
�

�

�

�

�

�

�

�

92

Survey of Stochastic Computing

ARMIN ALAGHI and JOHN P. HAYES, University of Michigan

Stochastic computing (SC) was proposed in the 1960s as a low-cost alternative to conventional binary com-
puting. It is unique in that it represents and processes information in the form of digitized probabilities. SC
employs very low-complexity arithmetic units which was a primary design concern in the past. Despite this
advantage and also its inherent error tolerance, SC was seen as impractical because of very long compu-
tation times and relatively low accuracy. However, current technology trends tend to increase uncertainty
in circuit behavior and imply a need to better understand, and perhaps exploit, probability in computation.
This article surveys SC from a modern perspective where the small size, error resilience, and probabilistic
features of SC may compete successfully with conventional methodologies in certain applications. First, we
survey the literature and review the key concepts of stochastic number representation and circuit structure.
We then describe the design of SC-based circuits and evaluate their advantages and disadvantages. Finally,
we give examples of the potential applications of SC and discuss some practical problems that are yet to be
solved.

Categories and Subject Descriptors: B.2 [Hardware]: Arithmetic and Logic Structures; B.8.1
[Performance and Reliability]: Reliability, Testing, and Fault-Tolerance; C.1 [Computer Systems
Organization]: Processor Architectures

General Terms: Reliability

Additional Key Words and Phrases: Probabilistic computation, stochastic computing, stochastic logic

ACM Reference Format:
Alaghi, A. and Hayes, J. P. 2013. Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. 12, 2s,
Article 92 (May 2013), 19 pages.
DOI:http://dx.doi.org/10.1145/2465787.2465794

1. INTRODUCTION

Modern computing hardware is constrained by stringent application requirements like
extremely small size, low power consumption, and high reliability. It is also subject to
physical phenomena like manufacturing process variations and soft errors, which give
rise to error-prone behavior that can best be described in probabilistic terms. Conse-
quently, unconventional computing methods that directly address these issues are of
increasing interest. In this article, we examine one such technique known as stochastic
computing (SC) [Gaines 1967; Poppelbaum et al. 1967]. A basic feature of SC is that
numbers are represented by bit-streams that can be processed by very simple circuits,
while the numbers themselves are interpreted as probabilities under both normal and
faulty conditions. For example, a bit-stream S containing 25% 1s and 75% 0s denotes
the number p = 0.25, reflecting the fact that the probability of observing a 1 at an
arbitrary bit position is p. Neither the length nor the structure of S need be fixed;

This work was supported by Grant CCF-1017142 from the U.S. National Science Foundation.
Authors’ address: A. Alaghi and J. P. Hayes, Department of Electrical Engineering and Computer Science,
Computer Science and Engineering Division, University of Michigan, 2260 Hayward Street, Ann Arbor, MI
48109-2121; email: {alaghi, jhayes}@eecs.umich.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/05-ART92 $15.00
DOI:http://dx.doi.org/10.1145/2465787.2465794

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:2 A. Alaghi and J. P. Hayes

Fig. 1. AND gate used as a stochastic multiplier: (a) exact and (b) approximate computation of 4/8 × 6/8.

for example, (1,0,0,0), (0,1,0,0), and (0,1,0,0,0,1,0,0) are all possible representations of
0.25. Note that p depends on the ratio of 1s to the length of the bit-stream, not on their
positions, which can, in principle, be chosen randomly. We will refer to bit-streams of
this type and the probabilities they represent as stochastic numbers.

The main attraction of SC when it was first introduced in the 1960’s [Gaines 1967;
Poppelbaum et al. 1967; Ribeiro 1967] is that it enables very low-cost implementations
of arithmetic operations using standard logic elements. For example, multiplication
can be performed by a stochastic circuit consisting of a single AND gate. Consider two
binary bit-streams that are logically ANDed together. If the probabilities of seeing a 1
on the input bit-streams are p1 and p2, then the probability of 1 at the output of the
AND gate is p1 × p2, assuming that the two bit-streams are suitably uncorrelated or
independent. Figure 1 illustrates the multiplication of two stochastic numbers in this
way. As can be seen, the inputs to the AND gate represent the numbers 4/8 and 6/8
exactly. In the case of Figure 1(a), we get an output bit-stream denoting 4/8 × 6/8 =
3/8. Figure 1(b) shows two of the many possible alternative SC representations of the
same input numbers 4/8 and 6/8. In this case, the output bit-stream denotes 2/8, which
can be interpreted as an approximation to the exact product 3/8. This example illus-
trates a key problem which we will examine later: How do we generate “good” stochas-
tic numbers for a particular application?

Another attractive feature of SC is a high degree of error tolerance, especially for
transient or soft errors caused by process variations or cosmic radiation. A single bit-
flip in a long bit-stream will result in a small change in the value of the stochastic num-
ber represented. For example, a bit-flip in the output of the multiplier of Figure 1(a)
changes its value from 3/8 to 4/8 or 2/8, which are the representable numbers closest
to the correct result. But if we consider the same number 3/8 in conventional binary
format 0.011, a single bit-flip causes a huge error if it affects a high-order bit. A change
from 0.011 to 0.111, for example, changes the result from 3/8 to 7/8. Stochastic num-
bers have no high-order bits as such since all bits of a stochastic bit-stream have the
same weight.

On the other hand, SC has several problems that have severely limited its practical
applicability to date. An increase in the precision of a stochastic computation requires
an exponential increase in bit-stream length, implying a corresponding exponential
increase in computation time. For instance, to change the numerical precision of a
stochastic computation from 4 to 8 bits requires increasing bit-stream length from 24 =
16 bits to 28 = 256 bits. As illustrated by Figure 1, variations in the representation of
the numbers being processed can lead to inaccurate results. An extreme case occurs
when identical bit-streams denoting some number p are applied to the AND gate: the
result then is p, rather than the numerically correct product p × p = p2.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:3

Table I. Timeline for the Development of Stochastic Computation

Dates Items References
1956 Fundamental concepts of probabilistic logic design. [von Neumann 1956]
1960–79 Definition of SC and introduction of basic concepts.

Construction of general-purpose SC computers.
[Gaines 1967, 1969]
[Poppelbaum 1976]

1980–99 Advances in the theory of SC.
Studies of specialized applications of SC, including
artificial neural networks and hybrid controllers.

[Jeavons et al. 1994]
[Kim and Shanblatt 1995]
[Toral et al. 1999]

2000–present Application to efficient decoding of error-correcting
codes. New general-purpose architectures.

[Gaudet and Rapley 2003]
[Qian et al. 2011]

Over the years, SC has been recognized as potentially useful in specialized (and
often embedded) systems, where small size, low power, or soft-error tolerance are re-
quired, and limited precision or speed are acceptable. Besides its intrinsic suitability
for certain computation tasks, SC seems worth reexamining because it copes with some
complex probabilistic issues that are becoming an unavoidable part of conventional
technologies [Krishnaswamy et al. 2007] and are as yet poorly understood.

Table I provides a brief historical perspective on SC. von Neumann [1956] defined
fundamental ideas concerning probabilistic, error-tolerant design, and greatly influ-
enced subsequent research. In the mid-1960s, further influenced by developments in
both analog and digital computers, SC was defined and explored concurrently in the
U.K. [Gaines 1967, 1969] and the U.S. [Poppelbaum et al. 1967; Ribeiro 1967]. Sev-
eral of the few general-purpose stochastic computers ever actually implemented were
built around that time, and they uncovered numerous shortcomings of the technol-
ogy. Poppelbaum [1976] observed that “short sequences are untrustworthy” and that a
major drawback of SC is low bandwidth and therefore low computational speed.

It is interesting to note that the first—and also the last—International Symposium
on Stochastic Computing and its Applications was held in Toulouse in 1978. Since
then, interest in SC has greatly diminished as conventional binary circuits have be-
come smaller, cheaper, faster, and more reliable. SC research has focused on a narrow
range of specialized applications, such as neural networks, [Brown and Card 2001; Kim
and Shanblatt 1995], control circuits [Marin et al. 2002; Toral et al. 1999], and reliabil-
ity calculations [Aliee and Zarandi 2011; Chen and Han 2010]. There were, however,
some important theoretical discoveries [Gupta and Kumaresan 1988; Jeavons et al.
1994] relating to stochastic number generation that have attracted little attention,
but nevertheless have positive implications for SC, as we explain in Section 3.

A recently-discovered practical application of SC is to the decoding of low-density
parity-check (LDPC) and related error-correcting codes [Gaudet and Rapley 2003].
LDPC codes constitute a family of linear codes that are increasingly used for communi-
cation over noisy, error-prone channels, for instance, in the IEEE WiFi standard [IEEE
2009]. Because of its use of extremely long codewords (often containing thousands of
bits), LDPC decoding requires massive computational resources using conventional
approaches [Zhang et al. 2010]. Moreover, some of the better decoding algorithms are
probabilistic or “soft” rather than deterministic. All these features suggest that LDPC
decoding can take advantage of the compactness, error tolerance, and inherently prob-
abilistic nature of SC circuits, as has been demonstrated [Naderi et al. 2011].

There are other probabilistic methods in the computing literature that we do not
consider here, some of which use the term “stochastic.” They typically aim to achieve
power-reliability trade-offs by means of probabilistic or statistical design, and differ
substantially from what we call SC. For example, Shanbhag et al. [2010] and Akgul
et al. [2006] focus on supply-voltage overscaling and methods of reducing the effect of
any resulting errors. Other examples of probabilistic computing hardware are found in

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:4 A. Alaghi and J. P. Hayes

Fig. 2. Multiplexer used as a scaled stochastic adder.

Nepal et al. [2005] and Vigoda [2003]. The terms “stochastic numbers” and “stochastic
arithmetic” appear in Alt et al. [2006] which, however, is concerned with numerical
errors in conventional binary computation.

In this article, we attempt to survey and critique SC from a modern perspective.
After reviewing the basic ideas behind SC, we examine its major advantages and
disadvantages with emphasis on accuracy issues. Then, some recent representative
applications of SC, including LDPC decoding, are discussed. Finally, we draw some
conclusions and suggest topics for future research.

2. BASIC CONCEPTS

Since stochastic numbers are treated as probabilities, they fall naturally into the in-
terval [0,1]. This makes the normal add operation inconvenient because the sum of two
numbers from [0,1] lies in [0,2]. For this reason, special scaled add operations are used
in SC in order to map results from [0,2] to [0,1]. As illustrated in Figure 2, a two-way
multiplexer can compute the sum of two stochastic numbers p(S1) and p(S2) applied to
its data inputs S1 and S2. A third number with the constant value p(S3) = 1/2 is also
required, and is applied to the multiplexer’s third (select) input; this can be supplied
by a (pseudo) random number generator. The probability of a 1 appearing at the output
S4 is then equal to the probability of 1 at S3 multiplied by probability of 1 at S1, plus
the probability of 0 at S3 multiplied by the probability of 1 at S2. More formally,

p(S4) = p(S3)p(S1) + (1 − p(S3))p(S2) = (p(S1) + p(S2))/2,

so that S3 effectively scales the sum by 1/2. For the stochastic numbers shown in
Figure 2, we obtain the result p(S4) = (7/8 + 3/8)/2 = 5/8.

Circuits that convert binary numbers to stochastic numbers, and vice versa, are
fundamental elements of SC. Figure 3(a) illustrates a widely used binary-to-stochastic
conversion circuit, which we will refer to as a stochastic number generator (SNG). The
conversion process involves generating an m-bit random binary number in each clock
cycle by means of a random or, more likely, a pseudorandom number generator, and
comparing it to the m-bit input binary number. The comparator produces a 1 if the
random number is less than the binary number and a 0 otherwise. Assuming that the
random numbers are uniformly distributed over the interval [0,1], the probability of a
1 appearing at the output of the comparator at each clock cycle is equal to the binary
input of the converter interpreted as a fractional number.

Converting a stochastic number to binary is much simpler. The stochastic number’s
value p is carried by the number of 1s in its bit-stream form, so it suffices to count these
1s in order to extract p. Figure 3(b) shows a counter that performs this conversion.

Figure 4 shows a stochastic circuit that implements the arithmetic function z =
x1x2x4 +x3(1 − x4) [Li et al. 2009]. The inputs x1, x2, x3, and x4 are provided in conven-
tional binary form and must be converted to stochastic numbers via SNGs. Suppose

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:5

Fig. 3. Number conversion circuits: (a) binary-to-stochastic; (b) stochastic-to-binary.

Fig. 4. Stochastic circuit realizing the arithmetic function z = x1x2x4 + x3(1 − x4).

that the corresponding bit-streams S1, S2, S3, and S4 have the probability values 4/8,
6/8, 7/8, and 2/8, respectively. We know that the AND gate is a multiplier, so (with high
probability) it outputs S5 = 4/8 × 6/8 = 3/8. The probability of 1 at S6 is the proba-
bility of 1 at both S4 and S5 plus the probability of 0 at S4 and a 1 at S3. This can be
written as

p(S6) = p(S4 ∧ S5) + p(S4 ∧ S3) − p(S4)p(S1)p(S2) + (1 − p(S4))p(S3).

Hence, S6 is a stochastic representation of the number x1x2x4 + x3(1 − x4), and the
counter at the output converts it to conventional binary form.

The result appearing at z in Figure 4 is 6/8 only if we get six 1s at S6 in eight
clock cycles, otherwise the counter outputs a number other than 6/8. The probability
of obtaining exactly six 1s is p{z = 6/8} = (8

6

)
(6/8)6(2/8)2 ∼= 0.31, implying there is a

69% chance that we do not get six 1s, and the computation has some inaccuracy.
The stochastic numbers in Figure 4 have been chosen to avoid inaccuracy. Indeed,

even if we use a high-quality random number source such as the one million random
digits table [RAND Corp. 1955] to generate the stochastic numbers, we would probably
still find some inaccuracy. For example, using the first four lines of this table to gen-
erate stochastic representations for x1, x2, x3, and x4, we obtain S1 = (0,1,1,0,0,0,1,0),
S2 = (0,0,1,1,1,1,1,1), S3 = (1,1,1,1,1,1,1,1), and S4 = (0,0,0,0,0,1,0,0). Applying these
numbers to the circuit in Figure 4 yields S6 = (1,1,1,1,1,0,1,1) = 7/8 �= 6/8.

Accuracy concerns arise in SC for several reasons. The one previously discussed
is due to the fluctuations inherent in random numbers. Correlations among the

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:6 A. Alaghi and J. P. Hayes

stochastic numbers being processed also lead to inaccuracies. Surprisingly, it is gener-
ally not desirable to use truly random number sources to derive or process stochastic
numbers. As explained in the next section, deterministic or pseudorandom number
generators form the best driving sources for SNGs from both a practical and theoreti-
cal point of view. They can be used to implement SC operations with high and, in some
special cases, complete accuracy.

3. ACCURACY ISSUES

A stochastic number is a binary sequence of length n with n1 1s and 1 − n1 0s that
represents the number n1/n ∈ [0,1]. Clearly, the stochastic representation of a number
is not unique. SC uses a redundant number system in which there are

(n
n1

)
possible

representations for each number n1/n. For example, with n = 4, there are six ways to
represent 1/2: (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), and (1,1,0,0). Moreover,
an n-bit sequence can only represent numbers in the set {0/n, 1/n, 2/n, . . . , (n − 1)/n,
n/n}, so only a small subset of the real numbers in [0,1] can be expressed exactly in
SC. More formally, a binary sequence S of length n is a stochastic number p̂ if it is
interpreted as the rational number p = n1/n, where n1 is the number of 1s in S.

Several variant formats for stochastic numbers have been proposed. Gaines [1967]
considers mapping the natural range of stochastic numbers, that is, the interval [0,1]
to different symmetric ranges, and discusses the computation elements needed. One
such mapping is from x ∈ [0,1] to the range y ∈ [−1,1] via the function y = 2x−1. This
is the bipolar stochastic representation, and an XNOR gate performs multiplication in
this case. We shall not consider such representations any further, as their properties
are quite similar to those of the basic stochastic numbers used here.

Inaccuracy in SC has several distinct sources: random fluctuations in stochastic
number representation, similarities (correlations) among the numbers that are being
combined, and physical errors that alter the numbers. Jeavons et al. [1994] define two
n-bit binary sequences S1 = (S1(1), S1(2), . . . , S1(n)) and S2 = (S2(1), S2(2), . . . , S2(n))
as uncorrelated or independent if and only if

n∑
i=1

S1(i)S2(i) =
∑n

i=1 S1(i) × ∑n
i=1 S2(i)

n
.

Otherwise, the sequences are called correlated. The following example shows how cor-
relation can lead to inaccuracy. The eight-bit stochastic numbers S1 = (1,1,1,1,0,0,0,0)
and S2 = (0,1,0,1,0,1,0,1), both representing 1/2, are uncorrelated according to the pre-
ceding definition. Their product S1 × S2, obtained by ANDing them (as in Figure 1),
is (0,1,0,1,0,0,0,0) = 1/4. In contrast, S1 and S3 = (0,0,0,0,1,1,1,1) are correlated, and
their product (0,0,0,0,0,0,0,0) = 0, which is far from the correct result.

To reduce such inaccuracies, SNGs are needed which produce stochastic numbers
that are sufficiently random and uncorrelated. These requirements can be met by lin-
ear feedback shift registers (LFSRs), which have been proposed for number generation
in many SC designs The preferred LFSRs have m flip-flops and cycle through n = 2m –
1 distinct states, the maximum possible since the all-0 state is excluded. The n-bit bi-
nary sequences produced are usually called pseudorandom because, although they are
deterministic, they pass various randomness tests, for example, they contain (almost)
equal numbers of 0s and 1s, as well as runs of 0s and 1s whose numbers and lengths
correspond to those of a Bernoulli sequence. In addition, shifted versions of LFSR se-
quences have low correlation [Golomb 1982; Jeavons et al. 1994]. Poppelbaum [1976]
noted that if LFSRs are large enough, they resemble ideal random sources. Hence,
noise-like random fluctuations appear as errors in the generated stochastic numbers.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:7

Fig. 5. The weighted binary SNG proposed by Gupta and Kumaresan [1988].

Table II. Bit-streams Generated by the Circuit of
Figure 5

Signal Bit-stream Value
L3 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 8/16
L2 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 8/16
L1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 8/16
L0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 8/16
W3 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 8/16
W2 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 4/16
W1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2/16
W0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1/16
x̂ 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 11/16

These errors can be reduced at a rate n−1/2 by increasing the number length n. Much
less is known about how this error size changes as stochastic numbers go through a
sequence of operations.

Surprisingly, LFSRs can be used to generate stochastic numbers that are, in cer-
tain cases, guaranteed to be exact. This was demonstrated for multiplication by Gupta
and Kumaresan [1988] who introduced a new type of SNG that we call a weighted
binary SNG. Figure 5 shows a 4-bit version, which converts a 4-bit binary number x
to a stochastic number x̂ of length 16. The pseudorandom source is a 4-bit LFSR to
which the all-0 state is artificially added (details not shown). The SNG’s behavior with
x = 11/16 is illustrated in Table II. The bit-streams Li generated by the LFSR, the
intermediate signals Wi, and the output stochastic number x̂ are all shown. The key
features of the Gupta-Kumaresan design, which immediately imply that x̂ exactly rep-
resents x, is that the W3, W2, W1, and W0 bit-streams have non-overlapping 1s, and
weights of 1/2, 1/4, 1/8, and 1/16, respectively. Gupta and Kumaresan further used this
SNG to design a circuit that multiplies two stochastic numbers accurately. As shown in
Figure 6 for the four-bit case, it contains two weighted binary generators connected to
a double-length LFSR. It is not hard to see that stochastic multiplication using this ap-
proach always yields exact results. Zelkin [2004] employs an essentially similar SNG
to design an accurate arithmetic unit for stochastic numbers.

The foregoing results reveal an important and perhaps unexpected aspect of SC:
pseudorandom stochastic numbers can be better than random. This can be com-
pared to the use of low-discrepancy numbers in quasi-Monte-Carlo sampling methods

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:8 A. Alaghi and J. P. Hayes

Fig. 6. Accurate four-bit stochastic multiplier of the type proposed by Gupta and Kumaresan [1988].

[Singhee and Rutenbar 2009]. Quasi-Monte Carlo is similar to normal Monte Carlo,
but uses carefully chosen deterministic samples instead of purely random ones. More-
over, Gupta and Kumaresan’s work shows that small deterministic LFSRs can produce
highly accurate results. In contrast, Gaines [1967] and Poppelbaum [1976] rely on very
large LFSRs to ensure randomness in the generated stochastic numbers.

Jeavons et al. [1994] address the SC accuracy problem by creating a mathematical
framework in which another SNG type is introduced. Instead of using comparators as
in the traditional SNG of Figure 3(a), their design [Van Daalen et al. 1993] employs a
cascade of majority modules M, as illustrated in Figure 7. A random number generator
feeds the Ms with uncorrelated stochastic numbers of probability 1/2, and Jeavons
et al. [1994] suggest using bits of an LFSR for this purpose. Individual bits of the
binary number x to be converted are also fed to the Ms, as shown in the figure, and one
bit of the stochastic number x̂ is generated per clock cycle.

Informally, the precision of a value is the number of bits needed to express that
value. With m bits of precision, we can distinguish between 2m different numbers. For
instance, the numbers in the interval [0,1], when represented with eight-bit precision,
reduce to the following 256-member set, {0/256, 1/256, 2/256, . . . , 255/256, 256/256},
and their exact stochastic representation requires bit-streams of length 256. To in-
crease the precision from eight to nine bits requires doubling the bit-stream length to
512, and so on. This exponential growth in data length with precision is responsible
for the long computation times associated with SC.

A stochastic number p̂ of length n has m = log2 n bits of precision, which equals
that of an �m�-bit binary number. For instance, the 16-bit stochastic numbers (1,1,1,1,
1,1,1,1,1,0,0,0,0,0,0,0) and (0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1) both represent 9/16 and have
4-bit precision. There is a difference between them, however. If we consider the first

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:9

Fig. 7. Four-bit SNG proposed by Van Daalen et al. [1993]: (a) overall structure; (b) module M.

8 bits of the sequences as a stochastic number of lower precision (3-bit precision in
this case), we obtain (1,1,1,1,1,1,1,1) and (0,1,0,1,0,1,0,1) representing 8/8 and 4/8, re-
spectively. The latter provides a low-precision estimate of the full-length stochastic
number (i.e., 9/16). This points to a potential advantage of SC: initial subsequences
of a stochastic number, if appropriately generated, can provide an estimate of a tar-
get number. We say a stochastic number p̂ of length n has progressive precision if all
the stochastic numbers p̂, k = 1,2,3,. . . ,log2(n), composed of the first 2k elements of p̂,
are accurate. In other words, accuracy and precision increase steadily with stochastic
number length. Stochastic numbers with progressive precision can therefore be seen
as presenting their most significant bits first. Such behavior of stochastic numbers has
been implicitly exploited in decoding applications [Gross et al. 2005]. In certain com-
putations, this makes it possible to make decisions early by looking at the first few bits
of a result.

Despite the efforts of Jeavons et al. [1994] and Gupta and Kumaresan [1988], ac-
curacy, or the lack thereof, continues to be a major concern in SC. Inaccuracies due to
correlation, for example, worsen as the number of inputs increases, the stochastic num-
bers pass through multiple levels of logic, or feedback is present. Reconvergent fanout,
in particular, creates undesirable correlations when signals derived from a common
input converge and interact. A possible but expensive solution to this problem is to
convert these signals to binary and regenerate new and independent stochastic num-
bers from them on the fly [Tehrani et al. 2010].

4. APPLICATIONS

Stochastic computing has been investigated for a variety of applications. Besides the
basic operations of addition and multiplication, SC has been applied to division and
square-rooting [Toral et al. 1999], matrix operations [Mars and McLean 1976], and
polynomial arithmetic [Qian and Riedel 2008; Qian et al. 2011]. A more specialized
application area for SC is reliability analysis [Aliee and Zarandi 2011; Chen and Han
2010]. Since probabilities are fundamentally analog quantities, SC has been proposed

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:10 A. Alaghi and J. P. Hayes

Fig. 8. SC-based controller for an induction motor Zhang and Li [2008].

for some analog and hybrid analog-digital computing tasks, often under the heading of
digital signal processing [Keane and Atlas 2001; Pejic and Vujicic 1999].

Neural networks [Brown and Card 2001; Dickson et al. 1993; Kim and Shanblatt
1995; Petriu et al. 2003] and control systems [Dinu et al. 2002; Marin et al. 2002] are
among the earliest and most widely studied applications of SC, and have close connec-
tions with analog computing. A recent illustrative example is found in Zhang and Li
[2008], where a control unit for an induction motor is described that integrates several
SC-based algorithms and a large neural network. The controller is implemented on
an FPGA and is claimed to exhibit higher performance and lower hardware cost than
conventional microprocessor-based designs for the same application. Figure 8 shows a
simplified, high-level view of the motor controller. The stochastic integrators execute
functions of the form y(n) = x(n) + y(n – 1) on stochastic numbers. The stochastic anti-
windup controller incorporates a complex algorithm that limits any changes implied in
the input speed command that might lead to improper motor operation. The stochastic
neural network estimator implements in real time the key feedback-processing func-
tions of the system, several of which are computation intensive. An example is the hy-
perbolic tangent or “tansig” function, which is a typical transform function computed
by an artificial neuron, and takes the form

tansig(x) = 2
(1 − e−2x)

− 1.

Zhang and Li [2008] note that besides improved cost-performance figures, their SC-
based design has advantages in terms of reduced design and verification effort.

Image processing is another potential application area for SC of great practical im-
portance. Many imaging applications involve functional transformations on the pix-
els of an input image. The pixel-level functions are usually simple, but because of
the large number of pixels involved, the overall transformation process is extremely
computation-intensive. If these functions are implemented using SC, then low-cost,
highly parallel image processing becomes possible, as has been demonstrated in a
smart SC-based image-sensing chip [Hammadou et al. 2003].

General-purpose SC has received little attention since the 1970s. It was revisited
recently by Qian et al. [2011] and Li et al. [2009], who introduced an SC architecture
that is capable of implementing many arithmetic functions. Function implementation
in this style has a strong similarity to analog computing [McClennan 2009]. The main
idea here, which is based on Qian and Riedel [2008], is to approximate a given function
by a Bernstein polynomial [Lorentz 1986]. A Bernstein polynomial of degree k has
the form

z =
k∑

i=0

bi · Bi,k(x),

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:11

where the bi’s are the coefficients of the polynomial, and Bi,k(x) is a Bernstein basis
polynomial of the form

Bi,k(x) =
(

k
i

)
xi(1 − x)k−i.

Qian et al. propose a reconfigurable stochastic architecture that can evaluate any
function expressed in the form of a Bernstein polynomial (see Figure 9). The input
variable x and the constant coefficients bi are converted to stochastic numbers via
the random number generator and the comparators. The inputs of the adder are k
independent stochastic numbers representing x for some realization of a polynomial of
degree k. The probability of obtaining a number i at the output of the adder is

P{sum = i} =
(

k
i

)
xi(1 − x)k−i.

Now the probability of having a 1 at z is

P{z = 1} = b0 × P{sum = 0} + b1 × P{sum = 1} + . . . + bk × P{sum = k},
which reduces to

P{z = 1} =
k∑

i=0

bi · Bi,k(x).

In other words, the probability of outputting a 1 at z is a Bernstein polynomial of
degree k defined by the coefficients bi calculated at x.

Qian et al. have used their SC architecture to implement several image process-
ing functions. An example is gamma correction, which involves applying the function
z = x0.45 to every pixel of an image. This function is approximated by a degree-6 Bern-
stein polynomial, which can be implemented with the general structure of Figure 9.
The ability to maintain high accuracy in the presence of errors is another feature of
SC that can be exploited in image processing. Figure 10 compares two implementa-
tions of the gamma correction function [Qian et al. 2011]. The results of processing a
particular image by conventional (binary) circuits are shown in the top row, and by SC
circuits in the bottom row. The two implementations were exposed to the same noisy
environment. Column (a) shows the results with no errors present. Columns (b)–(f)
show the same results in the presence of random bit-flip errors occurring at rates 1%,
2%, 5%, 10%, and 15%, respectively.

Figure 10 demonstrates that the SC implementation achieves higher error re-
silience. Moreover, the stochastic implementation uses less hardware. Table III shows
the cost of several image processing functions implemented on a Xilinx Virtex-II Pro
FPGA. The table compares conventional binary design with SC. The leftmost column
in the table lists several implemented image processing functions. The gamma func-
tion, for instance, is the function mentioned earlier; for details of these functions see
Qian et al. [2011]. The costs in Table III are shown in terms of the number of look-up
tables (LUTs) used in the FPGA. Interestingly, the table reveals that more than 80%
percent of the SC design is used by SNGs and stochastic-to-binary converters.

5. LDPC DECODING

The main reasons for the early interest in SC are the relative simplicity and robust-
ness of SC-based arithmetic units and the possibility of having many units working
in parallel. These benefits became less important as the transistors became cheaper,
but as the foregoing motor-control application suggests, the benefits continue to be sig-
nificant, even in some well-established applications. Furthermore, recent research has

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:12 A. Alaghi and J. P. Hayes

Fig. 9. Reconfigurable stochastic circuit realizing a Bernstein polynomial of degree k [Qian et al. 2011].

Fig. 10. Error-tolerance comparison between conventional and SC implementations of a gamma correction
function. c© 2011 IEEE. Reprinted with permission from [Qian et al. 2011].

introduced several entirely new applications for SC. One such application is discussed
in detail next: the decoding of low-density parity check (LDPC) codes.

LDPC codes are powerful error-correcting codes which were introduced by Gallager
[1962]. They enable data to be sent over noisy channels at rates close to the theoretical
maximum (the Shannon limit). Because they are difficult to implement in practice,
they were largely ignored until the 1990s when new research [MacKay and Neal 1996]
and semiconductor technology developments made them economically viable. LDPC
codes are attractive because there are no global relations among their bits, making
it possible to have efficient decoding algorithms for very long codewords, such as the
sum-product algorithm (SPA) [Kschischang et al. 2001]. LDPC codes are now utilized

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:13

Table III. Comparison between Conventional and SC Designs

Module
Conventional Stochastic design cost

design cost Complete system* Stochastic core only**
Cost Cost Savings (%) Cost Savings (%)

Gamma 96 124 −29.2 16 83.3
RGB → XYZ 524 301 42.6 64 87.8
XYZ → RGB 627 301 52.0 66 89.5
XYZ → CIE → L*ab 295 250 15.3 58 80.3
CIE → L*ab → XYZ 554 258 53.4 54 90.3
Geometric 831 299 64.0 32 96.1
Rotation 737 257 65.1 30 95.9
Average 523.4 255.7 37.6 45.7 89.0

∗ The complete SC design.
∗∗ Only the stochastic part (without the SNGs and stochastic-to-binary converters).
Note: Cost = number of LUTs [Qian et al. 2011].

in communication standards such as WiFi [IEEE 2009] and digital video broadcasting
[ETSI 2005].

Linear codes can be represented by Boolean equations that define parity constraints
on the bits of a codeword. For instance, a nine-bit single-error detecting code is defined
by the equation

x0 ⊕ x1 ⊕ x2 ⊕ . . . ⊕ x7 ⊕ x8 = 0,

where x0, x1,. . . , x7 are data bits, x8 is a parity bit, and ⊕ is the XOR (sum modulo 2)
operation. The following four equations define a very small LDPC code of length 6.

x0 ⊕ x2 ⊕ x3 = 0;
x1 ⊕ x2 = 0;
x0 ⊕ x4 = 0;
x1 ⊕ x5 = 0.

These equations can also be written in matrix form.

⎡
⎢⎢⎣

1 0 1 1 0 0
0 1 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0
x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

where the vector-matrix multiplication uses AND and XOR. Note that this code only
has local parity constraints involving small subsets of the bits. In general, an LDPC
code of length n with k parity equations has the matrix form

H.−→x =

⎡
⎢⎣

b0,0 · · · b0,n−1

· · · . . . · · ·
bk−1,0 · · · bk−1,n−1

⎤
⎥⎦

⎡
⎢⎣

x0
...

xn−1

⎤
⎥⎦ = 0,

where the bi,j’s are 0s and 1s, and the xi’s are code bits. A typical parity matrix H of
an LDPC code is huge (n and k can be many thousands), but it is sparse in that it has
only a few1s in each row and column.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:14 A. Alaghi and J. P. Hayes

Table IV. Simplified Sum-Product Algorithm (SPA) for LDPC Decoding

Step 1 Initialize all yi ’s using yi = P{xi = 1} = xi.(1 – pe) + (1 – xi).pe where the xi ’s are the
received codeword bits and pe is the error probability of the channel.

Step 2 For each row in the parity matrix H:
a. If the row has two 1s in positions i and j, suggest new values of yi and yj for use in
Step 3 according to the following rules: y′

i = yj and y′
j = yi. Use y′′

i instead of y′
i on the

second appearance of each position i in the current iteration.
b. If the row has three 1s in positions i, j and k: y′

i = yj.(1 – yk) + yk.(1 – yj),
y′

j = yi.(1 – yk) + yk.(1 – yi) and y′
k = yi.(1 – yj) + yj.(1 – yi).

Step 3 Update each yi according to the following rules:
a. If there is a single 1 in column i of H, then yi = y′

i.
b. If there are two 1s in column i of H, then yi = (y′

i × y′′
i)/[(y′

i × y′′
i)+ (1 – y′

i)(1 – y′′
i)].

Step 4 Check if the current yi ’s form a valid codeword after converting them to binary numbers
by applying a threshold. If a valid codeword is obtained or an iteration count limit is
reached, end the procedure. Otherwise go to Step 2.

A relatively small subset of all 2n possible combinations of 0s and 1s on x0, x1, . . . ,
xn−1 satisfy the code equations; these are the valid codewords. In the preceding six-bit
example, there are 64 possible codewords, only four of which are valid. The process of
encoding data involves mapping data words to valid codewords. In the example, it is
possible to encode two-bit data because there are only four valid codewords. Since code-
words are six-bits in length, they are redundant and thus provide protection against
errors.

LDPC decoding is the process of trying to find the closest valid codeword to a re-
ceived and possibly erroneous codeword. The SPA algorithm mentioned earlier is a
probabilistic algorithm for LDPC decoding based on belief propagation. For each bit
xi of the received code, this algorithm assumes a probability yi of its being 1, that is,
yi = P{xi = 1}. For instance, if a 1 is received at position x0 of a codeword passing
through a channel with 0.1 probability of error, the SPA algorithm assigns y0 = 0.9.
This means that x0 is assumed to be 1 with probability of 0.9, which is a reasonable
assumption. These probabilities are then combined until the best valid codeword can-
didate is determined. A simplified version of the SPA algorithm appears in Table IV.
Here, it is assumed that there are at most three 1s in each row and at most two 1s
in each column of the parity matrix H. It can be shown that any LDPC code can be
transformed to an LDPC code that satisfies these conditions [Kschischang et al. 2001].

Consider again the six-bit LDPC code previously introduced, which has the following
parity matrix.

H =

⎡
⎢⎢⎣

1 0 1 1 0 0
0 1 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤
⎥⎥⎦ .

Assume that a codeword x0x1. . . x5 = 100111 is received through a channel with error
probability of 0.1; note that this codeword does not satisfy the parity constraints de-
fined by H. We will follow the procedure in Table IV to find the closest valid codeword.

Table V shows the values of the yi’s in each step of the decoding process. First, the
yi’s are initialized in Step 1: y0 = 0.9, y1 = 0.1, y2 = 0.1, y3 = 0.9, y4 = 0.9, y5 = 0.9. In
Step 2, the rows of H are traversed. The first row has three 1s in positions—0, 2, and
3—so new values—y′

0, y′
2, and y′

3—are calculated according to Step 2b. The second row
of H has two 1s, so Step 2a is executed. Since position 2 has already been visited in the
current iteration, y′′

2 is calculated. After calculation of all suggested values, the yi’s are
updated in Step 3. In Step 4, all the yi’s are converted to xi’s, as shown in Table IV. Any

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:15

Table V. LDPC Decoding Example Using the Algorithm of Table IV

Steps y0 y1 y2 y3 y4 y5
Step 1 0.9 0.1 0.1 0.9 0.9 0.9

Step 2
y′

0 = 0.82 y′
1 = 0.1 y′

2 = 0.18
y′

3 = 0.82 y′
4 = 0.9 y′

5 = 0.1
y′′

0 = 0.9 y′′
1 = 0.9 y′′

2 = 0.1
Step 3 0.98 0.5 0.02 0.82 0.9 0.1
Step 4 x0 = 1 x1 = ? x2 = 0 x3 = 1 x4 = 1 x5 = 0

New iteration: y′
0 = 0.81 y′

1 = 0.02 y′
2 = 0.19

y′
3 = 0.96 y′

4 = 0.98 y′
5 = 0.5

Step 2 y′′
0 = 0.9 y′′

1 = 0.1 y′′
2 = 0.5

Step 3 0.97 0 0.19 0.96 0.98 0.5
Step 4 x0 = 1 x1 = 0 x2 = 0 x3 = 1 x4 = 1 x5 = ?

New iteration: y′
0 = 0.79 y′

1 = 0.19 y′
2 = 0.07

y′
3 = 0.79 y′

4 = 0.97 y′
5 = 0

Step 2 y′′
0 = 0.98 y′′

1 = 0.5 y′′
2 = 0

Step 3 0.99 0.19 0 0.79 0.97 0.002
Step 4 x0 = 1 x1 = 0 x2 = 0 x3 = 1 x4 = 1 x5 = 0

Fig. 11. (a) Parity and (b) update blocks used in stochastic LDPC decoding.

yi greater than 0.75 is rounded to 1, and yi’s smaller than 0.25 are rounded to 0; the
rest are marked undecided. In this case, y1 = 0.5, so x1 is undecided, and the current
codeword is determined to be invalid. The algorithm continues by returning to Step 2.
After two more iterations, it finds the valid codeword (x0, . . . , x5) = 100110 and stops.
It should be noted that the algorithm may fail to converge to the correct codeword.
However, with suitable extensions, its average rate of decoding failure can be reduced
to an acceptably low level.

Gross et al. [2005] present a stochastic implementation of the SPA approach that
employs the basic components shown in Figure 11. The XOR gate of Figure 11(a) im-
plements the function y′

i = yj(1 − yk) + yk(1 − yj) used in Step 2b, while the circuit of
Figure 11(b) implements the update function yi = y′

iy
′′
i /[y′

iy
′′
i + (1 − y′

i)(1 − y′′
i)] in Step

3b. Steps 2a and 3a involve no significant computation and are implemented by wires.
Figure 12 shows the complete stochastic LDPC decoder for the preceding example,

designed according to the method of Gross et al. [2005]. The initial probability calcu-
lator corresponds to Step 1 of the SPA algorithm, and it generates initial values using
the received bits and the known channel behavior. Next, SNGs convert these prob-
abilities to stochastic numbers. The main SC core implements Steps 2 and 3 of the
algorithm. It receives the initial probabilities and generates new probabilities which
are fed back through multiplexers for use in later iterations. The final probabilities are
converted to binary numbers and a parity check is performed on them, as in Step 4 of
the algorithm.

The main stochastic core is the part of the LDPC decoder that performs most of the
computation. Its structure is shown in Figure 13. The XOR gates and the wiring at the
beginning of this block correspond to Step 2 of the SPA method; they are followed by

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:16 A. Alaghi and J. P. Hayes

Fig. 12. Stochastic LDPC decoder for the small example.

Fig. 13. Main stochastic core for the LDPC decoder of Figure 12.

blocks that correspond to Step 3. The update blocks shown in the figure are copies of
the circuit in Figure 11(b).

While the probabilistic nature of SC makes it suitable for this decoding application,
several other features of SC can be exploited in the decoder design. The low complexity
of the basic components enables easy scaling to very large LPDC codes and effectively
supports efficient parallel processing for such codes. Also, the progressive precision
feature noted in Section 3 speeds up convergence of the decoding process. The early
iterations of the algorithm can proceed faster by using rough values provided from
the first bits of the stochastic numbers being processed. Unlike the image processing
application [Qian et al. 2011] discussed in Section 4, the overhead due to binary-to-
stochastic number conversion is small. A recently reported ASIC implementation of
an SC-based LDPC decoder [Naderi et al. 2011] claims to achieve higher throughput
with less chip area than conventional non-SC decoders.

6. DISCUSSION

Stochastic computing has had a long and checkered history over the last half-century.
After an initial burst of interest beginning in the 1960s when a handful of prototype
SC-based computers were built, we are seeing a revival of interest in this rather unique

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:17

approach to computation. The main driving forces continue to be low hardware cost
and high error tolerance. SC has been successfully used in various control applications,
where it has proven to be an effective replacement for conventional analog or hybrid
controllers. It has also proven attractive for some specialized digital applications, such
as image processing and LDPC decoding, which can exploit massive parallelism. The
main drawback of SC is long computation time, which tends to grow exponentially
with respect to precision; a one-bit increase in precision requires a doubling in stochas-
tic number length. This has limited SC usage to relatively low-precision applications,
many of which are found in embedded systems.

SC has considerable theoretical appeal as a very unconventional way to compute. It
can also provide insights into the probabilistic aspects of other computing technologies,
such as conventional circuits subject to random faults or component variability. In the
case of a recently invented and inherently probabilistic technique, quantum comput-
ing, the randomness in the possible representations of a stochastic number mirrors the
randomness in the measured values of a quantum number [Paler et al. 2011].

Despite its long history, many aspects of SC are still not well understood and call for
further research.

— There is a need to build and evaluate more SC-based systems of practical size to
gain insight into their performance and behavior in actual use. The success of SC
in LPDC decoding suggests that SC may be fruitfully applied to fields like artificial
intelligence and robotics where probabilistic inference is widely used, often with
special-purpose hardware support [Mansinghka et al. 2009; Vigoda 2003].

— The role of randomness and correlation in stochastic number representation and
generation remains poorly understood. As we have seen here, judicious use of pseu-
dorandom numbers leads to more accurate results than purely random ones. Al-
though individual SC operations like multiplication can now be implemented with
high precision, the problem of efficiently maintaining such precision across multiple
operations and circuits is difficult and largely unexplored.

— Stochastic number generators continue to be among the most costly components
of stochastic circuits. The problems of designing and deploying cost-effective SNGs
that ensure a desired, system-wide level of accuracy or precision is far from solved.

— Finally, although SC lies at the boundary between traditional analog and digital
computation, the theoretical and practical links between these different computa-
tional styles have yet to be fully explored in the SC context.

REFERENCES

Akgul, B. E. S., Chakrapani, L. N, Korkmaz, P., and Palem, K. V. 2006. Probabilistic CMOS technology: A
survey and future directions. In Proceedings of the IFIP Conference on VLSI. 1–6.

Aliee, H. and Zarandi, H. R. 2011. Fault tree analysis using stochastic logic: A reliable and high speed
computing. In Proceedings of the Reliability and Maintainability Symposium. 1–6.

Alt, R., Lamotte, J.-L., and Markov, S. 2006. On the solution to numerical problems using stochastic arith-
metic. In Proceedings of the Symposium on Scientific Computing, Computer Arithmetic and Validated
Numerics. 6.

Brown, B. D. and Card, H. C. 2001. Stochastic neural computation I: Computational elements. IEEE Trans.
Comput. 50, 891–905.

Chen, H. and Han, J. 2010. Stochastic computational models for accurate reliability evaluation of logic
circuits. In Proceedings of the Great Lakes Symposium on VLSI. 61–66.

Dickson, J. A., McLeod, R. D., and Card, H. C. 1993. Stochastic arithmetic implementations of neural
networks with in situ learning. In Proceedings of the International Conference on Neural Networks.
711–716.

Dinu, A., Cirstea, M. N., and McCormick, M. 2002. Stochastic implementation of motor controllers. In
Proceedings of the IEEE Symposium on Industrial Electronics. 639–644.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

92:18 A. Alaghi and J. P. Hayes

ETSI. 2005. European telecommunications standards Institute Standard TR 102 376 V1.1.1: Digital video
broadcasting (DVB). User guidelines for the second generation system for broadcasting, interactive ser-
vices, news gathering and other broadband satellite applications. http://www.etsi.org.

Gaines, B. R. 1967. Stochastic computing. In Proceedings of the AFIPS Spring Joint Computer Conference.
149–156.

Gaines, B. R. 1969. Stochastic computing systems. Adv. Inform. Syst. Sci. 2, 37–172.
Gallager, R. G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory 8, 21–28.
Gaudet, V. C. and Rapley, A. C. 2003. Iterative decoding using stochastic computation. Electron. Lett. 39,

299–301.
Golomb, S. W. 1982. Shift Register Sequences (Rev. Ed.). Aegean Park Press, Laguna Hills, CA.
Gross, W. J., Gaudet, V. C., and Milner, A. 2005. Stochastic implementation of LDPC decoders. In Proceedings

of the Asilomar Conference on Signals, Systems and Computers. 713–717.
Gupta, P. K. and Kumaresan, R. 1988. Binary multiplication with PN sequences. IEEE Trans. Acoustics

Speech Signal Process. 36, 603–606.
Hammadou, T., Nilson, M., Bermak, A., and Ogunbona, P. 2003. A 96 × 64 intelligent digital pixel array

with extended binary stochastic arithmetic. In Proceedings of the International Symposium on Circuits
and Systems. IV-772–IV-775.

IEEE. 2009. IEEE Standards Association Standard. IEEE. 802.11n for information technology-
telecommunications and information exchange between systems-local and metropolitan area networks.
http://standards.ieee.org.

Jeavons, P., Cohen, D. A., and Shawe-Taylor, J. 1994. Generating binary sequences for stochastic computing.
IEEE Trans. Inform. Theory 40, 716–720.

Keane, J. F. and Atlas, L. E. 2001. Impulses and stochastic arithmetic for signal processing. In Proceedings
of the International Conference on Acoustics, Speech and Signal Processing. 1257–1260.

Kim, Y-C. and Shanblatt, M. A. 1995. Architecture and statistical model of a pulse-mode digital multilayer
neural network. IEEE Trans. Neural Netw. 6, 1109–1118.

Krishnaswamy, S., Markov, I. M., and Hayes, J. P. 2007. Tracking uncertainty with probabilistic logic circuit
testing. IEEE Design Test Comput. 24, 312–321.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. 2001. Factor graphs and the sum-product algorithm. IEEE
Trans. Inform. Theory 47, 498–519.

Li, X., Qian, W., Riedel, M. D., Bazargan, K., and Lilja, D. J. 2009. A reconfigurable stochastic architecture
for highly reliable computing. In Proceedings of the Great Lakes Symposium on VLSI. 315–320.

Lorentz, G. G. 1986. Bernstein Polynomials 2nd Ed., Chelsea Publishing Co., New York, NY.
MacKay D. J. C. and Neal, R. M. 1996. Near Shannon limit performance of low density parity check codes.

Electron. Lett. 32, 1645.
McClennan, B. J. 2009. Analog computation. In Encyclopedia of Complexity and System Science, Springer.

271–294.
Mansinghka, V. 2009. Natively probabilistic computation. Ph.D. dissertation, Massachusetts Institute of

Technology, Department of Brain and Cognitive Sciences, Cambridge, MA.
Marin, S. L. T., Reboul, J. M. Q., and Franquelo, L. G. 2002. Digital stochastic realization of complex analog

controllers. IEEE Trans. Industrial Electron. 49, 1101–1109.
Mars, P. and McLean, H. R. 1976 High-speed matrix inversion by stochastic computer. Electron. Lett. 12,

457–459.
Naderi, A., Mannor, S., Sawan, M., and Gross, W. J. 2011. Delayed stochastic decoding of LDPC codes. IEEE

Trans. Signal Process. To appear.
Nepal, K., Bahar, R. I., Mundy, J., Patterson, W. R., and Zaslavsky, A. 2005. Designing logic circuits for

probabilistic computation in the presence of noise. In Proceedings of the Design Automation Conference.
485–490.

Paler, A., Alaghi, A., Polian, I., and Hayes, J. P. 2011. Tomographic testing and validation of probabilistic
circuits. In Proceedings of the European Test Symposium. 63–68.

Pejic, D. and Vujicic, V. 1999. Accuracy limit of high precision stochastic watt-hour meter. IEEE Trans.
Instrum. Meas. 49, 617–620.

Petriu, E. M., Zhao, L., Das, S. R., Groza, V. Z., and Cornell, A. 2003. Instrumentation applications of multibit
random-data representation. IEEE Trans. Instrum. Meas. 52, 175–181.

Poppelbaum, W. J. 1976. Statistical processors. Adv. Computers 14, 187–230.
Poppelbaum, W. J., Afuso, C., and Esch, J. W. 1967. Stochastic computing elements and systems. In Proceed-

ings of the AFIPS Fall Joint Computer Conference. 635–644.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

�

�

�

�

�

�

�

�

Survey of Stochastic Computing 92:19

Qian, W. and Riedel, M. D. 2008. The synthesis of robust polynomial arithmetic with stochastic logic. In
Proceedings of the Design Automation Conference. 648–653.

Qian, W., Li, X., Riedel, M. D., Bazargan, K., and Lilja, D. J. 2011. An architecture for fault-tolerant compu-
tation with stochastic logic. IEEE Trans. Comput. 60, 93–105.

Quero, J. M., Toral, S. L., Carrasco, J. M., Ortega, J. G., and Franquelo, L. G. 1999. Continuous time con-
trollers using digital programmable devices. In Proceedings of the 25th IECON, 1, 210–215.

RAND Corp. 1955. A Million Random Digits with 100,000 Normal Deviates. Free Press, Glencoe, IL.
Ribeiro, S. T. 1967. Random-pulse machines. IEEE Trans. Electron. Comput. 16, 261–276.
Shanbhag, N. R., Abdallah, R. A., Kumar, R., and Jones, D. L. 2010. Stochastic computation. In Proceedings

of the Design Automation Conference. 859–864.
Singhee, A. and Rutenbar, R. A. 2009. Novel Algorithms for Fast Statistical Analysis of Scaled Circuits.

Lecture Notes in Electrical Engineering, vol. 46, Springer.
Tehrani, S. S., Naderi, A., Kamendje, G. A., Hemati, S., Mannor, S., and Gross, W. J. 2010. Majority-

based tracking forecast memories for stochastic LDPC decoding. IEEE Trans. Signal Processing 58,
4883–4896.

Toral, S. L., Quero, J. M., and Franquelo, L. G. 1999. Stochastic pulse coded arithmetic. In Proceedings of
ISCAS 1, 599–602.

Van Daalen, M., Jeavons, P., Shawe-Taylor, J., and Cohen, D. 1993. Device for generating binary sequences
for stochastic computing. Electron. Lett. 29, 80.

Vigoda, B. 2003. Analog logic: Continuous-time analog circuits for statistical signal processing, Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA.

von Neumann, J. 1956. Probabilistic logics and the synthesis of reliable organisms from unreliable compo-
nents. In Automata Studies, Princeton University Press, 43–98.

Zelkin, B. 2004. Arithmetic unit using stochastic data processing. U.S. Patent 6,745,219 B1.
Zhang, D. and Li, H. 2008. A stochastic-based FPGA controller for an induction motor drive with integrated

neural network algorithms. IEEE Trans. Industrial Electron. 55, 551–561.
Zhang, Z., Anantharam, V., Wainwright, M. J., and Nikolic, B. 2010. An efficient 10GBASE-T Ethernet LDPC

decoder design with low error floors. IEEE J. Solid-State Circuits 45, 843–855.

Received June 2011; revised September 2011; accepted November 2011

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 2s, Article 92, Publication date: May 2013.

