### Market Connectivity

Anup Rao Paul G. Allen School of Computer Science University of Washington

#### Who am I?

- Not an economist
- A theoretical computer scientist (essentially ~ mathematician)
- I study communication complexity.
- A dad



Mika - 7 months

### Market Connectivity

- New useful statistics for economies
- Paper March 2017 (available on arxiv and my website)
- With Alan Griffith: analyze data about Uganda

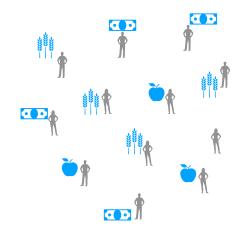
# **High Level Objectives**

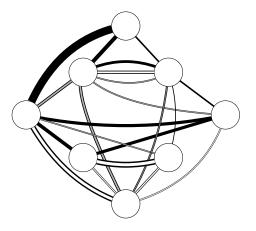
- Show how to meaningfully mine data about transactions in economy.
- Give you some tools to use on data and/or obtain data from you to analyze. All code (matlab) available for download on my website: <u>https://homes.cs.washington.edu/~anuprao/</u>
- Discover new ways to use these ideas

### User's guide

 Please: Interrupt! Ask questions! Make clarifying comments! Help me understand what is confusing!

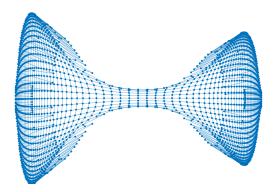
#### Outline



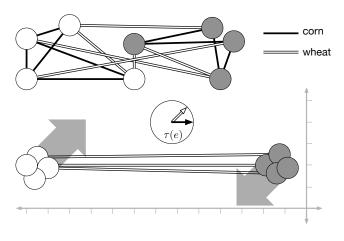


**1. CS and Economics** 

2. Trade Networks



3. Graph Laplacians

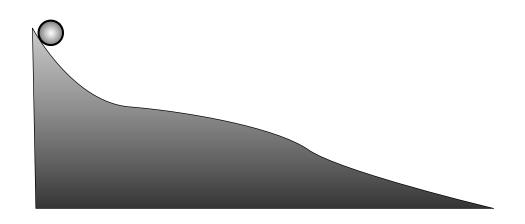


4. Modifications for Econ

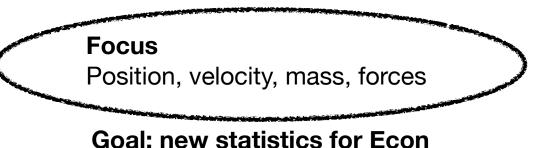
#### A new theoretical concept

- ... as in physics—concept to allow math to explain object of study
- Goal: useful, measurable statistics about economy.
- No assumptions made about underlying economy

#### Newtonian mechanics (1697)



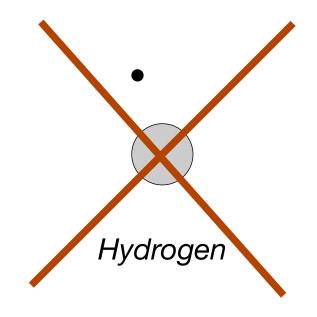
How long before boulder reaches bottom?



Ignored

Friction, air resistance, exact shape/density of the boulder

#### Photoelectric effect (1902)



#### **Focus**

Position, velocity, mass, forces

#### Notes:

- 1. Newton still made progress!
- 2. Relevance of concept established using real-world data.
- 3. Data gives circumstantial evidence, at best.

#### CS model: Distributed System

Example: internet

Processors: computers on the internet Inputs: information—user requests, webpages, airline schedules...



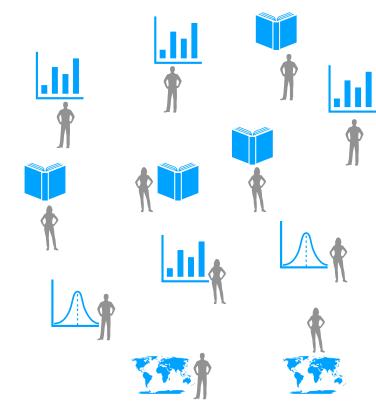
#### CS model: Distributed System

**Example:** internet

Processors: computers on the internet Inputs: information—user requests, webpages, airline schedules...

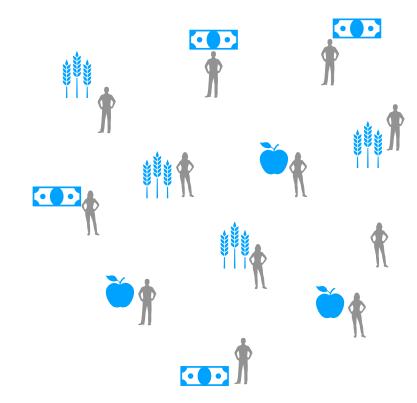
**Output:** relevant information

How to make this fast? How to make this reliable? How to connect computers? How to direct traffic?



#### New perspective Economy = Distributed System

Processors: agents Inputs: allocation of resources

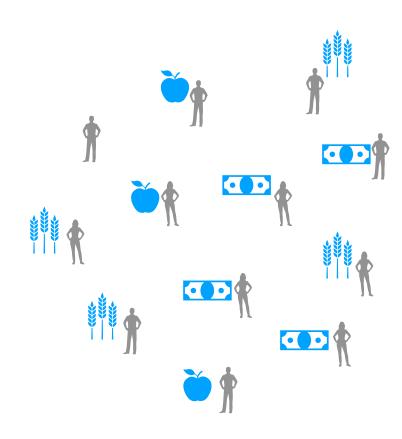


#### New perspective Economy = Distributed System

Processors: agentsInputs: allocation of resourcesOutput: new allocation of resources

This view opens up economics to CS style reasoning; computations have associated costs

eg: How to measure *efficiency of communication*?



#### New perspective Economy = Distributed System

- Analogy more accurate than one might think!
- Internet

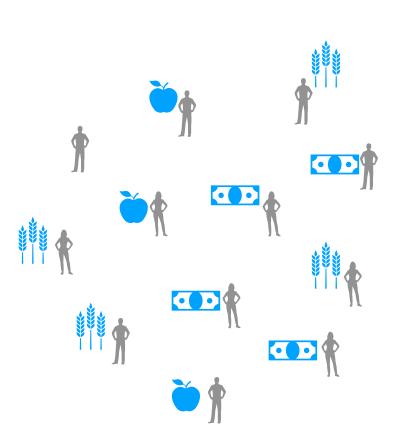
- - -

messy, organic, decentralized

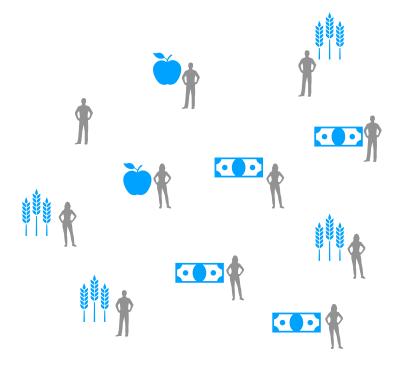
 Challenges for Distributed Systems: Unreliable computers Malicious participants Inability to program all computers in the same way Enabling fast communication with limited connectivity

## What is novel?

- price of milk @U-district ~ price of milk @cap-hill
- From a CS perspective: this is a computation, so evaluate speed/accuracy
- A trace of computation is visible!
- Benefits to economics: Measure impact of policy design better systems/regulations



### Focus of my work



How well does information flow?

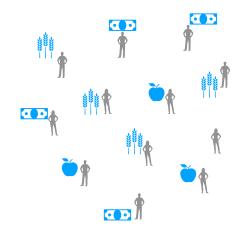
#### **Focus**

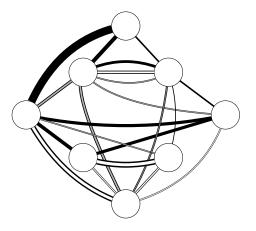
Statistics about network of transactions

#### Ignored

Behavior of agents, rationality of agents, transaction costs...

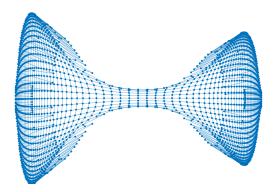
#### Outline



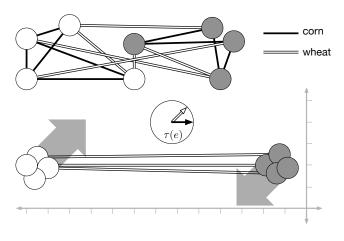


**1. CS and Economics** 

2. Trade Networks



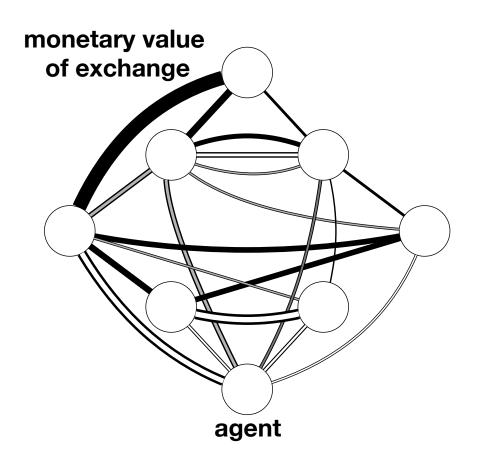
3. Graph Laplacians

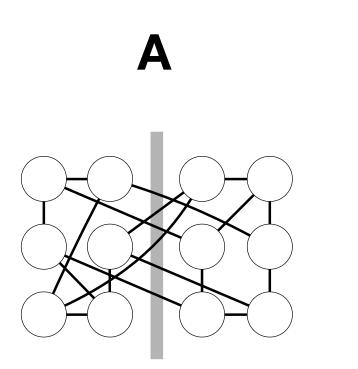


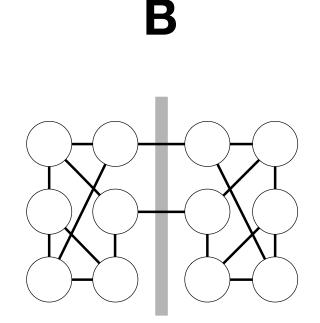
4. Modifications for Econ

#### **Trade Network**

- Fixed time interval say [Jan 2017- Jan 2018]
- **Nodes** = agents
- Edges/links = transactions (weights = monetary value)
- Can be measured!
   (data sets available)
- Encodes many useful statistics about economy
- GDP = sum of edge weights



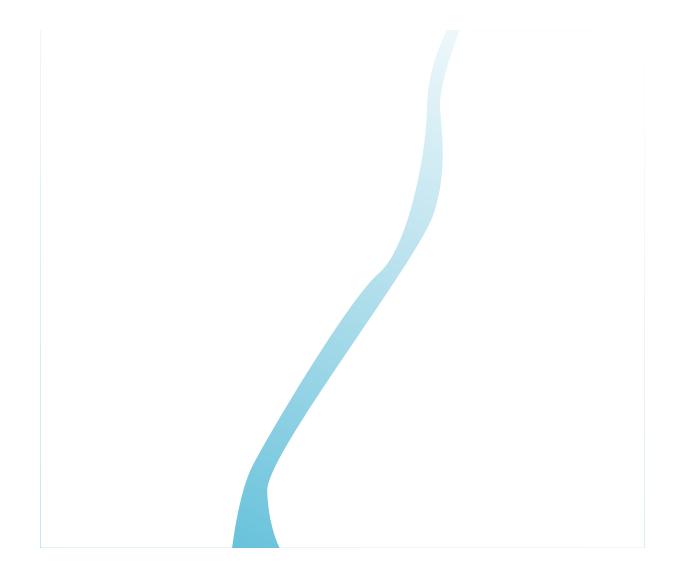


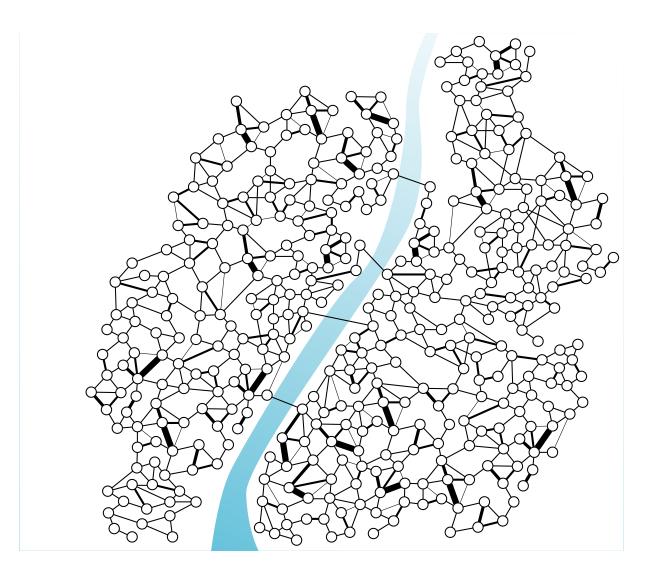


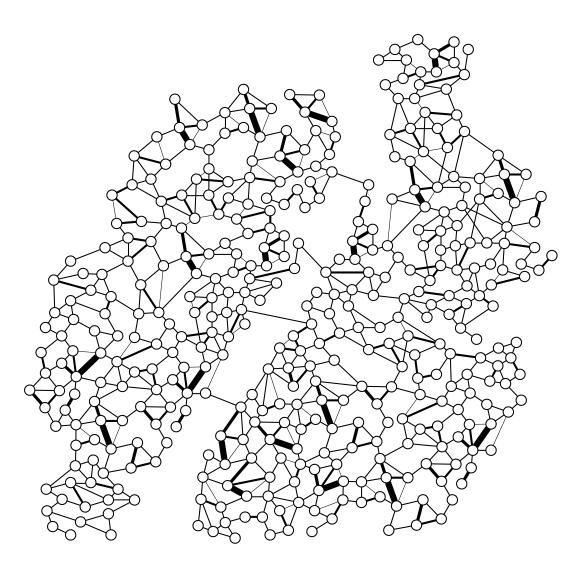
Total **number of links is equal**, but A is better *connected*:

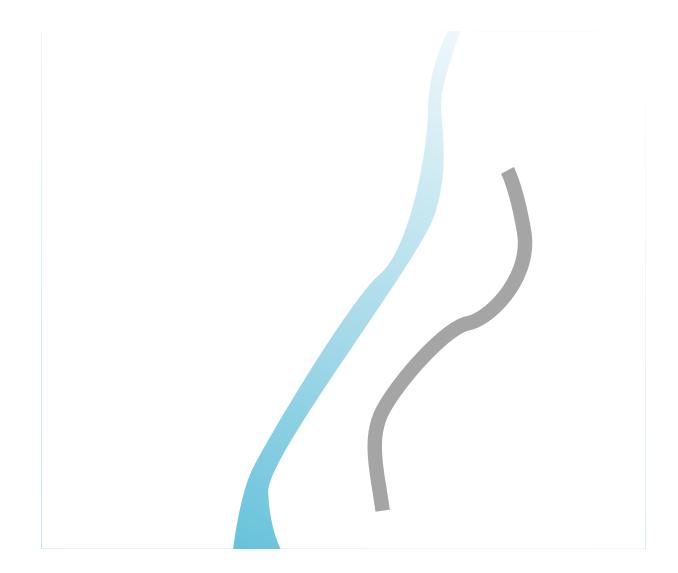
- 1. Shorter paths between any two nodes
- 2. Any balanced partition of nodes *cuts* more links

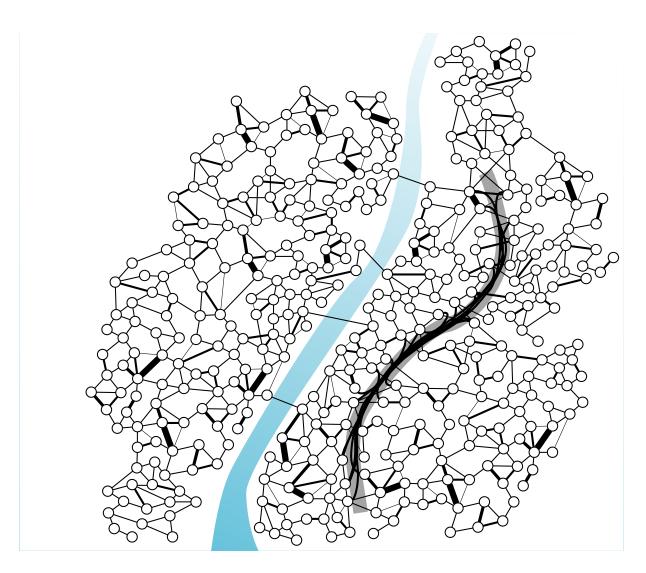
In general: network encodes *degree of connectivity*, not just volume of trade!

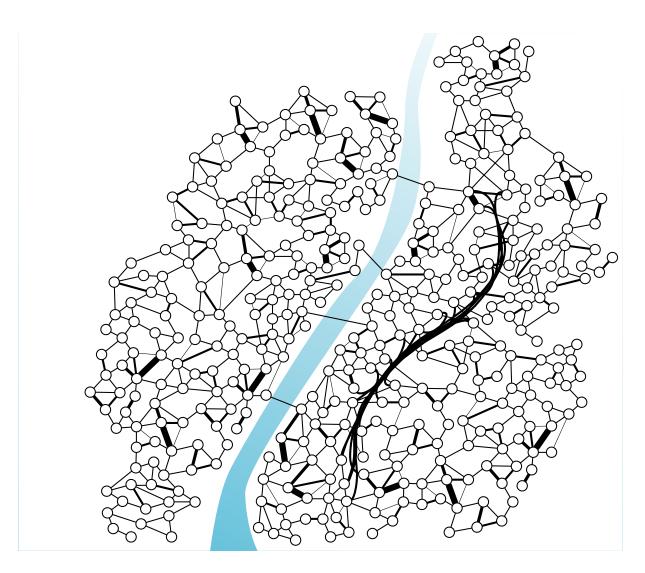


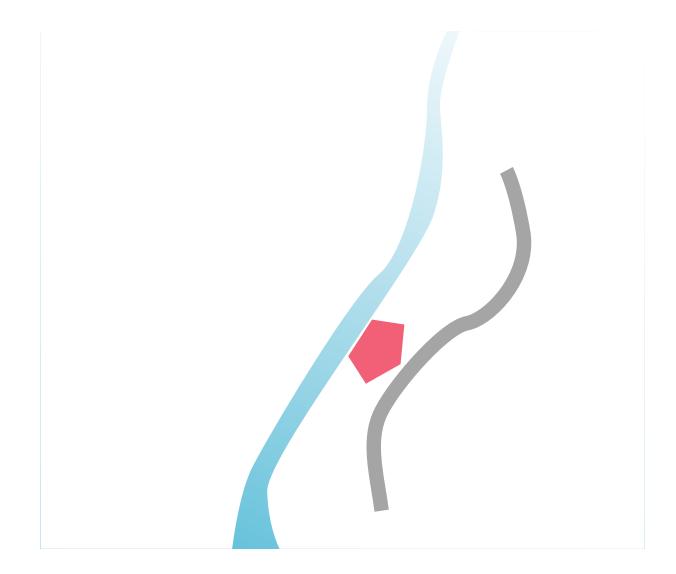


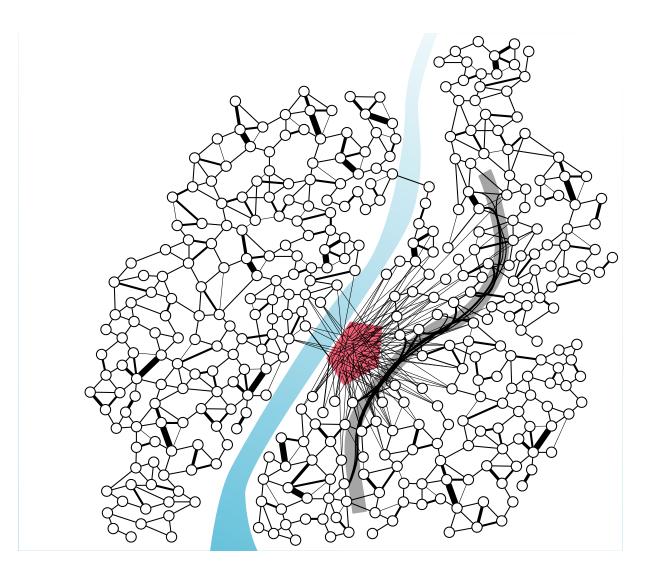


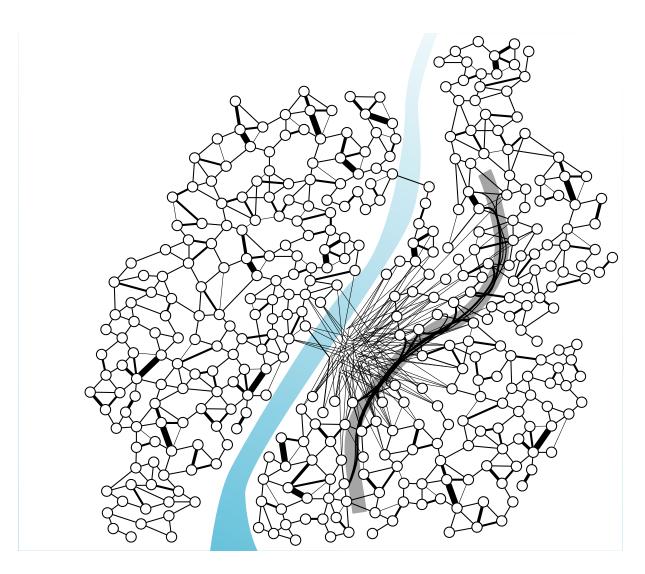


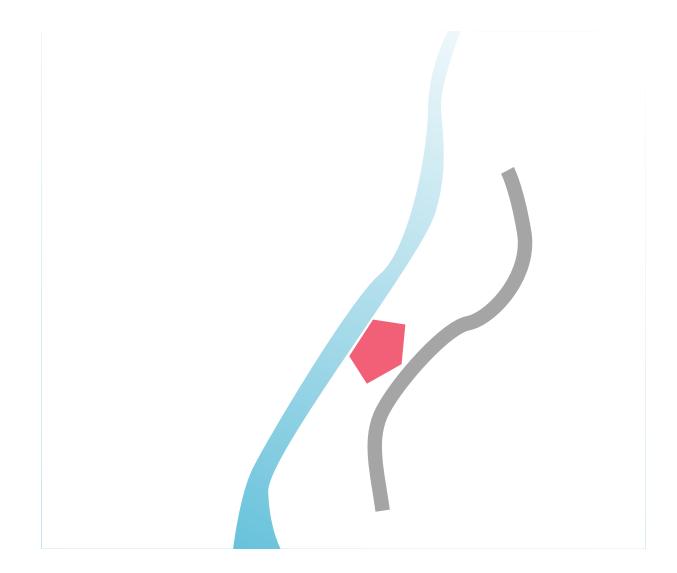


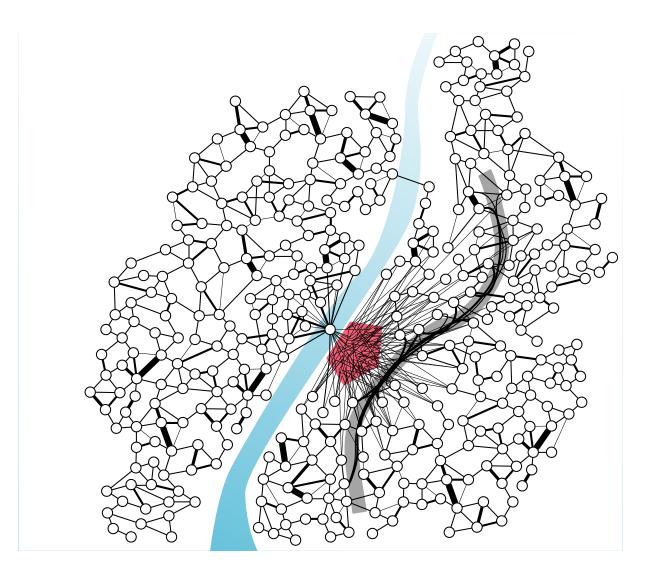


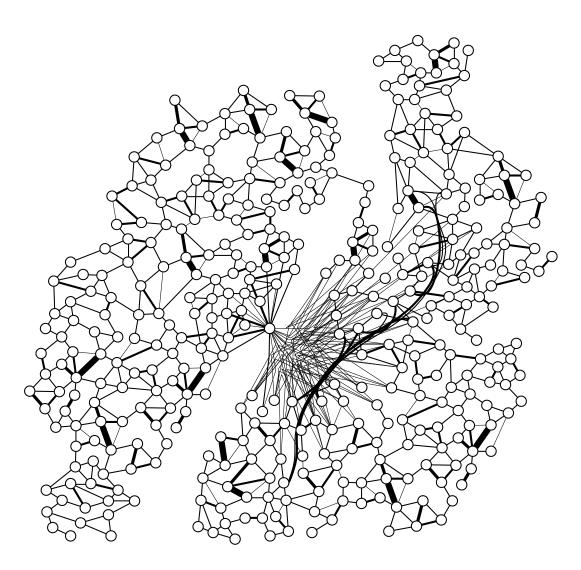




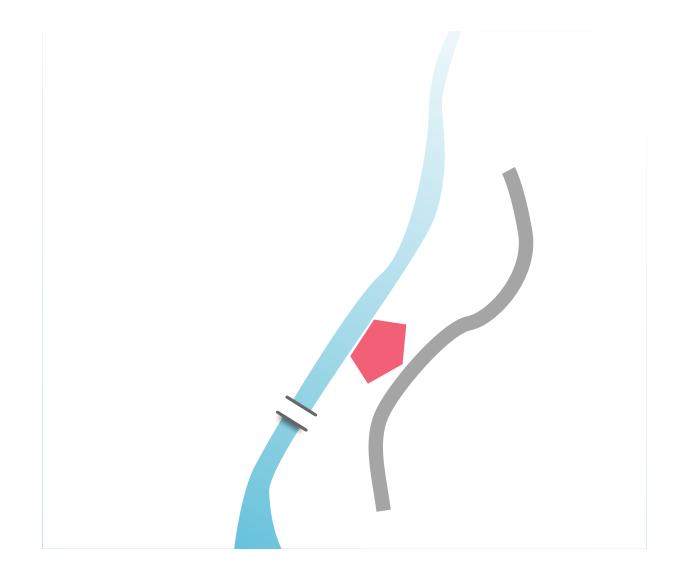




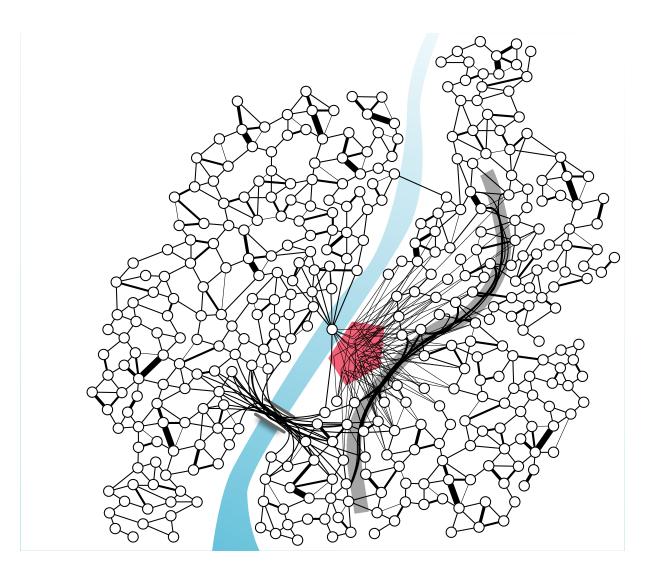




100 AD

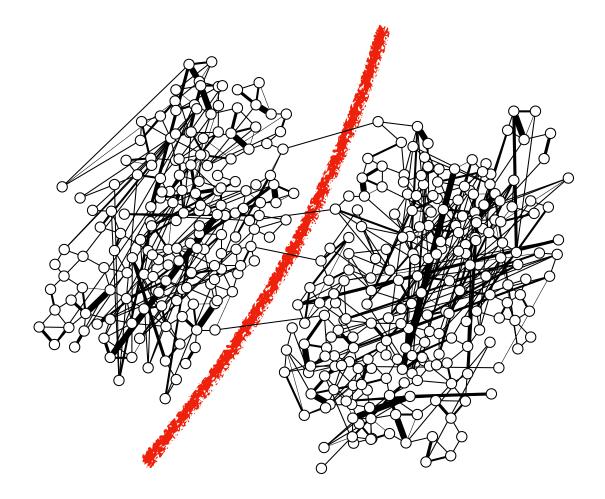


100 AD

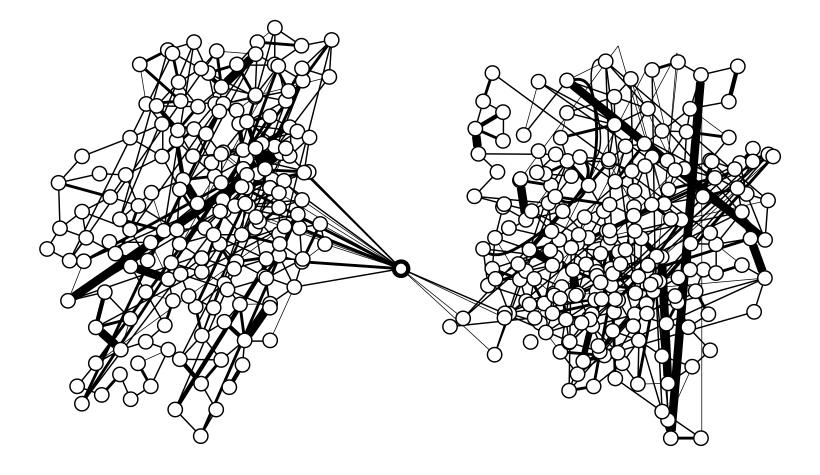


# **Goal:** given trade network, find interesting features of economy

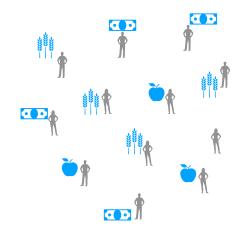
Given this divide, what is going on in this economy?

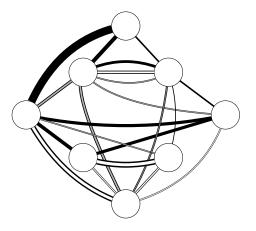


Monopoly: A node like this?



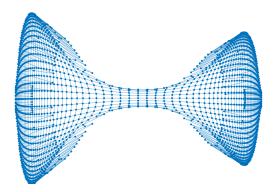
### Outline



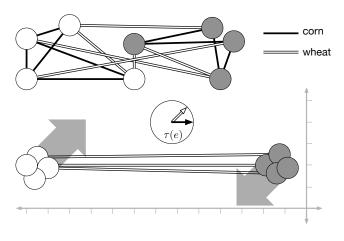


**1. CS and Economics** 

2. Trade Networks



3. Graph Laplacians



4. Modifications for Econ

### Graph Laplacian – tool to interpret trade network

- Goal: mine data in trade network to find interesting features of economy
- Laplacian matrix created from network
- Use eigenvalues and eigenvectors of matrix to determine *large scale shape* of the network.
- Use shape to discover interesting features of economy!

## Table or Chair?



## **Table or Chair?**

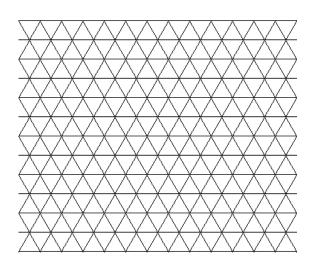


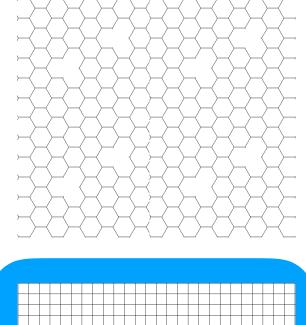
## **Table or Chair?**

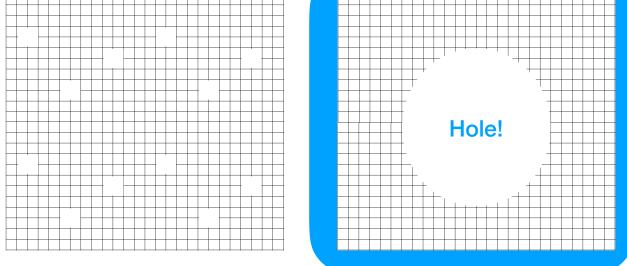


#### Intuition: at scale network encodes shape of economy

- Can use algorithms to determine *large scale* properties of network while ignoring small scale properties
- Robust to small changes!
- (right kind of) approximations to network are enough!







one of these is not like others

## Show and Tell

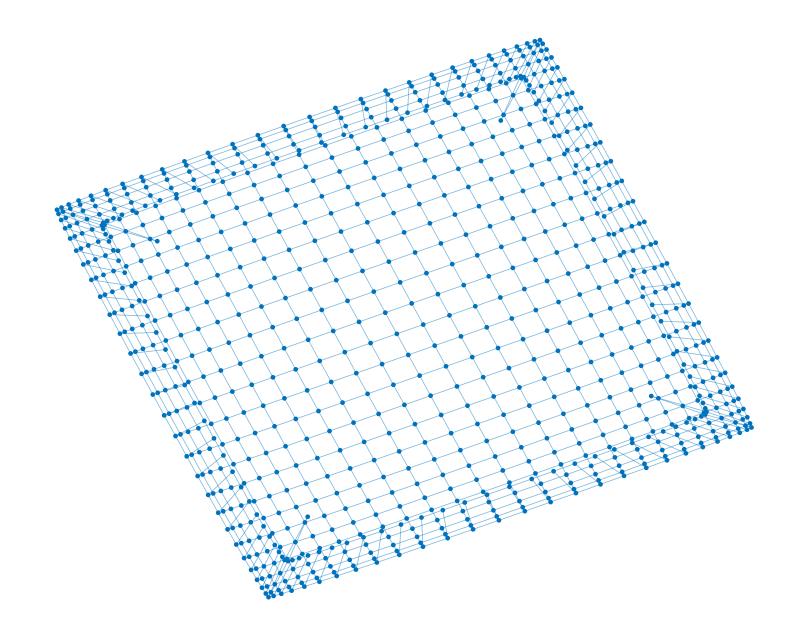
- Algorithm gets trade network as input
- No other data is shown to algorithm
- Algorithm untangles the mess and draws picture
- Intuition for algorithm:

links are **strong** rubber bands—attraction nodes repel each other **weakly** —repulsion nodes are released and left to settle

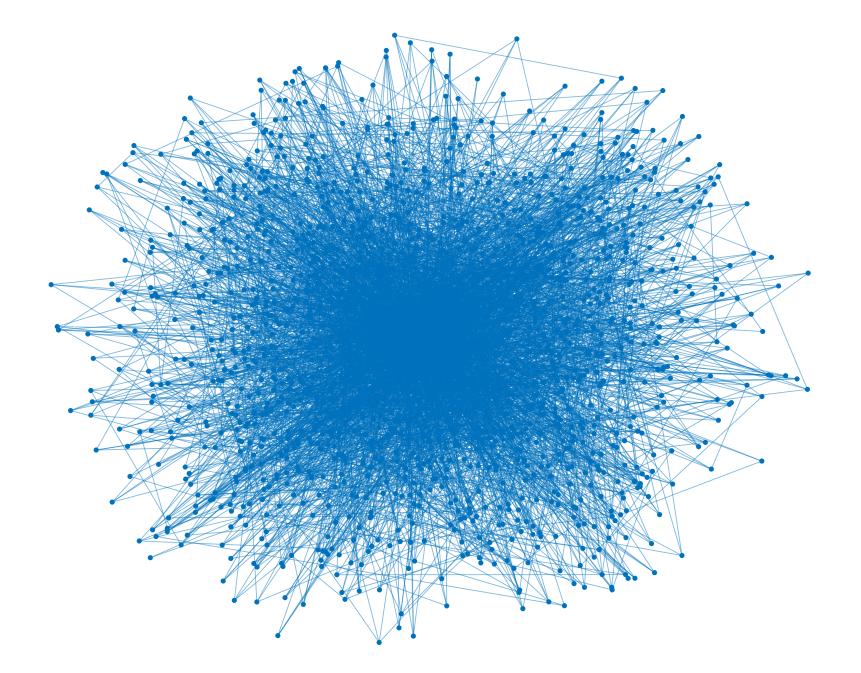
Intuition is only approximate, and sometimes completely wrong



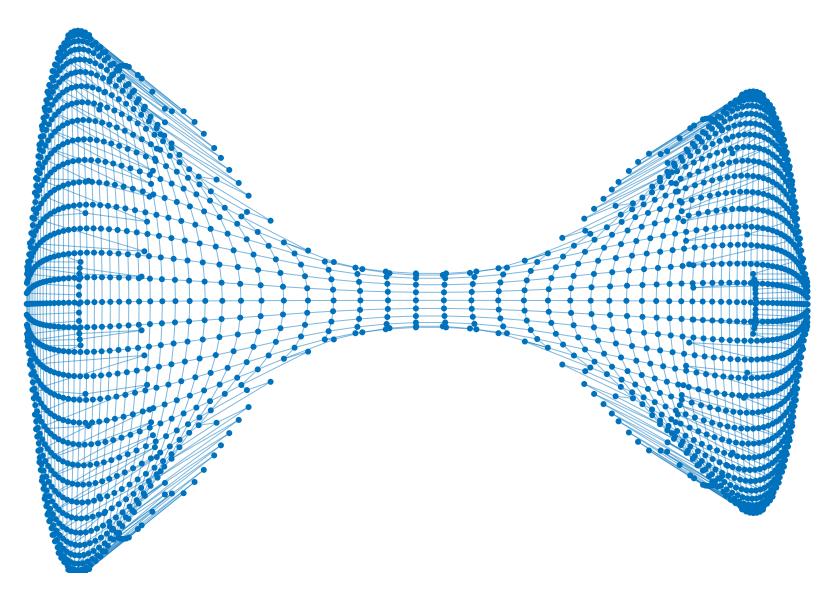
30 by 30 grid



30 by 30 grid (unscrambled by algorithm)



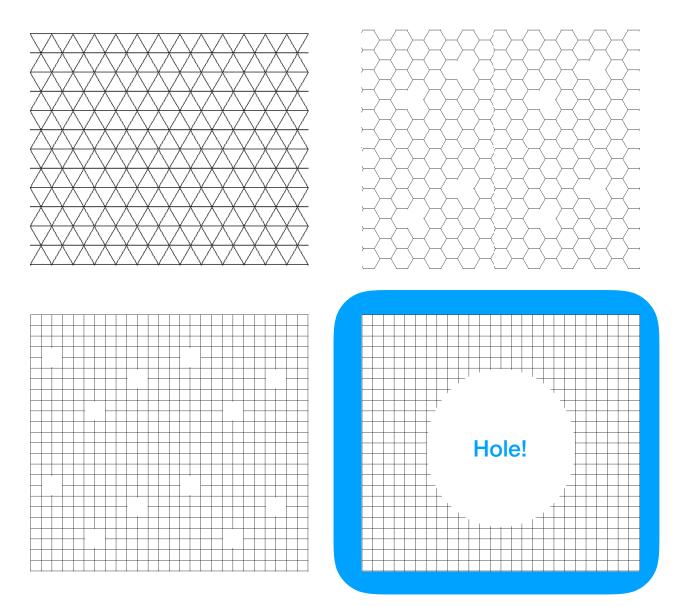
**Dumbell network** 



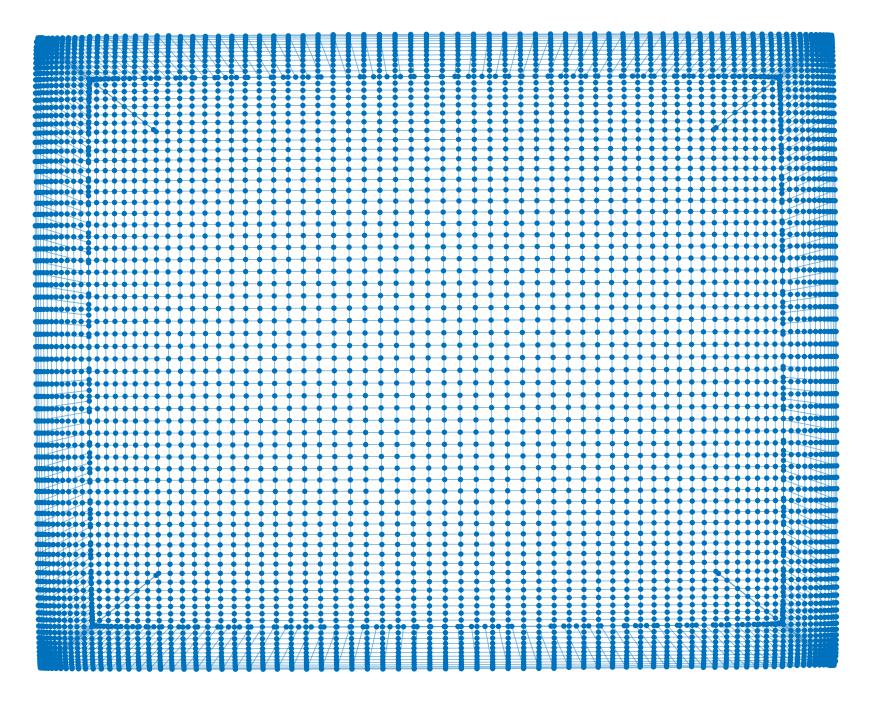
Dumbell network (unscrambled by algorithm)

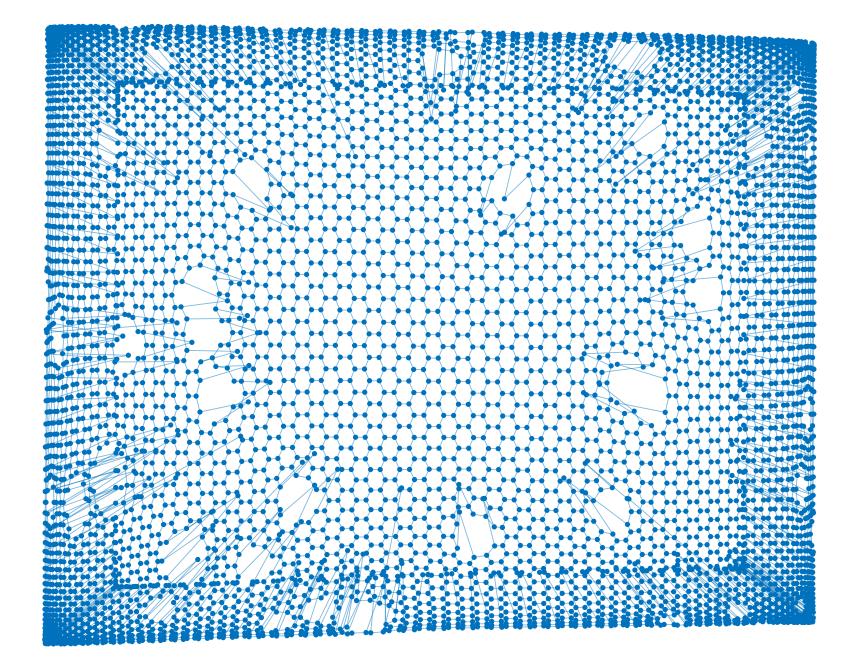
**Can answer things like: what is the center of the network?** (Eigenvalue centrality would give a different kind of answer!)

#### Intuition: at scale network encodes shape of economy

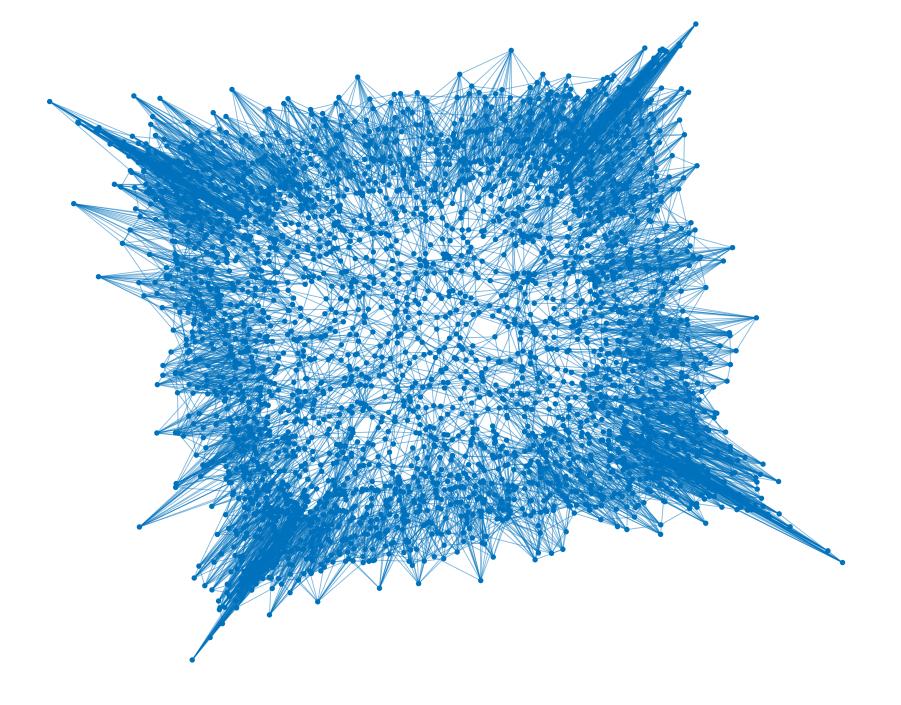


one of these is not like others

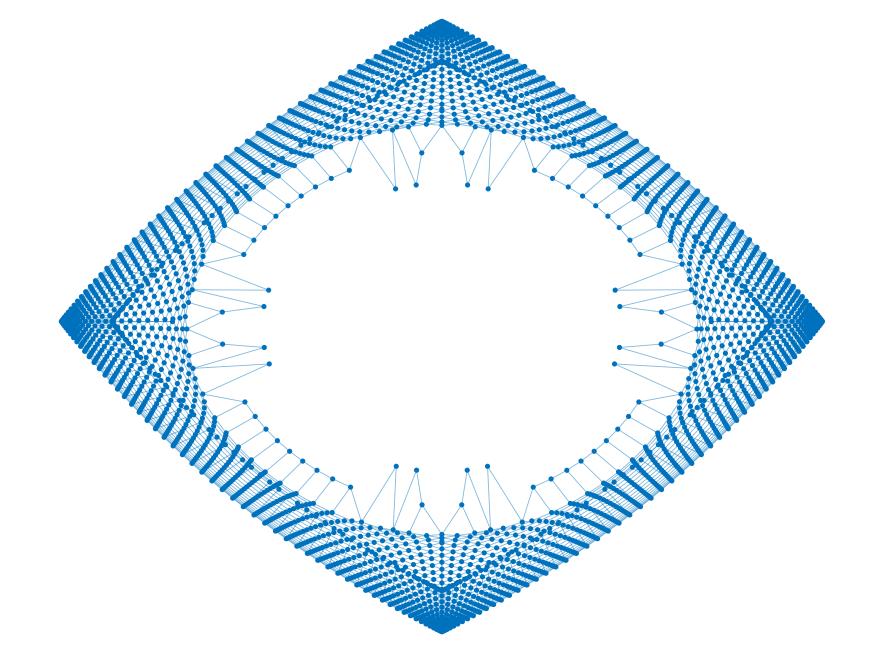




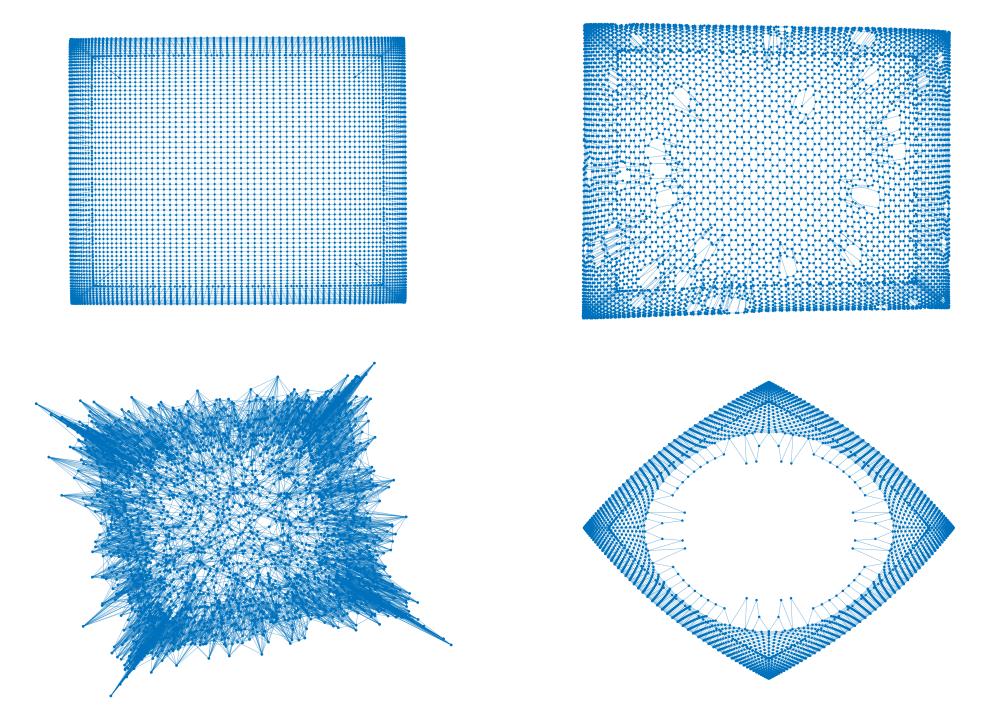
Hexagonal grid with 50 random holes



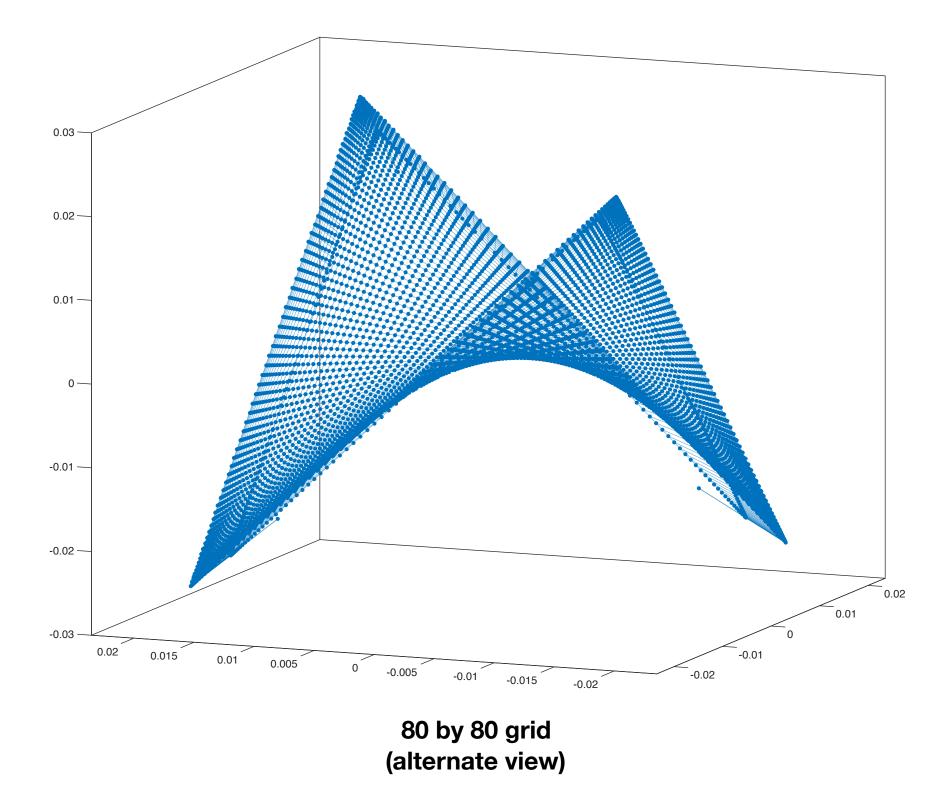
Random links to nearby points on grid

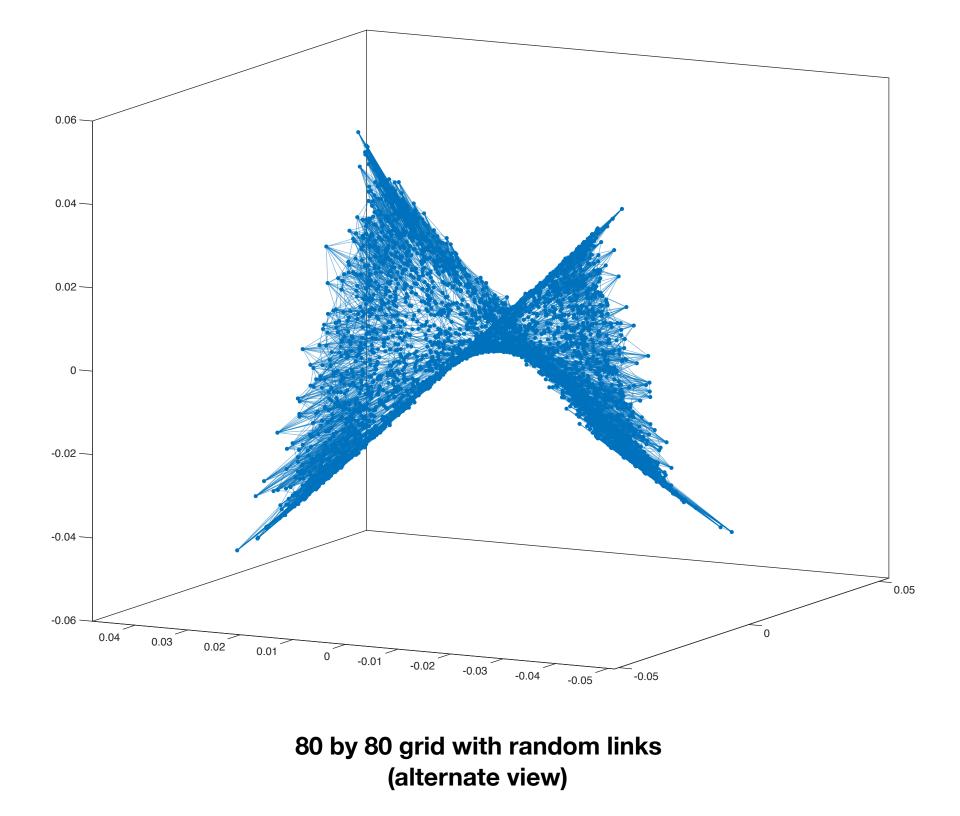


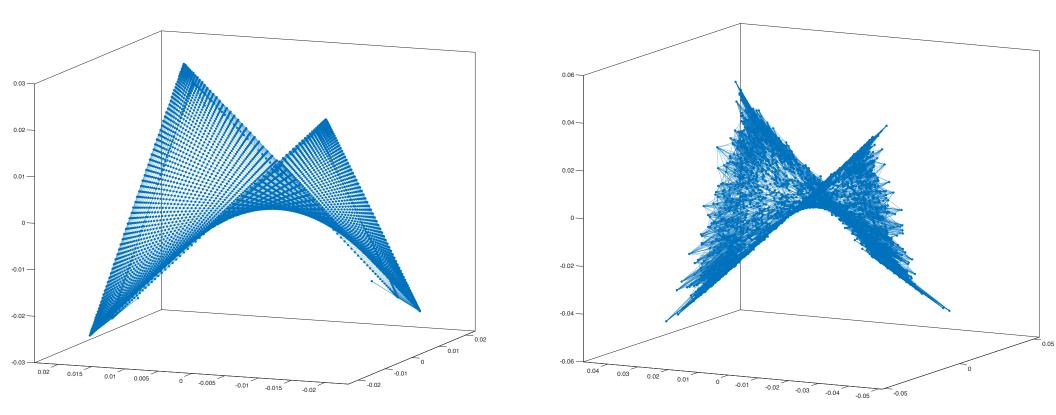
Grid with hole



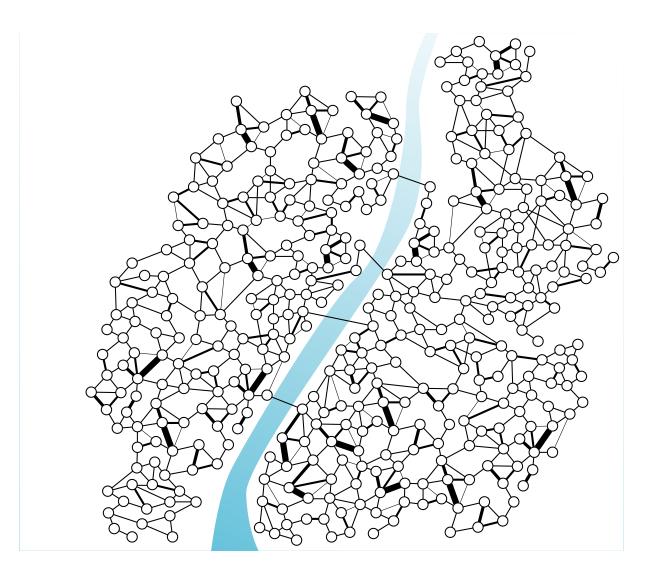
Even computer can distinguish hole from no hole



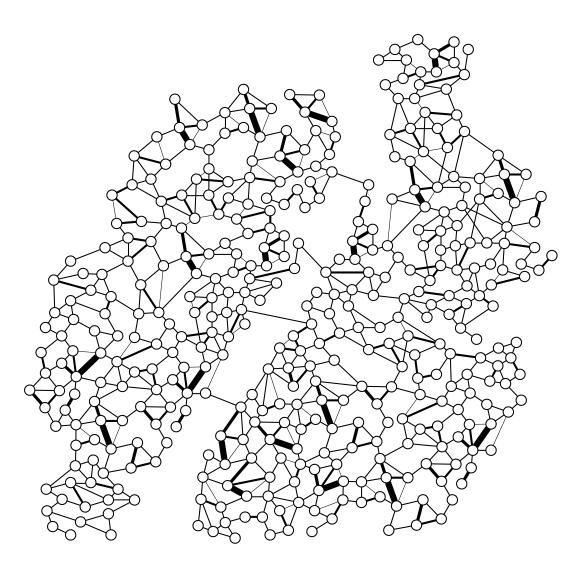


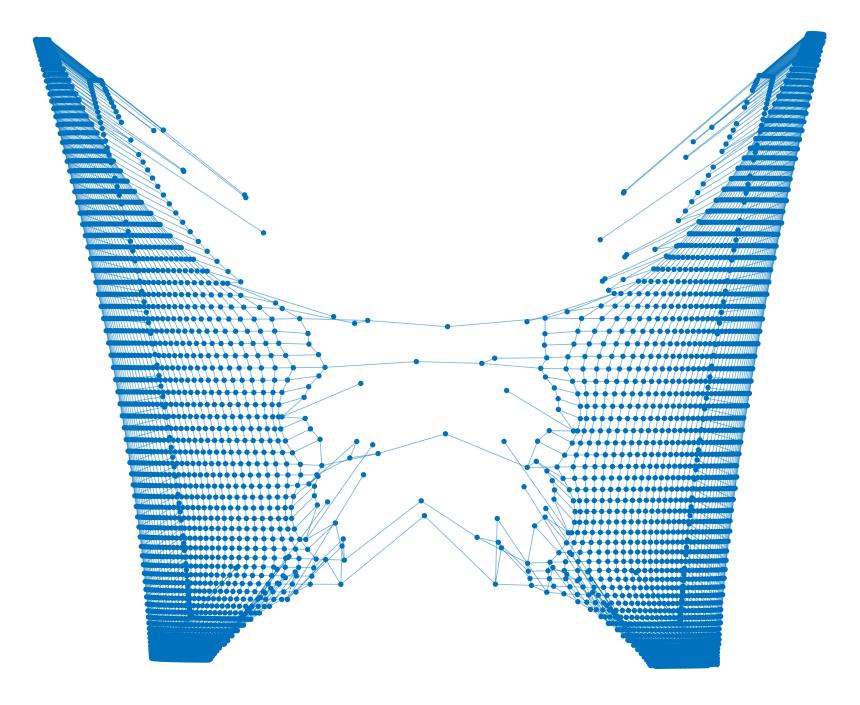


This is the same shape! (quantifiably so) 2000 BC



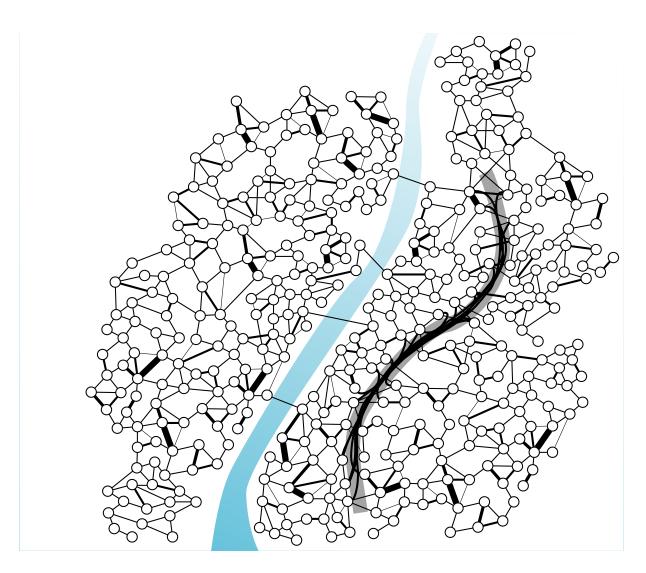
2000 BC

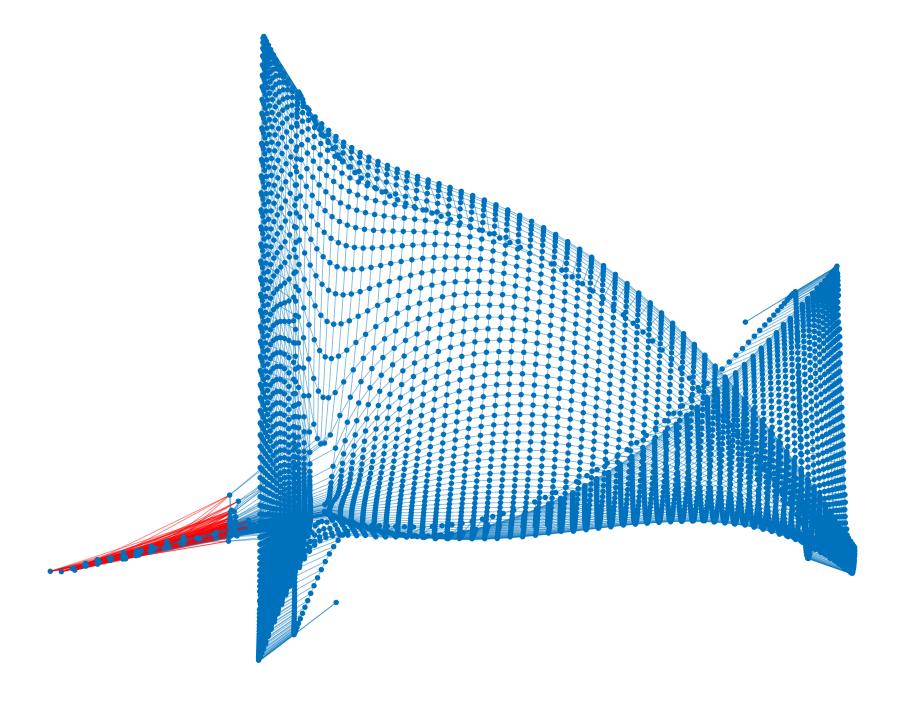




#### River: nodes in middle 2 columns randomly deleted

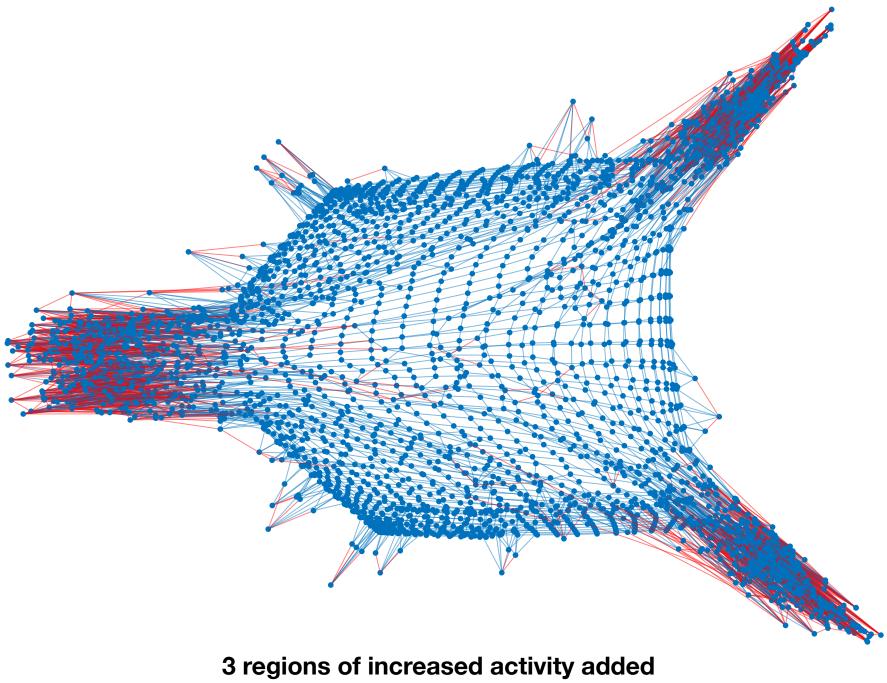
1500 BC





Road: Nodes along small strip randomly trade with each other red links were added to grid

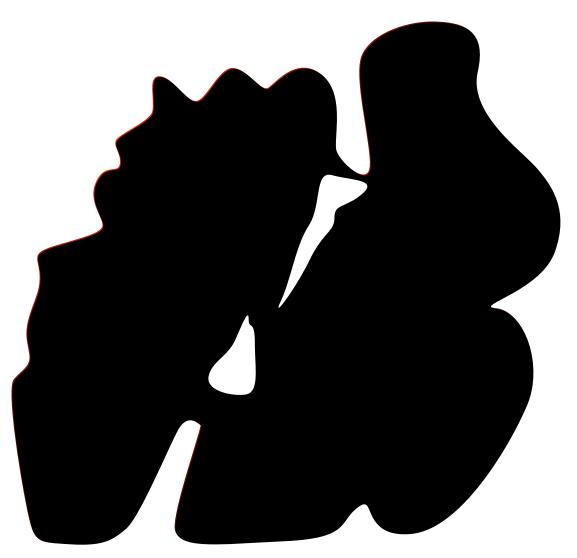
**Road and River** 



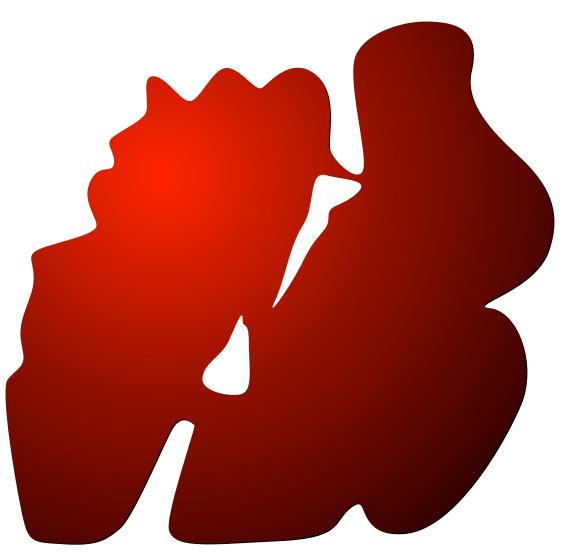
many isolated nodes with increased activity randomly added red links were added to grid

## How does the algorithm actually work?

#### **Network ~ piece of metal**

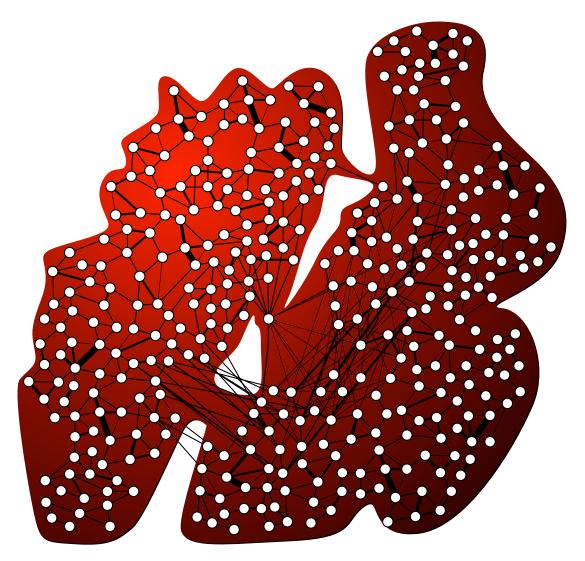


#### Network ~ piece of metal



How well does it conduct heat?

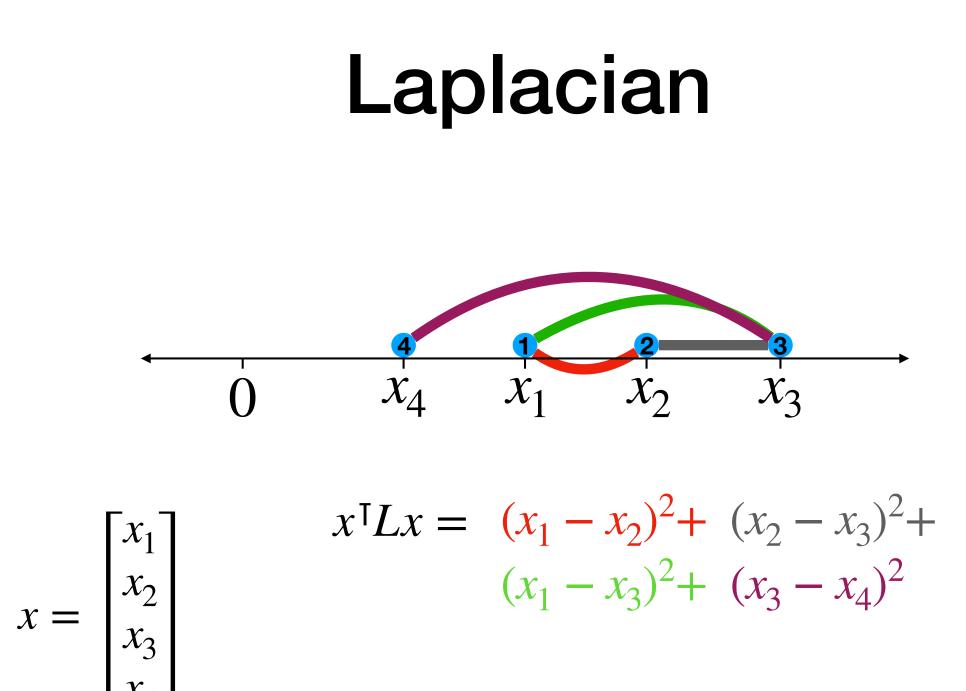
#### **Network ~ piece of metal**



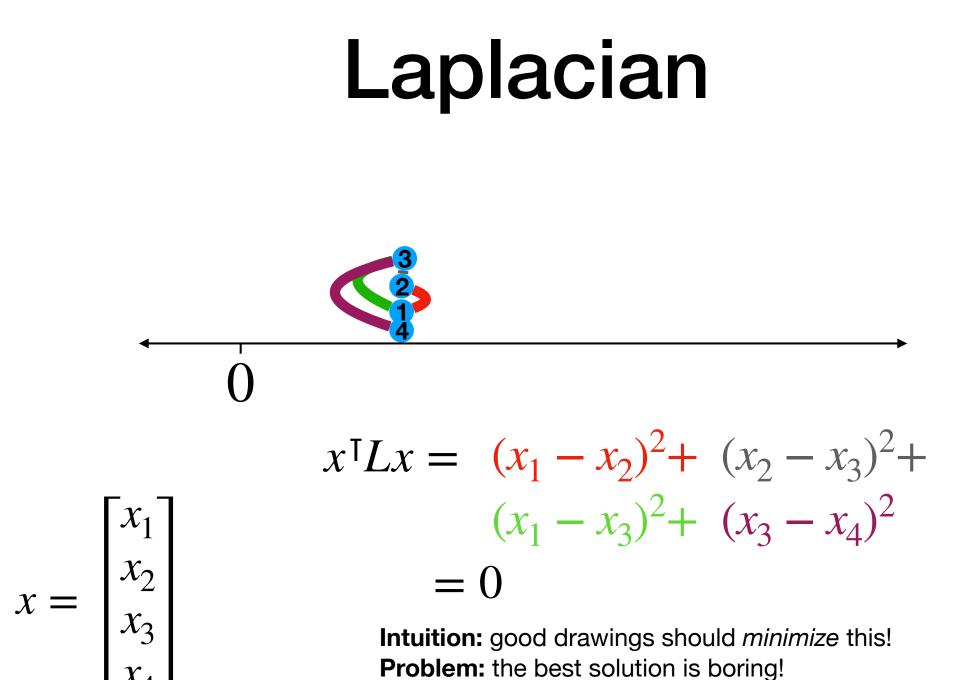
How well does it conduct information? ~ How well does it conduct heat?

### Laplacian





Intuition: good drawings should minimize this!



**Solution**: Find the minimum among all interesting solutions

# Properties of Laplacian

#### **Eigenvectors and Eigenvalues**

Vector 
$$v \neq 0$$
  
 $Lv = \lambda v \longrightarrow \begin{array}{c} v \text{ is eigenvector} \\ \lambda \text{ is eigenvalue} \end{array}$ 

#### Eigenbasis

Orthogonal Unit Eigenvectors  $V_1, V_2, \ldots, V_n$ 

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

# Properties of Laplacian

#### **Eigenbasis**

Orthogonal Unit Eigenvectors  $V_1, V_2, \ldots, V_n$ 

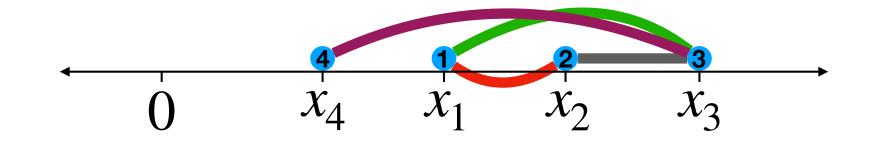
$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

For every  $x = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$ 

$$x^{\mathsf{T}}Lx = \alpha_1^2\lambda_1 + \alpha_2^2\lambda_2 + \ldots + \alpha_n^2\lambda_n$$

## Laplacian $X_{\gamma}$ $\chi_1$ $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\$ $(x_1 - x_3)^2 + (x_3 - x_4)^2$ = $\alpha_1^2 \lambda_1 + \alpha_2^2 \lambda_2 + \dots + \alpha_n^2 \lambda_n$

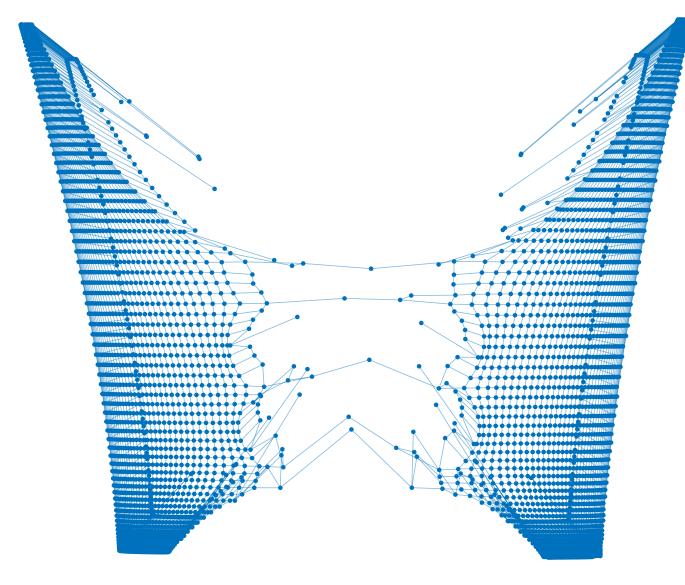
Boring solution:  $x = v_1$ Interesting solutions:  $x = v_2, x = v_3, \dots$ 



$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \qquad \begin{array}{l} x = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \\ x^{\mathsf{T}} L x = (x_1 - x_2)^2 + (x_2 - x_3)^2 + \\ (x_1 - x_3)^2 + (x_3 - x_4)^2 \\ = \alpha_1^2 \lambda_1 + \alpha_2^2 \lambda_2 + \ldots + \alpha_n^2 \lambda_n \\ \text{Boring solution:} \quad x = v_1 \\ \text{Interesting solutions:} \quad x = v_2, x = v_3, \ldots \\ v_2 = \text{choice of } x \text{ minimizing } x^{\mathsf{T}} L x \text{ among all choices orthogonal to} \end{array}$$

 $v_3 =$  choice of X minimizing  $\chi^T L \chi$  among all choices orthogonal to  $v_1, v_2$ 

 $v_1$ 



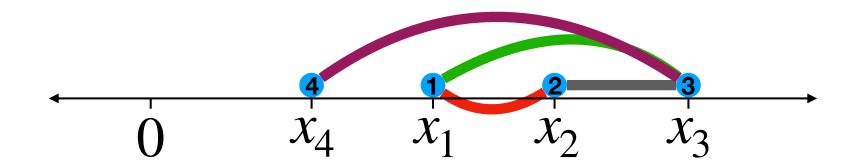
 $v_2, v_3$ 

eigenvectors of laplacian

Place node i at location  $(v_{2,i}, v_{3,i})$ 

-this is not how the picture was drawn-

### Normalized Laplacian



$$x^{\mathsf{T}}\mathscr{L}x = (x_1/\sqrt{2} - x_2/\sqrt{2})^2 + (x_1/\sqrt{2} - x_3/\sqrt{3})^2 + (x_2/\sqrt{2} - x_3/\sqrt{2})^2 + (x_3/\sqrt{3} - x_4)^2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

1

Intuition: pay more attention to nodes with many links

#### Properties of Normalized Laplacian

#### **Eigenvectors and Eigenvalues**

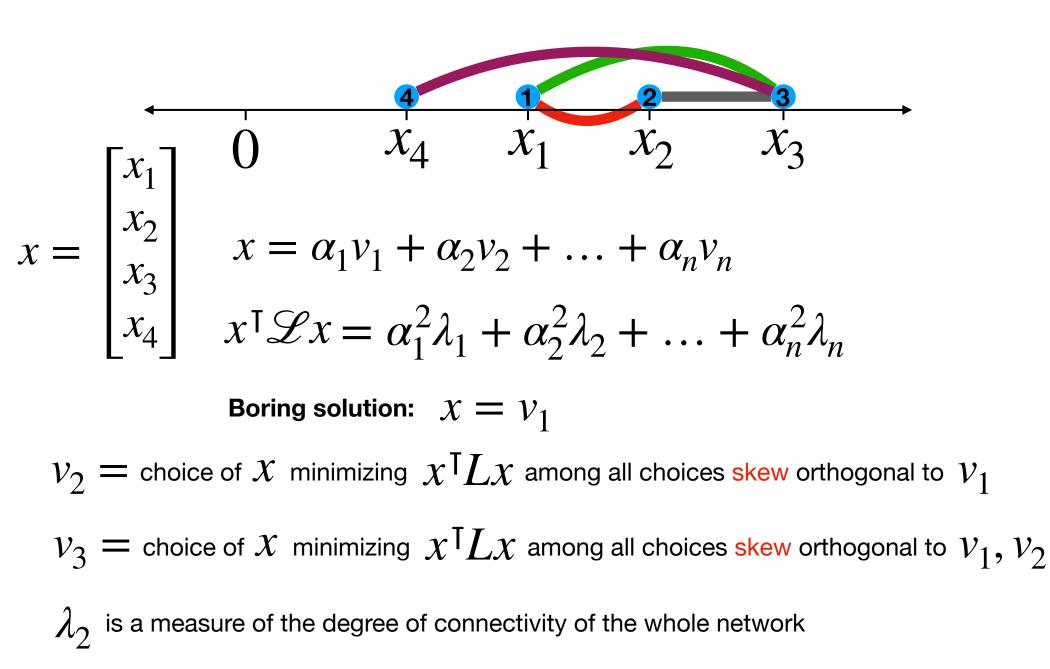
Vector 
$$v \neq 0$$
  
 $Lv = \lambda v \longrightarrow \begin{array}{c} v \text{ is eigenvector} \\ \lambda \text{ is eigenvalue} \end{array}$ 

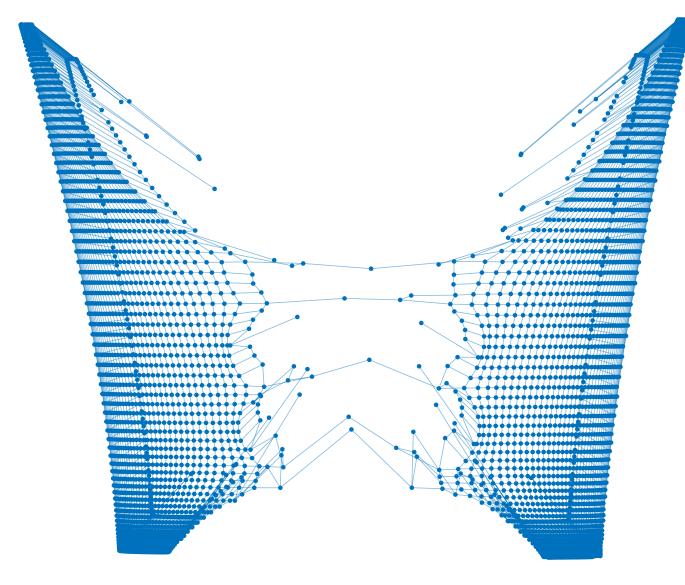
#### Eigenbasis

Orthogonal Unit Eigenvectors  $V_1, V_2, \ldots, V_n$ 

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le 2$$

### Normalized Laplacian





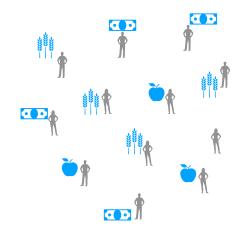
 $v_2, v_3$ 

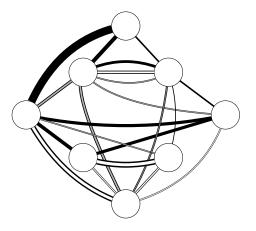
eigenvectors of normalized laplacian

Place node i at location  $(v_{2,i}, v_{3,i})$ 

actual drawing

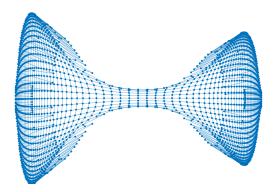
#### Outline



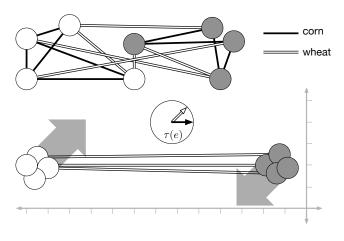


**1. CS and Economics** 

2. Trade Networks



3. Graph Laplacians

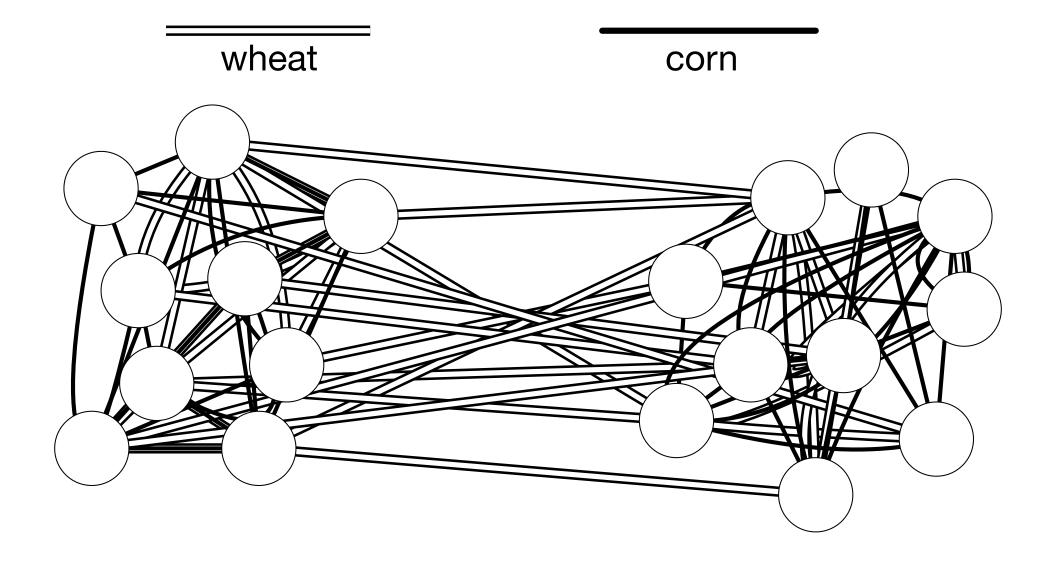


4. Modifications for Econ

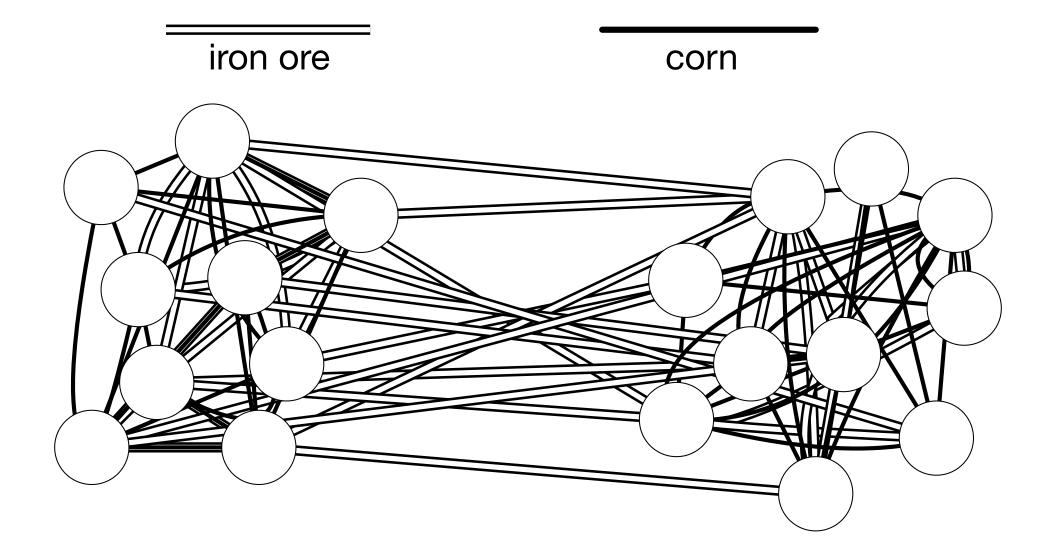
#### Questions

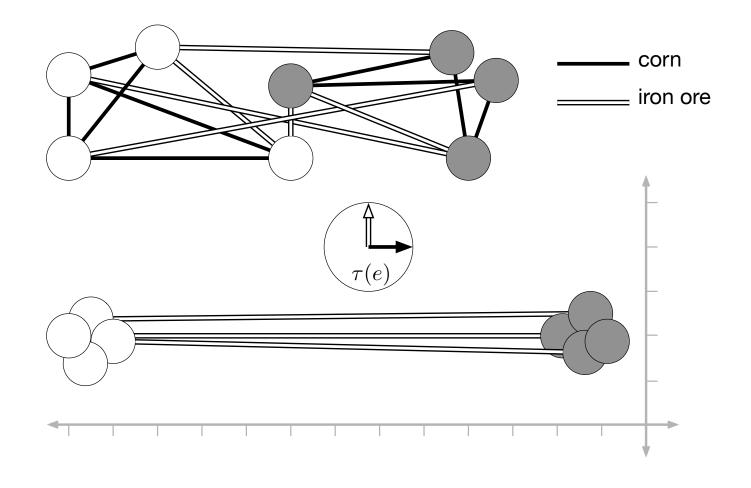
- Laplacian? Normalized Laplacian? Something else? What is the right notion to use to determine shape of Trade Network?
- What is the formulation that gives the most meaningful solutions from the perspective of economics?
- For eg: so far the model does not distinguish type of item being bought/sold
- My paper: find definitions leading to most meaningful space of solutions for economics

Should these two clusters be far apart or close together?

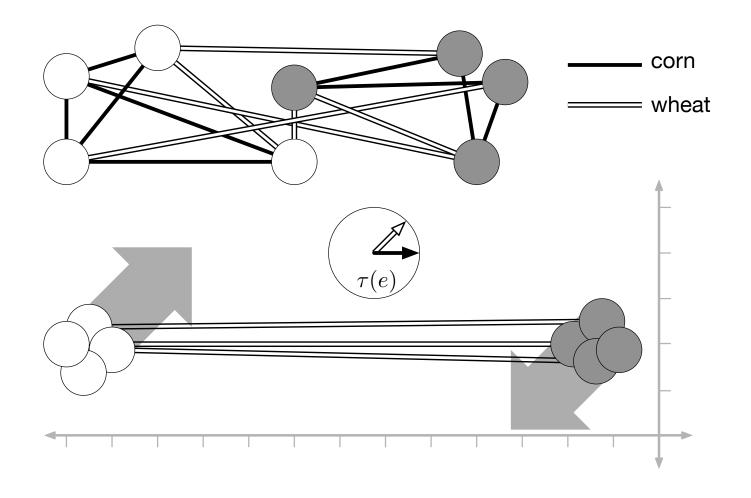


Should these two clusters be far apart or close together?



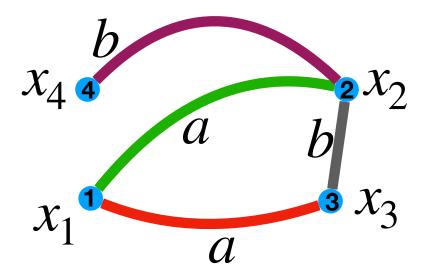


- Nodes are placed on plane instead of the line
- Each item is associated with a direction
- Each link pulls along the corresponding direction



- Nodes are placed on plane instead of the line
- Each item is associated with a direction
- Each link pulls along the corresponding direction

#### **Typed Laplacians**



$$x^{\mathsf{T}}\tilde{L}x = ((x_1 - x_2) \cdot \tau_a)^2 + ((x_2 - x_3) \cdot \tau_b)^2 + ((x_1 - x_3) \cdot \tau_a)^2 + ((x_3 - x_4) \cdot \tau_b)^2 + ((x_3 - x_4) \cdot \tau_b)^2$$

Intuition: important large scale features come from minimizing this!

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

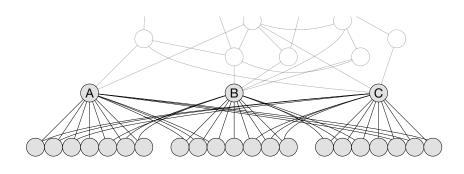
### **Questions I answered**

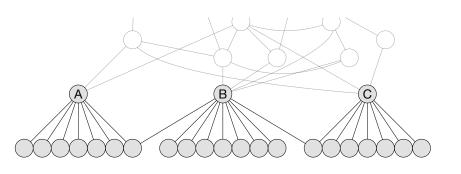
- What are the boring eigenvectors/eigenvalues?
- How to compute the type vectors to get good results?
   My guess: Use data from the network itself! Items traded by similar nodes have similar type.

## Using Trade Networks to pick out features relevant to economics

- New understanding of well-known phenomena!
- Examples: Monopolies, exchange traded funds, high switching costs, vertical integration...

# Does market-share determine Monopoly?





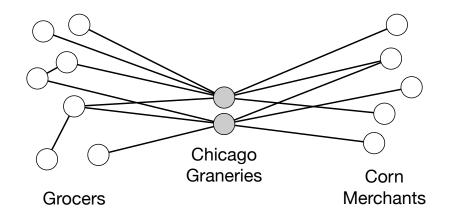
2 networks of cell phone providers and customers.

- What kind of network do we want to see?
- How can we change regulations to make a better network?

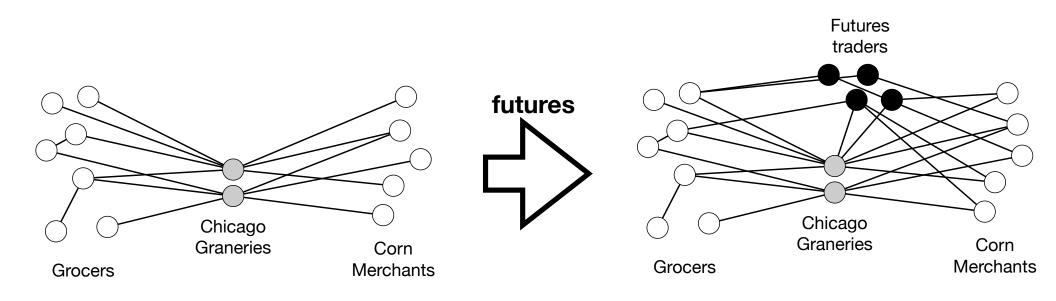
#### How futures break monopolies [Heironymous]

- Chicago in the 1850s
- Corn merchants would buy corn from farmers, sell to granaries, who sell to grocers
- Granaries are monopolies
- Corn merchants need capital. Futures contracts—contract for delivery of corn in future
- Other residents of Chicago buy and sell futures contracts
- Eliminated ability of granaries to fix prices, even though flow of corn is the same!

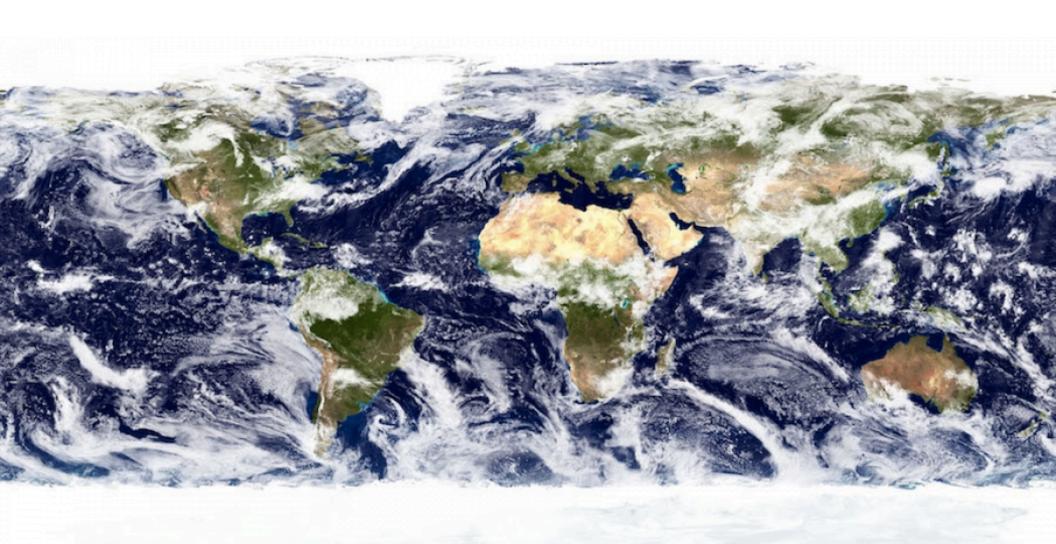
## Futures markets and monopolies



# Futures markets and monopolies



• Futures market broke monopoly, even though flow of goods is the same!



"Clouds are frozen over the great plains, but the whole world is not hidden."

-The Blue Cliff Record