CSE533: Information Theory in Computer Science	October 20, 2010
Lecture 7	
Lecturer: Anun Rao	Scribe: Jijiana Yan

1 Shearer's Lemma

Today we shall learn about Shearer's Lemma, which is a generalization of the subadditivity of entropy. Subadditivity says that if $X = X_1, \ldots, X_n$ is a random variable, then the average coordinate carries at least the average entropy, namely for a random coordinate i, $\mathbb{E}_i[H(X_i)] \geq H(X)/n$. Shearer's Lemma is about what happens when you sample a subset of the coordinates according to some arbitrary distribution.

Given a set of coordinates $T = \{i_1, \dots, i_k\} \subset [n]$, we write X_T to denote X_{i_1}, \dots, X_{i_k} , the projection of X onto the coordinates in T, and we write $X_{< i}$ to denote X projected onto all coordinates less than i.

Lemma 1 (Shearer's Lemma). If S is any distribution on subsets of the coordinates [n], such for every i, $\Pr[i \in S] \ge \mu$, then $\mathbb{E}[H(X_S)] \ge \mu \cdot H(X)$.

We give a simple proof due to Jaikumar Radhakrishnan.

Proof For $T = \{i_1, \dots, i_k\}$ with $i_1 < i_2 < \dots < i_k$, observe that

$$H(X_T) = H(X_{i_1}) + H(X_{i_2}|X_{i_1}) + \dots + H(X_{i_k}|X_{i_{k-1}}, \dots, X_{i_1})$$

$$\geq H(X_{i_1}|X_{< i_1}) + H(X_{i_2}|X_{< i_2}) + \dots + H(X_{i_k}|X_{< i_k}),$$

where we used chain rule in the equality, and used the fact that entropy is only smaller if we condition on more variables, for the inequality.

Thus, we get that

$$\mathbb{E}[H(X_S)] \ge \mathbb{E}\left[\sum_{i \in S} H(X_i|X_{< i})\right]$$

$$= \sum_{i \in [n]} \Pr[i \in S] \cdot H(X_i|X_{< i}) \quad \text{whenever i is not in S, this term contributes 0}$$

$$\ge \mu \sum_{i \in [n]} H(X_i|X_{< i})$$

$$= \mu \cdot H(X)$$

2 Applications

2.1 Counting Embeddings of Graphs

We start with a simple example. Suppose G = (V, E) is an undirected graph, t is the number of triangles and ℓ is the number of edges.

Proposition 2. $t \le (2\ell)^{3/2}/6$

Proof The proof is very similar to that of the triangles and vee problem we have seen. Let X_1, X_2, X_3 be uniformly random vertices forming a triangle. Then $H(X_1, X_2, X_3) = \log(6t)$, since each triangle can be written in 6 ways.

Let S be a uniformly random subset of coordinates $\{1, 2, 3\}$ of size 2. Then for all i, $\Pr[i \in S] = 2/3$. By Shearer's Lemma,

$$\mathbb{E}_{S}[H(X_S)] \ge \frac{2}{3}\log(6t),$$

so there exists $T \subset [1,2,3], |T|=2$, for which $H(X_T) \geq \frac{2}{3} \log(6t)$. On the other hand X_T is supported on edges of the graph, so $\log(2\ell) \geq H(X_T)$. This gives $2\ell \geq (6t)^{2/3}$, proving the bound.

It is easy to see that if a < b and n_a is the number of cliques of size a and n_b is the number of cliques of size b, then the same idea proves that $(b! \cdot n_b)^a \le (a! \cdot n_a)^b$. Can we say something about arbitrary subgraphs (besides cliques)? It turns out that we can completely characterize the relationship between the number of subgraphs to the number of edges!

Fix a particular undirected graph T. Say that a function $\sigma:V(T)\to V(G)$ mapping vertices of T to vertices of G is a homomorphism, if for every edge $\{u,v\}$ in T, $\{\sigma(u),\sigma(v)\}$ is an edge of G. We are interested in counting how many homomorphisms there are from T to G. Let us write $N(T,\ell)$ to denote the maximum number of homomorphisms from T to a graph that has ℓ edges. So earlier, we argued that if K is a k-clique, then $N(K,\ell)^2 \leq N(K,\ell)^k$. (The factorial terms disappear here, because we are counting homomorphisms rather than copies).

To understand $N(T,\ell)$ for an arbitrary graph T, we need to define two numbers associated with the graph T. The first is the *fractional independent set* number. A fractional independent set of T is a function $\psi:V(T)\to [0,1]$ such that for every edge, $e=\{u,v\}, \psi(u)+\psi(v)\leq 1$. The size of the fractional independent set is $\alpha(\psi)=\sum_{v\in V}\psi(v)$. We write $\alpha^*(T)$ to denote the size of the biggest fractional independent set. Note that $\alpha^*(T)$ can be computed by a linear program, and the integer version of this program simply computes the size of the largest independent set.

The dual of this linear program measures a different quantity associated with T, namely the fractional cover number. Say that a mapping of the edges $\phi: E(G) \to [0,1]$ is a fractional cover if for every vertex $v, \sum_{v \in e} \phi(e) \geq 1$, where the sum is taken over all edges e that contain v. The size of the fractional cover is $\gamma(\phi) = \sum_{e} \phi(e)$, and we denote by $\gamma^*(T)$ the size of the smallest fractional cover. Then the linear programming duality theorem proves that $\alpha^*(T) = \gamma^*(T)$.

If T is a triangle, we have that $\alpha^*(T) = 3/2$, corresponding to the fractional independent set that weights every vertex with 1/2. Similarly, if K is a k-clique, $\alpha^*(K) = k/2$. Indeed, the examples above are special cases of the following theorem, proved by Freidgut and Kahn (based on an earlier work of Alon).

Theorem 3 ([1, 3]). If T has m edges,
$$(\ell/m)^{\alpha^*(T)} \leq N(T, \ell) \leq (2\ell)^{\alpha^*(T)}$$
.

Proof First we prove the upper bound. Let σ be a uniformly random embedding from $T \to G$, where G is a fixed graph with l edges. We shall use σ to define a distribution on the edges of T with high entropy. Let ϕ be the fractional cover of size $\alpha^*(T)$, and let S be a random edge of T, such that for every edge e, $\Pr[S = e] = \phi(e)/\alpha^*(T)$. Namely, we use the distribution given by ϕ (after normalization). Now think of σ as being specified by the values of $\sigma(v)$ for all vertices v of T. Then, since ϕ is a fractional cover, we have that for every vertex v, $\Pr[v \in S] \geq \sum_{v \in e} \phi(e)/\alpha^*(T) \geq 1/\alpha^*(T)$.

that for every vertex v, $\Pr[v \in S] \ge \sum_{v \in e} \phi(e)/\alpha^*(T) \ge 1/\alpha^*(T)$. By Shearer's Lemma, $\mathbb{E}_S[H(\sigma_S)] \ge H(\sigma)/\alpha^*(T)$. On the other hand, for each edge e, σ_e is supported on edges of G, so $H(\sigma_e) \le \log(2\ell)$. Thus $(2\ell)^{\alpha^*(T)} \ge N(T,\ell)$.

Next we prove the lower bound (modulo rounding arguments). Let us construct G for which there are many embeddings of T into G. Let ψ be a fractional independent set that achieves $\alpha^*(G)$. We obtain G by replacing every vertex in T with an independent set of $\left(\frac{\ell}{m}\right)^{\psi(v)}$ vertices, and connecting every vertex in the independent set for v if and only if $\{u,v\}$ is an edge of T. Every edge of T thus contributes $\left(\frac{\ell}{m}\right)^{\psi(u)+\psi(v)} \leq \ell/m$ edges to G, and so G has at most ℓ edges. You can get a homomorphism from T to G by mapping any vertex v to a vertex in the independent set corresponding to v, so there are at least $(\ell/m)^{\sum_v \psi(v)} = (\ell/m)^{\alpha^*(T)}$ such homomorphisms. \blacksquare

2.2Intersecting Families of Graphs

Suppose \mathcal{F} is a family of subsets of [n]. We say that \mathcal{F} is intersecting if for every $A, B \in \mathcal{F}$, $|A \cap B| > 0$. One example of a large intersecting family is the family of sets that contain 1. This family has size $2^{n}/2$, and this is as large as you can make such a family:

Claim 4. If \mathcal{F} is intersecting, then $|\mathcal{F}| \leq 2^n/2$.

The proof is very simple: for every set A, \mathcal{F} can contain either A or its complement, but not both.

Next, let us a call a family \mathcal{F} k-intersecting if for every $A, B \in \mathcal{F}$, $|A \cap B| > k$. An obvious example of such a family is the family of sets that all contain $\{1,\ldots,k\}$, which has size $2^n/2^k$. Can one do better?

Let $\mathcal{F} = \{A \subseteq [n] : |A| \ge n/2 + k/2\}$. Then every two sets of \mathcal{F} intersect in at least k elements, but the

size of \mathcal{F} is $\sum_{i=\lceil n/2+k/2\rceil}^{n} \binom{n}{i} \geq (2^n/2)(1-O(k/\sqrt{n}))$. Next, let us try to place some structure on the intersections. Let \mathcal{G} be a family of graphs on the vertex set [n]. We say \mathcal{G} is intersecting if for any two graphs $T, K \in \mathcal{G}, T \cap K$ has an edge. Then as before, \mathcal{G} is of size at most $2^{\binom{n}{2}}/2$, which can be achieved with the family of all graphs that contain a designated edge.

Things get interesting if we ask for the intersections to have some structure. Say that \mathcal{G} is ∇ -intersecting if for every $T, K \in \mathcal{G}$. $T \cap K$ contains a triangle. The trivial example gives a family of size $2^{\binom{n}{2}}/8$, but perhaps there is some clever way to get a ∇ -intersecting family that has size close to $2^{\binom{n}{2}}/2$, as in the examples above?

Chung, Frankl, Graham and Shearer showed that no such example exists:

Theorem 5 ([2]). If \mathcal{G} is ∇ -intersecting, then $|\mathcal{G}| < 2^{\binom{n}{2}}/4$.

Proof For any subset $R \subseteq [n]$, let G_R be the graph consisting of two disconnected cliques, one on R and the other on the complement of R. Write $|G_R|$ for the number of edges in G_R . Then observe that since for every $T, K \in \mathcal{G}, T \cap K$ contains a triangle, it must be the case that $T \cap K \cap G_R$ contains an edge. Thus, the family of graphs $\{T \cup G_R : T \in \mathcal{G}\}\$ is intersecting, and so has size at most $2^{|G_R|}/2$.

Let us define S to be a uniformly random graph G_R obtained by picking a random subset R of size n/2. Observe that for any edge, by symmetry, the probability that the edge is include in G_R is $|G_R|/\binom{n}{n}$.

Let G be a uniformly random graph from \mathcal{G} . Consider what happens when we restrict G to the information about the edges in S. By Shearer's Lemma and the fact that G_S is supported on an intersecting family,

$$|G_R|-1 \ge \mathbb{E}[H(G_S)] \ge \frac{|G_R|}{\binom{n}{2}} \log |\mathcal{G}|$$
. Thus,

$$\log |\mathcal{G}| \le \binom{n}{2} - \binom{n}{2}/|G_R|$$

$$= \binom{n}{2} - \frac{\binom{n}{2}}{2\binom{n/2}{2}}$$

$$= \binom{n}{2} - \frac{n(n-1)}{2(n/2)(n/2-1)}$$

$$= \binom{n}{2} - \frac{n-1}{n/2-1}$$

$$\le \binom{n}{2} - 2$$

Questions: What about other kinds of intersections?

References

- [1] Noga Alon. On the number of subgraphs of prescribed type of graphs with a given number of edges. *Israel Journal of Mathematics*, 38:116–130, 1981.
- [2] Fan R. K. Chung, Ronald L. Graham, Peter Frankl, and James B. Shearer. Some intersection theorems for ordered sets and graphs. *J. Comb. Theory, Ser. A*, 43(1):23–37, 1986.
- [3] Ehud Friedgut and Jeff Kahn. On the number of copies of one hypergraph in another, May 04 1998.