
Network Extractor Protocols

Yael Tauman Kalai
Microsoft Research
yael@microsoft.com

Xin Li ∗

University of Texas at Austin
lixints@cs.utexas.edu

Anup Rao†

Institute for Advanced Study
arao@ias.edu

David Zuckerman‡

University of Texas at Austin
diz@cs.utexas.edu

Abstract

We design efficient protocols for processors to ex-
tract private randomness over a network with Byzan-
tine faults, when each processor has access to an inde-
pendent weakly-randomn-bit source of sufficient min-
entropy. We give several suchnetwork extractor proto-
colsin both the information theoretic and computational
settings.

For a computationally unbounded adversary, we con-
struct protocols in both the synchronous and asyn-
chronous settings. These network extractors imply ef-
ficient protocols for leader election (synchronous set-
ting only) and Byzantine agreement which tolerate a lin-
ear fraction of faults, even when the min-entropy is only
2(log n)Ω(1)

. For larger min-entropy, in the synchronous
setting the fraction of tolerable faults approaches the
bounds in the perfect-randomness case.

Our network extractors for a computationally
bounded adversary work in the synchronous setting even
when 99% of the parties are faulty, assuming trapdoor
permutations exist. Further, assuming a strong variant
of the Decisional Diffie-Hellman Assumption, we con-
struct a network extractor in which all parties receive
private randomness. This yields an efficient protocol for
secure multi-party computation with imperfect random-
ness, when the number of parties is at leastpolylog(n)
and where the parties only have access to an indepen-
dent source with min-entropynΩ(1).

∗Supported in part by NSF Grant CCF-0634811 and THECB ARP
Grant 003658-0113-2007.

†Supported in part by NSF Grants CCF-0634811 and CCR-
0324906. Part of this work was done while the author was visiting
Microsoft Research at Redmond.

‡Supported in part by NSF Grant CCF-0634811.

1 Introduction

Randomization appears extremely useful in design-
ing algorithms for a variety of problems. However,
many researchers believeBPP = P, in which case ran-
domness is not needed for efficient algorithms. In con-
trast, randomness is provably necessary to solve many
problems in distributed computing and cryptography.
For example, randomness is necessary for Byzantine
agreement in the asynchronous setting, and necessary to
do efficiently in the synchronous setting.

These applications of randomness typically require
long strings of uniformly random bits, yet it is unclear
how to obtain such random strings. Instead, we may
only have access to a weak source: an unknown, arbi-
trary distribution with some entropy. We use a standard
measure of entropy calledmin-entropy: a distribution
has min-entropyk if all strings have probability at most
2−k. When such a distribution is overn-bit strings, we
refer to it as an(n, k)-source.

Much work has been devoted to simulating ran-
domized algorithms using weak sources with small
min-entropy [26, 8, 27, 25, 2], culminating with An-
dreev et al.’s simulation of any BPP algorithm with an
(n, nΩ(1))-source.

Goldwasser, Sudan, and Vaikuntanathan [16] ad-
dressed the natural question of whether weak sources
can be used in distributed computing. They showed
how to solve Byzantine agreement even if each proces-
sor has a weak source, and these weak sources are in-
dependent. However, they considered fairly restricted
weak sources, and asked whether similar results hold
for general(n, k)-sources. In this paper, we answer this
question positively, showing strong results for general
sources. Our methods also give strong results for leader

election and other distributed computing problems.
Several researchers considered the analogous ques-

tion in the cryptographic context [19, 18, 12, 10, 7].
A few positive results emerged; however, arguably the
most impressive-sounding results are the negative ones
of Dodis et al. [11]. They showed that almost all of
the classic cryptographic tasks, including encryption, bit
commitment, secret sharing, and secure two-party com-
putation (for nontrivial functions), are impossible even
with a single(n, .99n)-source.

Despite this, under a strong variant of the Decisional
Diffie-Hellman (DDH) Assumption, we give a proto-
col for secure multi-party computation when the number
of parties is at leastpolylog(n), even if each processor
only has access to an independent(n, nΩ(1))-source. A
simpler version of our protocol works in the honest-but-
curious setting for a constant number of parties.

1.1 Network Extractors

The standard method for handling weak sources is to
use a randomness extractor: a function which converts a
weak source into a nearly-random string. While this is
possible for certain restricted weak sources, it is not for
general(n, k)-sources. However, it is possible with the
addition of a few truly random bits, called a seed [20].
Even in a world with no truly random bits, such seeded
extractors are sometimes useful; for example, in algo-
rithms we can cycle over all possibilities for the seed and
take a majority vote. However, in distributed computing
and cryptography, this idea appears less useful.

Instead, the proper tool for distributed computing is
anetwork extractor protocol, which was introduced (but
left unnamed) by Dodis and Oliveira [10] in the crypto-
graphic context and by Goldwasser et al. [16] in the con-
text of Byzantine agreement. The idea is that each pro-
cessor starts with a weak source, and these weak sources
are independent. The processors then interact, and at the
end of the protocol most, if not all, non-faulty proces-
sors obtain private, nearly-random strings. These strings
may then be used in any traditional protocol requiring
perfect randomness.

Before elaborating, we discuss the model that we
consider. We assume thatp processors communicate
with each other via point-to-point channels in order to
perform a task. However, an unknownt of the proces-
sors arefaulty. We allow Byzantine faults: faulty pro-
cessors may behave arbitrarily and even collude mali-
ciously. We call the set of faulty processors theadver-
sary, and we only consider a non-adaptive adversary –
the set of faulty processors is fixed in advance and does

not change. We assume that the communication chan-
nels are not private, so the adversary can see all commu-
nication. This is called thefull information model.We
note that we could obtain stronger results in a network
with private channels, however in the interest of space
we focus on the full information model.

Most of our results are forsynchronousnetworks:
communication between processors takes place in
rounds and every message transmitted at the beginning
of a round is guaranteed to reach its destination at the
end of the round. In this case we allow rushing: the
faulty processors may wait for all good processors to
transmit their messages for a particular round, before
transmitting their own messages. We also have results
for asynchronousnetworks– here the only guarantee is
that every message will eventually be received.

We assume each processor has access to an unknown,
arbitrary (n, k)-source of randomness, and that these
sources are independent. This independence assump-
tion seems justifiable if we view the processors as be-
ing physically far away from each other. Such sources
may also arise if the adversary manages to acquire (say
via a virus) a small amount of information about each
of the honest processors’ (truly random) sources. In this
case, conditioning on the adversary’s information leaves
each of the processors with independent weak sources.
Indeed, the model we consider seems to be the most nat-
ural generalization of the model where each processor
has access to truly random bits.

In order to define network extractor, we need some
notation. Processori begins with a sample from a weak
sourcexi ∈ {0, 1}n and ends in possession of a hope-
fully uniform samplezi ∈ {0, 1}m. Let b be the con-
catenation of all the messages that were sent during the
protocol. Capital letters such asZi andB denote these
strings viewed as random variables.

We define network extractors both in the information-
theoretic setting (where the adversary may be computa-
tionally unbounded) and in the computational settings
(where the adversary is assumed to be computationally
bounded), starting with the former.

Definition 1.1 (Network Extractor). A protocol for
p processors is a(t, g, ǫ) network extractorfor min-
entropyk if for any min-entropyk independent sources
X1, . . . , Xp over{0, 1}n and any choice oft faulty pro-
cessors, after running the protocol, the number of pro-
cessorsi for which |(B, Zi)−(B, Um)| < ǫ is at leastg.
HereUm is the uniform distribution onm bits, indepen-
dent ofB, and the absolute value of the difference refers
to variation distance. We say that a protocol is asyn-
chronous extractorif it is a network extractor that oper-

2

ates over a synchronous network. We say that it is an
asynchronous extractorif it is a network extractor that
operates over an asynchronous network.

Let G = {i1, . . . , ig} denote the set of processors
with private, random outputs:|(B, Zi) − (B, Um)| < ǫ.
Because eachZi depends only onXi andB, the above
condition implies that

|(B, (Xi)i6∈G , (Zi)i∈G) − (B, (Xi)i6∈G , Ugm)| < gǫ.

In other words, after running the network extractor pro-
tocol, the joint distribution of the outputs of all the pro-
cessors inG is indistinguishable from independent uni-
form strings, even after seeing all communication and
all the sources of the rest of the processors.

We next define acomputationalnetwork extractors.
Here we assume that all the processors involved (hon-
est and faulty) are computationally bounded (i.e., run in
time poly(n)), and the outputs need only be computa-
tionally (rather than statistically) indistinguishable from
uniform. We restrict our attention to the synchronous
setting.

Definition 1.2 (Computational Network Extractor). A
protocol forp processors is a(t, g) computational net-
work extractorfor min-entropyk if for any min-entropy
k independent sourcesX1, . . . , Xp over {0, 1}n and
any choice oft faulty processors, with probability1 −
negl(n), after running the protocol there areg honest
processorsG = {i1, . . . , ig} such that

{(B, (Xi)i6∈G , (Zi)i∈G}n∈N ≈ {B, (Xi)i6∈G , Ugm}n∈N

whereUgm is the uniform distribution ongm bits, inde-
pendent ofB and(Xi)i6∈G , and where≈ denotes com-
putational indistinguishability.

A priori, it is not clear that network extractors,
information-theoretic or computational, even exist.

2 Our Results

We give several constructions of network extractors,
both in the information-theoretic setting and in the com-
putational setting.

2.1 Network Extractors in the
Information-Theoretic Setting

All of our network extractors in the information the-
oretical setting have the additional property that theg
processors with private, random outputs can be named

in advance, in the sense that there areg + t processors
known before the start of the protocol, such that any non-
faulty processor among them will obtain a private, ran-
dom output.

As long as the min-entropy rate of the sources is
greater than1/2, we give nearly optimal network extrac-
tors. In particular, as long as the fraction of faulty pro-
cessorst is bounded by a constant less than1, we show
how to build a one round synchronous network extrac-
tor which leaves almost every non-faulty processor with
private randomness.

Theorem 2.1 (High Entropy Synchronous Extractor).
For all p, t, n, α, β > 0, there exists a constantc = c(α)

and a two-round(t, p − (1 + α)t − c, 2−kΩ(1)

) syn-
chronous extractor for min-entropyk ≥ (1

2 + β)n in
the full-information model. The protocol is one round
for t = Ω(p).

If the min-entropy of the general sources is much
smaller, we can still design a good network extractor,
though fewer processors end up with private random
bits. The new protocol ensures roughlyp−(2+ log log n

log log k
)t

honest processors end up with private randomness, thus
tolerating a linear fraction of faulty processors. This pro-
tocol runs in a constant number of rounds even with min-
entropyk = 2(log n)Ω(1)

:

Theorem 2.2 (Low Entropy Synchronous Extractor).
For all p, t, β > 0, k > log p, andn ≤ 2O(t), there
exists a constantc = c(β) and a (1/β + 1) round

(t, p − (1.1 + 1/β)t − c, 2−kΩ(1)

) synchronous extrac-
tor for min-entropyk ≥ 2logβ n in the full-information
model.

In the asynchronous setting, we get slightly weaker
results:

Theorem 2.3(High Entropy Asynchronous Extractor).
For all p, t, n, β > 0, there exists a one-round(t, p −

3t−1, 2−kΩ(1)

) asynchronous extractor for min-entropy
k ≥ (1

2 + β)n in the full-information model.

Theorem 2.4 (Low Entropy Asynchronous Extractor).
There exist constantsc1, c2 > 0 such that for all
p, t, β > 0, k > log p, andpoly(t) ≤ n ≤ 2O(t), there

exists a(1/β + 1) round (t, p − c1t/β − c2, 2
−kΩ(1)

)

asynchronous extractor for min-entropyk ≥ 2logβ n in
the full-information model.

3

2.2 Byzantine Agreement and Leader
Election with Weak Random
Sources

After running a network extractor, we can run any of
the traditional distributed computing protocols designed
for perfect, private randomness. We now describe ap-
plications of our results to two basic distributed com-
puting problems: Byzantine agreement and leader elec-
tion/collective coin-flipping.

Byzantine Agreement. The goal of a protocol for
Byzantine agreementis for the processors to agree on
the result of some computation, even if somet of them
are faulty. Byzantine agreement is fundamental because
it can be used to simulate broadcast and maintain con-
sistency of data.

For protocols using weak sources, the only results are
due to Goldwasser et al. [16]. They require all weak
sources to have min-entropy rate at least1/2. In the
full information model, they only obtain results for weak
sources that are more restricted than block sources1. Un-
der the assumption that the processors have access to
general(n, k)-sources, they give results only for the case
of private channels. They posed the open question of
whether protocols can be designed in the full informa-
tion model assuming only that each processor has access
to general(n, k)-sources. We answer this question pos-
itively by first running our network extractor, and then
running a protocol for Byzantive Agreement with per-
fect randomness [15, 17].

In the synchronous setting, we essentially match the
perfect-randomness case [15] when the min-entropy rate
is greater than1/2, and we can tolerate a linear fraction

of faults even with min-entropy2(log n)Ω(1)

.

Theorem 2.5(Synchronous Byzantine Agreement). Let
α, β > 0 be any constants. Forp large enough,
assuming each processor has access to an indepen-
dent (n, k)-source, there exists synchronousO(log p)
expected round protocols for Byzantine Agreement in the
full information model with the following properties.

1. The protocol fork ≥ (1/2 + β)n tolerates(1/3 −
α)p faulty processors.

2. The protocol fork ≥ nβ tolerates(1/4−α)p faulty
processors.

1They refer to these sources as block sources, though they arenot
as general as block sources are defined in this paper and the extractor
literature.

3. The protocol fork ≥ 2logβ n toleratesp/(3.1 +
1/β) faulty processors.

In the asynchronous case, we can tolerate a linear
fraction of faults in only a polylogarithmic number of
rounds, as is the case with perfect randomness [17].

Theorem 2.6 (Asynchronous Byzantine Agreement).
Let α, β > 0 be any constants. Forp large enough,
assuming each processor has access to an independent
(n, k)-source, there exists a constant0 < γ < 1 and
asynchronouspolylog(p) expected round protocols for
Byzantine Agreement in the full information model with
the following properties.

1. The protocol fork ≥ (1/2 + β)n tolerates(1/8 −
α)p faulty processors.

2. The protocol fork ≥ 2logβ n toleratesβγp faulty
processors.

Leader Election and Collective Coin Flipping. The
goal of a protocol forleader electionis to select a uni-
formly random leader from a distributed network ofn
processors. In the presence of faulty processors, we
would like to bound the probability that one of the faulty
processors gets selected as the leader.

Ben-Or and Linial [4] were the first to study col-
lective coin-flipping under what we call the BL model:
the full information model with reliable broadcast in
a synchronous network. A long sequence of work
[24, 1, 5, 9, 21, 28, 23, 13] has resulted in a proto-
col which tolerates(1/2 − α)p faulty processors and
requires onlylog∗(p) + O(1) rounds to elect a leader
(and hence perform a collective coin flip) in the BL
model [23, 13]. We obtain essentially the same results
if the processors’ min-entropy rate is above 1/2, and we
can tolerate a linear fraction of faults with min-entropy
2(log n)Ω(1)

.

Theorem 2.7(Leader Election). Let α, β > 0 be any
constants. Forp large enough, assuming each processor
has access to an independent(n, k)-source, there exists
log∗ p + O(1) round protocols for leader election in the
BL model with the following properties.

1. The protocol fork ≥ (1/2 + β)n tolerates(1/2 −
α)p faulty processors.

2. The protocol fork ≥ nβ tolerates(1/3−α)p faulty
processors.

3. The protocol fork ≥ 2logβ n tolerates(1/(2 +
1/β) − α)p faulty processors.

4

2.3 Network Extractors in the Compu-
tational Setting

In the computational setting, under cryptographic as-
sumptions, we are able to get network extractors for low
min entropy rates where most, or evenall, honest play-
ers get private randomness. However, this requires the
number of players to be a growing parameter in terms of
n. We focus on the synchronous full information model,
where each player has an(n, nΩ(1))-source.

Our first result shows that if trapdoor permutations
exist, then there exists a computational network extrac-
tor for sources with min-entropyk = nΩ(1), in which
almost every non-faulty processor ends up with a (com-
putationally) private random string.

Theorem 2.8. Assume that trapdoor permutations ex-
ist. Then for everyα, β, γ > 0 there exists a constant
0 < c < 1 (that depends only onβ) such that for every
log7 n ≤ p ≤ kc there exists a(t = γp, p − (1 + α)t)
computational network extractor for min-entropyk ≥
nβ in the full information model.

This matches the information theoretic guarantees
with min-entropyk > n/2. Namely, using crypto-
graphic assumptions we reduced our min-entropy re-
quirement fromk > n/2 to k = nΩ(1) (though we
added the requirement that the number of players is large
enough in terms ofn).

Our second result shows that under a (seemingly)
stronger and non-standard cryptographic assumption,
there exists a computational network extractor in which
everynon-faulty processor ends up with a (computation-
ally) private random string. The assumption we rely on
for this result is a strong variant of the DDH Assump-
tion. We note that several strong variants of the DDH
Assumption have been proposed earlier (eg., [6]). Our
assumption, stated below, is weaker than some and is
incomparable to others.
Strong DDH Assumption. For every security param-
eter n there exists ann-bit safe primep = 2q + 1,
and a generatorg ∈ Qp, such that{ga, gb, gab}n∈N ≈
{ga, gb, gc}n∈N, whereb, c ∈R Z

∗
q , a ∈ Z

∗
q is a random

variable with min-entropynΩ(1), and all the operations
are modulop.

Theorem 2.9. Assume the strong DDH Assumption
holds. Then for everyβ, γ there exists a constant0 <
c < 1 (that depends only onβ) such that for every
log7 n ≤ p ≤ kc, there exists a(t = γp, p − t) com-
putational network extractor for min-entropyk ≥ nβ in
the full information model.

Theorem 2.9 gives a protocol where each processor
takes as input a weak source andall the (honest) pro-
cessors end up with a (computationally) private random
string. It is well known [14], that once each (honest)
processor has a (computationally) private random string,
they can securely compute any functionality (assuming
the existence of enhanced trapdoor permutations, or al-
ternatively, assuming the DDH Assumption). Thus, we
get the following corollary.

Corollary 2.10. Assume that the strong DDH Assump-
tion holds. Then for everyβ, γ > 0 there exists a con-
stant0 < c < 1 (that depends only onβ) such that
for everylog7 n ≤ p ≤ kc, the following holds: Every
functionality (involvingp processors) can be computed
securely in the full information model with broadcast
channels2, assuming that there are at mostγp faulty pro-
cessors, and assuming that each processor has access to
an independent(n, nβ)-source.

We note that all the results above (in the computa-
tional setting) assumed that the number of playersp is a
growing parameter. However, in many applications, for
example that of secure multiparty computation with im-
perfect randomness, we would like to handle a constant
number of players. We show that if the min entropy rate
is greater than1/2, or if there is an honest majority, then
under the strong DDH Assumption there are computa-
tional network extractors forconstantnumber of play-
ers, whereall honest players end up with private ran-
domness.

Theorem 2.11. Assume the strong DDH Assumption
holds. For all α, β > 0 there exists a constantc =
c(α, β) such that for everyt ∈ N and every integer
p ≥ (1 + α)t + c, there exists a(t, p− t) computational
network extractor for min-entropyk ≥ (1

2 + β)n.

Theorem 2.12. Assume the strong DDH Assumption
holds. For all α, β > 0 there exists a constantc =
c(α, β) such that for everyt ∈ N and every integer
p ≥ 2t+c, there exists a(t, p−t) computational network
extractor for min-entropyk ≥ nβ .

We note that in the honest-but-curious model the
problem becomes much easier. As Dodis et al. no-
ticed [11], assuming the existence of enhanced trapdoor
permutations, there is a simple protocol for secure two-
party computation in the honest-but-curious model, as-
suming each party has access to an independent source

2Alternatively, instead of assuming broadcast channels, wecan as-
sume a trusted pre-processing phase for setting up a public-key infras-
tructure.

5

of min-entropyk = (1
2+β)n. In general, we show that if

there is a strongC-source extractor with negligible error
for (n, k)-sources, then under the Strong DDH Assump-
tion, one can do secure multiparty computation with
C + 1 or more players in the honest-but-curious model,
where the players have independent(n, k)-sources.

3 Techniques

A useful tool here is a (strong)C-source extractor:
an algorithm to extract randomness fromC independent
sources. Such an extractor immediately yields some
kind of network extractor. We could designatep/C of
the processors as receivers, and each receives the weak
random strings fromC − 1 other processors. The pro-
cessor can then apply the extractor to theseC−1 strings
plus its own. If an honest processor receives strings from
only honest processors, then the output will be close to
uniform.

We can do much better than this. The idea is to al-
low a processor to receive severalC-tuples. We then
apply aC-source extractor to eachC-tuple (for now the
received processor doesn’t use its own string). If at least
one of theseC-tuples contain strings only from honest
processors, then the outputY will be what’s called a
somewhere-random source. We think ofY as a matrix
where each row corresponds to the output of the extrac-
tor on oneC-tuple. Informally, a distribution on matrices
is somewhere random if one of the rows in the matrix is
distributed uniformly.

Barak, Rao, Shaltiel and Wigderson [3] gave a con-
struction of a (strong) extractor for a somewhere ran-
dom source withr rows and anotherO(log r

log k
) indepen-

dent(n, k) sources. As a special case, if the number of
rows in the somewhere random source is small, then we
need only one more independent source. By applying
this BRSW extractor to the above matrixY plus the pro-
cessor’s own string, the output will be close to uniform.

These are the underlying tools in all our construc-
tions, both in the information theoretic setting and in the
computational setting.

3.1 The Information Theoretic Setting

In the information-theoretic setting, we get a simple
network extractor using the above ideas, assuming the
min entropyk is a large enough polynomial in the num-
ber of partiesp. In particular, first consider the case
wherek = nβ. The extractor for such sources [22, 3]
requires onlyC = O(1/β) sources, which is a con-
stant. If t + C players broadcast their strings, at least

C of these players are honest. We can therefore get a
somewhere-randomsource by applying ourC-source ex-
tractor to eachC-tuple. The BRSW extractor will work
if the min-entropyk significantly exceeds the number of
rows

(

t+C

C

)

. We use variants of expanders and dispersers
to reduce this min-entropy requirement.

Our first ingredient is what we call an AND-disperser.
This is a bipartite graph where for any setS of constant
density on the right, there are a constant fraction of ver-
tices on the left whose neighbors all lie inS.

We use such a graph with left degreeC as follows.
Each right vertex will represent a processor who an-
nounces its source (and hence won’t end up with pri-
vate randomness). There will be(1 + α)t right vertices,
so at leastαt of these processors must be honest. Each
left vertex represents a string computed by applying aC-
source extractor to the sources of its neighbors. We say
that a left vertex isgood if all its neighbors are honest,
and thus its corresponding string is almost uniform. By
the properties of the AND-disperser, at least a constant
fraction of left vertices are good.

If we associated left vertices with processors, we
would end up with only a constant fraction of such pro-
cessors getting good randomness. Instead, we compose
the AND-disperser with a bipartite expander graph. That
is, we take an expander graph whose right vertices rep-
resent the strings obtained via the AND-disperser (so
the right vertex set of the expander has the same size
as the left vertex set of the AND-disperser), and whose
left vertices represent all processors who didn’t reveal
their sources earlier. Each such processor is then associ-
ated with the strings corresponding to its neighbors. If at
least one such neighbor is good, then these strings corre-
spond to a somewhere-random source (with some small
error). By the expansion property, many processors will
have such a somewhere-random source.

Note that the number of rows of the somewhere ran-
dom source is exactly the degree of the expander. Thus
as long as this degree is small, the processor can use the
BRSW extractor to extract private random bits from its
own source using the somewhere random source. In the
case whereC = O(1/β) is a constant, there is a constant
fraction ofgood left vertices of the AND-disperser and
we can use a constant-degree bipartite expander. There-
fore we obtain somewhere random sources with a con-
stant number of rows, which is good enough for a pro-
cessor to extract private random bits using its own source
and the somewhere random source. This is our one-
round protocol, which works for min-entropyk = nβ .

For smaller min-entropy, the fraction ofgoodleft ver-
tices of the AND-disperser will be sub-constant, and the

6

expanders won’t have constant degree. As a result the
BRSW extractor no longer works with just one addi-
tional independent source. Therefore, we will need mul-
tiple rounds to extract randomness. We do this by noting
that the BRSW extractor will work withC′ > 1 addi-
tional independent sources. This is the same situation as
in the beginning, except now we needC′ < C indepen-
dent sources to extract random bits. Thus we repeat the
above one-round protocol, but in place of the indepen-
dent source extractor we use the BRSW extractor.

The key observation is that in each round the number
of rows of the somewhere random source will decrease,
and hence so will the number of required independent
sources. It turns out that this number decreases quickly
(by a factor ofΩ(log k) in each round), so we only
need to repeat the one-round protocol for a small num-
ber (roughly log log n

log log k
) of rounds before an honest pro-

cessor can use only its own source and the somewhere
random source to extract private random bits. In each
round (1 + α)t new processors send out their strings.
This gives us the general synchronous extractor.

The asynchronous extractor uses the same ideas dis-
cussed above, plus additional ideas to deal with the asyn-
chrony. First we need more processors to send out their
strings. A simple example is that in the synchronous
case if a processor receives strings fromt+1 processors
then at least one string is from an honest processor. In
the asynchronous case we must let the processor receive
strings from2t + 1 processors, so that it will eventu-
ally receivet + 1 strings and at least one string is from
an honest processor. Similar issues apply to obtaining at
least oneC-tuple which consists of all honest processors.
We give a new AND-disperser to deal with this, which
guarantees that the fraction of “good” tuples is bigger
than that of “bad” tuples.

Next, instead of using an expander graph, we use an
extractor graph, which guarantees the right fraction of
good and bad tuples in the neighbors for most proces-
sors. This ensures that the argument discussed above
works for most processors.

However, in the asynchronous setting we have two
more problems. First, even with the AND-disperser and
the extractor graph, there will still be a small fraction of
unlucky honest processors left who could wait forever
in the protocol. Second, without synchronization, the
faulty processors can wait to see the honest processors’
strings and then make the somewhere random source de-
pendent on the honest processors’ sources. Before de-
scribing our solution, we note the structure of ourr-
round protocol. Define around-i processoras one which
announces its source in theith round, and a round-r + 1

processor never announces its source. All messages in
the synchronous protocol are passed from roundi pro-
cessors to roundi + 1 processors.

We use a simple message transmitting mechanism to
deal with both problems above. Specifically, whenever
a round-i processor receives enough strings from round-
(i − 1) processors to form a new somewhere random
source, it sends out “Completei” to all other round-
i processors. A processor aborts if it receives many
“Completei” messages before it receives enough strings
from round-(i − 1) processors, in which case it also
broadcasts “Completei”. We show that eventually ev-
ery processor in roundi will receive many “Complete
i” messages; thus no processor will wait forever, and
the fraction of honest processors who don’t get a some-
where random source only increases slightly. Moreover,
each round-i processor only announces its source after
it has received many “Completei” messages. Thus be-
fore even a single honest round-i processor announces
its source, a large fraction of round-i processors have
already finished computing the new somewhere random
sources. For these processors, the somewhere random
sources must be independent of the processors’ own
sources (since the processors have not announced their
sources yet).

3.2 The Computational Setting

We now focus on the case where each player has an
independent(n, k) source, fork = nβ . The information
theoretic protocols for this setting of parameters start
with a large set of players (more thant players) revealing
their sources. This immediately results in a significant
loss in the number of players that end up with private
randomness. Namely, the guarantee is that onlyp − 2t
players end up with private randomness. Thus, this net-
work extractor is meaningful only in the case of honest
majority.

In the computational setting, we construct a proto-
col in which only asmall set of honest players (much
smaller thant) reveal their sources. At first this seems
to be useless, since it may be the case that all the play-
ers who reveal their sources are malicious. However,
we note that in this case, the fraction of honest players
has increased among the set of players who haven’t yet
revealed their sources. We use this fact to our advan-
tage. More specifically, the players reveal their sources
in some pre-specified order, guaranteeing that in some
round, several honest players must reveal their sources
simultaneously. At first it seems hard to take advantage
of this situation, since we do not know who the honest
players are and cannot identify a round in which honest

7

players revealed their sources. Nonetheless, we manage
to make progress under computational assumptions.

We construct a protocol that proceeds ind rounds,
where in thej’th round all the players in thej’th set
(which is of size significantly smaller thant) announce
their sources to all the players. The intuition is that if,
in some roundj, a sufficient number of honest players
announce their sources then we are in good shape, since
the rest of the players can use the announced strings to
generate a somewhere random matrix: each row in the
matrix corresponds to the output of aC-source extrac-
tor applied toC of the announced strings. On the other
hand, if almost all of the players in the set are dishon-
est, we didn’t lose much by having them announce their
private sources, and it seems like we made some kind of
progress since the fraction of honest players among the
remaining players has gone up.

However, instructing all the players to announce their
sources in the appropriate round is obviously not a good
idea, since then by the end of the protocol, all of the hon-
est players will have completely revealed their sources
to the adversary. Yet, consider thefirst roundj in which
a significant number of honest players announce their
sources. At the end of this round, only a small set of
honest players have announced their sources, and every
honest player who hasn’t announced her source can ob-
tain a private random string! We use this fact to our
advantage.

We use computational assumptions to change the pro-
tocol in order to ensure that after this “good” round the
honest players do not reveal any additional information
about their source (to a computationally bounded adver-
sary). Instead of instructing each player to announce
her source in the appropriate round, we instruct each
player to announce afunctionf of her source. On the
one hand, this functionf should maintain the entropy of
the source (i.e., should be injective). On the other hand,
f should hide all information about the source. These
two requirements, of being injective and hiding, can be
achieved simultaneously only in the computational set-
ting, under cryptographic assumptions. Moreover, in or-
der to hide all information about the source, the func-
tion f needs to be randomized.

Note that at the end of the “good” round, many of the
players have a random string. So, one could try using
part of this (supposedly) random string as randomness
for the function. Unfortunately, this will not work since
each of the random strings possessed by the players de-
pends on their private sources, and for the functionf to
be hiding the random string should be independent of
the sources. We need one more idea to overcome this

obstacle.

Recall that in every round (in particular the “good”
round), a set of strings are announced, and each player
uses the announced strings to try to extract a random
(uniformly distributed) string from her private source.
Each player first saves a chunk of her (supposedly) ran-
dom string as private randomness, where at the end of
the protocol all thesed chunks (one chunk per each
round) will be xored and will consist the player’s output.
Then, all the players use a small fresh chunk of these
(supposedly) random strings to generate for each player
Pi a private random stringindependentof the sourcexi.
This is done as follows: First, each player stretches her
small chunk of randomness using a pseudo-random gen-
erator (which is known to exist assuming the existence
of one-way functions). Then, for each playerPi, all
players use a portion of the chunk to run a coin flip-
ping protocol, in which only playerPi receives a random
stringri. Now each playerPi has a (supposedly) private
random stringri, which is independent of her sourcexi,
and will continue to the next round of the protocol, while
usingf(xi, ri) as her private source.

However, this is still not good enough, since for
the proof to work we need to ensure that each random
string ri is independent ofall the sources simultane-
ously. To this end, we instruct all the players to use
a small fresh chunk of their random strings to elect a
small set of leaders. Each of these leaders will no longer
use their private sources in subsequent rounds, and will
use the all-zero string instead. Now, if there is at least
one honest leader, then eachri is independent ofall the
remaining sources simultaneously. Finally, in order to
ensure that with high probability, at least one of the lead-
ers is indeed honest, we need to assume that the number
of players is large enough (this is where we use the as-
sumption that the number of players is growing in terms
of n).

This is the high-level idea of the proof of Theo-
rem 2.8. Note that in the above protocol (which we
will refer to as the initial protocol) several players don’t
end up with private randomness. In particular, the play-
ers that announced their source before the “good” round
may not get private randomness since, at the point of an-
nouncement, the (randomized) function of their source
may actually reveal significant information about their
source. This is the case since the string used as random-
ness in the function may actually not be random at all (as
randomness is not available yet). Similarly, the leaders
who were elected before the “good” round may not get
private randomness. However, the number of roundsd
is small (in particular, iso(p)), the number of players

8

who reveal their source in each round is small (in par-
ticular, is o(p)), and the number of leaders elected in
each round is very small. Thus, we can ensure that the
number of honest player thatdo notend up with private
randomness is small, and iso(p) according to our set-
ting of parameters (which is significantly smaller than
the number of dishonest playerst, which is assumed to
be a constant fraction of the total number of players).

There is another technicality that we overlooked. The
initial protocol as described above, needs a broadcast
channel (or alternatively, a public-key infrastructure) to
execute the coin-flipping and leader election protocols.
Intuitively, a broadcast channel is needed to agree on the
output.

Looking closely at the protocol, we notice that we do
not actually need a broadcast channel for our coin flip-
ping protocols, since in each of these protocols only a
singleplayer receives an output. So, to run these coin-
flipping protocols all we need is to instruct all the play-
ers to send this player a non-malleable commitment to a
random string, and then reveal the random string. This
player will then use the xor all these random strings as
her private output.

On the other hand, the leader election protocol seems
to really need a broadcast channel. To eliminate this
need, we change the protocol yet again. Instead of run-
ning a single leader election protocol per round, in which
all players need to agree on who the leaders are, we runp
protocols in each round (one protocol per player), where
in thei’th protocol only playerPi receives an output. If
the output is1 then playerPi thinks of herself as elected
as leader, and if the output is0 then she thinks of herself
as a non-leader. Each of these protocols will output1
only with small probability; loosely speaking if we want
to electℓ leaders per round, then each of these protocols
will output1 with probabilityℓ/p. The players will use a
fresh chunk of their (supposedly) random string for each
of these protocols.

For Theorem 2.9, the high-level idea is to start by
running the initial protocol, described above, in order
to generate (computationally) private random strings to
someof the players. The players will then use these
strings to generate (computationally) private random
strings forall the players. When doing this, we distin-
guish between players that were elected as leaders, and
players that were not elected as leaders.

A player that was elected as leader never announces
her source (or a function of her source) in the initial
protocol. Moreover, we set the parameters so that at
the end of the initial protocol, her source still has high
min-entropy conditioned on all the messages that were

sent during the protocol. The idea is for the leaders to
use a seeded extractor to extract randomness from their
sources. To obtain a random-looking seedR, after run-
ning the initial protocol, all the players will run a secure
coin-flipping protocol. Then each leader will apply a
(strong) seeded extractor to her source, while usingR as
the seed.

For non-leader players, their sources may not have
any min-entropy after running the initial protocol above.
So, instead, we would like the leaders (who now pos-
sess private random-looking strings) to give them a fresh
chuck of their random-looking string. However, to gain
privacy this needs to be done over a secure channel. So,
we would like to “generate” secure channels. For this
we use the strong DDH Assumption.

Each player, rather than announcing a (randomized)
function of her sourceXi in the initial protocol, will an-
nounce a function of(gXi mod p), wherep is some
fixed (safe) prime andg is some fixed element inZ∗

p.
We think of(gXi mod p) as the player’s public-key and
of Xi as her secret key. After the leaders extract pri-
vate randomness, each leader will partition her random
string to sufficiently many parts,3 and will send each
non-leader an encrypted fresh chuck of her private ran-
domness, using El-Gamal encryption. This scheme is
known to be semantically secure under the DDH As-
sumption. However, since in our caseXi is not random,
but only has high min-entropy (and sincep andg are
a priori fixed rather than randomly chosen), we need to
rely on a stronger variant of the DDH Assumption.

Finally, the players will also add a zero-knowledge
proof-of-knowledge of their plaintext to ensure non-
malleability. This, yet again, introduces technical prob-
lems that we need to deal with: Zero-knowledge proofs
require both the prover and the verifier to be random-
ized, and at this point the verifier may not have a random
string. We note that if the verifier does not possess pri-
vate randomness then soundness is no longer guaranteed

We overcome this obstacle as follows: The zero-
knowledge proofs we use have perfect completeness
(i.e., an honest prover convinces an honest verifier of
a true statement with probability 1), and the additional
property that all the messages sent by the verifier are
random, and consist of the verifier’s random coin tosses
(so they can be verified by anyone who sees the tran-
script). Since our verifiers may not have private random-
ness, they will ask the other players to generate the ran-
dom messages on their behalf. However, since we do not

3As previously remarked, in the computational setting we canal-
ways expand the number of computationally random bits by using a
pseudo-random generator.

9

know who are the honest players that have private ran-
domness, each verifier will askall players to verify each
zero-knowledge proof. Namely, each zero-knowledge
proof is now repeatedp times, where each proof a dif-
ferent player sends the verifier’s messages. The verifier
accepts ifall the transcripts are accepting ones.

We end by noting that the protocol described above
can be seen in greater generality. Using the strong
DDH Assumption, we can convert any network extractor
(computational or information theoretical) into a com-
putational network extractor in whichall players end up
with private randomness. However, we need the initial
network extractor to have the property that after running
it, there is a known subset of playersS, which includes
at least two honest players, such that all the honest play-
ers inS end up with private randomness.

The idea of the transformation is to first run the initial
protocol using the sources(gXi mod p), rather thanXi.
Next, the players inS possessing private random strings
give part of their random string to players outside ofS.
This is done by using the strong DDH assumption to
“generate” secure channels, as above.

References

[1] N. Alon and M. Naor. Coin-flipping games immune
against linear-sized coalitions.SIAM Journal on Com-
puting, 22(2):403–417, Apr. 1993.

[2] A. E. Andreev, A. E. F. Clementi, J. D. P. Rolim, and
L. Trevisan. Weak random sources, hitting sets, and BPP
simulations. SIAM Journal on Computing, 28:2103–
2116, 1999.

[3] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2
source dispersers forno(1) entropy and Ramsey graphs
beating the Frankl-Wilson construction. InSTOC’06,
2006.

[4] M. Ben-Or and N. Linial. Collective coin flipping.Ran-
domness and Computation, 1978.

[5] R. B. Boppana and B. O. Narayanan. Perfect-
information leader election with optimal resilience.
SIAM J. Comput, 29(4):1304–1320, 2000.

[6] R. Canetti. Towards realizing random oracles: Hash
functions that hide all partial information. InAdvances
in Cryptology — CRYPTO ’97, 17th Annual Interna-
tional Cryptology Conference, Proceedings, pages 455–
469, 1997.

[7] R. Canetti, R. Pass, and A. Shelat. Cryptography from
sunspots: How to use an imperfect reference string. In
FOCS’07, pages 249–259, 2007.

[8] B. Chor and O. Goldreich. Unbiased bits from sources
of weak randomness and probabilistic communication
complexity. SIAM Journal on Computing, 17(2):230–
261, 1988.

[9] J. Cooper and N. Linial. Fast perfect-information leader-
election protocols with linear immunity.Combinatorica,
15(3):319–332, 1995.

[10] Y. Dodis and R. Oliveira. On extracting private random-
ness over a public channel. InRANDOM 2003, pages
252–263, 2003.

[11] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai. On
the (im)possibility of cryptography with imperfect ran-
domness. InFOCS’04, pages 196–205, 2004.

[12] Y. Dodis and J. Spencer. On the (non)universality of the
one-time pad. InFOCS’02, page 376. IEEE Computer
Society, 2002.

[13] U. Feige. Noncryptographic selection protocols. In
IEEE, editor,FOCS’99, pages 142–152, pub-IEEE:adr,
1999. IEEE Computer Society Press.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game or a completeness theorem for proto-
cols with honest majority. InProceedings of the 19th An-
nual ACM Symposium on Theory of Computing, pages
218–229. ACM, 1987.

[15] S. Goldwasser, E. Pavlov, and V. Vaikuntanathan. Fault-
tolerant distributed computing in full-information net-
works. InFOCS, pages 15–26. IEEE Computer Society,
2006.

[16] S. Goldwasser, M. Sudan, and V. Vaikuntanathan. Dis-
tributed computing with imperfect randomness. In
P. Fraigniaud, editor,19th International Symposium on
Distributed Computing DISC 2005, Proceedings, vol-
ume 3724 ofLecture Notes in Computer Science, pages
288–302. Springer, 2005.

[17] B. Kapron, D. Kempe, V. King, J. Saia, and V. San-
walani. Fast asynchronous Byzantine agreement and
leader election with full information. InSODA’08, pages
1038–1047, 2008.

[18] U. M. Maurer and S. Wolf. Privacy amplification secure
against active adversaries. InAdvances in Cryptology
— CRYPTO ’97, 17th Annual International Cryptology
Conference, Proceedings, pages 307–321, 1997.

[19] J. L. McInnes and B. Pinkas. On the impossibility of pri-
vate key cryptography with weakly random keys. InAd-
vances in Cryptology — CRYPTO ’90, 10th Annual In-
ternational Cryptology Conference, Proceedings, pages
421–435, 1990.

[20] N. Nisan and D. Zuckerman. Randomness is linear
in space. Journal of Computer and System Sciences,
52(1):43–52, 1996.

[21] R. Ostrovsky, S. Rajagopalan, and U. Vazirani. Sim-
ple and efficient leader election in the full information
model. InSTOC’94, pages 234–242, 1994.

[22] A. Rao. Extractors for a constant number of poly-
nomially small min-entropy independent sources. In
STOC’06, 2006.

[23] A. Russell and D. Zuckerman. Perfect information
leader election in log* n+O (1) rounds.Journal of Com-
puter and System Sciences, 63(4):612–626, 2001.

[24] M. Saks. A robust noncryptographic protocol for collec-
tive coin flipping.SIAM Journal on Discrete Mathemat-
ics, 2(2):240–244, May 1989.

10

[25] M. Saks, A. Srinivasan, and S. Zhou. Explicit OR-
dispersers with polylog degree.Journal of the ACM,
45:123–154, 1998.

[26] U. V. Vazirani and V. V. Vazirani. Random polynomial
time is equal to slightly-random polynomial time. In
FOCS’85, pages 417–428, 1985.

[27] D. Zuckerman. Simulating BPP using a general weak
random source.Algorithmica, 16:367–391, 1996.

[28] D. Zuckerman. Randomness-optimal oblivious sam-
pling. Random Structures and Algorithms, 11:345–367,
1997.

11

