
Notes on “Logarithmic Lower Bounds in the Cell–Probe Model”

Kevin Zatloukal

November 10, 2010

1 Overview

• Paper is by Mihai Pâtraşcu and Erik Demaine. Both were at MIT at the time. (Mihai is now
at AT&T Labs.)

• Published in SIAM Journal on Computing, 2006. Based on papers in STOC and SODA 2004.

• Topic is lower bounds for data structures problems. What is a data structures problem?

– We want to compute a sequence of functions

fi(xi, xi−1, . . . , x1), for i = 1, . . . , n,

where fi’s are from a fixed set Ops.

– Most importantly, only xi is explicitly passed to the i-th function. The algorithm must
store x1, . . . , xi−1 (or some functions thereof) in memory so it can access them when
computing fi.

– The idea is to arrange the values in some clever way (the data structure) in order to
make computing the fi (and updating memory to contain xi) efficient.

• What do we mean by “efficient”?

– We will use the cell–probe model. In particular, this means that we only measure the
number of memory accesses (reads and writes of b-bit words) of the algorithm. All
computation is free.

– Obviously, this is unrealistic, but it gives genuine lower bounds: any lower bound on the
amount of memory accessed is a lower bound on the actual running time.

– Finally, we consider the amortized cost of the operations, that is, the average cost of
operations over the whole sequence (i.e., sum of all individual costs divided by n).

• The paper proves lower bounds for two problems—partial sums and dynamic connectivity (to
be defined shortly). For each it proves a lower bound of Ω(log n) on the amortized cost of
each operation (i.e., a bound of Ω(n log n) for the sequence).

1

2 Lower Bounds for Partial Sums

Definition

• The partial sum problem asks us to maintain a function F : [n] → G, with values in an
arbitrary group G, under two operations.

– We start with F (i) = 0 (identity of G) for all i ∈ [n].

– The first operation Update(i, ∆) with i ∈ [n] and ∆ ∈ G changes F so that F (i) ←
F (i) + ∆.

– The second operation Sum(i) returns
∑i

j=1 F (j).

(Here, we are writing the operation as + although this operation need not be commutative.)

• A naive solution is to maintain the function values in an array (i.e., write F (j) into index j
in memory). This takes O(1) time for a Update but O(n) time for Sum.

• A better solution is to also store a perfect binary tree of size m. [[Picture]]

– Each node v stores the sum of all the F (j) in that subtree.

– Update requires us to change only the log n nodes above the updated index i. This
takes O(log n) time.

– To compute Sum(i), we walk the path up to the root from the leaf at i. We need to
maintain the sum of all values to the left in the current subtree. If we are the left child
of the parent, then there is nothing to do. If we are the right child, then we can add
the entire left subtree by adding in the value stored at the root of that tree. Again, this
takes just O(log n) time.

– (Note that this binary tree can also be stored in an array if we want.)

History

• There were existing lower bounds of Ω(log n/ log logn), but even these were in more restrictive
models such as only allowing group operations on the data, only “oblivious” algorithms, etc.1

• This was a well-known, open problem for 15 years prior to this paper.

Lower Bound

• General idea will be to prove relations c1IL(.) ≤ H(.) ≤ c2IT (.), for some constants c1, c2.

– The information transfer, IT , will be a lower bound on the running time.

– The interleaving number, IL, will be a function of the input instance π.

1There was an Ω(logn) lower bound, but this was in the semigroup model, i.e., no subtraction was allowed!

2

– We will show that π can be chosen so that IL(π) ≥ Ω(log n), which gives a lower bound
on the running time by the above relation.

• We will call time t the start of the t-th operation.

• Consider two adjacent time intervals t0 < t1 < t2 and the quantity H(At1,t2 |I∗,t0 , It1,∗), where
A are the answers (function values) and I are the inputs.

– This is a natural quantity to consider if we think of entropy as a bound on data compres-
sion. The algorithm must store some function of the inputs It0,t1 in order to compute
the answers At1,t2 , and this entropy is a bound on how much memory that must take.

• We define the information transfer IT (t0, t1, t2) to be the set of all memory addresses read in
[t1, t2] when last written in [t0, t1] along with their associated values at time t1.

Proposition 2.1. H(At1,t2 |I∗,t0 , It1,∗) ≤ b(2 E [|IT (t0, t1, t2)|] + 1).

Proof. We can expression the entropy in terms of IT as follows:

H(At1,t2 |I∗,t0 , It1,∗) ≤ H(At1,t2 , IT (t0, t1, t2)|I∗,t0 , It1,∗)
= H(IT (t0, t1, t2)|I∗,t0 , It1,∗) +H(At1,t2 |IT (t0, t1, t2), I∗,t0 , It1,∗)

Let ` = |IT (t0, t1, t2)|. Then in the same manner as above, we have

H(IT (t0, t1, t2)|I∗,t0 , It1,∗) ≤ H(`|I∗,t0 , It1,∗) +H(IT (t0, t1, t2)|` = k, I∗,t0 , It1,∗).

Since the support of ` is at most 2b, we have H(`|I∗,t0 , It1,∗) ≤ b. The second term is

E [H(IT (t0, t1, t2)|I∗,t0 , It1,∗) | ` = k] ,

which is at most the entropy of a uniform distribution, E [bk | ` = k] = 2bE [`].2

On the other hand, H(At1,t2 |IT (t0, t1, t2), I∗,t0 , It1,∗) is zero because the answers in [t1, t2] are a
deterministic function of the fixed inputs and the information transfer. Specifically, we can simulate
the algorithm in order to compute the answers. We simulate write to index i by recording it and
read of index i depending on when it was written:

• If it was written after t1, then we wrote it down earlier in the simulation.

• If it was written in [t0, t1], then it is in the information transfer.

• Otherwise, it was written before t0, and since we have all the inputs from the start until that
time, we can simulate the algorithm to get that value as well.

2Note that IT includes both the index and its value.

3

• Note that Proposition 2.1 did not depend at all on the input distribution. Hence, we are free
to pick it as we see fit.

• We choose all operations to come in pairs, Sum(ji) followed by Update(ji, ∆), where ∆ ∈ G
is uniformly random.

• Let δ = log |G|.

• Next, we pick the indices to be chosen from a permutation ji = π(i) for some π ∈ S[m] yet to
be chosen.

• We define the interleaving number as follows. Sort the indices π(t0), . . . , π(t2) to get a list
π(j1), π(j2), . . . , π(jL). IL(t0, t1, t2) to be the number of times that we have ji−1 < t1 ≤ ji.

Proposition 2.2. H(At1,t2 |I∗,t0 , It1,∗) = δ IL(t0, t1, t2).

Proof. If we let S = {ji | t1 ≤ ji}, then we can write this entropy as

H(At1,t2 |I∗,t0 , It1,∗) =

L∑
i=1 : ji∈S

H(Aji |At1,ji−1 , I∗,t0 , It1,∗)

using the chain rule. Then, we can analyze the individual terms in cases:

• If ji−1 < t1 ≤ ji, then Aji is Aji−1 plus a uniformly random ∆. Whatever the value of Aji−1 ,
this answer is uniformly random over G.

• Finally, if t1,≤ ji−1 < t1 ≤ ji, then Aji is Aji−1 plus a known value, so there is no entropy.

Hence, the entropy is exactly that of the answers in IL, and since we choose our ∆’s to be uniform,
we get exactly δ bits of entropy per.

Theorem 2.3. The total cost of any algorithm is Ω
(
δ
bn log n

)
on some input sequence.

Proof. Consider a perfect binary tree T over [n]. We define IT (v), for node v ∈ T over the time
range t0 < t1 < t2, to be the set of reads in [t1, t2] that were last written in [t0, t1]. Each write of
an index i followed by a read of i is counted in exactly one IT (v): the v that is the lowest common
ancestor of the times of that read and write. No other node has the read on one side and the write
on the other.

We can define IL(v) similarly: the set of interleaves between the two subtrees of the indices
accessed. Each index followed by a higher index is counted in exactly one IL(v): again, the lowest
common ancestor.

Hence, the total cost of the algorithm is at least 1
b

∑
v∈T IT (v) ≥ δ

b

∑
v∈T IL(v). It remains

only to show that this final sum can be made large by our choice of π.
If we choose π uniformly at random, then the odds of having an interleave at any given pair

(i − 1, i) is 1
4 − o(1).3 So we get 1

4k + O(1) for each interval of size k. This is 1
4n + O(1) for each

level, so we have a total of Ω(n log n) interleaves.

3This latter term is roughly 1
2k

for an interval of size k. It will not affect the total sum by a significant amount.

4

Notes

• In fact, choosing a random π is not necessary. A fixed permutation works: the bit-reversal
permutation. This is defined by π(i) being the reverse of the bits of i. This means, for
example, that the lowest order bit is determines whether each i is in the left or right half,
which means the two halves interleave perfectly. This continues recursively.

• The proof in the paper is somewhat different from this. It uses the fact that entropy is a lower
bound for how well data can be compressed. So it upper bounds the entropy by showing that
it can encode and decode the answers by storing the information transfer. This proof was a
bit shorter, but the essence is the same idea: the answers are a deterministic function of the
information transfer.

• Our proof showed a uniform bound for the costs of Update and Sum. The paper shows
a more general trade-off between these two costs. Specifically, if we call them tu and ts,

respectively, then ts log tu
ts
≥ Ω

(
logn
log b/δ

)
and vice versa.

The proof works by constructing a B-ary tree, with B = 2 max{ tuts ,
ts
tu
}, instead of a binary

tree, and then considering the information transfer between the first B − 1 children and the
last child. The two parts then have roughly the same cost and the proof goes through much
as before.

3 Lower Bounds for Dynamic Connectivity

Definition

• The dynamic connectivity problem asks us to maintain a graph G = ([n], E) under three
operations.

– We start with E = ∅.
– The first two operations Insert(u, v) and Delete(u, v), with u, v ∈ [m], add or remove

an edge from E.

– The last operation Connected(u, v) queries whether u and v are currently connected
in the graph.

History

• Lower bound was open for a long time as above.

• A classic upper bound of O(log n) for trees was given by Sleator and Tarjan in STOC 1981.

• Several other graph problems can be reduced to this one: connected graph, planar graph,
minimum spanning forest, etc.

5

Lower Bound

The main idea of the lower bound is a reduction from partial sum.

• Recall that our bound holds for any group G. We choose G = S√n, the symmetric group on√
n letters.

• Note that, for any i, σ1 ◦ · · · ◦ σi is a permutation as well.

• How can we model this with a graph? Suppose we have a graph on a
√
n ×
√
n grid, where

we restrict all edges to go between adjacent columns, and where we further restrict the
edges between any two adjacent columns to be a permutation. [[Picture]] Then, the question
of where element j is taken by the permutation we get when composing the permutations
between the first i + 1 columns is the same as asking which node in the i + 1-st column is
connected to j.

• We can implement Update(i, σ) by performing
√
n edge Deletes followed by

√
n Inserts.

• We have δ = log
∣∣∣S√n∣∣∣ ≈ √n log n, while b = log n, so our lower bound for partial sum implies

that these operations must take Ω(
√
n log n) time. Since we performed

√
n inserts and deletes,

this is Ω(log n) per operation.

• Unfortunately, there is no obvious way to perform sum using connected queries. It would
seem to require ≈

√
n
2

connected queries.

The Trick, part 1: Suppose we only had to implement Verify-Sum(i, s) rather than Sum.

• Now, the reduction is fine because we can verify with
√
n connected queries.

• We just need to show that Verify-Sum has the same lower bound. Unfortunately, the
original proof method falls apart there.

The Trick, part 2: Suppose we were working with nondeterministic algorithms.

• Now, Sum can be reduced to Verify-Sum with only an Θ(log n) additive term since we can
just guess the sum. (And clearly, we can reduce the other direction as well.)

• We just need to show that our original bound for Sum holds for nondeterministic algorithms.

• What exactly is a nondeterministic algorithm?

– Algorithm performs any number of reads and nondeterministic branching. Then it de-
cideds whether to accept or rejct. If it accepts, then it may perform writes (and more
reads).

– The cost is defined to be only that of the accepting thread.

6

• Most of the proof goes through unchanged since entropy does not depend on how the algorithm
computes. But Proposition 2.1, assumed the answers in [t1, t2] were a deterministic function
of the fixed inputs and the information transfer. It is no longer obvious that this is true in
the presence of nondeterminism.

• The accepting thread is fine since we defined IT for nondeterministic algorithms in terms of
what the accepting thread does.

• But there is one problem with rejecting threads: they may read a value that was last written
in [t0, t1] that was not read by the accepting thread (hence, the value is not in IT). Our
existing simulation would use an earlier written value, which may cause the thread to accept
instead of reject.

• In order to fix our proof, all we need is to be able to detect that this case is about to occur.
Since it is a rejecting thread, there is no harm in simply rejecting at that point. Since it
cannot write any values, there is no effect of quitting early.

The Trick, part 3: Suppose we had a data structure that could record a function f : S → [2], for
some subset S ⊂ U = [2b], using only |S|+O(b) bits of space.

• That this can be done is an easy application of perfect hashing. (Note that b = log log |U |.

• We choose S = (W (t0, t1) ∪ R(t1, t2))\IT (t0, t1, t2) and have the function value indicate
whether the index is was written to, W (t0, t1), or read from, R(t1, t2). (If it were both, then
it would be in IT .)

• The total size of R plus W over each level is |T |, so the total cost is height(T) |mathcalT |.

• However, the other term in our bound is 2b |T |, and height(T) ≤ log n ≤ b under the standard
assumption that indices can fit in one word. So our bound is still Θ(b |T |) ≥ Ω(δn log n) as
before.

7

