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1 The Class AC0

We start today by giving another beautiful proof that uses algebra. This time it is in the arena of
circuits.

We shall work with the circuit class AC0: polynomial sized, constant depth circuits with
∧,∨ and ¬ gates of unbounded fan-in. For example, in this class, we can compute the function
x1 ∧ x2 ∧ . . . ∧ xn using a single ∧ gate. AC0 consists of all functions that can be computed using
polynomial sized, constant depth circuits of this type.

This class is not as interesting as some of the other ones we have considered. For one thing,
its definition is highly basis dependent, namely the set of functions that are computable in AC0

depends strongly on our choice of allowable gates (which is not true of the class of polynomial
sized circuits, or circuits of O(log n) depth, for example). Still, it is challenging enough to prove
lowerbounds against this class that we shall learn something interesting in doing so.

Our main goal will be to prove the following theorem:

Theorem 1. The parity of n bits cannot be computed in AC0.

In order to prove this theorem, we shall once again appeal to polynomials, but carefully, carefully.
The theorem will be proved in two steps:

1. We show that given any AC0 circuit, there is a low degree polynomial that approximates the
circuit.

2. We show that parity cannot be approximated by a low degree polynomial.

It will be convenient to work with polynomials over a prime field Fp, where p 6= 2 (since there
is a polynomial of degree 1 that computes parity over F2). For concreteness, let us work with F3.

1.1 Some math background

Fact 2. Every function f : Fn
p → F is computed by a unique polynomial if degree at most p− 1 in

each variable.

Proof Given any a ∈ Fn
p , consider the polynomial 1a =

∏n
i=1

∏
zi∈Fp,zi 6=ai

(Xi−zi)
(ai−zi) . We have that

1a(b) =

{
1 if a = b,

0 else.

Further, each variable has degree at most p− 1 in each variable.
Now given any function f , we can represent f using the polynomial:

f(X1, . . . , Xn) =
∑
a∈Fn

p

f(a) · 1a.
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To prove that this polynomial is unique, note that the space of polynomials whose degree is at
most p − 1 in each variable is spanned by monomials where the degree in each of the variables is
at most p− 1, so it is a space of dimension pn (i.e. there are pp

n
monomials). Similarly, the space

of functions f is also of dimension pn (there are pp
n

functions). Thus this correspondence must be
one to one.

We shall also need the following estimate on the binomial coefficients, that we do not prove
here:

Fact 3.
(
n
i

)
is maximized when i = n/2, and in this case it is at most O(2n/

√
n).

1.2 A low degree polynomial approximating every circuit in AC0

Suppose we are given a circuit C ∈ AC0.
We build an approximating polynomial gate by gate. The input gates are easy: xi is a good

approximation to the i’th input. Similarly, the negation of fi is the same as the polynomial 1− fi.
The hard case is a function like f1 ∨ f2 ∨ . . . ∨ ft, which can be computed by a single gate

in the circuit. The naive approach would be to use the polynomial
∏t

i=1 fi. However, this gives
a polynomial whose degree may be as large as the fan-in of the gate, which is too large for our
purposes.

We shall use a clever trick. Let S ⊂ [t] be a completely random set, and consider the function∑
i∈S fi. Then we have the following claim:

Claim 4. If there is some j such that fj 6= 0, then PrS [
∑

i∈S fi = 0] ≤ 1/2.

Proof Observe that for every set T ⊆ [n]− {j}, it cannot be that both∑
i∈T

fi = 0

and
fj +

∑
i∈T

fi = 0.

Thus, at most half the sets can give a non-zero sum.

Note that
22 = 12 = 1 mod 3

and
02 = 0 mod 3.

So squaring turns non-zero values into 1. So let us pick independent uniformly random sets
S1, . . . , S` ⊆ [t], and use the approximation

g = 1−
∏̀
k=1

1−

∑
i∈Sk

fi

2
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Claim 5. If each fi has degree at most r, then g has degree at most 2`r, and

Pr[g 6= f1 ∨ f2 ∨ . . . ∨ ft] ≤ 2−`.

Overall, if the circuit is of depth h, and has s gates, this process produces a polynomial whose
degree is at most (2`)h that agrees with the circuit on any fixed input except with probability s2−`

by the union bound. Thus, in expectation, the polynomial we produce will compute the correct
value on a 1− s2−` fraction of all inputs.

Setting ` = log2 n, we obtain a polynomial of degree polylog(n) that agrees with the circuit on
all but 1% of the inputs.

1.3 Low degree polynomials cannot compute parity

Here we shall prove the following theorem:

Theorem 6. Let f be any polynomial over F3 in n variables whose degree is d. Then f can compute
the parity on at most 1/2 +O(d/

√
n) fraction of all inputs.

Proof Consider the polynomial

g(Y1, . . . , Yn) = f(Y1 − 1, Y2 − 1, . . . , Yn − 1) + 1.

The key point is that when Y1, . . . , Yn ∈ {1,−1}, if f computes the parity of n bits, then g
computes the product

∏
i Yi. Thus, we have found a degree d polynomial that can compute the

same quantity as the product of n variables. We shall show that this computation cannot work on
a large fraction of inputs, using a counting argument.

Let T ⊆ {1,−1}n denote the set of inputs for which g(y) =
∏

i yi. To complete the proof, it
will suffice to show that T consists of at most 1/2 +O(d/

√
n) fraction of all strings.

Consider the set of all functions q : T → F3. This is a space dimension |T |. We shall show how
to compute every such function using a low degree polynomial.

By Fact 2, every such function q can be computed by a polynomial. Note that in any such
polynomial, since yi ∈ {1,+1}, we have that y2i = 1, so we can assume that each variable has
degree at most 1. Now suppose I ⊆ [n] is a set of size more than n/2, then for y ∈ T ,∏

i∈I
yi =

(
n∏

i=1

yi

)(∏
i/∈I

yi

)
= g(y)

(∏
i/∈I

yi

)
In this way, we can express every monomial of q with low degree terms, and so obtain a polynomial
of degree at most n/2 + d that computes q.

The space of all such polynomials is spanned by
∑n/2+d

i=0

(
n
i

)
monomials. Thus, we get that

|T | ≤
n/2+d∑
i=0

(
n

i

)
≤ 2n/2 +

d∑
i=n/2+1

(
n

i

)
≤ 2n/2 +O(d · 2n/

√
n) = 2n(1/2 +O(d/

√
n)),

where the last inequality follows from Fact 3.

Thus, any circuit C ∈ AC0 cannot compute the parity function.

Remark 7. Note that the above proof actually proves something much stronger: it proves that there
is no circuit in AC0 that computes parity on 51% of all inputs.

10 Parity /∈ AC0, and introducing PCP -3



2 Probabilistically Checkable Proofs

We bravely venture into the advanced section of this course. Our first ( and perhaps last) target is
to understand a family of results that are collectively known as PCP theorems. Like other things
in complexity theory, the easiest way to understand this concept is to start by ignoring the name.
Instead, here are some concrete results that have come out of this beautiful theory:

Theorem 8. For every constant ε > 0, there is a polynomial time computable function f mapping
3SAT formulas to 3SAT formulas such that if φ is a satisfiable formula, f(φ) is also satisfiable, and
if φ is not satisfiable, then any assignment can satisfy at most (7/8 + ε) fraction of all clauses in
f(φ).

This is a very powerful theorem with a couple of very interesting consequences. The first one
is that it says something about the difficulty of designing approximation algorithms. Consider the
problem of estimating the maximum number of clauses that can be satisfied in a 3SAT formula. If
P 6= NP, we cannot compute this number in polynomial time, but maybe we can hope to obtain
an approximation?

Theorem 8 shows that obtaining any meaningful polynomial time approximation is as hard as
proving that P = NP. Indeed, a random assignment to the variables will satisfy each clause with
probability 7/8, and so will satisfy 7/8 of all clauses in expectation. Thus every formula has an
assignment that satisfies 7/8 of its clauses. Theorem 8 says that any process that allows us to
distinguish a formula for which the maximum satisfiable fraction of clauses is 7/8 from a formula
where it is 1 can be used to get an algorithm for every problem in NP.

Another consequence of this theorem is more philosophical. Consider the Prover/Verifier view
of NP. We have shown that any function f that has a polynomial time verifiable proof can be
reduced to 3SAT, where the proof turns into an assignment to the 3SAT formula. Consider what
happens if the verifier instead asks for a satisfying assignment to the formula f(φ) promised by
Theorem 8 . Then, if the formula is not satisfiable, the verifier need not even read the whole
proof in order to convince himself that it is not satisfied. He can instead sample 100 clauses of the
formula at random, and just check whether the provers assignment satisfied all of the clauses. If
the formula is not satisfiable, with high probability at least one of these 100 clauses will not be
satisfied by the prover’s assignment, and so the verifier will catch the prover. Thus we have shown
that the proof of any statement that is checkable in polynomial time can be encoded in such a way
that a probabilistic verifier can checks its validity by reading only a constant number of bits from
it.
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