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Research Statement

My research interests are primarily in theoretical computer science. It is an exciting time to be
working in theory — there are many opportunities to discover new connections and many opportunities
to make progress on foundational questions. I have had success with two such broad questions so far.

Question 1: To what extent is the use of randomness necessary in computer science?

By now it is clear that randomness plays a key role in algorithm design, cryptography and dis-
tributed computing. So it is worthwhile to investigate exactly what can be done with and without
randomness, and to identify the minimal assumptions on the randomness under which we can still get
the benefits of randomized methods. This is the aim of the research area called pseudorandomness.

Question 2: How can we make computationally hard problems even harder?

Finding explicit examples of computationally hard problems is a major project in complexity and
is the central goal of the research area called lower bounds. Such examples would be useful for
generating pseudorandomness, and for cryptography. One way to find such an explicit problem is to
start with a mildly hard problem, and amplify its hardness by transforming it in some simple way.
Similar techniques are also useful to prove that it is hard to approximate the answer to optimization
problems.

My research has led to many discoveries, and many avenues for new progress remain. I start by
giving some highlights of my past research.

Pseudorandomness: I have spent most of my efforts in this area on the design of efficient randomness

extractors.

Randomness Extractors for Independent Sources Randomness is an essential resource
for solving computer science problems, yet physical sources of randomness can at best
give us samples from a distribution with some entropy. In [Rao06a], I gave the best known
algorithms to extract true randomness from a few independent defective physical sources,
showing how to extract randomness even when each source that supplies n bits has nΩ(1)

entropy. The best results prior to my work required Ω(n) entropy in each source.

Ramsey Graphs In 1947, Erdős introduced the Probabilistic Method by showing that most
graphs on n vertices are Ramsey Graphs — they do not have any cliques or independent
sets of size 2 log n. The quest to find explicit Ramsey graphs was born. In [BRSW06], my
coauthors and I gave an algorithm to build the best known explicit Ramsey Graph today—

a graph of size n that has no cliques or independent sets of size 2logo(1) n. The previous
bound of 2

√

log n [FW81] had survived for 25 years, despite many attempts to surpass it.
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Lower bounds: Most of my results in this area relate to certain types of amplification methods.

Parallel Repetition Proving that it is NP-hard to approximate the value to optimization prob-
lems is a major research area. I gave an optimal analysis [Rao08b] for parallel repetition,
a crucial component of such hardness of approximation results. My result gave the first
positive evidence for the famous Unique Games Conjecture of Khot.

Direct Sums in Communication Complexity If two parties need to communicate c bits
with each other to compute some joint function of their inputs, how many bits of com-
munication does it take to compute the function on k different inputs? Proving that the
communication must grow for the general model of randomized communication has been a
longstanding open problem. In [BBCR08], my coauthors and I made the first progress on
this question, showing that roughly Ω(c

√
k) bits of communication are required.

Foams What is the least surface area of a body that tiles space like a cube? In [KORW08], my
coauthors and I used techniques developed to understand parallel repetition to show the
surprising fact that there is a body that tiles space like a cube, yet has surface area that is
similar to that of a sphere (which is best possible). Similar ideas led us to a new probabilistic
rounding scheme that can round points in Euclidean space to nearby integer points in such
a way that the probability that two points get different roundings is proportional to the
distance between them.

Next, I give a more detailed description of my research interests.

1 Pseudorandomness and Extractors

It is widely acknowledged that the physical universe is unpredictable. In computer science this un-
predictability, modeled as randomness, turns out to be an enabling feature in algorithm design, cryp-
tography and distributed computing. Can we weaken the assumption that we have access to true
randomness? One way to do this is to show how to simulate any solution that requires true random-
ness with a solution that requires a weaker type of randomness, or no randomness at all. Some of the
most celebrated recent results in theoretical computer science have come as a result of taking some
randomized solution (usually a very natural one) and replacing the randomness with something that
is pseudorandom. The deterministic primality test of Agrawal, Kayal and Saxena [AKS04] and the
log-space algorithm for undirected connectivity of Reingold [Rei05] are both examples of this approach.

A key step in many such problems is the efficient deterministic construction of pseudorandom

objects, examples of which include randomness extractors and Ramsey graphs.

1.1 Explicit Extractors

Randomness extractors are algorithms that can help close the gap between the physical assumption
of unpredictability and the computer science model of pure randomness. Physical sources don’t yield
independent truly random bits, instead they produce samples with some entropy. A randomness
extractor is an algorithm that extracts truly random bits from such defective sources, which can then
be used in computer science applications.

Unfortunately, it is impossible to extract randomness from a single defective source. So most
work has focussed on finding the most general assumptions under which extractor algorithms can be
designed.
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A very natural case under which it is possible to extract is when we have access to 2 or more
independent defective sources. In [Rao06a], I designed an algorithm that has the best known tradeoff
between the number of sources and the entropy available in each source. It only requires a constant
number of sources of length n, each with entropy nǫ for arbitrary ǫ > 0. Results prior to my work
[CG88, BIW04, BKS+05, Raz05, Bou05] all required entropy at least Ω(n), and the best of them relied
on major results from arithmetic combinatorics. The technique that I developed to solve this problem
was elementary, and turned out to be useful for several other randomness extractor constructions.
In subsequent works [RZ08, Rao08a] we managed to show how to extract even when the number of
sources is as small as 3 or 2, though these results have some additional restrictions.

A good model for randomness obtained from physical devices is to model the randomness as coming
from a process with small memory. In work with Jesse Kamp, Salil Vadhan and David Zuckerman
[KRVZ06] we showed how to extract from such a source when the entropy is as small as nα, for some
fixed constant α < 1.

Another context in which such extractors are useful is when we have some truly random string
that is corrupted by an adversary. For example, it might be the case that the adversary has learnt
some unknown part of our secret key in a cryptographic protocol [Dod00, CDH+00]. In [Rao06b], I
showed how to extract many private bits even when the adversary knows all but logΩ(1) n of the n
bits. Prior to my work, the best results [KZ07, GRS04] required that the adversary does not know at
least

√
n of the bits.

1.2 Ramsey Graphs

A Ramsey Graph is a prototypical example of a pseudorandom object — it is a graph that has no
large cliques or independent sets. In 1928 Ramsey [Ram28] proved that every graph on n vertices
must have a clique or independent set of size at least (1/2) log n. In 1947 Erdős published his paper
inaugurating the Probabilistic Method with a few examples, including a proof that complemented
Ramsey’s discovery: most graphs on n vertices avoid cliques and independent sets of size 2 log n.
This prompted many attempts to find an explicit family of graphs matching Erdős’ bound. For a
long time, the best record was a construction of Frankl and Wilson [FW81] from 1981. They used
intersection theorems for set systems to construct n-vertex graphs that avoid cliques/independent sets
of size 2Ω(

√

log n). This bound was matched by several other works [Alo98, Gro00, Bar06, Gop06].
Remarkably all of these attempts got stuck at essentially the same bound.

Ramsey graphs are intimately connected with extractors for two sources — if the adjacency matrix
for the graph is viewed as the truth table of an extractor, the extractor property guarantees that every
large set of vertices in the graph induces a subgraph with edge density close to 50%. In particular,
this ensures that there can be no large cliques or independent sets. Barak, Shaltiel, Wigderson and
myself [BRSW06] used this connection to give a new explicit Ramsey Graph that avoids cliques and

independent sets of size 2logo(1) n, finally surpassing the bound of Frankl and Wilson.

1.3 Network Extractors

Distributed computing provides many examples of problems that are impossible to solve without the
use of randomness. Can we relax the assumption that we have access to truly random bits in these
settings? This kind of question was first considered by Goldwasser et al. [GSV05] who gave some
results for a restricted model of impure randomness.

In work with Yael Tauman Kalai, Xin Li and David Zuckerman [KLRZ08], we showed that under
certain cryptographic assumptions, any cryptographic task involving the use of true randomness by
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many parties can be simulated if each participant has just one defective source of randomness with
entropy nǫ. In particular, this implies that we can perform reliable cryptography even if all but nǫ of
the information in the private randomness of each player is leaked to the adversary. We proved this by
designing a network extractor protocol — a protocol that the players can run to extract randomness
from their sources, even in the presence of adversaries in the network. The protocol succeeds even
if a large fraction of the players collude in order to disrupt the protocol or learn information about
the private randomness of the honest players. An open problem, on which we have made significant
progress, is to get a similar result based on standard cryptographic assumptions, like the existence of
one way functions.

2 Amplification by Repetition

The central (and often elusive) goal of complexity theory is to understand exactly how hard or easy it
is to compute functions under various models of computation. Since we understand very little about
how the complexity of functions behaves, it makes sense to look for some structure that may help
us build a coherent picture. My own research in this area has involved understanding a very natural
way to take a function and use it to get a function that is even harder to compute, a process called
amplification.

2.1 Parallel Repetition

A significant body of work in theoretical computer science has gone in to show that even mildly
approximating the correct answer to many optimization problems is NP-hard [FGL+91, ALM+98,
FL92, LY93]. In order to prove such a hardness of approximation result for a specific problem, one
typically needs to show how any approximation algorithm with a bad approximation guarantee can be
used to get an approximation algorithm with a much stronger approximation guarantee. A key step
in carrying out this kind of amplification involves proving a parallel repetition theorem.

For example, suppose we are given as input a system of equations over variables x1, . . . , xm, where
each equation has the form xi + xj = a. Is there an algorithm that can distinguish when at most a
(1−ǫ) fraction of the equations can be satisfied from when at least (1−γ) fraction of the equations can
be satisfied? A natural way to make this problem easier is to amplify the gap by parallel repetition: we
consider a new system of vector equations, where each equation xi + xj = a corresponds to satisfying
k of the original equations simultaneously. We might expect that if the fraction of satisfiable equations
was less than (1 − ǫ) to start with, the fraction of satisfiable equations in the new system is less than
(1 − ǫ)k. Thus, it would be enough to distinguish the case that this fraction is less than (1 − ǫ)k or
more than (1 − γ)k, which can be quite a large gap for a carefully chosen k.

However, actually proving that this type of gap amplification works took considerable effort. In a
celebrated paper, Raz [Raz98] showed that if the optimization problem is ǫ-close to having a perfect
solution, the satisfiable fraction after repeating the problem k times in parallel is at most (1−ǫ32)Ω(k/c),
where c ≥ 1 is a constant that depends on the structure of the problem. Raz’s result was enough to
prove several hardness of approximation results and was subsequently simplified by Holenstein [Hol07],
to get the bound (1 − ǫ3)Ω(k/c).

In recent years, many optimal hardness of approximation results have come to be based on the
Unique Games Conjecture of Khot [Kho02], for example for Max 2-Lin [Kho02], Vertex Cover [KR03],
Max-Cut [Kho02, KKMO04, MOO05], Approximate Coloring [DMR06], Sparsest Cut [CKK+06,
KV05] and Max 2-Sat [Aus07]. The conjecture renewed interest in the exact bound for parallel
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repetition, since a bound that was independent of the structure of the problem would weaken the
conjecture.

I helped to settle the question of how much parallel repetition can help in this situation. In
[Rao08b], I showed that the truth

(

(1 − ǫ2)Ω(k)
)

is independent of the structure of the particular op-
timization problems being considered. Raz [Raz08a] then discovered that my bounds were optimal.
In subsequent work with Barak, Haviv, Hardt, Regev and Steurer [BHH+08], we showed how to use
semi-definite programs to classify exactly which problems do not behave well under parallel repeti-
tion. We discovered that the situations in which parallel repetition fails to work well are exactly the
situations that we would like it to work in (namely when known algorithms give bad approximation
guarantees).

It turns out that a variant of the parallel repetition question is relevant to quantum physicists
trying to design experiments that verify quantum entanglement [Bel64, CHSH69, BCH+02, Gil03].
My results also provided the first useful bound for that context.

2.2 Direct Sums in Communication Complexity

Communication is at the heart of most computational processes, and so the study of communication

complexity has had many applications in computer science. Communication complexity measures
how many bits two parties need to send each other in order to compute some joint function of their
inputs. If the communication complexity of a function is c, what can we say about the communication
complexity of computing the function on k different inputs simultaneously? No answer better than the
trivial lower bound of c was known for the general model of randomized communication complexity,
despite much effort [KKN95, FKNN95, CSWY01, BYJKS04, SS02, Abl93, HJMR07].

In work with Barak, Braverman, and Chen [BBCR08], we showed that computing the function on k
inputs requires roughly Ω(c

√
k) bits of communication. If we are interested in computing the function

on average under the uniform distribution, our bound is improved to roughly Ω(ck), essentially best
possible. A key part of our proof involved using the insights and intuitions developed in the work on
parallel repetition.

2.3 Foams

My work on parallel repetition led me to a beautiful question in geometry — what is the least possible
surface area of a body in d-dimensional Euclidean space that tiles space like the cube? Here we are
looking for a body that can cover all of space by integer translations, without overlaps. The cube itself
has surface area 2d, and any such body must have surface area larger than the unit volume sphere
O(

√
d). It was known [Cho89] that the best such shape in the plane has perimeter

√
2 +

√
6 ≈ 3.86,

which is less than 4, the perimeter of the unit square. However, the best candidate for the case of
large d had surface area Ω(d).

In work with Kindler, O’Donnell and Wigderson [KORW08], we used ideas from Raz’s proof of
optimality for my parallel repetition theorem to show the surprising fact that there is a such a body
with surface area that is about 3 times larger than that of the d dimensional sphere (O(

√
d)). Our

work was particularly satisfying because it illustrated how work in computer science could have an
impact on mathematics.

Our methods also allowed us to show that there is a way to round points in Euclidean space to
nearby points with integer coordinates in such a way that the probability that two points get different
roundings is proportional to the distance between them. This kind of rounding scheme would be useful
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in algorithms for geometric problems like nearest neighbor search, though we need to find an efficient
implementation of our scheme before it becomes useful for this application.

3 The Future

There are a several broad questions that I plan to explore in the next few years. The first is the central
question in the area of pseudorandomness:

Question 1: Can every randomized algorithm be efficiently simulated by a deterministic algorithm?

I intend to use this as the guiding question for my work in this area over the next few years. One
way to approach this issue is to find an efficient pseudorandomness generator, namely a deterministic
algorithm that produces bits that looks random to efficient algorithms. Recently, there has been some
progress on constructing such generators for circuits of depth 2 [Baz07, Raz08b], showing that this
area might be open to attack.

A target that I feel is closer at hand is to relax the assumption that we have true randomness in
distributed environments:

Question 2: Can every distributed computing protocol be efficiently simulated by players with de-
fective sources of randomness?

While it is known that a defective source of randomness is enough to simulate every randomized
algorithm, it is still unclear that every protocol in a distributed environment can be simulated by
players with defective sources of randomness. I believe that the answer is positive, but many ideas
are needed to come up with a formal proof of this fact. We have already made a lot of progress
towards proving the analogous result for cryptographic protocols, where the adversary is assumed to
be computationally bounded.

The main goal in the area of lower bounds is to find an explicit function that is hard to compute
by efficient algorithms. This is a major open problem and it is not likely to be easily resolved. A likely
easier question, that would still be a major step, is the following:

Question 3: Are boolean circuits of large depth strictly more powerful than boolean circuits of small
depth?

If the answer is positive (I believe that it is), this says that there is no generic way to increase the
number of processors in a parallel computing environment to always give a speed up. In fact, it is
known [KRW95] that this question can be cast in the framework of proving a direct sum type result
for communication complexity. Given the progress on such direct sums that we have already made in
[BBCR08], and the tools we discovered along the way to this result, I am optimistic that many doors
will soon open.

Another area where I feel I can effectively employ my time is pushing the state of knowledge in
hardness of approximation.

Question 4: Is the Unique Games Conjecture true?
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As I discussed earlier, giving a positive answer to this question would give many optimal hardness
of approximation results, so it is of considerable interest. My parallel repetition bounds have already
given the first evidence that the answer is positive, and I’m hopeful that further progress is in reach.

Advances in theory often come from discovering new connections with other areas. In recent years,
theory has begun a healthy exchange of ideas with arithmetic combinatorics and geometry. My own
work on foams is an example of this type of connection. Several recent works in pseudorandomness
have also benefited from this interaction [BV07, Vio08, RTTV08]. I believe that there are many more
connections between these areas that have not yet been discovered, and I intend to play an active role
in finding them.
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