1 Shearer’s Lemma

Today we shall learn about Shearer’s Lemma, which is a generalization of the subadditivity of entropy. Subadditivity says that if $X = X_1, \ldots, X_n$ is a random variable, then the average coordinate carries at least the average entropy, namely for a random coordinate i, $\mathbb{E}_i [H(X_i)] \geq H(X)/n$. Shearer’s Lemma is about what happens when you sample a subset of the coordinates according to some arbitrary distribution.

Given a set of coordinates $T = \{i_1, \cdots, i_k\} \subset [n]$, we write X_T to denote X_{i_1}, \cdots, X_{i_k}, the projection of X onto the coordinates in T, and we write $X_{<i}$ to denote X projected onto all coordinates less than i.

Lemma 1 (Shearer’s Lemma). If S is any distribution on subsets of the coordinates $[n]$, such for every i, $\Pr[i \in S] \geq \mu$, then $\mathbb{E}_S [H(X_S)] \geq \mu \cdot H(X)$.

We give a simple proof due to Jaikumar Radhakrishnan.

Proof For $T = \{i_1, \cdots, i_k\}$ with $i_1 < i_2 < \cdots < i_k$, observe that

\[
H(X_T) = H(X_{i_1}) + H(X_{i_2}|X_{i_1}) + \cdots + H(X_{i_k}|X_{i_{k-1}}, \cdots, X_{i_1}) \\
\geq H(X_{i_1}|X_{<i_1}) + H(X_{i_2}|X_{<i_2}) + \cdots + H(X_{i_k}|X_{<i_k}),
\]

where we used chain rule in the equality, and used the fact that entropy is only smaller if we condition on more variables, for the inequality.

Thus, we get that

\[
\mathbb{E}_S [H(X_S)] \geq \mathbb{E}_S \left[\sum_{i \in S} H(X_i|X_{<i}) \right] \\
= \sum_{i \in [n]} \Pr[i \in S] \cdot H(X_i|X_{<i}) \\
\geq \mu \sum_{i \in [n]} H(X_i|X_{<i}) \\
= \mu \cdot H(X)
\]

2 Applications

2.1 Counting Embeddings of Graphs

We start with a simple example. Suppose $G = (V, E)$ is an undirected graph, t is the number of triangles and ℓ is the number of edges.

Proposition 2. $t \leq (2\ell)^{3/2}/6$
Proof The proof is very similar to that of the triangles and vee problem we have seen. Let X_1, X_2, X_3 be uniformly random vertices forming a triangle. Then $H(X_1, X_2, X_3) = \log(6t)$, since each triangle can be written in 6 ways.

Let S be a uniformly random subset of coordinates $\{1, 2, 3\}$ of size 2. Then for all i, $\Pr[i \in S] = 2/3$. By Shearer’s Lemma,

$$\mathbb{E}_S[H(X_S)] \geq \frac{2}{3} \log(6t),$$

so there exists $T \subset \{1, 2, 3\}$, $|T| = 2$, for which $H(X_T) \geq \frac{2}{3} \log(6t)$. On the other hand X_T is supported on edges of the graph, so $\log(2\ell) \geq H(X_T)$. This gives $2\ell \geq (6t)^{2/3}$, proving the bound. ■

It is easy to see that if $a < b$ and n_a is the number of cliques of size a and n_b is the number of cliques of size b, then the same idea proves that $(b! \cdot n_b) \leq (a! \cdot n_a)^b$. Can we say something about arbitrary subgraphs (besides cliques)? It turns out that we can completely characterize the relationship between the number of subgraphs to the number of edges!

Fix a particular undirected graph T. Say that a function $\sigma : V(T) \to V(G)$ mapping vertices of T to vertices of G is a homomorphism, if for every edge $\{u, v\} \in T$, $\{\sigma(u), \sigma(v)\}$ is an edge of G. We are interested in counting how many homomorphisms there are from T to G. Let us write $N(T, \ell)$ to denote the maximum number of homomorphisms from T to a graph that has ℓ edges. So earlier, we argued that if K is a k-clique, then $N(K, \ell)^k \leq N(K, k)^k$. (The factorial terms disappear here, because we are counting homomorphisms rather than copies).

To understand $N(T, \ell)$ for an arbitrary graph T, we need to define two numbers associated with the graph T. The first is the fractional independent set number. A fractional independent set of T is a function $\psi : V(T) \to [0, 1]$ such that for every edge $\{u, v\}$ in T, $\psi(u) + \psi(v) \leq 1$. The size of the fractional independent set is $\alpha(T) = \sum_{v \in V} \psi(v)$. We write $\alpha^*(T)$ to denote the size of the biggest fractional independent set. Note that $\alpha^*(T)$ can be computed by a linear program, and the integer version of this program simply computes the size of the largest independent set.

The dual of this linear program measures a different quantity associated with T, namely the fractional cover number. Say that a mapping of the edges $\phi : E(G) \to [0, 1]$ is a fractional cover if for every vertex v, $\sum_{e \ni v} \phi(e) \geq 1$, where the sum is taken over all edges e that contain v. The size of the fractional cover is $\gamma(\phi) = \sum_e \phi(e)$, and we denote by $\gamma^*(T)$ the size of the smallest fractional cover. Then the linear programming duality theorem proves that $\alpha^*(T) = \gamma^*(T)$.

If T is a triangle, we have that $\alpha^*(T) = 3/2$, corresponding to the fractional independent set that weights every vertex with 1/2. Similarly, if K is a k-clique, $\alpha^*(K) = k/2$. Indeed, the examples above are special cases of the following theorem, proved by Freidgut and Kahn (based on an earlier work of Alon).

Theorem 3 ([1, 3]). If T has m edges, $(\ell/m)\alpha^*(T) \leq N(T, \ell) \leq (2\ell)^{\alpha^*(T)}$.

Proof First we prove the upper bound. Let σ be a uniformly random embedding from $T \to G$, where G is a fixed graph with l edges. We shall use σ to define a distribution on the edges of T with high entropy. Let ϕ be the fractional cover of T, and let S be a random edge of T, such that for every edge e, $\Pr[S = e] = \sum_e \phi(e) / \alpha^*(T)$. Namely, we use the distribution given by ϕ (after normalization). Now think of σ as being specified by the values of $\sigma(v)$ for all vertices v of T. Then, since ϕ is a fractional cover, we have that for every vertex v, $\Pr[v \in S] \geq \sum_{e \ni v} \phi(e) / \alpha^*(T) \geq 1 / \alpha^*(T)$.

By Shearer’s Lemma, $\mathbb{E}_S[H(\sigma_S)] \geq H(\sigma) / \alpha^*(T)$. On the other hand, for each edge e, σ_e is supported on edges of G, so $H(\sigma_e) \leq \log(2\ell)$. Thus $(2\ell)^{\alpha^*(T)} \geq N(T, \ell)$.

Next we prove the lower bound (modulo rounding arguments). Let us construct G for which there are many embeddings of T into G. Let ψ be a fractional independent set that achieves $\alpha^*(G)$. We obtain G by replacing every vertex of T with an independent set of $(\ell/m)^{\psi(v)}$ vertices, and connecting every vertex in the independent set for u to every vertex in the independent set for v if and only if $\{u, v\}$ is an edge of T. Every edge of T thus contributes $(\ell/m)^{\psi(u) + \psi(v)} \leq \ell/m$ edges to G, and so G has at most ℓ edges. You can get a homomorphism from T to G by mapping any vertex v to a vertex in the independent set corresponding to v, so there are at least $(\ell/m)^{\sum_v \psi(v)} = (\ell/m)^{\alpha^*(T)}$ such homomorphisms. ■
2.2 Intersecting Families of Graphs

Suppose \(F \) is a family of subsets of \([n]\). We say that \(F \) is *intersecting* if for every \(A, B \in F \), \(|A \cap B| > 0\).

One example of a large intersecting family is the family of sets that contain 1. This family has size \(2^n/2 \), and this is as large as you can make such a family:

Claim 4. If \(F \) is intersecting, then \(|F| \leq 2^n/2\).

The proof is very simple: for every set \(A, F \) can contain either \(A \) or its complement, but not both.

Next, let us call a family \(F \) \(k \)-intersecting if for every \(A, B \in F \), \(|A \cap B| \geq k \). An obvious example of such a family is the family of sets that all contain \(\{1, \ldots, k\} \), which has size \(2^n/2^k \). Can one do better?

Let \(F = \{A \subseteq [n] : |A| \geq n/2 + k/2\} \). Then every two sets of \(F \) intersect in at least \(k \) elements, but the size of \(F \) is \(\sum_{i=[n/2+k/2]}^n \binom{n}{i} \geq (2^n/2)(1-O(k/\sqrt{n})) \).

Next, let us try to place some structure on the intersections. Let \(\mathcal{G} \) be a family of graphs on the vertex set \([n]\). We say \(\mathcal{G} \) is intersecting if for any two graphs \(T, K \in \mathcal{G} \), \(T \cap K \) has an edge. Then as before, \(\mathcal{G} \) is of size at most \(2^{\binom{n}{2}}/2 \), which can be achieved with the family of all graphs that contain a designated edge.

Things get interesting if we ask for the intersections to have some structure. Say that \(\mathcal{G} \) is \(\triangledown \)-intersecting if for every \(T, K \in \mathcal{G} \), \(T \cap K \) contains a triangle. The trivial example gives a family of size \(2^{\binom{n}{2}}/8 \), but perhaps there is some clever way to get a \(\triangledown \)-intersecting family that has size close to \(2^{\binom{n}{2}}/2 \), as in the examples above?

Chung, Frankl, Graham and Shearer showed that no such example exists:

Theorem 5 ([2]). If \(\mathcal{G} \) is \(\triangledown \)-intersecting, then \(|\mathcal{G}| \leq 2^{\binom{n}{2}}/4 \).

Proof For any subset \(R \subseteq [n] \), let \(G_R \) be the graph consisting of two disconnected cliques, one on \(R \) and the other on the complement of \(R \). Write \(|G_R|\) for the number of edges in \(G_R \). Then observe that since for every \(T, K \in \mathcal{G} \), \(T \cap K \) contains a triangle, it must be the case that \(T \cap K \cap G_R \) contains an edge. Thus, the family of graphs \{\(T \cup G_R : T \in \mathcal{G} \)\} is intersecting, and so has size at most \(2^{\binom{n}{2}}/2 \).

Let us define \(S \) to be a uniformly random graph \(G_R \) obtained by picking a random subset \(R \) of size \(n/2 \). Observe that for any edge, by symmetry, the probability that the edge is included in \(G_R \) is \(|G_R|/\binom{n}{2}\).

Let \(G \) be a uniformly random graph from \(\mathcal{G} \). Consider what happens when we restrict \(G \) to the information about the edges in \(S \). By Shearer's Lemma and the fact that \(G_S \) is supported on an intersecting family, \(|G_R| - 1 \geq \mathbb{E}_S[H(G_S)] \geq |G_R|/\binom{n}{2} \log |\mathcal{G}| \). Thus,

\[
\log |\mathcal{G}| \leq \frac{n}{2} - \frac{n}{2}/|G_R| = \frac{n}{2} - \frac{\binom{n}{2}}{2^{\binom{n}{2}}} = \frac{n}{2} - \frac{n(n-1)}{2(n/2)(n/2-1)} = \frac{n}{2} - \frac{n-1}{n/2-1} = \frac{n}{2} - 2
\]

Questions: What about other kinds of intersections?
References

