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Abstract. We give tight bounds on the degree ` homogenous parts f` of a bounded
function f on the cube. We show that if f : {±1}n → [−1, 1] has degree d, then ‖f`‖∞
is bounded by d`/`!, and ‖f̂`‖1 is bounded by d`e(

`+1
2 )n

`−1
2 . We describe applications

to pseudorandomness and learning theory. We use similar methods to generalize the
classical Pisier’s inequality from convex analysis. Our analysis involves properties of
real-rooted polynomials that may be useful elsewhere.

1. Introduction

The goal of complexity theory is to understand the space of functions that are
efficiently computable. Every function f : {±1}n → R corresponds to a multilinear
polynomial in n variables, and under many models of computation, efficiently com-
putable functions correspond to bounded polynomials of low degree. This motivates an
investigation of the characteristics of such functions. Our main results are tight bounds
on the magnitudes of coefficients.

A set S ⊆ [n] corresponds to the monomial or character χS(x) :=
∏

j∈S xj. Every

f : {±1}n → R can be uniquely expressed as

f(x) =
∑
S⊆[n]

f̂(S) · χS(x),

where f̂(S) ∈ R are the Fourier coefficients of f .
Bounds on the Fourier coefficients play a key role in computer science (see the

textbook [20] and also [15, 1, 10, 7] and references within). Typical results bound the
growth of the `1 norm of the Fourier coefficients in terms of their degree. The `-th
homogenous part of f is

f`(x) :=
∑

S⊆[n]:|S|=`

f̂(S) · χS(x).

The main objective is to control the two norms

‖f̂`‖1 :=
∑

S⊆[n]:|S|=`

|f̂(S)|,

and

‖f`‖∞ := max
x∈{±1}n

|f`(x)|.
1
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Class of functions f : {±1}n → [−1, 1] ‖f̂`‖1 ≤ Ref.

CNFs of width w wO(`) [14]

Width w regular oblivious read-once
branching programs

(2w2)` [23]

Width w oblivious read-once branching
programs

(O(log n))w` [8]

Boolean functions of maximum sensitiv-
ity s

sO(`) [12]

F2 polynomials of degree d `` · 23d` [7]

Decision trees of depth d (O(
√
d log n))` [25, 24]

Parity decision trees of depth d d`/2 ·O(` log n)` [11]

Figure 1. Known bounds on the Fourier growth of various classes of functions

By the triangle inequality, we must have ‖f`‖∞ ≤ ‖f̂`‖1. For general functions, the first
quantity can be substantially smaller than the second. For symmetric functions f , the
two quantities are the same: ‖f̂`‖1 = |f`(1n)| ≤ ‖f`‖∞.

Several works have proved non-trivial bounds on ‖f̂`‖1 for functions that are effi-
ciently computable. Figure 1 lists some known results in this direction. An important
motivation for bounding these norms is that a class of functions with small Fourier
growth can be efficiently learned [15], and admits efficient pseudorandom generators [6].
A pseudorandom generator for a class of functions is a function that generates a distri-
bution that uses a small random seed to generate a distribution that is supported on a
small set, yet is indistinguishable from the uniform distribution to functions from the
class. Chattopadhyay, Hatami, Hosseini and Lovett [7] showed how to construct pseudo-

random generators for any class of functions satisfying ‖f̂`‖1 ≤ t`, using t2 · polylog(n)
bits of seed. Similarly, Chattopadhyay, Gaitonde, Lee, Lovett and Shetty [6] showed
that bounds on ‖f`‖∞ also lead to efficient pseudorandom generators. Let F be a class
of functions that is closed under restrictions (i.e., setting a variable to ±1 keeps the
function in F). Suppose there are parameters k > 2 and t > 0 such that every function
f ∈ F satisfies ‖fk‖∞ ≤ tk, then there is a pseudorandom generator of seed length
k · t2+4/(k−2) · polylog(n) for the class of functions F .

Given these applications, it is interesting to ask for the most general bounds. What
can we say about ‖f̂`‖1 and ‖f`‖∞ if f : {±1}n → [−1, 1] is an arbitrary function of
degree d? Backurs and Bavarian [1] and later Filmus, Hatami, Keller and Lifshitz [10]
studied bounds on the influences of such functions. With regards to the questions we
study here, the techniques of [10] imply that ‖f1‖∞ = ‖f̂1‖1 ≤ d. In this work, we give

tight bounds on ‖f`‖∞ and ‖f̂`‖1 for every `.
Our methods are intimately connected to proofs of a classical result in convex analysis

called Pisier’s inequality [21, 22]. Let f : {±1}n → Rm be a vector valued function.
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The m coordinates of f can be expressed as polynomials, so as before we have

f(x) =
∑
S⊆[n]

f̂(S) · χS(x),

where now f̂(S) ∈ Rm is a vector. We define f` by projecting f to its degree ` part,
just as we did earlier. Pisier’s inequality says that every norm ‖ · ‖ on Rm must satisfy

E
[
‖f1(X)‖2

]1/2 ≤ O(log(m+ 1)) · E
[
‖f(X)‖2

]1/2
,

where X ∼ {±1}n is uniformly distributed.
This inequality has important applications in geometry. Most strikingly, combined

with a result of Figiel and Tomczak-Jaegermann [9] it implies the MM∗-estimate, which
says that in an average sense, symmetric convex bodies behave much more like ellipsoids
than one could derive from John’s theorem [13]. The MM∗-estimate is a central piece in
the proofs of Milman’s QS-theorem [17, 18, 19] and the construction of M -ellipsoids [19],
some of the most consequential results in convex geometry.

In our work, we generalize Pisier’s inequality to higher degrees, and make the proof
more explicit (see discussion in Section 1.3 below).

1.1. Results. Our results and proofs are intimately connected with the Chebsyshev
polynomial Td(z). This is the unique polynomial of degree d so that Td(cos(θ)) = cos(dθ).
Denote by C(d, `) the coefficient of z` in Td(z). Our first result is that these coefficients
give upper bounds on ‖f`‖∞.

Theorem 1. If f : {±1}n → [−1, 1] has degree d, then

‖f`‖∞ ≤

{
|C(d, `)| if d = `mod 2,

|C(d− 1, `)| otherwise.

To understand the theorem better, recall the known formula [16]:

C(d, `) =

{
(−1)(d−`)/2 · 2` · d

d+`
·
( d+`

2
`

)
if d = `mod 2,

0 otherwise.
(1)

We can use the arithmetic-mean-geometric-mean inequality and (1) to show

|C(d, `)| = 2` · d

d+ `
· 1

2``!

`−1∏
k=0

(d+ `− 2k) ≤ d`

`!
.(2)

In particular, the theorem states that ‖f`‖∞ ≤ d`

`!
. The following proposition shows

that the bound cannot be significantly improved when n� d:

Proposition 2. For every n, d, ` such that d = `mod 2, the bounded function f(x) =
Td((x1 + · · ·+ xn)/n) satisfies ‖f`‖∞ ≥ |C(d, `)| − 2ed(d+ 1)!/n.

We also provide general bounds on the larger ‖f̂`‖1:

Theorem 3. If f : {±1}n → [−1, 1] has degree d, then for ` ≥ 1, ‖f̂`‖1 ≤ n
`−1
2 ·d`·e(

`+1
2 ).

Once again, we give an example matching this bound when d = `� n:
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Proposition 4. There is a homogenous degree d polynomial f : {±1}n → [−1, 1] so
that

‖f̂d‖1 =
1

2
·

√
1

n
·
(
n

d

)
.

Our methods allow to prove the following generalization of Pisier’s inequality.

Theorem 5. Let `,m, n be positive integers and ‖ · ‖ be a norm on Rm. Let X be
uniformly distributed in {±1}n. Then for any function f : {±1}n → Rm,

E
[
‖f`(X)‖2

]1/2 ≤ (4 +
6 log(m+ 1)

`

)`
· E
[
‖f(X)‖2

]1/2
.

Bourgain showed that Pisier’s inequality is sharp [3]. An adaptation of his construction
shows that Theorem 5 is also sharp, though we omit the details here.

We conclude this section with an application to learning theory. Suppose we want to
approximate an unknown function f . Access to f is given by random queries of the
form (X, f(X)) where X ∼ {±1}n is uniformly distributed. The goal is to efficiently
compute g so that E [|f(X)− g(X)|2] ≤ ε. This problem was studied in several works
(see e.g. [15] and references within). The theorems above lead to improving the sample
complexity from polynomial in nd to o(nd), for d fixed and n→∞.

Theorem 6. There is a constant c > 1 so that the following holds. Let f : {±1}n →
[−1, 1] be of degree d ≥ 1 and let ε > 0. From N ≤ 2cd

2 nd−1 log(n)
ε3

random queries to f ,
we can efficiently construct a function g : {±1}n → R with E [|f(x)− g(x)|2] ≤ ε.

The function g is obtained by estimating the large Fourier coefficients of f . The
analysis closely follows classical arguments that can be found for example in [15, 20].

1.2. Outline. Theorem 1 is proved in Section 3, Theorem 3 is proved in Section 4,
and Theorem 5 is proved in Section 5. Propositions 2 and 4 are proved in Section 9.
Theorem 6 is proved in Section 8.

1.3. Techniques. Here we give a high-level sketch of some of our proofs, omitting
many details that are explained later. Our techniques are inspired by proofs of Pisier’s
inequality. Pisier’s original proof used complex analysis and interpolation. Bourgain
and Milman found a different and more direct proof [4]. Their proof relies on the
Hahn-Banach theorem, the Riesz representation theorem, and Bernstein’s theorem from
approximation theory. These deep results are used to show that there is a function that
is close to the linear function L(x) = x1 + . . .+ xn, yet has much smaller `1 norm than
L(x). The existence of this linear proxy is proved in a clever but non-constructive way.

In our work, we give an explicit formula for a (more general) proxy with the properties
alluded to above. Our key technical contribution is an explicit filter that can be used
to project a polynomial in cos(θ) to its degree ` part. The filter is a central component
of the proxy, and can potentially be useful elsewhere.
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Theorem 7. For every d ≥ ` with d = `mod 2, there is a function φ : [0, 2π)→ R and
a distribution on θ such that E[|φ(θ)|] = |C(d, `)| and

E[φ(θ) cosk(θ)] =

{
1 if k = `,

0 if k 6= `, k ≤ d+ 1.
(3)

The theorem cannot be improved, in the sense that any function φ satisfying (3)
must also satisfy

E[|φ(θ)|] ≥ |E[φ(θ) cos(dθ)]| = |C(d, `)|.
The proof of Theorem 7 is based on properties of Chebyshev polynomials and some
non-trivial facts about real-rooted polynomials that may be of independent interest.
If p(z) =

∑d
j=0 cjz

j is a polynomial, we write p>k(z) =
∑d

j=k+1 cjz
j. The proof of

Theorem 7 relies on the following theorem:

Theorem 8. Let p(z) be a real-rooted degree-d polynomial whose roots are all positive.
Then for every root r of p(z) and every k ∈ {0, . . . , d}, we have (−1)d−k−1 · p>k(r) ≥ 0.

We prove Theorem 7 in Section 6 and Theorem 8 in Section 7. Theorem 1 is proved
using the filter as follows. We construct a proxy P : {±1}n → R using the formula1:

P (x) = E
θ

[
φ(θ) ·

n∏
j=1

(1 + cos(θ) · xj)
]
.

When X ∼ {±1}n is uniformly distributed, we can bound

E[|P (X)|] ≤ E[|φ(θ)|] ≤ |C(d, `)|.
By construction, we have

P̂ (S) =

{
1 if |S| = `,

0 if |S| 6= `, |S| ≤ d,
(4)

so we can compute f` via convolution as f` = f ∗ P . The properties of P imply that
the convolution with it cannot be large at any point.

Theorem 3 is proved by induction. In the proof, we apply a random restriction to
f`. We set each variable of f` randomly with probability 1

`
and leave it unset with

probability 1 − 1
`
. This gives a degree ` function g. We use Khintchine’s inequality

to bound ‖f̂`‖1 in terms of ‖ĝ`−1‖1. Since g is bounded by ‖f`‖∞, induction combined
with Theorem 1 can be used to prove Theorem 3.

Theorem 5 is proved by setting d ≈ log(m+ 1) and using the proxy:

P (x) := 2` · E
θ

[
φ(θ) ·

n∏
j=1

(1 +
cos(θ)·xj

2
)
]

Once again, the construction ensures that (4) holds. Because |P̂ (S)| ≤ 2`−d · |C(d, `)| for
|S| > d, the proxy P is close to the symmetric homogenous polynomial of degree ` whose
coefficients are all 1. We can use the bound on E[|φ(θ)|] to bound E[|P (X)|] ≤ 2`|C(d, `)|.
Theorem 5 is again proved by analyzing the convolution f ∗ P .

1This formula is inspired by earlier proofs of Pisier’s inequality.
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2. Preliminaries

2.1. Fourier analysis.

Fact 9 (Parseval’s identity). If f : {±1}n → Rm and X ∼ {±1}n is uniformly
distributed then

E
[
‖f(X)‖22

]
=
∑
S⊆[n]

‖f̂(S)‖22.

Proof. The proof is based on the orthonormality of the characters:

E
[
‖f(X)‖22

]
= E

[〈 ∑
S⊆[n]

f̂(S) · χS(X),
∑
T⊆[n]

f̂(T ) · χT (X)
〉]

=
∑

S,T⊆[n]

〈
f̂(S), f̂(T )

〉
E
[
χS(X)χT (X)

]
=
∑
S⊆[n]

‖f̂(S)‖22. �

Convolution is a powerful tool when there is an underlying group structure. Here the
group is the cube {±1}n with the operation x�z = (x1z1, . . . , xnzn). The convolution of
a (vector-valued) function f : {±1}n → Rm and a (scalar-valued) function g : {±1}n →
R is the function f ∗ g : {±1}n → Rm defined by

f ∗ g(x) = E
Z

[
g(Z) · f(x� Z)

]
where Z is uniformly random in {±1}n. We list some basic properties of convolution.

Fact 10. If L : Rm → Rm is a linear map then L(f ∗ g) = L(f) ∗ g.

Fact 11. One has f̂ ∗ g(S) = ĝ(S) · f̂(S) for every S ⊆ [n].

2.2. Norms and convexity.

Fact 12 (Jensen’s inequality). Given a convex function f and a random variable X,
we have f(E[X]) ≤ E[f(X)].

Fact 13. For any norm ‖ · ‖ : Rm → R≥0 and functions f : {±1}n → Rm and
g : {±1}n → R one has

E
[
‖f ∗ g(X)‖2

]1/2 ≤ E [|g(X)|] · E
[
‖f(X)‖2

]1/2
.

where X ∼ {±1}n uniformly.

Proof. We bound

E
[
‖f ∗ g(X)‖2

]
= E

X

[∥∥∥E
Z

[
g(Z) · f(X � Z)

]∥∥∥2]
≤ E

X

[(
E
Z

[
|g(Z)| · ‖f(X � Z)‖

])2]
,
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where the inequality follows from the convexity of the norm ‖·‖. By the Cauchy-Schwarz
inequality, we can continue

≤ E
X

[
E
Z

[
|g(Z)|

]
· E
Z′

[
|g(Z ′)| · ‖f(X � Z ′)‖2

]]
= E

Z

[
|g(Z)|

]
· E
Z′

[
|g(Z ′)| · E

X

[
‖f(X)‖2

]]
=
(
E
Z

[
|g(Z)|

])2
· E
X

[
‖f(X)‖2

]
. �

It is convenient to replace a norm with the Euclidean norm. For this, we use the
following standard result in convex geometry.

Fact 14 (John’s Theorem [13]). For any norm ‖ · ‖ on Rm, there is an invertible linear
map J : Rm → Rm such that for every x ∈ Rm,

‖J(x)‖2 ≤ ‖x‖ ≤
√
m · ‖J(x)‖2.

2.3. Some useful inequalities.

Fact 15 (Stirling’s approximation). For every n ∈ N, we have
√

2π · nn+1/2e−n ≤ n! ≤ e · nn+1/2e−n.

Fact 16 (Khintchine’s inequality). Let Y ∈ {±1}n be uniformly random. For every
integer k > 0, there exist constants Ak, Bk > 0 such that for every x ∈ Rn,

Ak‖x‖2 ≤ E
[∣∣∣ n∑

i=1

Yixi

∣∣∣k]1/k ≤ Bk‖x‖2.

We can take A1 = 1√
2

and Bk = k!.

Lemma 17 (Chernoff bound). Let X1, . . . , Xn ∈ [−1, 1] be independent random vari-
ables with E[Xi] = µ for all i ∈ [n]. For every λ ≥ 0,

Pr
[∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣ ≥ λ
]
≤ 2 exp(−λ2n/2).

Fact 18 (Bernstein’s inequality [2]). Let X1, . . . , Xn be independent zero-mean random
variables with |Xi| ≤M for all i ∈ [n]. For every t > 0,

Pr
[∣∣∣ n∑

i=1

Xi

∣∣∣ ≥ t
]
≤ 2 exp

(
− t2

2
∑n

i=1 E[X2
i ] + 2

3
Mt

)
.

Fact 19 (Minkowski’s inequality). Let 1 ≤ p <∞, let ‖ · ‖ : Rm → R≥0 be a norm and
let X, Y be jointly distributed random variables on Rm so that E[‖X‖p],E[‖Y ‖p] <∞.
Then

E[‖X + Y ‖p]1/p ≤ E[(‖X‖+ ‖Y ‖)p]1/p ≤ E[‖X‖p]1/p + E[‖Y ‖p]1/p.
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2.4. Real-rooted polynomials. A univariate polynomial p(z) over R is real-rooted if
for all w ∈ C, the equality p(w) = 0 implies that w ∈ R. Newton’s inequality implies
that the coefficients of real-rooted polynomials are log-concave. A sequence c0, . . . , cd is
log-concave if c2j ≥ cj−1 · cj+1 for j ∈ [d− 1].

Fact 20 (e.g. [5]). Let p(z) =
∑d

j=0 cjz
j be a real-rooted polynomial with real coefficients.

Then the sequence c0, . . . , cd is log-concave.

An important consequence is that the magnitudes of the coefficients of such poly-
nomials are unimodal. A sequence a0, . . . , ad is unimodal if there is an index m such
that

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ ad.

Fact 21. If c0, . . . , cd is a log-concave sequence of positive numbers, then it is unimodal.

Proof. Since cj > 0, it follows that cj/cj−1 ≥ cj+1/cj for j ∈ {1, . . . , d− 1}, that is, the
sequence of consecutive ratios is non-increasing. Thus if m is the largest index with
cm/cm−1 ≥ 1, it follows that c0 ≤ c1 ≤ · · · ≤ cm ≥ cm+1 ≥ · · · ≥ cd. �

3. Bounds on ‖f`‖∞
In this section, we prove Theorem 1 assuming Theorem 7. We start by constructing

a proxy P : {±1}n → R that filters out f` from f by convolution. If d = `mod 2, we
use the parameters (d, `) to obtain φ as in Theorem 7. If d 6= `mod 2, we use the
parameters (d− 1, `) to obtain φ. The proxy is defined as

P (x) := E
θ

[
φ(θ) ·

n∏
j=1

(
1 + xj cos θ

)]
.

Property (3) implies that for any S ⊆ [n],

P̂ (S) =

{
1 if |S| = `,

0 if |S| 6= `, |S| ≤ d.

Since f has degree d, Fact 11 implies that f` = f ∗ P . Because f is bounded, for every
x ∈ {±1}n,

|f`(x)| =
∣∣E [P (Z) · f(x� Z)]

∣∣ ≤ E [|P (Z)|] ,
where Z ∼ {±1}n is uniform. Finally,

E [|P (Z)|] ≤ E
[
|φ(θ)| ·

∣∣∣ n∏
j=1

(1 + Zj cos θ)
∣∣∣] triangle inequality

= E
[
|φ(θ)| ·

n∏
j=1

(1 + Zj cos(θ))
]

(1 + Zj cos(θ)) ≥ 0

= E[|φ(θ)|] E[Zj] = 0

≤

{
|C(d, `)| when d = `mod 2,

|C(d− 1, `)| otherwise.
Theorem 7
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4. Bounds on ‖f̂`‖1
Here we prove Theorem 3 assuming Theorem 1. The proof is by induction on `.

When ` = 1, we have ‖f̂1‖1 = ‖f1‖∞, because we can pick an input x for which

f1(x) =
∑n

i=1 f̂({i})xi = ‖f̂1‖1. And Theorem 1 implies ‖f1‖∞ ≤ d.
For the induction step, let ` > 1. We apply a random restriction to f`, and use

induction on the degree-(`− 1) homogenous part of the restricted function. Let Q ⊆ [n]
be a subset of the variables sampled by including each variable independently with
probability 1

`
, and let Z ∼ {±1}n be uniformly random and independent of Q. The

random restriction of f` is

g(x) :=
∑
S⊆[n]

f̂`(S) · χS\Q(x) · χS∩Q(Z).

The main idea is to relate ‖f̂`‖1 and ‖ĝ`−1‖1.

Lemma 22. ‖f̂`‖1 ≤ e ·
√

2n
`
· E [‖ĝ`−1‖1].

Before proving the lemma, we use it to complete the proof. Since g/‖f`‖∞ is bounded
and of degree at most `,

‖f̂`‖1 ≤ e ·
√

2n

`
· ‖f`‖∞ · n

`−2
2 ``−1e(

`
2) induction & Lemma 22

≤ e ·
√

2n

`
· d

`

`!
· n

`−2
2 ``−1e(

`
2) Theorem 1

≤ e ·
√

2

`
· d` · e`√

2π` · ``
· n

`−1
2 ``−1e(

`
2) Fact 15

≤ e√
π · `2

· d` · n
`−1
2 e(

`
2)+`

≤ d` · n
`−1
2 · e(

`+1
2 ).

Proof of Lemma 22. Start by fixing a set U ⊆ [n] of size `− 1. Denote by 1Q∩U=∅ the
indicator random variable for the event that Q ∩ U = ∅. The corresponding coefficient
in g is

ĝ(U) = 1Q∩U=∅ ·
∑
j∈Q\U

Zj · f̂`(U ∪ {j}).

We first fix Q and take the expectation over Z. Denote by S the random variable that
is zero if Q = ∅ and is equal to 1√

|Q|
when Q is not empty. For j 6∈ U , let Sj be the

random variable that is zero if j 6∈ Q and is 1√
|Q|

when j ∈ Q. For every Q, we can
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bound

E
Z

[|ĝ(U)|] = 1Q∩U=∅ · E
Z

[∣∣∣ ∑
j∈Q\U

Zj · f̂`(U ∪ {j})
∣∣∣]

≥ 1Q∩U=∅ ·
√

1

2

∑
j∈Q\U

f̂`(U ∪ {j})2 Fact 16

≥ 1√
2
· 1Q∩U=∅ · S ·

∑
j∈Q\U

|f̂`(U ∪ {j})| Cauchy-Schwarz

≥ 1√
2
· 1Q∩U=∅ ·

∑
j 6∈U

Sj · |f̂`(U ∪ {j})|. S ≥ Sj

We now take the expectation over Q as well:

E
Z,Q

[
|ĝ(U)|

]
≥ 1√

2

∑
j 6∈U

|f̂`(U ∪ {j})| · E
Q

[1Q∩U=∅ · Sj].

Because ξ 7→ 1√
ξ

is convex, for each j 6∈ U we use Jensen’s inequality to bound

E
Q

[1Q∩U=∅ · Sj] = P[Q ∩ U = ∅] · P[j ∈ Q] · E
Q|Q∩U=∅,j∈Q

[ 1√
|Q|

]
≥ P[Q ∩ U = ∅] · P[j ∈ Q] · 1√

EQ|Q∩U=∅,j∈Q[|Q|]
.

We have P[j ∈ Q] = 1
`
, and P[Q ∩ U = ∅] =

(
1 − 1

`

)`−1 ≥ 1/e, since (1 − 1/`)`−1 is
decreasing in ` and converges to 1/e. We can compute:

E
Q|Q∩U=∅,j∈Q

[|Q|] = 1 + (n− (`− 1)− 1)
1

`
=
n

`
.

So, we can bound

E
Q

[1Q∩U=∅ · Sj] ≥
1

e`
·
√
`

n
=

1

e
√
n`
.

Overall, for every U of size `− 1,

E
Q,Z

[
|ĝ(U)|

]
≥ 1

e
√

2n`
·
∑
j 6∈U

|f̂`(U ∪ {j})|.

Summing over U ,

E
Q,Z

[
‖ĝ`−1‖1

]
≥ 1

e
√

2n`
·
∑

U :|U |=`−1

∑
j 6∈U

|f̂`(U ∪ {j})|

=
1

e
√

2n`
·
∑
S:|S|=`

` · |f̂`(S)|

=
1

e
·
√

`

2n
· ‖f̂`‖1. �
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5. A Higher level Pisier inequality

In this section, we prove Theorem 5 assuming Theorem 7. We can express f` as the
convolution of f with the level function

L`(x) :=
∑

S⊆[n]:|S|=`

χS(x);

see Fact 11. In order to analyze the norm of f`, we construct a proxy P that is close to
L`. Let d be a parameter with d = `mod 2 to be determined. Let φ be as in Theorem 7.
Define

P (x) := 2` · E
θ

[
φ(θ) ·

n∏
j=1

(
1 +

cos(θ) · xj
2

)]
=
∑
S⊆[n]

2` E
θ

[
φ(θ) · cos|S|(θ)

2|S|

]
· χS(x).

We think of P as a “good” proxy for L`:

E
[
‖f`(X)‖2

]1/2
= E

[
‖f ∗ L`(X)‖2

]1/2
= E

[
‖f ∗ P (X) + f ∗ (L` − P )(X)‖2

]1/2
≤ E

[
‖f ∗ P (X)‖2

]1/2
+ E

[
‖f ∗ (L` − P )(X)‖2

]1/2
. Fact 19

Next, we bound each of the two terms separately.
To bound the first term, apply Fact 13,

E
[
‖f ∗ P (X)‖2

]1/2 ≤ E [|P (X)|] · E
[
‖f(X)‖2

]1/2
.

Similarly to the end of Section 3, we may bound the `1 norm of P by

E [|P (X)|] ≤ 2` · E

[
|φ(θ)| ·

n∏
j=1

(
1 +

cos(θ) ·Xj

2

)]
= 2` · E [|φ(θ)|] ≤ 2` · |C(d, `)|.

To bound the second term, use John’s theorem (Fact 14). There is an invertible
linear map J : Rm → Rm so that for every x ∈ Rm,

‖J(x)‖2 ≤ ‖x‖ ≤
√
m · ‖J(x)‖2.

Using J we can switch between ‖ · ‖ and ‖ · ‖2:

E
[
‖f ∗ (L` − P )(X)‖2

]1/2 ≤ √m · E [‖J(f ∗ (L` − P )(X))‖22
]1/2

=
√
m · E

[
‖J(f) ∗ (L` − P )(X)‖22

]1/2
Fact 10

=
√
m ·
√∑

S

‖Ĵ(f)(S)‖22 · (L̂` − P (S))2. Facts 9 and 11
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We now claim that

P̂ (S) =


1 if |S| = `,

0 if |S| 6= `, |S| ≤ d,

≤ 2`−d · |C(d, `)| otherwise.

The first two cases follow directly from the properties of φ and the formula for P . The
last case follows from

|P̂ (S)| ≤ 2`

2|S|
· E [|φ(θ)|] ≤ 2`−d · |C(d, `)|.

We can continue to bound

E
[
‖f ∗ (L` − P )(X)‖2

]1/2 ≤ √m · 2`−d · |C(d, `)| ·
√∑

S

‖Ĵ(f)(S)‖22

=
√
m · 2`−d · |C(d, `)| · E

[
‖J(f(X))‖22

]1/2
Fact 9

≤
√
m · 2`−d · |C(d, `)| · E

[
‖f(X)‖2

]1/2
.

Putting the two parts together,

E
[
‖f`(X)‖2

]1/2 ≤ 2` · |C(d, `)| ·
(

1 +

√
m

2d

)
E
[
‖f(X)‖2

]1/2
.

For ` < 1
2

log(m + 1), we can set d to be the smallest integer that is larger than
1
2

log(m+ 1) and has the same parity as `, so that

2` · |C(d, `)| ·
(

1 +

√
m

2d

)
≤ 2` · d

`

`!
· 2 Fact 15

≤
(6 log(m+ 1)

`

)`
.

For ` ≥ 1
2

log(m+ 1), we can set d := ` so that

2` · |C(d, `)| ·
(

1 +

√
m

2d

)
= 22`−1 ·

(
1 +

√
m

2`

)
≤ 4`.

Remark. There is a slightly more general version of Theorem 5. The Banach-Mazur
distance of the norm ‖ · ‖ from the Euclidean norm ‖ · ‖2 is

D = inf{d ∈ R : ∃T ∈ GLm ∀x ∈ Rm ‖T (x)‖2 ≤ ‖x‖ ≤ d · ‖T (x)‖2},
where GLm is the group of invertible linear transformations from Rm to itself. John’s
theorem states that always D ≤

√
m. The above argument proves that, more generally,

we can replace the C log(m+ 1) term by C log(D + 1).

6. Constructing the filter

Here we construct the filter φ and prove Theorem 7. Let θ be uniformly distributed
over the 2d equally spaced angles

D =
{

0,
π

d
, . . . ,

(2d− 1)π

d

}
.
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An important property of this distribution is that for integer a, we have

E[eiaθ] =

{
1 if a = 0mod 2d

0 otherwise.
(5)

Define

Q(z) :=
d∏
j=0

(
z − cos

(jπ
d

))
=

d+1∑
j=0

cjz
j,

for some cj ∈ R. Let Q>` denote the suffix of Q:

Q>`(z) :=
d+1∑
j=`+1

cjz
j.

The rational function Q>`(z)
z`+1 is a polynomial. Finally, define

φ(θ) := 2d−1 · cos(dθ) · Q>`(cos(θ))

cos`+1(θ)
.

It remains to prove that the filter φ has the desired properties.
The following claim helps to understand the correlation of φ with powers of cos.

Claim 23. For integers k, d ≥ 0, we have

E[cos(dθ) cosk(θ)] =


0 if k 6= dmod 2

0 if k < d

2−(d−1) if k = d.

Proof. If k 6= dmod 2, the symmetry cos(dθ) = (−1)d cos(d(π + θ)) and the symmetry
of the distribution of θ complete the proof.

For k < d, we use the identity cos(θ) = eiθ+e−iθ

2
. Property (5) implies

E[cos(dθ) cosk(θ)] = E
[eidθ + e−idθ

2
·
(eiθ + e−iθ

2

)k]
= 0.

For k = d, the expectation reduces via (5) to

E
[eidθ + e−idθ

2
·
(eiθ + e−iθ

2

)d]
= E

[eidθ + e−idθ

2
·
(eidθ + e−idθ

2d

)]
= 2−(d−1).

�

Now, we can prove (3). The argument is based on Claim 23. We use the following
terminology. The expressions we consider are sums of terms of the form cos(dθ) cosk(θ).
The degree of such a term is k.

For k ≤ `− 1, all terms in φ(θ) cosk(θ) have degree at most d− 1. Claim 23 implies
that E[φ(θ) cosk(θ)] = 0.

For k = `, we have a single term of degree d, so that

E[φ(θ) cos`(θ)] = E[2d−1 cos(dθ) cosd(θ)] = 1.
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For `+ 1 ≤ k ≤ d,

E[φ(θ) cosk(θ)] = E[2d−1 cos(dθ) ·Q>`(cos(θ)) cosk−(`+1)(θ)]

= E[2d−1 cos(dθ) ·Q(cos(θ))︸ ︷︷ ︸
=0

cosk−(`+1)(θ)] = 0;

the second equality holds because we added terms in Q of degree at most `, and
`+ k − (`+ 1) ≤ d− 1.

Finally, for k = d+ 1, we need one more observation. Since cos(θ) = − cos(π − θ),
the distinct roots of the real-rooted polynomial Q come in pairs of the form r,−r. So,
there is a polynomial q so that

Q(z) =

{
z · q(z2) if d = 0mod 2,

q(z2) otherwise,

where

q(z) =

b(d−1)/2c∏
j=0

(
z − cos2

(jπ
d

))
.

Because ` = dmod 2, the coefficient c` in Q is zero. Similarly to the previous case, we
can bound

E[φ(θ) cosk(θ)] = E[2d−1 cos(dθ) ·Q>`(cos(θ)) cosk−(`+1)(θ)]

= E[2d−1 cos(dθ) ·Q(cos(θ))︸ ︷︷ ︸
=0

cosk−(`+1)(θ)] = 0;

here we additionally used that c` = 0.
Next, we turn to computing E[|φ(θ)|]. The key claim is the following:

Claim 24. For all θ ∈ D, the sign of Q>`(cos(θ))
cos`+1(θ)

is the same.

Proof. The polynomial q has positive roots corresponding to nonzero cos2(θ) for θ ∈ D.

Because d = `mod 2, the sign of Q>`(cos(θ))
cos`+1(θ)

is the same as the sign of q>k(cos2(θ)) for

k = b `−1
2
c. Theorem 8 completes the proof. �

Claim 24 implies that the sign of φ(θ) is determined by the sign of cos(dθ). We can
finally compute

E[|φ(θ)|] = |E[φ(θ) cos(dθ)]| | cos(dθ)| = 1 for θ ∈ D
= |C(d, `)|. property (3) & definition of Td

7. On Real Rooted Polynomials

In this section, we prove Theorem 8. First, we need a useful property of unimodal
sequences.

Claim 25. Let a0, . . . , ad be a unimodal sequence of positive numbers so that
∑d

j=0(−1)jaj =

0. Then for all k ∈ {0, . . . , d}, we have (−1)k
∑k

j=0(−1)jaj ≥ 0.
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Proof. Let m be the position of a maximum of the unimodal sequence. For k ≤ m even,

k∑
j=0

(−1)jaj = a0 +

k
2∑
j=1

(a2j − a2j−1) ≥ 0.

For k ≤ m odd,

k∑
j=0

(−1)jaj =

k−1
2∑
j=0

(a2j+1 − a2j) ≤ 0.

This proves the claim when k ≤ m. A symmetric argument can be applied to the suffix
sums to conclude that for m ≤ k < d,

(−1)d−k+1

d∑
j=k+1

(−1)d−jaj ≥ 0.

Together with the condition
∑d

j=0(−1)jaj = 0, this implies that when k > m,

(−1)k ·
k∑
j=0

(−1)jaj = (−1)k+1 ·
d∑

j=k+1

(−1)jaj

= (−1)d−k+1

d∑
j=k+1

(−1)d−jaj ≥ 0.

�

Now we turn to proving Theorem 8.

Proof of Theorem 8. Write p as

p(z) =
d∏
j=1

(z − rj) =
d∑
j=0

cjz
j,

with r1, . . . , rd > 0. For every j ∈ {0, . . . , d}, we have (−1)d+j · cj > 0. So, by Fact 20,
the sequence |c0|, . . . , |cd| is log-concave.

Now, let r by any root of p, and set aj = |cj|rj. Because the product of log-concave
sequences is log-concave, the sequence a0, . . . , ad is log-concave and positive.
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By Fact 21, the sequence a0, . . . , ad is unimodal. Because r is a root of p, we know
p(r) =

∑d
j=0(−1)jaj = 0. And Claim 25 implies

(−1)d−k−1 · p>k(r) = (−1)d−k−1 ·
d∑

j=k+1

cjr
j

= (−1)−k−1 ·
d∑

j=k+1

(−1)jaj

= (−1)k ·
k∑
j=0

(−1)jaj

≥ 0. �

8. Consequences for learning

Here we describe an application of our Fourier bounds to learning theory; we prove
Theorem 6. The learning algorithm is based on standard techniques (see e.g. [14] or
Chapter 3 in [20]).

First, we can estimate one specific Fourier coefficient by sampling and averaging.

Lemma 26. Let f : {−1, 1}n → [−1, 1] and fix a set S ⊆ [n]. Sample X1, . . . , XN ∼
{±1}n uniformly and independently and set αS := 1

N

∑N
i=1 f(Xi) · χS(Xi). Then for

any λ ≥ 0,

Pr
[
|f̂(S)− αS| ≥ λ

]
≤ 2 exp(−λ2N/2).

Proof. Consider the random variable Yi := f(Xi) · χS(Xi) and note that |Yi| ≤ 1 and

E[Yi] = f̂(S). The lemma follows from the Chernoff bound (Lemma 17). �

The learning algorithm operates as follows. Its sample complexity is

N =

⌈
2 · 162 · 1

ε3
· L(n, d)2 log

(
2 ·
∑d

`=0

(
n
d

)
δ

)⌉
where

L(n, d) := (d+ 1)dde(
d+2
2 ) · n

d−1
2 .

The algorithm samples X1, . . . , XN ∼ {±1}n uniformly at random and independently.
It computes αS for all S ⊆ [n] of size |S| ≤ d as in the lemma above. It then computes
the set

B =
{
S ⊆ [n] : |αS| ≥

ε

4 · L(n, d)

}
.

The output is the function

g =
∑
S∈B

αSχS.

It remains to prove that, except with probability δ, the algorithm above produces a
function g satisfying E [|f(X)− g(X)|2] ≤ ε, for uniformly random X.



THE FOURIER GROWTH OF BOUNDED FUNCTIONS 17

Denote by G the event that for every S of size at most d we have |f̂(S)−αS| ≤ ε3/2

16·L(n,d) .

The union bound and Lemma 26 imply that P[G] ≥ 1− δ. For the rest of the proof,
assume that G holds. For S ∈ B, we have

f̂(S)2 ≥
(

ε

4 · L(n, d)
− ε3/2

16 · L(n, d)

)2

≥ ε2

64 · L(n, d)2
.

So, by Parseval’s identity, we must have that

|B| ≤ 64 · L(n, d)2

ε2
.

For S /∈ B,

|f̂(S)| ≤ ε

4 · L(n, d)
+

ε3/2

16 · L(n, d)
≤ ε

2 · L(n, d)
.

The last ingredient is Theorem 3. It implies that

‖f̂‖1 ≤ L(n, d).

Putting it all together,

E
[
|f(X)− g(X)|2

]
=
∑
S⊆[n]

(f̂(S)− ĝ(S))2

=
∑
S∈B

(f̂(S)− ĝ(S))2 +
∑
S/∈B

f̂(S)2

≤ |B| · ε3

162 · L(n, d)2
+

ε

2 · L(n, d)
·
∑
S/∈B

|f̂(S)|

≤ ε.

9. Examples of bounded functions

In this section we provide a couple of examples showing that our bounds are sharp
for some range of parameters.

9.1. Lower bound for ‖f̂`‖1. Here we prove Proposition 4. Let εS, for S ⊆ [n] of size
`, be sampled uniformly and independently from {±1}. Define G(x) :=

∑
S εSχS(x)

where the sum is over S ⊆ [n] of size `. By Fact 18, for each x ∈ {±1}n we may bound

Pr
[
|G(x)| ≥ 2

√
n ·
(
n
`

)]
< 2−n. By the union bound, there is a choice for εS so that

the map

f :=
G

2
√
n ·
(
n
`

)
satisfies ‖f‖∞ ≤ 1 and

‖f̂`‖1 =

(
n
`

)
2 ·
√
n ·
(
n
`

) =
1

2
·

√
1

n
·
(
n

`

)
.



18 IYER ET AL.

9.2. Lower bound for ‖f`‖∞. Here we prove Proposition 2. Every coefficient of

the Chebyshev polynomial Td is bounded by dd

d!
≤ ed. The theorem follows from the

following more general lemma.

Lemma 27. Given positive integers ` ≤ d and a degree d polynomial T (x) =
∑d

j=0 cjx
j,

define g(x) := T ((x1 + · · ·+ xn)/n). Then |g`(1n)| ≥ |c`| − 2(d+1)!·maxj≥` |cj |
n

.

To prove the lemma, we first show:

Claim 28. Let S ⊆ [n] be of size `, and hj(x) = (x1 + · · ·+ xn)j. Then:

ĥj(S)


= 0 if j < ` or j 6= `mod 2,

= `! if j = `,

≤ j! · n j−`
2 if j > `.

Proof. Let X ∼ {±1}n be uniformly distributed. We have

ĥj(S) = E [χS(X) · hj(X)] .

Each y ∈ [n]j corresponds to the term
∏j

i=1 xyi in the expansion of hj(x). This term
contributes either 1 or 0 to the expectation, and it contributes 1 exactly when every
variable of S has odd degree, and all other variables have even degree. Thus, we must
have ĥj(S) = 0 when j < |S| or j 6= |S|mod 2, since no term can contribute 1 in
those cases. Moreover, when j = |S|, we see that there are exactly `! terms that can
contribute 1.

When j > `, observe that if
∏j

i=1 xyi contributes 1, there must be a set W ⊆ [j] of size
`, such that

∏
i∈W xyi =

∏
i∈S xi, and every variable of

∏
i/∈W xyi has even degree. The

number of choices for W is
(
j
`

)
, and the number of ways in which

∏
i∈W xyi =

∏
i∈S xi

can hold is `!. For a fixed value of W , the number of ways in which
∏

i/∈W xyi can have

even degrees is E
[
(X1 + · · ·+Xn)j−`

]
. Putting these observations together:

ĥj(S) ≤
(
j

`

)
· `! · E

[
(X1 + · · ·+Xn)j−`

]
≤
(
j

`

)
· `! · (j − `)! · n

j−`
2 = j! · n

j−`
2 ;

the second inequality follows from Khintchine’s inequality (Fact 16). �

Now we can use the claim to prove the lemma:

Proof of Lemma 27. The lemma trivially holds when n < 4, so we assume n ≥ 4. Let
hj be as in Claim 28. Note that ĥj(S) ≥ 0. We can bound

g`(1
n) = ‖ĝ`‖1 =

∑
S⊆[n],|S|=`

n∑
j=0

ĥj(S)/nj

≥ c`

(
n

`

)
· `!
n`
−
(
n

`

)
·

n∑
j=`+1

|cj| · j! · n−(j+`)/2.
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To bound the first term, observe that

c`

(
n

`

)
· `!
n`

= c`

(
1− 1

n

)
· · ·
(

1− `− 1

n

)
≥ c`

(
1− 1

n
·
`−1∑
j=1

j
)

(∗)

= c`

(
1− 1

n

(
`

2

))
;

the inequality (∗) follows by induction from (1− α)(1− β) > 1− α − β for α, β > 0.
To bound the contribution of the second term, observe:(

n

`

)
·

n∑
j=`+1

|cj| · j! · n−(j+`)/2 =

(
n
`

)
n`
·

d∑
j=`+2

j! · n−(j−`)/2 · |cj|

≤
d−`−2∑
k=0

j! · 1

n
· n−k/2 · |cj|

≤ 1

n
· (d+ 1)! ·max

k>`
|ck|.

Finally, since
(
`
2

)
≤ (d+ 1)!, we get g`(1

n) ≥ c` − 2(d+1)!maxk≥` |ck|
n

. �
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