several general direct sum and direct product re-

sults for bounded-round communication complexity were given. The work [10]
by Harsha, Jain, McAllester and Radhakrishnan gives a strong direct sum result
for bounded-round communication, but it only works for product distributions
(i.e. when µ is of the form µ = µx × µy). The paper [5] by Braverman and
Rao gives a direct sum result for bounded-round communication of the follow-
ing form: if suc(µ, f, C) < 2/3, then sucr(µ

n, fn, n · C · (1 − o(1))) < 3/4, for
n sufficiently large. This result gives a tight dependence on the communica-
tion complexity, but assumes a lower bound on the communication complex-
ity of a single copy of f without restriction on the number of rounds. There-
fore, strictly speaking, it is not a direct sum result for bounded-round commu-
nication complexity. The only general direct product result for bounded-round
communication complexity was recently given by a Jain, Pereszlenyi, and Yao
[12], who showed that if sucr(µ, f, C) ≤ 2

3 and T � (C − Ω(r2)) · nr , then
sucr(µ

n, fn, T ) ≤ exp(−Ω(n/r2)). This result is indeed a proper direct product
theorem for bounded-round communication. Its parameters are sub-optimal in
two respects: (1) there is no reason for the direct product theorem to not hold all
the way to T = Ω(C · n), and (2) in a tight direct product theorem the success
probability sucr(µ

n, fn, T ) would be exp(−Ω(n))� exp(−Ω(n/r2)).

Our results. Our main result is an optimal (up to constants and a log r fac-
tor) direct product theorem for bounded-round communication complexity (see
Theorem 2 below). The theorem improves over the parameters in [12], with
the exception of the dependence on the number of rounds: we require a lower
bound for protocols using 7r rounds of communication for one copy to get a
lower bound for an r-round protocol for n copies. Using Yao’s minimax principle
[24], our result also applies to the randomized bounded-round communication
complexity.

Our techniques. Our general strategy is similar to other recent direct sum and
direct product results [10,1,12,6]. The first main ingredient is the notion of in-
formation cost of protocols. The information cost of a two-party protocol π over
a distribution µ of inputs (x, y) ∼ µ is defined as the amount of information the
parties learn about each other’s inputs from the messages of the protocol. More
formally, if we define X,Y to be the random variables representing the inputs,
and M to be the random variable representing the messages or transcript, then
the information cost of π with respect to µ is given by

IC(π, µ) := I(X;M |Y ) + I(Y ;M |X),

where I(A;B|C) is the mutual information between A and B conditioned on C.



In general, direct sum and direct product proofs proceed in two steps: As a
first step, it is shown that if fn can be solved using fewer than T resources, then
one copy of f can be solved using a protocol π, that while having high commu-
nication complexity (T ), has low information complexity: IC(π, µ) = O(T/n).4

The second step is to convert the protocol π into a protocol π′ that has low com-
munication cost, such as O(IC(π, µ))). This is done through protocol compres-
sion: the process of converting a low-information interactive protocol into a low
communication protocol. If successful, this step leads to a low-communication
protocol for one copy of f , which contradicts the initial lower bound assumption
on one copy of f .

The process of obtaining new direct sum results in communication complexity
has been tightly linked to the process of obtaining new protocol compression
results. In fact, the question of whether the general (unbounded-round) direct
sum for communication complexity holds is equivalent to the question of whether
all protocols can be compressed [5,4]. In the case of bounded-round protocols
the problem of compressing protocols reduces to the problem of compressing
individual messages in the protocol. The problem of message compression can
be rephrased as follows: player 1 has a distribution P of the message M ∼ P he
wants to send to player 2. Player 2 has some prior belief Q about the distribution
of M . How much communication is needed to ensure that both players jointly
sample M ∼ P? The natural information-theoretic lower bound for this problem

is the KL-divergence D

(
P

Q

)
. More specifically, if the element being sampled is

a, we should expect player 1 to communicate at least log(P (a)/Q(a)) bits to
player 2.

If we start off with the assumption that it is hard to solve one copy of f
using a bounded-round protocol, then to obtain a contradiction our compression
scheme should preserve (or at least not blow-up) the number of rounds in the
protocol. This means, ideally, that compression of one round should take only
a constant number of rounds. The round-compression scheme of [5], in fact,
manages to attain near-optimal compression in terms of communication cost.

The communication cost of the problem described above is reduced to D

(
P

Q

)
·

(1+o(1))+O(log 1/ε), where ε is an error parameter. There is a price to be paid
for such communication performance: there is no good bound on the number
of rounds such compression would take. Thus the resulting compressed protocol
is no longer bounded-round. Therefore, [5] only obtains a lower bound on the
bounded-round communication complexity of fn in terms of the unbounded-
round communication complexity of f .

The recent works [11,12] devise a different compression scheme that does not
increase the number of rounds at all: each message in the original protocol is
compressed into one message in the compressed protocol. As a result, these works
obtain direct product theorems for bounded-round communication complexity.

4 In the case of direct product, what is shown is that π is statistically close to being
a low information protocol.



These compressions, however, end up paying a high price in the communication
overhead. Specifically, due to an application of Markov inequality, sending a
message a, on average, takes r · log(P (a)/Q(a)) bits – a multiplicative loss by an
r factor, which leads to a factor-r loss in the ultimate result.

Our main technical contribution is a new family of compression protocols for
compressing one round of communication. These protocols are parameterized by
two parameters (d, `). They give a tradeoff between the communication overhead
and the resulting number of rounds. Specifically:

Theorem 1. For any a, ` > 0, let log+
` (a) = max{0, log`(a)}. Suppose that

player 1 is given a distribution P (unknown to Player 2), and player 2 is given
a distribution Q, both over a universe U . Then, for every 0 < ε < 1/2, d ≥ 1
and integer ` ≥ 2, there is a protocol such that at the end of the protocol:

– player 1 outputs an element a distributed according to P .
– player 2 outputs an element b s.t for each x ∈ U , Pr[b = a|a = x] > 1− ε.
– the communication is at most (2`+1) · log+

2 (P (a)/Q(a))+2 log(1/ε)+2d+5.
– the number of rounds is at most 2 log+

` [(1/d) log+
2 (P (a)/Q(a))] + 2.

The second condition implies in particular that player 2 outputs an element
b such that b = a with probability at least 1− ε. The protocol requires no prior
knowledge or assumptions on P,Q.

One can see that setting d and ` to be large in Theorem 1 will result in
few rounds but long communication, and vice versa. The compression scheme in
Theorem 1 may be of independent interest. It is possible to view both compres-
sion schemes from [5] and from [11,12] as special cases of Theorem 1. The scheme
in [5] approximately corresponds to (d, `) = (2, 1). The scheme in [11,12] corre-
sponds to d = Θ(IC(π, µ)). By carefully choosing the parameters in Theorem 1,
and analyzing the resulting number of rounds and communication cost over all
rounds simultaneously, we obtain a compression scheme that at the same time
increases the communication cost and the number of rounds of communication
by only a constant. This scheme, together with direct product reductions from
[6], allows us to complete the proof of Theorem 2.

Discussion and open problems. Our work essentially closes the direct product
question in the regime where the number of rounds r is small compared to C,
and sucr(µ, f, C) is constant in (0, 1). The general direct product problem (and
even the weaker direct sum problem) remains wide open. The key compression
challenge one needs to overcome is the problem of compressing protocols when
r � I, that is, when the amount of information π conveys in a typical round is
o(1). Further discussion on this problem can be found in [4,3].

An important area of tradeoff – both in terms of direct sum/product re-
sults and in terms of compression is the relationship between error, communi-
cation complexity, and the number of rounds. When performing compression
to a bounded number of rounds r, we inevitably have to abort the protocol if
the rounds “quota” is exceeded. What is the effect this has on error incurred? A



very recent work by Brody, Chakrabarti, and Kondapally [8] suggests the general
tradeoff may take an interesting form. Understanding these tradeoffs is crucial
for getting tight parameters for bounded-round direct sum and product in the
regime where sucr(µ, f, C) is very close to 1.

2 Results

Let sucr(µ, f, C) denote the maximum success probability of an r-round commu-
nication protocol that uses at most C bits of communication to compute f(x, y)
when x, y ∼ µ. Denote by fn(x1, . . . , xn, y1, . . . , yn) the function that maps its
inputs to the tuple (f(x1, y1), f(x2, y2), . . . , f(xn, yn)) and µn denote the prod-
uct distribution on n pairs of inputs, where each pair is sampled independently
according to µ. We prove the following direct product result.

Theorem 2 (Main Theorem). Let f be a 2-party Boolean function. There
is a universal constant α > 0 such that if γ = 1 − suc7r(µ, f, C), T ≥ 2, and

T < αnγ2
(
C − r log(r/2γ)

αγ − r
αγ2

)
, then sucr(µ

n, fn, T ) ≤ exp
(
−αγ2n

)
.

When sucr(µ, f, C) ≤ 2
3 and r log r � C, Theorem 2 ensures that the success

probability of any protocol attempting to compute fn under µn using � Cn
communication and r/7 rounds must be exponentially small in n.

Our main technical contribution is showing how to compress bounded-round
protocols without introducing (too many) additional rounds.

The first step is the sampling protocol described in Theorem 1, which shows
how to jointly and efficiently sample from a desired distribution in an oblivious
manner. Suppose player 1 knows a distribution P , player 2 knows a distribution
Q, and the players wish to jointly sample from P without knowing the distribu-
tion of the other player. It is an extension of a protocol from [5]. The protocol
is interactive and the requires multiple rounds. The number of rounds required
for the simulation in [5] is Θ(

√
∆), where ∆ is the KL divergence between the

distributions P and Q. While this suffices for the particular objective in [5],
this is more than we can afford here: the compression scheme implies that an
r-round protocol which reveals I bits of information can be simulated by an
O(r
√
I)-round protocol that has I + o(I) communication. The resulting com-

pressed protocol is no longer bounded-round, requiring us to assume a stronger
lower bound on the hardness of one copy of f to reach a contradiction. Our new
compression protocol ensures that at most 7r rounds of communication are used
with high probability, which means that assuming that f cannot be efficiently
solved by a 7r-round protocol suffices.

The second step in the proof is showing how to use the single-message sam-
pling protocol from Theorem 1 to simulate communication protocols, with com-
munication comparable to the amount of information they convey, while keeping
the number of rounds comparable to the original number. In fact, to prove our
main result, we actually need to analyze protocols that are merely close to hav-
ing low information cost. As noticed in [6], such protocols need not have low



information themselves. E.g., consider the protocol π in which player 1 sends
her n-bit uniformly random input x with probability ε, and otherwise sends a
random string. Then π is ε-close to a 0-information protocol, but IC(π) = εn.
Nevertheless, truncation of protocols (as in [6]) implies that compression is pos-
sible even in this more general setting. This is formalized by the next theorem.

Theorem 3 (Round preserving compression). Suppose θ is an r-round
protocol with inputs x, y and messages m, and q is another distribution on these

variables such that θ(xym)
ε
≈ q(xym). Let I = Iq(X;M |Y ) + Iq(Y ;M |X). Then

there exists a 7r-round protocol τ that 11ε-simulates θ such that

‖τ‖ ≤ 7
I

ε2
+ 2

r log(r/ε)

ε
+ 30

r

ε2
.

The compression protocol in Theorem 3 is obtained by sequential applications
of Theorem 1. However, in order to prevent a blowup in the number of simulating
rounds, we cannot use the guarantees of Theorem 1 on a per-round basis. We
analyze the protocol in a global manner, which yields the desirable tradeoff
between the number of rounds and the communication complexity.

3 Preliminaries

3.1 Notation

Unless otherwise stated, logarithms in this text are computed in base two. Ran-
dom variables are denoted by capital letters and values they attain are denoted
by lower-case letters. For example, A may be a random variable and then a
denotes a value A may attain and we may consider the event A = a. Given
a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i
similarly. For an event E, define 1E to be the indicator random variable of E.

We use the notation p(a) to denote both the distribution on the variable a,
and the number Prp[A = a]. The meaning will typically be clear from context,
but in cases where there may be confusion we shall be more explicit about which
meaning is being used. We write p(a|b) to denote either the distribution of A
conditioned on the event B = b, or the number Pr[A = a|B = b]. For an event W ,
we write p(W ) to denote the probability of W according to p. We let Ep(a) [g(a)]
denote the expected value of g(a) when a is distributed according to p.

For two distributions p, q, we write |p(a) − q(a)| to denote the `1 distance

between the distributions p and q. We write p
ε
≈ q if |p− q| ≤ ε.

The divergence between p, q is defined to be

D

(
p(a)

q(a)

)
=
∑
a

p(a) log
p(a)

q(a)
.

For three random variables A,B,C jointly distributed according to p(a, b, c), the
mutual information between A,B conditioned on C is defined as

Ip(A;B|C) = E
p(cb)

[
D

(
p(a|bc)
p(a|c)

)]
= E
p(ca)

[
D

(
p(b|ac)
p(b|c)

)]
=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c)

.



3.2 Properties of divergence

Lemma 1 (Chain Rule). If a = a1, . . . , as, then

D

(
p(a)

q(a)

)
=

s∑
i=1

E
p(a<i)

[
D

(
p(ai|a<i)
q(ai|a<i)

)]
.

The following lemmas describe basic properties of divergence (for proofs see [6]).

Lemma 2. Let S = {a : p(a) < q(a)}. Then,
∑
a∈S p(a) log p(a)

q(a) ≥ −1/(e ln 2).

Lemma 3 (Truncation Lemma [6]). Let p(a, b, c)
ε
≈ q(a, b, c) where a =

a1, . . . , as. For every a, b, c, define k to be the minimum number j in [s] such
that

log
p(a≤j |bc)
p(a≤j |c)

> β.

If no such index exists, set k = s+ 1. Then,

p(k < s+ 1) <
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.

3.3 Communication complexity

Given a protocol π that operates on inputs X,Y drawn from a distribution µ
and (possibly) using public randomness S and messages M , we write π(xyms)
to denote the joint distribution of these variables. We write ‖π‖ to denote the
communication complexity of π, namely the maximum number of bits that may
be exchanged by the protocol.

A central measure in this paper is the information complexity of a commu-
nication protocol (see [1,4] and references within for a more detailed overview).
The internal information cost of π is defined to be IC(π) := Iπ(X;M |Y S) +
Iπ(Y ;M |XS). It is well known (e.g, [4]) that for any protocol π, IC(π) ≤ ‖π‖.

Let q(x, y, a) be an arbitrary distribution. We say that π δ-simulates q, if

there is a function g and a function h such that π(x, y, g(x, s,m), h(y, s,m))
δ
≈

q(x, y, a, a), where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where
(x, y, a) are distributed according to q. Thus if π δ-simulates q, the protocol
allows the parties to sample a according to q(a|xy). If in addition g(x, s,m)
does not depend on x, we say that π strongly δ-simulates q. Thus if π strongly
simulates q, then the outcome of the simulation is apparent even to an observer
that does not know x or y.

If λ is a protocol with inputs x, y, public randomness s′ and messages m′, we
say that π δ-simulates λ if π δ-simulates λ(x, y, (s′,m′)). Similarly, we say that
π strongly δ-simulates λ if π strongly δ-simulates λ(x, y, (s′,m′)). We say that π
computesf with success probability 1−δ, if π strongly δ-simulates π(x, y, f(x, y)).
We denote this by suc(µ, f, π) = 1− δ.

The next proposition is straightforward. A formal proof can be found in the
full version of this paper [7].



Proposition 1. Let f : X × Y −→ Z and let π be such that suc(µ, f, π) =
1− δ. Then if λ is a protocol that ε-simulates π, there is a protocol τ such that
suc(µ, f, τ) ≥ 1− (δ+ ε) and ‖τ‖ = ‖λ‖+ log |Z|. The number of rounds in τ is
the same as in π.

4 Proof of Theorem 1

Proof (of Theorem 1). Due to space constraints, here we only present the sam-
pling protocol. A full analysis of the protocol together with the proof of Theorem
1 appears in the full version of this paper [7].

We start by describing the content of the shared random tape. Both parties
interpret part of the shared random tape as a sequence of independent uniformly
selected elements {ei}∞i=1 = {(xi, pi)}∞i=1 from the set E := U × [0, 1]. There is
also a part of the shared random tape that contains random independent hash
functions {hi}∞i=1, that is, for every i, the function hi : U → {0, 1} is so that
Pr[hi(x) = hi(y)] = 1/2 for every x 6= y in U .

The players use the following definitions: Define

EP := {(x, p) ∈ E : P (x) > p},

the set of points under the histogram of P . Similarly, define

EQ := {(y, q) ∈ E : Q(y) > q}.

For a constant C ≥ 1, define the C-multiple of EQ as

C · EQ := {(y, q) ∈ E : (y, q/C) ∈ EQ}.

For a non-negative integer t, set

Ct := 2d`
t

and st := 2d`t + dlog(1/ε)e+ 1.

The protocol. The protocol runs as follows:

1. Player 1 selects the first index i such that ei = (xi, pi) ∈ EP , and outputs
xi.

2. Player 1 uses 1 + dlog log(1/ε)e bits to send player 2 the binary encoding of

k := di/|U|e.

If k > 2log log(1/ε), player 1 sends the all-zero string and the players abort.
3. Repeat, until player 2 produces an output, starting with t = 0:

(a) Player 1 sends the values of all hash functions hj(xi) for 1 ≤ j ≤ st, that
have not been previously sent.

(b) If there is an ar = (yr, qr) with r ∈ {(k − 1) · |U| + 1, . . . , k · |U|} in
Ct · EQ such that hj(yr) = hj(xi) for some 1 ≤ j ≤ st, then player 2
says “success” and outputs yr (if there is more than one such ar, player
2 selects the first one).

(c) Otherwise, player 2 responds “failure” and the parties increment t to
t+ 1 and repeat.



5 Round preserving compression - Proof of Theorem 3

Proof (of Theorem 3). Our simulating protocol for θ is the protocol σ described
in Figure 1 (The final protocol τ will be defined as a truncation of σ). Once
again, due to space constraints, here we only present the protocol. For a complete
analysis and the rest of the proof of Theorem 3, we refer the reader to the full
version of this paper [7].

Protocol σ for simulating θ

Player 1 repeatedly computes a message m′ = m′
1, . . . ,m

′
r and player 2 repeatedly

computes a message
m′′ = m′′

1 , . . . ,m
′′
r as follows.

– For odd j, player 1 sets P = θ(mj |m′
<jx) and player 2 sets Q = θ(mj |m′′

<jy).
– For even j, player 1 sets Q = θ(mj |m′

<jx) and player 2 sets P = θ(mj |m′′
<jy).

– In each round j, the players run the protocol from Theorem 1 with error pa-
rameter ε/r, with ` = 2,
and with d = β

rε
+ 1

ε
where

β =
I + 1/(e ln 2) + log(r + 1)

ε
+ 2.

This leaves player 1 with m′
j and player 2 with m′′

j .

Fig. 1. A round preserving compression of the protocol θ.

6 Direct product for bounded round protocols

Let π be a (deterministic) r-round protocol for computing fn with inputs x =
x1, . . . , xn and y = y1, . . . , yn drawn from µn. To prove Theorem 2, we follow the
approach of [6] which itself resembles the proof of the parallel repetition theorem
[20]. Let W be the event that π correctly computes fn. For i ∈ [n], let Wi denote
the event that the protocol π correctly computes the i’th copy f(xi, yi). Let π(W )
denote the probability of W , and π(Wi|W ) denote the conditional probability
of the event Wi given W (clearly, π(Wi|W ) = 1). We shall prove that if π(W )
is not very small and ‖π‖ � Cn, then (1/n)

∑n
i=1 π(Wi|W ) < 1, which is a

contradiction. In fact, the proof holds for an arbitrary event W , as long as it
occurs with large enough probability:

Lemma 4 (Main Lemma). Let f be a 2-party Boolean function. There is a
universal constant α > 0 so that the following holds. For every γ > 0, and event

W such that π(W ) ≥ 2−γ
2n, if ‖π‖ ≥ 2, and ‖π‖ < αnγ2

(
C − r log(r/2γ)

αγ − r
αγ2

)
,

then 1
n

∑
i∈[n] π(Wi|W ) ≤ suc7r(µ, f, C) + γ/α.



First let us see how Lemma 4 implies Theorem 2. As outlined above, let
W denote the event that π computes f correctly in all n coordinates. So,
(1/n)

∑
i∈[n] π(Wi|W ) = 1. Set γ = α(1−suc7r(µ, f, C))/2 so that suc7r(µ, f, C)+

γ/α < 1. Then by Lemma 4, either ‖π‖ < 2, ‖π‖ ≥ αnγ2
(
C − r log(r/2γ)

αγ − r
αγ2

)
,

or π(W ) < 2−γ
2n. It therefore remains to prove Lemma 4.

The overall idea is to use π to produce a 7r-round protocol with commu-
nication complexity < C that computes f correctly with probability at least
(1/n)

∑n
i=1 π(Wi|W ) − O(γ). This would imply that (1/n)

∑
i∈[n] π(Wi|W ) ≤

suc7r(µ, f, C) + O(γ), as desired. The first step is to show that there exists a
good simulating protocol for a random coordinate of π|W , whose average infor-
mation cost is low (roughly ‖π‖/n) and still uses only r rounds. The existence
of such protocol was proven in [6], except their protocol is not guaranteed to
actually have low information cost, but to merely be statistically close to a low-
information protocol. This will suffices for our purpose:

Lemma 5 (Claims 26 and 27 from [6], restated). There is a protocol σ
taking inputs x, y ∼ µ so that the following holds:

– σ publicly chooses a uniform i ∈ [n] independent of x, y, and Si which is part
of the input to π.

– Ex,y,m,i,si |σ(xysim)− π(xiyisim|W )| ≤ 2γ.
– Rounds(σ) = Rounds(π).
– Ei [Iπ(Xi;M |YiSiiW ) + Iπ(Yi;M |XiSiiW )] ≤ 4‖π‖/n.

The second step of the proof of Lemma 4 is to compress the simulating pro-
tocol σ so that it actually has low communication, without introducing many
additional rounds in the compression process. Since the second and fourth propo-
sitions of Lemma 5 imply that σ is 2γ-close to a low-information distribution
q = π(xiyisim|W ), this is precisely the setting of Theorem 3. A formal proof of
Lemma 4 can be found in the full version of this paper [7].
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