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1 Context

Randomness is a useful resource for solving many problems in computer science. The goal of the broad
area of derandomization is to weaken the assumptions that are placed on the randomness used. One way
to do this is to design randomness extractors: these are algorithms that take randomness that comes from
defective sources and extract truly random bits from them. A 2-Source extractor is an algorithm that
extracts random bits from two independent sources, each giving bits with some entropy. The best known
extractor algorithms for this situation require that at least one of the sources has 0.499 entropy rate, even
though the probabilistic method shows that a random bit can be extracted from two independent sources
each of which gives n bits with only log n + O(1) bits of entropy. Past work in derandomization has left us
with the dramatic result that any randomized algorithm can be simulated by an algorithm that only has
access to a single source of randomness with some entropy. However, even though randomness is used in an
essential way in cryptography and distributed computing, there was no analogous result for these domains.
Moreover, there is a strong negative result showing that many cryptographic tasks are impossible given only
a single weak random source. Nevertheless, it was later shown how to use a variant of the DDH assumption
to do secure multiparty computation, where each party has only access to an independent weak source of
randomness. Unfortunately, this result requires that the number of participants in the protocol is super
constant, and depends on the security parameter.

2 Our Contribution

In this work, we assume that there exists a one way permutation for weak sources, f . This means that for
any distribution X ∈ {0, 1}n with Ω(n) min-entropy, a circuit of size poly(nlog n) cannot invert f(X), except
with negligible probability. A concrete candidate may be the exponentiation function, over an appropriate
group (i.e. we might hope that computing discrete log is hard, even on weak sources). Using any such
permutation f , we show how to build a 2-source extractor that only requires the sources to have entropy
Ω(n).1 Our conclusion is an information theoretic object, even though our assumption is a computational
one.

We use this extractor (and f again) to design a computational network extractor protocol. This is a
protocol that allows a collection of processors, each of which has access to a single independent source with
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However, then we need to assume that it is hard to invert f(X), where X is any distribution with entropy k.
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Ω(n) entropy, to extract bits which are computationally indistinguishable from being uniform and private.
Our protocol is guaranteed to succeed as long as at least 2 of the participants are honest. We also construct
a computational network extractor protocol for the case that each processor has access to an independent
source with only nǫ entropy, which succeeds as long as there are at least u honest participants, where u is a
constant that depends on ǫ.

The key observation used in our work is an idea that was implicitly used in the hardcore predicate
construction of Goldreich-Levin — a one way function can be used to generate distributions which are
computationally indistinguishable from being independent, even though they are very correlated in reality.
If R, X are uniform, Goldreich-Levin showed that (〈X, R〉, f(X), R) look like three independent distributions
to any small circuit. This idea generalizes2: if X is a weak source with some entropy, R is independent and
uniform, and Ext is a reconstructive extractor, then the following two distributions are computationally
indistinguishable:

(Ext(X, R), f(X), R) ≈ (Uniform, f(X), R),

where here the three strings on the right are independent. Reconstructive extractors are a well studied object
in extractor theory. Today we know of several explicit constructions, many of which only require polylog(n)
bits in R.

Next we give an informal description of the ideas that are involved in building our 2-source extractor.

2.1 A Toy Version of our 2-Source Extractor

Let X, Y be the two independent sources, each which has entropy δn, from which we would like to extract
random bits. In order to describe our key ideas, we shall make a simplifying assumption: we assume that for
every δ, there is a constant t(δ) such that if X = X1, X2, . . . , Xt is broken into t blocks, there is a constant
g such that for every fixing of x1, . . . , xg−1, we have that Xg|x1, . . . , xg−1 is uniform. Thus, the g’th block is
uniform even conditioned on previous blocks. Although our assumption seems unreasonable at first, it turns
out that there is a way to use past work on extractors (and a careful analysis) to convert two independent
sources X, Y into sources that are close to having properties similar to what we assume.

Since one of the blocks in X is uniform, we might hope that the bitwise xor X1 ⊕ · · · ⊕ Xt would be
uniform. Of course this is not at all true, since the blocks following the good block g can depend on Xg.
Still, we show how to use a one way permutation to make something like this work. Let Ext and f be as in
our discussion above. We define

TExt(x, y)
def
= Ext(f(y), x1) ⊕ Ext(f2(y), x2) ⊕ · · · ⊕ Ext(f t(y), xt)

Here f i denotes the permutation obtained by composing f with itself i times.
We shall argue that TExt(X, Y ) is computationally indistinguishable from being uniform. Since computa-

tional indistinguishability is the same as statistical indistinguishability when the input is of size O(log n), we
conclude that the first O(log n) bits of TExt(X, Y ) are actually statistically indistinguishable from uniform.

Let R1(x, y) denote the string Ext(f(y), x1) ⊕ Ext(f2(y), x2) ⊕ · · · ⊕ Ext(fg−1(y), xg−1). Note that since
X1, . . . , Xg−1 are fixed, R1(X, Y ) is actually only a function of Y . We denote this string by R1(Y ). Then it
suffices to show that

(Ext(fg(Y ), Xg), X, R1(Y ), fg+1(Y )) ≈ (Uniform, X, R1(Y ), fg+1(Y )), (1)

since TExt(X, Y) can be efficiently computed from Ext(fg(Y ), Xg), X, R1(Y ), fg+1(Y ). We take Ext with
output length that is significantly shorter than the entropy of Y , and thus we can argue that for almost all
R1(Y ), Y has linear entropy even conditioned on the value of R1(Y ). Let Y ′ denote the source obtained
after such a fixing. Then we can use the properties of reconstructive extractors to argue that

(Ext(fg(Y ′), Xg), X, fg+1(Y ′)) ≈ (Uniform, X, fg+1(Y ′)),

Since the above statement is true for Y ′ obtained by all but a negligible fraction of the fixings of R1(Y ),
this actually proves Equation (1).

2This observation was made in an earlier work of TaShma and Zuckerman.
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