Network Extractor Protocols

Yael Tauman Kalai Xin Li *
Microsoft Research

yael@microsoft.com

University of Texas at Austin
lixints@cs.utexas.edu

Anup Rao'
Institute for Advanced Study
arao@ias.edu

David Zuckermar
University of Texas at Austin
diz@cs.utexas.edu

Abstract

We design efficient protocols for processors to ex-
tract private randomness over a network with Byzan-
tine faults, when each processor has access to an inde
pendent weakly-random-bit source of sufficient min-
entropy. We give several sudetwork extractor proto-
colsin both the information theoretic and computational
settings.

For a computationally unbounded adversary, we con-
struct protocols in both the synchronous and asyn-
chronous settings. These network extractors imply ef-
ficient protocols for leader election (synchronous set-
ting only) and Byzantine agreement which tolerate a lin-
ear fraction of faults, even when the min-entropy is only
2(logm)™™ " Eor Jarger min-entropy, in the synchronous
setting the fraction of tolerable faults approaches the
bounds in the perfect-randomness case.

Our network extractors for a computationally

bounded adversary work in the synchronous setting even

when 99% of the parties are faulty, assuming trapdoor
permutations exist. Further, assuming a strong variant
of the Decisional Diffie-Hellman Assumption, we con-
struct a network extractor in which all parties receive

private randomness. This yields an efficient protocol for
secure multi-party computation with imperfect random-
ness, when the number of parties is at lgadfylog(n)

and where the parties only have access to an indepen-

dent source with min-entropy*(!).

*Supported in part by NSF Grant CCF-0634811 and THECB ARP
Grant 003658-0113-2007.

tSupported in part by NSF Grants CCF-0634811 and CCR-
0324906. Part of this work was done while the author wasingsit
Microsoft Research at Redmond.

fSupported in part by NSF Grant CCF-0634811.

1 Introduction

Randomization appears extremely useful in design-
ing algorithms for a variety of problems. However,
many researchers belielPP = P, in which case ran-
domness is not needed for efficient algorithms. In con-
trast, randomness is provably necessary to solve many
problems in distributed computing and cryptography.
For example, randomness is necessary for Byzantine
agreement in the asynchronous setting, and necessary to
do efficiently in the synchronous setting.

These applications of randomness typically require
long strings of uniformly random bits, yet it is unclear
how to obtain such random strings. Instead, we may
only have access to a weak source: an unknown, arbi-
trary distribution with some entropy. We use a standard
measure of entropy calleshin-entropy a distribution
has min-entropy if all strings have probability at most
2~%. When such a distribution is overbit strings, we
refer to it as ar{n, k)-source.

Much work has been devoted to simulating ran-
domized algorithms using weak sources with small
min-entropy [26, 8, 27, 25, 2], culminating with An-
dreev et al.'s simulation of any BPP algorithm with an
(n,n*™)-source.

Goldwasser, Sudan, and Vaikuntanathan [16] ad-
dressed the natural question of whether weak sources
can be used in distributed computing. They showed
how to solve Byzantine agreement even if each proces-
sor has a weak source, and these weak sources are in-
dependent. However, they considered fairly restricted
weak sources, and asked whether similar results hold
for general(n, k)-sources. In this paper, we answer this
guestion positively, showing strong results for general
sources. Our methods also give strong results for leader

election and other distributed computing problems. not change. We assume that the communication chan-
Several researchers considered the analogous quesiels are not private, so the adversary can see all commu-
tion in the cryptographic context [19, 18, 12, 10, 7]. nication. This is called th&ull information model.We
A few positive results emerged; however, arguably the note that we could obtain stronger results in a network
most impressive-sounding results are the negative onesvith private channels, however in the interest of space
of Dodis et al. [11]. They showed that almost all of we focus on the full information model.
the classic cryptographic tasks, including encryptioh, bi Most of our results are fosynchronousmetworks:
commitment, secret sharing, and secure two-party com-communication between processors takes place in
putation (for nontrivial functions), are impossible even rounds and every message transmitted at the beginning
with a single(n, .99n)-source. of a round is guaranteed to reach its destination at the
Despite this, under a strong variant of the Decisional end of the round. In this case we allow rushing: the
Diffie-Hellman (DDH) Assumption, we give a proto- faulty processors may wait for all good processors to
col for secure multi-party computation when the number transmit their messages for a particular round, before
of parties is at leagbolylog(n), even if each processor transmitting their own messages. We also have results
only has access to an independentn(V))-source. A for asynchronousietworks— here the only guarantee is
simpler version of our protocol works in the honest-but- that every message will eventually be received.

curious setting for a constant number of parties. We assume each processor has access to an unknown,
arbitrary (n, k)-source of randomness, and that these
1.1 Network Extractors sources are independent. This independence assump-

tion seems justifiable if we view the processors as be-
) . ing physically far away from each other. Such sources
The standard method for handlmg_ Weak_sources is to may also arise if the adversary manages to acquire (say
use a randomness extractor: a function which converts a5 "5 virus) a small amount of information about each
weak source into a nearly-random string. While this is ¢ the honest processors' (truly random) sources. In this
possible for certain restricted weak sources, it is notfor c55e conditioning on the adversary’s information leaves
general(n, k)-sources. However, itis possible with the - e4ch of the processors with independent weak sources.
addition of a few truly random bits, called a seed [20]. |nqeed, the model we consider seems to be the most nat-

Even in a world with no truly random bits, such seeded ;5| generalization of the model where each processor
extractors are sometimes useful; for example, in algo- 45 access to truly random bits

rithms we can cycle over all possibilities forthe seedand |, 5rder to define network extractor. we need some
take a majority vote. _prever, in distributed computing \ +ation. Processarbegins with a sample from a weak
and cryptography, this idea appears less useful. sourcer; € {0,1}" and ends in possession of a hope-
Instead, the proper tool for distributed computing is fully uniform samplez; € {0,1}™. Letb be the con-
anetwork extractor protocolhich was introduced (but ¢atenation of all the messages that were sent during the
left unnamed) by Dodis and Oliveira [10] in the Crypto- rotocol. Capital letters such & and B denote these
graphic context and by Goldwasser et al. [16] in the con- strings viewed as random variables.
text of Byzantine agreement. The idea is that each pro- e gefine network extractors both in the information-
cessor starts with a weak source, and these weak sourceg e oretic setting (where the adversary may be computa-
are independent. The processors then interact, and at th'ﬁonally unbounded) and in the computational settings

end of the protocol most, if not all, non-faulty proces- (yhere the adversary is assumed to be computationally
sors obtain private, nearly-random strings. These Smngsbounded) starting with the former.

may then be used in any traditional protocol requiring
perfect randomness. Definition 1.1 (Network Extractor) A protocol for
Before elaborating, we discuss the model that we p processors is dt, g,¢) network extractorfor min-
consider. We assume thatprocessors communicate entropyk if for any min-entropyk independent sources
with each other via point-to-point channels in order to X;,..., X, over{0, 1}™ and any choice of faulty pro-
perform a task. However, an unknowmf the proces- cessors, after running the protocol, the number of pro-
sors arefaulty. We allow Byzantine faults: faulty pro- cessors for which|(B, Z;) — (B, Uy,)| < eis at leasy.
cessors may behave arbitrarily and even collude mali- HereU,,, is the uniform distribution om: bits, indepen-
ciously. We call the set of faulty processors Huver- dent of B, and the absolute value of the difference refers
sary, and we only consider a non-adaptive adversary —to variation distance. We say that a protocol isya-
the set of faulty processors is fixed in advance and doeschronous extractoif it is a network extractor that oper-

ates over a synchronous network. We say that it is anin advance, in the sense that there are ¢t processors

asynchronous extractdf it is a network extractor that known before the start of the protocol, such that any non-

operates over an asynchronous network. faulty processor among them will obtain a private, ran-
dom output.

As long as the min-entropy rate of the sources is
greater than /2, we give nearly optimal network extrac-
tors. In particular, as long as the fraction of faulty pro-
cessors is bounded by a constant less thigrwe show

(B, (Xi)igg, (Zi)icg) — (B, (X2)igg, Ugm)| < ge. how to build a one round synchronous network extrac-
‘ tor which leaves almost every non-faulty processor with
In other words, after running the network extractor pro- private randomness.
tocol, the joint distribution of the outputs of all the pro-

cessors irg is indistinguishable from independent uni- Theorem 2.1 (High Entropy Synchronous Extractor)

form strings, even after seeing all communication and For all p, ¢, n, «, 3 > 0, there exists a constant= ¢(a)

all the sources of the rest of the processors. and a two-round(t,p — (1 + a)t — C’kaﬂm) syn-
We next define @omputationahetwork extractors. . -onous extractor for min-entropy > (% + B)nin

Here we assume that all the processors involved (hon-yhe fy|l-information model. The protocol is one round

est and faulty) are computationally bounded (i.e., runin ¢, _ Q).

time poly(n)), and the outputs need only be computa-

tionally (rather than statistically) indistinguishabtern

uniform. We restrict our attention to the synchronous

LetG = {i1,...,i,} denote the set of processors
with private, random output$(B, Z;) — (B, U,,)| < e.
Because eaclf; depends only otX; and B, the above
condition implies that

If the min-entropy of the general sources is much
smaller, we can still design a good network extractor,

setting. . .
g though fewer processors end up with private random
Definition 1.2 (Computational Network Extractar)A bits. The new protocol ensures rougbly(2+}§§}2§2)t

protocol forp processors is &, g) computational net- honest processors end up with private randomness, thus
work extractorfor min-entropyk if for any min-entropy tolerating alinear fraction of faulty processors. Thispro

k independent sourceX;,..., X, over {0,1}" and tocol runs in a constant number of rounds even with min-
any choice oft faulty processors, with probability — entropyk = 2(1°g n) .

negl(n), after running the protocol there agehonest

processor§ = {i1, ..., iz} such that Theorem 2.2 (Low Entropy Synchronous Extractor)

For all p,t,8 > 0, k > logp, andn < 29 there
{(B, (Xi)igg, (Zi)iegnen = {B, (Xi)igg, Ugm bnen exists a constant = c¢(3) and a(1/3 + 1) round

Zpem
wherel,,,, is the uniform distribution ogm bits, inde- ~ (t;p = (1.1 +1/8)t —¢,2];) synchronous extrac-
pendent ofB and(X;);¢g, and where~ denotes com- tor for min-entropyk > 2!°¢” " in the full-information
putational indistinguishability. model.

A priori, it is not clear that network extractors,

information-theoretic or computational, even exist. In the asynchronous setting, we get slightly weaker

results:

2 OurResults Theorem 2.3(High Entropy Asynchronous Extractor)

For all p,t,n,3 > 0, there exists a one-round, p —
3t—1, 2—’“0(1)) asynchronous extractor for min-entropy
k > (3 + B)n in the full-information model.

We give several constructions of network extractors,
both in the information-theoretic setting and in the com-
putational setting.

the Theorem 2.4(Low Entropy Asynchronous Extractor)
There exist constants;,c; > 0 such that for all
p,t,3 > 0,k > logp, andpoly(t) < n < 20, there

) A A H yneles)
All of our network extractors in the information the- €Xists a(1/5 + 1) round (¢, p - at/p— 027? i _)
oretical setting have the additional property that gnhe a@synchronous extractor for min-entropy> 2°¢ "™ in
processors with private, random outputs can be namedhe full-information model.

2.1 Network Extractors in
Information-Theoretic Setting

2.2 Byzantine Agreement and Leader 3. The protocol fork > 208’ toleratesp/(3.1 +
Election with Weak Random 1/3) faulty processors.

Sources .
In the asynchronous case, we can tolerate a linear

fraction of faults in only a polylogarithmic number of

After running a network extractor, we can run any of rounds, as is the case with perfect randomness [17].

the traditional distributed computing protocols designed

for perfect, private randomness. We now describe ap-Theorem 2.6 (Asynchronous Byzantine Agreement)
plications of our results to two basic distributed com- Let o, 3 > 0 be any constants. Fgp large enough,
puting problems: Byzantine agreement and leader elec-assuming each processor has access to an independent
tion/collective coin-flipping. (n, k)-source, there exists a constaht< v < 1 and
asynchronougolylog(p) expected round protocols for
Byzantine Agreement in the full information model with

Byzantine Agreement. The goal of a protocol for the following properties.

Byzantine agreemerns for the processors to agree on
the result of some computation, even if sotnaf them 1. The protocol fok > (1/2 + 3)n tolerates(1/8 —
are faulty. Byzantine agreement is fundamental because a)p faulty processors.
it can be used to simulate broadcast and maintain con-
sistency of data. 2. The protocol fork > 9log”n toleratesg~p faulty

For protocols using weak sources, the only results are processors.
due to Goldwasser et al. [16]. They require all weak
sources to have min-entropy rate at leqg2. In the Leader Election and Collective Coin Flipping. The
fullinformation model, they only obtain results forweak goal of a protocol foteader electioris to select a uni-
sources that are more restricted than block sotirdéis- formly random leader from a distributed network rof
der the assumption that the processors have access tprocessors. In the presence of faulty processors, we
generaln, k)-sources, they give results only for the case would like to bound the probability that one of the faulty
of private channels. They posed the open question ofprocessors gets selected as the leader.
whether protocols can be designed in the full informa- Ben-Or and Linial [4] were the first to study col-
tion model assuming only that each processor has acceskctive coin-flipping under what we call the BL model:
to generaln, k)-sources. We answer this question pos- the full information model with reliable broadcast in
itively by first running our network extractor, and then a synchronous network. A long sequence of work
running a protocol for Byzantive Agreement with per- [24, 1, 5, 9, 21, 28, 23, 13] has resulted in a proto-
fect randomness [15, 17]. col which tolerate1/2 — «)p faulty processors and

In the synchronous setting, we essentially match the requires onlylog™(p) + O(1) rounds to elect a leader
perfect-randomness case [15] when the min-entropy rate(and hence perform a collective coin flip) in the BL
is greater thari /2, and we can tolerate a linear fraction model [23, 13]. We obtain essentially the same results
of faults even with min-entropgee ™" if the processors’ min-entropy rate is above 1/2, and we

can tolerate a linear fraction of faults with min-entropy

Theorem 2.5(Synchronous Byzantine Agreement)et 9(log)M
a,8 > 0 be any constants. Fop large enough,
assuming each processor has access to an indepenTheorem 2.7(Leader Election) Leta, 3 > 0 be any

dent (n, k)-source, there exists synchrono@glog p) constants. Fop large enough, assuming each processor
expected round protocols for Byzantine Agreement in the hai access to an independent k)-source, there exists
full information model with the following properties. log” p + O(1) round protocols for leader election in the

BL model with the following properties.
1. The protocol fokk > (1/2 + §)n tolerates(1/3 —

o)p faulty processors. 1. The protocol fokz > (1/2 + §)n tolerates(1/2 —

a)p faulty processors.

2. The protocol fok > n” tolerates(1/4—a)p faulty 2. The protocol fok > n tolerates(1/3—a)p faulty
Processors. Processors.

1 8
They refer to these sources as t_)lock_sou_rces, though theyotire 3. The pl’OtOCOl fork > glog” n tolerates(l/(2 +
as general as block sources are defined in this paper andttaetex
1/8) — «)p faulty processors.

literature.

2.3 Network Extractors in the Compu- Theorem 2.9 gives a protocol where each processor
tational Setting takes as input a weak source aatlthe (honest) pro-
cessors end up with a (computationally) private random

In the computational setting, under cryptographic as- String. It is well known [14], that once each (honest)
sumptions, we are able to get network extractors for low Processor has a (computationally) private random string,
min entropy rates where most, or evalh honest play- they can securely compute any functionality (assuming
ers get private randomness. However, this requires thethe existence of enhanced trapdoor permutations, or al-
number of players to be a growing parameter in terms of ternatively, assuming the DDH Assumption). Thus, we
n. We focus on the synchronous full information model, 9et the following corollary.
where each player has &n, n*(!))-source.

Our first result shows that if trapdoor permutations
exist, then there exists a computational network extrac-
tor for sources with min-entropy = n*(Y), in which
almost every non-faulty processor ends up with a (com-
putationally) private random string.

Corollary 2.10. Assume that the strong DDH Assump-
tion holds. Then for everg,~ > 0 there exists a con-
stant0) < ¢ < 1 (that depends only o) such that

for everylog’ n < p < k¢, the following holds: Every
functionality (involvingp processors) can be computed
securely in the full information model with broadcast
Theorem 2.8. Assume that trapdoor permutations ex- channel?, assuming that there are at mogt faulty pro-

ist. Then for everyy, 3,7 > 0 there exists a constant C€SSOTS, and assuming that each processor has access to
0 < ¢ < 1 (that depends only of) such that for every ~ an independen(n, n)-source.

log’n < p < k¢ there exists dt = yp,p — (1 + a)t)
computational network extractor for min-entrogy >
n? in the full information model.

We note that all the results above (in the computa-
tional setting) assumed that the number of playessa
growing parameter. However, in many applications, for
example that of secure multiparty computation with im-
with min-entropyk > n/2. Namely, using crypto- perfect randomness, we would IiI§e to handleaconstant
graphic assumptions we reduced our min-entropy re- pumberofplayers. We shovy that if the min gntropy rate
quirement fromk > n/2 to & = n®® (though we is greater tha /2, or if there is an_honestmajonty, then
added the requirement that the number of players is IargeL_Inder the strong DDH Assumption there are computa-
enough in terms of). tional network extractors fomonstantnumber qf play-

Our second result shows that under a (seemingly)ers’ whereall honest players end up with private ran-

stronger and non-standard cryptographic assumption,domness'

there exists a computational network extractor in which thaorem 2.11. Assume the strong DDH Assumption
everynon-faulty processor ends up with a (computation- q14s. For all 3 > 0 there exists a constant —
ally) private random string. The assumption we rely on c(a, B) such that for everyt € N and every integer

f_or this result is a strong variant of thg DDH Assump- p > (1+a)t + c, there exists &, p — t) computational
tion. We note that several strong variants of the DDH otwork extractor for min-entropy > (1 + 8)n
> (3 .

Assumption have been proposed earlier (eg., [6]). Our
assumption, stated below, is weaker than some and isTheorem 2.12. Assume the strong DDH Assumption

This matches the information theoretic guarantees

incomparable to others. holds. For alla, 3 > 0 there exists a constant =
Strong DDH Assumption. For every security param- ¢(«, 3) such that for every € N and every integer
eter n there exists am-bit safe primep = 2¢ + 1, p > 2t+-c, there exists &, p—t) computational network
and a generatay € Q,, such that{g?, ¢°, g} en =~ extractor for min-entropy: > n”.

{9, 9", g°}nen, whereb, ¢ eg Z, a € Z is a random
variable with min-entropy:2(!), and all the operations
are modula.

We note that in the honest-but-curious model the
problem becomes much easier. As Dodis et al. no-
ticed [11], assuming the existence of enhanced trapdoor
Theorem 2.9. Assume the strong DDH Assumption Permutations, there is a simple protocol for secure two-
holds. Then for everg, ~ there exists a constait < party computation in the honest-but-curious model, as-
¢ < 1 (that depends only o) such that for every ~ suming each party has access to an independent source

7 c i — _ -
log'n < p < k¢ there exists E(t = Tp,p t) com 2Alternatively, instead of assuming broadcast channels;ameas-

putatiopal netwgrk extractor for min-entrogy> n in sume a trusted pre-processing phase for setting up a pheylizfras-
the full information model. tructure.

of min-entropyk = (%+5)n. In general, we showthatif C of these players are honest. We can therefore get a
there is a strong’-source extractor with negligible error somewhere-random source by applying Gtsource ex-

for (n, k)-sources, then under the Strong DDH Assump- tractor to eaclC-tuple. The BRSW extractor will work
tion, one can do secure multiparty computation with if the min-entropyk significantly exceeds the number of
C + 1 or more players in the honest-but-curious model, rows (“EC). We use variants of expanders and dispersers

where the players have independentk)-sources. to reduce this min-entropy requirement.
Our firstingredient is what we call an AND-disperser.
3 Techniques This is a bipartite graph where for any sebf constant

density on the right, there are a constant fraction of ver-

A useful tool here is a (strong)-source extractor: (ic€S on the left whose neighbors all lie:sh

an algorithm to extract randomness fréhindependent We use such a graph with left degréeas follows.
sources. Such an extractor immediately yields someEach right vertex will represent a processor who an-
kind of network extractor. We could designatéC of ~ nounces its source (and hence won't end up with pri-

the processors as receivers, and each receives the wea¥@te randomness). There will lfé + «)t right vertices,
random strings fronC — 1 other processors. The pro- SO at leastvt of these processors must be honest. Each
cessor can then apply the extractor to thésel strings left vertexrepresents a string computed by applyikg a
plus its own. If an honest processor receives strings fromsource extractor to the sources of its neighbors. We say
only honest processors, then the output will be close to that a left vertex igjoodif all its neighbors are honest,
uniform. and thus its corresponding string is almost uniform. By
We can do much better than this. The idea is to al- the properties of the AND-disperser, at least a constant
low a processor to receive sevef@tuples. We then fraction of left vertices are good.
apply aC-source extractor to eadhrtuple (for now the If we associated left vertices with processors, we
received processor doesn't use its own string). If at leastwould end up with only a constant fraction of such pro-
one of theseC-tuples contain strings only from honest cessors getting good randomness. Instead, we compose
processors, then the outplit will be what's called a the AND-disperser with a bipartite expander graph. That
somewhere-random source. We think¥ofas a matrix is, we take an expander graph whose right vertices rep-
where each row corresponds to the output of the extrac-resent the strings obtained via the AND-disperser (so
tor on oneC-tuple. Informally, a distribution on matrices the right vertex set of the expander has the same size
is somewhere random if one of the rows in the matrix is as the left vertex set of the AND-disperser), and whose
distributed uniformly. left vertices represent all processors who didn't reveal
Barak, Rao, Shaltiel and Wigderson [3] gave a con- their sources earlier. Each such processor is then associ-
struction of a (strong) extractor for a somewhere ran- ated with the strings corresponding to its neighbors. If at
dom source with- rows and anothe®(}gé;) indepen- least one such neighbor is good, then these strings corre-
dent(n, k) sources. As a special case, if the number of spond to a somewhere-random source (with some small
rows in the somewhere random source is small, then weerror). By the expansion property, many processors will
need only one more independent source. By applying have such a somewhere-random source.
this BRSW extractor to the above matiixplus the pro- Note that the number of rows of the somewhere ran-
cessor’s own string, the output will be close to uniform. dom source is exactly the degree of the expander. Thus
These are the underlying tools in all our construc- as long as this degree is small, the processor can use the
tions, both in the information theoretic setting and in the BRSW extractor to extract private random bits from its

computational setting. own source using the somewhere random source. In the
case wher€ = O(1/() is a constant, there is a constant
3.1 The Information Theoretic Setting fraction of goodleft vertices of the AND-disperser and

we can use a constant-degree bipartite expander. There-

In the information-theoretic setting, we get a simple fore we obtain somewhere random sources with a con-
network extractor using the above ideas, assuming thestant number of rows, which is good enough for a pro-
min entropyk is a large enough polynomial in the num- C€ssor to extract private random bits using its own source
ber of partiesp. In particular, first consider the case and the somewhere random source. This is our one-
wherek = n®. The extractor for such sources [22, 3] round protocol, which works for min-entrogy= n".
requires onlyC = O(1//) sources, which is a con- For smaller min-entropy, the fraction gbodleft ver-
stant. Ift + C players broadcast their strings, at least tices of the AND-disperser will be sub-constant, and the

expanders won't have constant degree. As a result theprocessor never announces its source. All messages in
BRSW extractor no longer works with just one addi- the synchronous protocol are passed from roupdb-
tional independent source. Therefore, we will need mul- cessors to round+ 1 processors.

tiple rounds to extract randomness. We do this by noting We use a simple message transmitting mechanism to

that the BRSW extractor will work witlC’ > 1 addi- deal with both problems above. Specifically, whenever
tional independent sources. This is the same situation asa round¢ processor receives enough strings from round-
in the beginning, except now we ne€t < C indepen- (i — 1) processors to form a new somewhere random

dent sources to extract random bits. Thus we repeat thesource, it sends out “Completé to all other round-
above one-round protocol, but in place of the indepen-i processors. A processor aborts if it receives many
dent source extractor we use the BRSW extractor. “Completei” messages before it receives enough strings

The key observation is that in each round the number from round{i — 1) processors, in which case it also
of rows of the somewhere random source will decrease,broadcasts “Completé. We show that eventually ev-
and hence so will the number of required independent €'y pProcessor in roundwill receive many “Complete
sources. It turns out that this number decreases quickly?” messages; thus no processor will wait forever, and
(by a factor ofQ2(log k) in each round), so we only the fraction of honest processors who don’t get a some-

need to repeat the one-round protocol for a small hum- Where random source only increases slightly. Moreover,

ber (roughly}Og{OgZ) of rounds before an honest pro- €ach round-processor only announces its source after
og log . : ; “ :

cessor can use only its own source and the somewherdt has received many “Completé messages. Thus be-

random source to extract private random bits. In eachfore even a single honest roungirocessor announces

round (1 +)t new processors send out their strings. itS source, a large fraction of rounidsrocessors have

This gives us the general synchronous extractor. already finished computing the new somewhere random

The asynchronous extractor uses the same ideas disSources. For these processors, the somewhere random

cussed above, plus additional ideas to deal with the asyn-Sources must be independent of the processors’ own

chrony. First we need more processors to send out theirsources (since the processors have not announced their
strings. A simple example is that in the synchronous sources yet).
case if a processor receives strings frioml processors
then at least one string is from an honest processor. In
the asynchronous case we must let the processor receive
strings from2¢ + 1 processors, so that it will eventu- independentn, k) source, fok = n”. The information
ally receivet + 1 strmgs- af‘d 6.“ least one string |s.fr_om theoretic protocols for this setting of parameters start
an honest processor. S'm"a.w issues apply to obtaining atWith a large set of players (more thaplayers) revealing
least onéC-tuple which consists of all honest processors.

_ . . X) their sources. This immediately results in a significant
We give a new AND-dlsp_erser t? deaI"W|th th'_s' W_h'Ch loss in the number of players that end up with private
guarantees that the fraction of “good” tuples is bigger

o randomness. Namely, the guarantee is that priy2¢

than that of “bad” tuples. players end up with private randomness. Thus, this net-

Next, instead of using an expander graph, we use anyork extractor is meaningful only in the case of honest
extractor graph, which guarantees the right fraction of mgajority.
good and bad tuples in the neighbors for most proces- |y the computational setting, we construct a proto-
sors. This ensures that the argument discussed aboveg| in which only asmall set of honest players (much
works for most processors. smaller thary) reveal their sources. At first this seems

However, in the asynchronous setting we have two to be useless, since it may be the case that all the play-
more problems. First, even with the AND-disperser and ers who reveal their sources are malicious. However,
the extractor graph, there will still be a small fraction of we note that in this case, the fraction of honest players
unlucky honest processors left who could wait forever has increased among the set of players who haven't yet
in the protocol. Second, without synchronization, the revealed their sources. We use this fact to our advan-
faulty processors can wait to see the honest processorstage. More specifically, the players reveal their sources
strings and then make the somewhere random source dein some pre-specified order, guaranteeing that in some
pendent on the honest processors’ sources. Before deround, several honest players must reveal their sources
scribing our solution, we note the structure of our simultaneously. At first it seems hard to take advantage
round protocol. Define mund- processors one which of this situation, since we do not know who the honest
announces its source in thitn round, and a round-+ 1 players are and cannot identify a round in which honest

3.2 The Computational Setting

We now focus on the case where each player has an

players revealed their sources. Nonetheless, we managebstacle.
to make progress under computational assumptions. Recall that in every round (in particular the “good”
We construct a protocol that proceedsdirounds, round), a set of strings are announced, and each player
where in thej’th round all the players in thg'th set uses the announced strings to try to extract a random
(which is of size significantly smaller thaf announce (uniformly distributed) string from her private source.
their sources to all the players. The intuition is that if, Each player first saves a chunk of her (supposedly) ran-
in some roundj, a sufficient number of honest players dom string as private randomness, where at the end of
announce their sources then we are in good shape, sincéhe protocol all thesel chunks (one chunk per each
the rest of the players can use the announced strings taound) will be xored and will consist the player’s output.
generate a somewhere random matrix: each row in theThen, all the players use a small fresh chunk of these
matrix corresponds to the output ofCasource extrac- (supposedly) random strings to generate for each player
tor applied toC of the announced strings. On the other P, a private random stringpndependenof the sourcer;.
hand, if almost all of the players in the set are dishon- This is done as follows: First, each player stretches her
est, we didn’t lose much by having them announce their small chunk of randomness using a pseudo-random gen-
private sources, and it seems like we made some kind oferator (which is known to exist assuming the existence
progress since the fraction of honest players among theof one-way functions). Then, for each playEy, all
remaining players has gone up. players use a portion of the chunk to run a coin flip-
However, instructing all the players to announce their ping protocol, in which only playeP; receives a random
sources in the appropriate round is obviously not a goodstringr;. Now each player; has a (supposedly) private
idea, since then by the end of the protocol, all of the hon- random string;, which is independent of her soureg
est players will have completely revealed their sources and will continue to the next round of the protocol, while
to the adversary. Yet, consider tfiest round; in which using f(x;, ;) as her private source.
a significant number of honest players announce their However, this is still not good enough, since for
sources. At the end of this round, only a small set of the proof to work we need to ensure that each random
honest players have announced their sources, and evergtring r; is independent ofll the sources simultane-
honest player who hasn’t announced her source can obously. To this end, we instruct all the players to use
tain a private random string! We use this fact to our a small fresh chunk of their random strings to elect a
advantage. small set of leaders. Each of these leaders will no longer
We use computational assumptions to change the pro-use their private sources in subsequent rounds, and will
tocol in order to ensure that after this “good” round the use the all-zero string instead. Now, if there is at least
honest players do not reveal any additional information one honest leader, then eaghis independent odll the
about their source (to a computationally bounded adver-remaining sources simultaneously. Finally, in order to
sary). Instead of instructing each player to announce ensure that with high probability, at least one of the lead-
her source in the appropriate round, we instruct eachers is indeed honest, we need to assume that the number
player to announce function f of her source. On the of players is large enough (this is where we use the as-
one hand, this functioyi should maintain the entropy of sumption that the number of players is growing in terms
the source (i.e., should be injective). On the other hand, of n).
f should hide all information about the source. These This is the high-level idea of the proof of Theo-
two requirements, of being injective and hiding, can be rem 2.8. Note that in the above protocol (which we
achieved simultaneously only in the computational set- || refer to as the initial protocol) several players don’t
ting, under cryptographic assumptions. Moreover, in or- end up with private randomness. In particular, the play-
der to hide all information about the source, the func- ers that announced their source before the “good” round
tion f needs to be randomized. may not get private randomness since, at the point of an-
Note that at the end of the “good” round, many of the nouncement, the (randomized) function of their source
players have a random string. So, one could try using may actually reveal significant information about their
part of this (supposedly) random string as randomnesssource. This is the case since the string used as random-
for the function. Unfortunately, this will not work since ness in the function may actually not be random at all (as
each of the random strings possessed by the players derandomness is not available yet). Similarly, the leaders
pends on their private sources, and for the funcfido who were elected before the “good” round may not get
be hiding the random string should be independent of private randomness. However, the number of rouhds
the sources. We need one more idea to overcome thiss small (in particular, is(p)), the number of players

who reveal their source in each round is small (in par- sent during the protocol. The idea is for the leaders to
ticular, is o(p)), and the number of leaders elected in use a seeded extractor to extract randomness from their
each round is very small. Thus, we can ensure that thesources. To obtain a random-looking sdedafter run-
number of honest player thdb notend up with private ning the initial protocol, all the players will run a secure
randomness is small, and é$p) according to our set- coin-flipping protocol. Then each leader will apply a
ting of parameters (which is significantly smaller than (strong) seeded extractor to her source, while usires
the number of dishonest playerswhich is assumed to the seed.
be a constant fraction of the total number of players). For non-leader players, their sources may not have
There is another technicality that we overlooked. The any min-entropy after running the initial protocol above.
initial protocol as described above, needs a broadcastSo, instead, we would like the leaders (who now pos-
channel (or alternatively, a public-key infrastructur@) t ~ sess private random-looking strings) to give them a fresh
execute the coin-flipping and leader election protocols. chuck of their random-looking string. However, to gain
Intuitively, a broadcast channel is needed to agree on theprivacy this needs to be done over a secure channel. So,
output. we would like to “generate” secure channels. For this

Looking closely at the protocol, we notice that we do We use the strong DDH Assumption.

not actually need a broadcast channel for our coin flip- ~ Each player, rather than announcing a (randomized)
ping protocols, since in each of these protocols only a function of her source; in the initial protocol, will an-
singleplayer receives an output. So, to run these coin- hounce a function ofg™* mod p), wherep is some
flipping protocols all we need is to instruct all the play- fixed (safe) prime ang is some fixed element i;,.

ers to send this player a non-malleable commitment to aWe think of (¢ mod p) as the player’s public-key and
random string, and then reveal the random string. This of X; as her secret key. After the leaders extract pri-
player will then use the xor all these random strings as vate randomness, each leader will partition her random
her private output. string to sufficiently many parts,and will send each

On the other hand, the leader election protocol seemsnon-leader an encrypted fresh chuck of her private ran-
to really need a broadcast channel. To eliminate this domness, using EI—G_amaI encryption. This scheme is
need, we change the protocol yet again. Instead of run-Known to be semantically secure under the DDH As-
ning a single leader election protocol per round, in which Sumption. However, since in our cas& is not random,
all players need to agree on who the leaders are, wg run but only has high min-entropy (and sinpeand g are
protocols in each round (one protocol per player), where & Priori fixed rather th.an randomly chosen), we need to
in thei’th protocol only player?; receives an output. If ~ 'ely on a stronger variant of the DDH Assumption.
the output isl then playet?, thinks of herself as elected Finally, the players will also add a zero-knowledge
as leader, and if the output@shen she thinks of herself ~ proof-of-knowledge of their plaintext to ensure non-
as a non-leader. Each of these protocols will output malleability. This, yet again, introduces technical prob-
only with small probability; loosely speaking if we want lems that we need to deal with: Zero-knowledge proofs
to elect/ leaders per round, then each of these protocolsrequire both the prover and the verifier to be random-
will output 1 with probability?/p. The playerswillusea ized, and at this point the verifier may not have a random
fresh chunk of their (supposedly) random string for each string. We note that if the verifier does not possess pri-
of these protocols. vate randomness then soundness is no longer guaranteed

For Theorem 2.9, the high-level idea is to start by Ve overcome this obstacle as follows: The zero-
running the initial protocol, described above, in order Knowledge proofs we use have perfect completeness
to generate (computationally) private random strings to (i-€., an honest prover convinces an honest verifier of
someof the players. The players will then use these @ true statement with probability 1), and the adc.iiltional
strings to generate (computationally) private random Property that all the messages sent by the verifier are
strings forall the players. When doing this, we distin- random, and consist Qf the verifier's random coin tosses
guish between players that were elected as leaders, anéS0 they can be verified by anyone who sees the tran-
players that were not elected as leaders. script). Since our verifiers may not have private random-
Jiess, they will ask the other players to generate the ran-

A player that was elected as leader never announce . .
dom messages on their behalf. However, since we do not

her source (or a function of her source) in the initial
pl’OtOCOl. More.o.v.er’ we set the parameter§ SO tha.lt at 3As previously remarked, in the computational setting we aan
th.e end of the 'mt.'a_-l protocol, her source still has high ays expand the number of computationally random bits byguai
min-entropy conditioned on all the messages that werepseudo-random generator.

know who are the honest players that have private ran- [9] J. Cooper and N. Linial. Fast perfect-information leade
domness, each verifier will asitl players to verify each
zero-knowledge proof. Namely, each zero-knowledge
proof is now repeated times, where each proof a dif-

ferent player sends the verifier's messages. The verifier

accepts ifall the transcripts are accepting ones.
We end by noting that the protocol described above

can be seen in greater generality. Using the strong

election protocols with linear immunitombinatorica
15(3):319-332, 1995.

] Y. Dodis and R. Oliveira. On extracting private random-

ness over a public channel. RANDOM 2003 pages
252-263, 2003.

11] Y. Dadis, S. J. Ong, M. Prabhakaran, and A. Sahai. On

DDH Assumption, we can convert any network extractor [12]
(computational or information theoretical) into a com-
putational network extractor in whidl players end up
with private randomness. However, we need the initial
network extractor to have the property that after running
it, there is a known subset of playe$swhich includes

at least two honest players, such that all the honest play-

ers inS end up with private randomness.

The idea of the transformation is to first run the initial
protocol using the sourcég*: mod p), rather thanx;.
Next, the players it$ possessing private random strings
give part of their random string to players outsidesSof
This is done by using the strong DDH assumption to
“generate” secure channels, as above.

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

N. Alon and M. Naor. Coin-flipping games immune
against linear-sized coalitionsSIAM Journal on Com-
puting 22(2):403-417, Apr. 1993.

A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and
L. Trevisan. Weak random sources, hitting sets, and BPP
simulations. SIAM Journal on Computing28:2103—
2116, 1999.

B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2
source dispersers for’) entropy and Ramsey graphs
beating the Frankl-Wilson construction. 8TOC'06
2006.

M. Ben-Or and N. Linial. Collective coin flippingRan-
domness and Computatioh978.

R. B. Boppana and B. O. Narayanan. Perfect-
information leader election with optimal resilience.
SIAM J. Compyt29(4):1304-1320, 2000.

R. Canetti. Towards realizing random oracles: Hash
functions that hide all partial information. idvances

in Cryptology — CRYPTO '97, 17th Annual Interna-
tional Cryptology Conference, Proceedingsges 455—
469, 1997.

R. Canetti, R. Pass, and A. Shelat. Cryptography from
sunspots: How to use an imperfect reference string. In
FOCS’'07 pages 249-259, 2007.

B. Chor and O. Goldreich. Unbiased bits from sources
of weak randomness and probabilistic communication
complexity. SIAM Journal on Computingl7(2):230—
261, 1988.

10

[13]

[14

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

the (im)possibility of cryptography with imperfect ran-
domness. IFOCS’'04 pages 196-205, 2004.

Y. Dodis and J. Spencer. On the (non)universality of the
one-time pad. IFOCS’02 page 376. IEEE Computer
Society, 2002.

U. Feige. Noncryptographic selection protocols. In
IEEE, editor,FOCS’'99 pages 142-152, pub-IEEE:adr,
1999. IEEE Computer Society Press.

] O. Goldreich, S. Micali, and A. Wigderson. How to play

any mental game or a completeness theorem for proto-
cols with honest majority. IRroceedings of the 19th An-
nual ACM Symposium on Theory of Computipgges
218-229. ACM, 1987.

S. Goldwasser, E. Pavlov, and V. Vaikuntanathan. Fault
tolerant distributed computing in full-information net-
works. INFOCS pages 15-26. IEEE Computer Society,
2006.

S. Goldwasser, M. Sudan, and V. Vaikuntanathan. Dis-
tributed computing with imperfect randomness. In
P. Fraigniaud, editor]9th International Symposium on
Distributed Computing DISC 2005, Proceeding®l-
ume 3724 ol_ecture Notes in Computer Scienpages
288-302. Springer, 2005.

B. Kapron, D. Kempe, V. King, J. Saia, and V. San-
walani. Fast asynchronous Byzantine agreement and
leader election with full information. IBODA’08 pages
1038-1047, 2008.

U. M. Maurer and S. Wolf. Privacy amplification secure
against active adversaries. Advances in Cryptology
— CRYPTO 97, 17th Annual International Cryptology
Conference, Proceedinggages 307-321, 1997.

J. L. Mclnnes and B. Pinkas. On the impossibility of pri-
vate key cryptography with weakly random keys Ald-
vances in Cryptology — CRYPTO '90, 10th Annual In-
ternational Cryptology Conference, Proceedingages
421-435, 1990.

N. Nisan and D. Zuckerman. Randomness is linear
in space. Journal of Computer and System Sciences
52(1):43-52, 1996.

R. Ostrovsky, S. Rajagopalan, and U. Vazirani. Sim-
ple and efficient leader election in the full information
model. INSTOC’94 pages 234-242, 1994.

A. Rao. Extractors for a constant number of poly-
nomially small min-entropy independent sources. In
STOC'06 2006.

A. Russell and D. Zuckerman. Perfect information
leader election in log* n+O (1) rounddournal of Com-
puter and System Scienc€8(4):612—626, 2001.

M. Saks. A robust noncryptographic protocol for collec
tive coin flipping. SIAM Journal on Discrete Mathemat-
ics, 2(2):240-244, May 1989.

[25]

[26]

[27]

(28]

M. Saks, A. Srinivasan, and S. Zhou. Explicit OR-
dispersers with polylog degreeJournal of the ACM
45:123-154, 1998.

U. V. Vazirani and V. V. Vazirani. Random polynomial
time is equal to slightly-random polynomial time. In
FOCS'85 pages 417-428, 1985.

D. Zuckerman. Simulating BPP using a general weak
random sourceAlgorithmicg 16:367—391, 1996.

D. Zuckerman. Randomness-optimal oblivious sam-
pling. Random Structures and Algorithyrisl:345-367,
1997.

11

