Notes: You must work on the homework by yourself. Each problem is worth 10 points.

1. Consider the class of functions that have a single round interactive proof: the prover sends a single message, which the randomized verifier uses to verify that the value of the function is 1. Show that the set of functions verifiable with such proofs is contained in NP^{SAT}. HINT: Use the same method as the proof that shows that $\text{BPP} \subseteq \text{NP}^{\text{SAT}}$.

2. Show that if $c(c + d) < 2$, then SAT cannot be computed by a Turing machine that uses n^c time and n^d space.

3. Recall that we defined an expander to be a constant degree graph for which for every subset S of at most $n/2$ vertices, $|\Gamma(S)| \geq (1 + \Omega(1))|S|$. We also defined the edge expansion of a constant degree graph to be

$$h(G) = \min_{S, |S| \leq n/2} \frac{\# \text{ edges coming out of } S}{|S|}.$$

Prove that the graph is an expander if and only if $h(G) = \Omega(1)$.

4. Suppose you are given a d-regular expander graph such that all eigenvalues of the normalized adjacency matrix except the largest one are at most λ in magnitude. Show that if S, T are two sets of vertices in the graph, and E is the number of edges going from S to T, then

$$|E - \frac{d|S||T|}{n}| < \lambda d \sqrt{|S||T|}.$$

HINT: Use the fact that if $1_S, 1_T$ are the corresponding indicator vectors, and A is the adjacency matrix, then $E = 1_S^T A 1_T$, and the Cauchy-Schwartz inequality.