
 

 

 

On the Functions Realized by  
Stochastic Computing Circuits 

Armin Alaghi and John P. Hayes 
Advanced Computer Architecture Laboratory  

Department of Electrical Engineering and Computer Science 
University of Michigan, Ann Arbor, MI, 48109, USA 

{alaghi, jhayes}@eecs.umich.edu   
 

ABSTRACT  
Stochastic computing (SC) employs conventional logic circuits to 
implement analog-style arithmetic functions acting on digital bit-
streams. It exploits the advantages of analog computation powerful 
basic operations, high operating speed, and error tolerancein 
important applications such as sensory image processing and 
neuromorphic systems.  At the same time, SC exhibits the analog 
drawbacks of low precision and complex underlying behavior. 
Although studied since the 1960s, many of SC’s fundamental 
properties are not well known or well understood. This paper 
presents, in a uniform manner and notation, what is known about the 
relations between the logical and stochastic behavior of stochastic 
circuits. It also considers how correlation among input bit-streams 
and the presence of memory elements influences stochastic behavior. 
Some related research challenges posed by SC are also discussed. 

Categories and Subject Descriptors 
B.2.1 [Arithmetic and Logic Structures]: Design styles. 

General Terms 
Algorithms, design, theory. 

Keywords 
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1. INTRODUCTION 
Computing hardware has traditionally been partitioned into two broad 
classes: analog acting on continuous data and digital acting on 
discrete data, with real and integer arithmetic being the corresponding 
mathematical methods. In the digital case where the fundamental data 
units are the bits 0 and 1, Boolean algebra plays a key role. Analog 
computing was eclipsed by digital in the mid-twentieth century due to 
the latter’s greater generality, higher precision, and ease of use  [19].  
Nevertheless, analog computing continues to be found in applications 
that can exploit its performance advantages (high speed, complex 
basic operations, and error insensitivity) while tolerating its 
disadvantages. Of interest here are hybrid systems that combine 
analog and digital features. These include biological systems, in 
which digital neural signals control analog functions like motion, and 
a class of artificial computing systems called stochastic  [1] [12], 
which are the topic of this paper. Stochastic computing (SC) is so 
called because it computes with analog probabilities, but represents 
them by digital bit-streams and processes them with conventional 
logic circuits. 

Figure 1 shows a typical stochastic circuit with bit-streams of 
length N = 12. It comprises an OR gate, an XOR gate, and a 
multiplexer (MUX). On one level, this is just a simple logic circuit 
realizing the Boolean function 

   𝑧(𝑥1, 𝑥2, 𝑟1, 𝑟2, 𝑟3) = (𝑥1 �̅�1  𝑥2 𝑟1)  (𝑟2𝑟3)             (1) 

On another level, it is a relatively powerful stochastic circuit realizing 
the arithmetic function   

  𝑍(𝑋1, 𝑋2) = −0.25(𝑋1 + 𝑋2)                               (2)                                       

Here, X1, X2 and Z denote stochastic numbers (SNs) implemented by 
(pseudo) random bit-streams applied to lines x1, x2 and z, 
respectively.  

An N-bit SN X containing N1 1s and N  N1 0s has the (unipolar) 
value pX = N1/N. For example, the SN on output line z of Figure 1 has 
the value pZ = 5/12. Since pX always lies in the real-number interval 
[0,1], it can be seen as the probability of observing 1 in any randomly 
selected position of X. The value pX is also referred to as signal 
intensity, pulse rate, or frequency in different contexts. In 
neurobiology, for instance, a neural spike train can be modeled by a 
bit-stream X and its intensity can be represented by pX  [8].   

The foregoing probabilistic interpretation along with the 
randomness of SNs are at the heart of SC, and effectively convert 
logic gates into analog-style arithmetic components operating on 
probabilities. For example, a MUX serves as a scaled adder 
computing the function 0.5(𝑝𝑋1

+ 𝑝𝑋2
). With suitable off-line scaling 

and value approximation, stochastic circuits can be applied to 
numbers over various ranges. For example, to handle signed 
numbers, we map pX to 2pX  l, which changes the SN range from 
[0,1] to [1,1]. This is the bipolar format and is the interpretation 
needed for Figure 1 to implement Eq. (2). The output bit-stream Z of 
Figure 1 then represents 2(5/12) – 1 = –2/12. Figure 1’s XOR gate 
computes (2 𝑝𝑌1

  l)(2 𝑝𝑌2
  l) and so contributes both 

multiplication and negation to Eq. (2). This circuit implements a 
fairly complex arithmetic operation using just a handful of logic 
gates. A conventional implementation operating on ordinary binary 
numbers requires many more gates to implement Eq. (2). The 
hardware simplicity illustrated by Figure 1 is SC’s chief attraction. 

The three SNs R1, R2 and R3 appearing on inputs r1, r2 and r3, 
respectively, of Figure 1 are examples of stochastic constants. They 
are typically seen as auxiliary inputs and have the unipolar value 0.5. 
This value requires an SN with equal numbers of 0s and 1s, which is 
easily generated by (pseudo) random sources. It can be transformed 
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Figure 1. Stochastic circuit implementing the arithmetic function 
𝑍 = −0.25(𝑋1 + 𝑋2) using bipolar format. 
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to other constant values via suitable logic circuits  [24]. For instance, 
the OR gate of Figure 1 generates the constant 𝑝𝑅2

+ 𝑝𝑅3
− 𝑝𝑅2

𝑝𝑅3
 = 

0.75 (unipolar) = 0.5 (bipolar), which combined with R1, gives the 
0.25 coefficient required by Eq. (2).   

Two other key factors affecting stochastic circuit behavior are the 
length N and the randomness of the bit-streams. SN formats are 

highly redundant since pX = N1/N is represented by (
𝑁
𝑁1

) different bit 

patterns. This skewed distribution implies low arithmetic precision. 
To represent pX with a precision of n bits, requires X to have length N 
 2n. Consequently, stochastic circuits tend to have low precision 
and/or very large N. This can offset the speed advantage of SC’s 
relatively simple arithmetic components. Moreover, such basic 
questions as What should N be to guarantee that results are correct 
to k bits?are surprisingly hard to answer. Figure 2 shows how pX 

fluctuates as N increases for SNs of nominal value p = 1/2 generated 
by a typical stochastic number generator (SNG). SNs that rapidly 
converge to p are said to have (good) progressive precision.  

Yet another basic problem in SC is that interacting bit-streams are 
usually required to be independent or uncorrelated, otherwise the 
results can be unacceptably inaccurate. For example, if two identical 
(maximally correlated) copies of a bipolar SN X are applied to an 
XOR gate, the result will be the all-0 bit-stream instead of the 
expected bipolar product X2.  Ensuring that SNs are sufficiently long 
and uncorrelated can require an excessive number of SNGs and 
become the major cost factor in SC  [25].  

Compensating somewhat for these drawbacks is the fact that long 
SNs are inherently far less sensitive than ordinary binary numbers to 
errors caused by environmental noise or hardware faults.  Not only do 
bit-flips occurring in SN X have a small effect on pX, but two bit-flips 
in opposite directions cancel one another. Progressive precision can 
be exploited to speed-up applications where variable degrees of 
precision are acceptable  [2]. Correlation may also be less of a 
problem than it seems at first sight.  While the XOR multiplier is 
sensitive to correlation among its inputs, the MUX adder is 
insensitive to input correlations. Moreover, correlation can sometimes 
be deliberately used to increase the functional range of stochastic 
circuits and reduce their complexity  [4], as will be discussed in Sec. 
3. Figure 3 summarizes the advantages and disadvantages of 
stochastic computing. 

Stochastic computing can be traced back to the pioneering ideas of 
Gaines and Poppelbaum in the 1960s  [12] [23]. Since then, it has 
found its major applications in control systems  [29] and artificial 
neural networks  [7] [26]. More recently, new applications have 
appeared that involve probabilistic or error-tolerance issues for which 
SC is well suited, such as image processing  [2] [17], simulation of 
probabilistic systems   [9] [21], data recognition and mining  [11], and 
decoders for channel codes ranging from LDPC to polar 
codes  [13] [28]. Furthermore, novel physical technologies are 
emerging such as memristors that have native stochastic 
features  [16]. Despite these successes, many gaps exist in our 
understanding of SC and its potential applications.  

The goal of this paper is review and unify recent results on the 
behavioral or functional properties of stochastic circuits. Section 2 
defines stochastic behavior formally, and examines the links between 
a circuit’s logical and stochastic properties, as exemplified by Eqs. 
(1) and (2). Correlation is examined in Sec. 3, while Sec. 4 addresses 
sequential design issues. Section 5 draws some conclusions and 
discusses challenges for future SC research. 

2. STOCHASTIC FUNCTIONS  
In this section, we discuss the links between combinational logic 
circuits and their stochastic functions (SFs). We show that that the 
SFs are functions over the real numbers, which can be expressed in 
many forms. Later, we will see how factors like correlation and the 
presence of memory elements can change the SFs.  

Suppose some n-input single-output combinational circuit C 
realizes the Boolean function (BF)  𝑧(𝑥1, 𝑥2, … , 𝑥𝑛). This function 
has the canonical sum-of-minterms form   

𝑧(𝑥1, 𝑥2 … , 𝑥𝑛) = ⋁ 𝑐𝑖𝑚𝑖
2𝑛−1
𝑖=0                             (3) 

where the ci’s are 0-1 constants. The mi’s are minterms of the form 
�̃�𝑖,1 �̃�𝑖,2⋯ �̃�𝑖,𝑛 where  �̃�𝑖,𝑗   is either 𝑥𝑖,𝑗  or  �̅�𝑖,𝑗 .  For example, the 

sum-of-minterms representation of the XOR function 𝑧XOR(𝑥1, 𝑥2) is 
𝑚2 ∨ 𝑚3 = (𝑥1  �̅�2)(�̅�1  𝑥2).  

Now suppose n SNs are applied to the inputs of C. If Xi is the 
(unipolar) probability value of the SN on xi, i.e., Xi = 𝑝𝑋𝑖

, then �̅�𝑖.has 

the probability value 1  Xi. The following theorem gives C’s output 
probability Z, and so defines its stochastic function (SF).  

Theorem 1: Let 𝑧(𝑥1, 𝑥2 … , 𝑥𝑛) be a Boolean function defined 
by Eq. (3). The stochastic function 𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) implemented by 
z, assuming all input SNs are independent, is 

      𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) = ∑ 𝑐𝑖𝑀𝑖
2𝑛−1
𝑖=0                                            (4) 

where 𝑀𝑖  = �̃�𝑖,1�̃�𝑖,2 ⋯ �̃�𝑖,𝑛  with �̃�𝑖,𝑗 =  𝑝𝑋𝑖,𝑗
= 𝑋𝑖,𝑗  if the corres-

ponding minterm mi of Eq. (3) has  �̃�𝑖,𝑗 = 𝑥𝑖,𝑗; �̃�𝑖,𝑗  is 1 − 𝑝𝑋𝑖,𝑗
= 1 −

𝑋𝑖,𝑗 if �̃�𝑖,𝑗 = �̅�𝑖,𝑗 .  

This key result was first shown by Parker and McCluskey  [22] 
using rather ad hoc notation. Note that each 𝑀𝑖  corresponds to a 
minterm and is the probability of the corresponding input 
combination. These probabilities have the form stated in Thm. 1 
when the input SNs are independent. As will be shown in Sec. 3, if 
the input SNs are correlated, the 𝑀𝑖’s may take a different form. For 
the XOR gate with independent inputs, Thm. 1 implies 

 𝑍XOR(𝑋1, 𝑋2) = 𝑋1(1 − 𝑋2) + (1 − 𝑋1)𝑋2             

which, when multiplied out, becomes 

𝑍XOR(𝑋1, 𝑋2) =  𝑋1 + 𝑋2 −  2𝑋1𝑋2                            (5) 

The sum-of-minterms-style probability expression (4) can be seen 
as a canonical representation of the stochastic function Z realized by 
the Boolean function z. It thus captures z’s stochastic behavior with 
respect to the basic unipolar format. When the Xi’s are restricted to 0 
and 1, and sum is interpreted as OR, Eq. (4) reduces to Eq. (3), so Z is 
effectively an interpolation of z in the real-number domain. Equation 
(4) is also easily converted to other SN formats. To convert from 
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Figure 2. Fluctuations in pX for 3 bit-streams as their length N increases.  
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Figure 3. Advantages and disadvantages of stochastic computing.  



 

 

 

unipolar to bipolar, for instance, replace 𝑝𝑋𝑖,𝑗
 by 2𝑝𝑋𝑖,𝑗

− 1, and re-

define the SN value 𝑋𝑖,𝑗 to be 2𝑝𝑋𝑖,𝑗
− 1.  

The canonical representation of Eq. (4) can also be expressed as 
the inner product of two vectors. The first is the truth-table vector 𝑪𝑧 
= [𝑐0  𝑐1 ⋯ 𝑐2𝑛−1] defining z in terms of the constant coefficients 
in Eq. (3). The second is the input vector 𝑴 = [𝑀0  𝑀1 ⋯ 𝑀2𝑛−1] 
specifying the probability distribution of the input combinations, or 
equivalently, the stochastic minterm functions. We can now rewrite 
Eq. (4) as follows, where “∙” denotes the inner-product operation: 

     𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) = 𝑪𝑧 ∙ 𝑴 

= [𝑐0  𝑐1 ⋯ 𝑐2𝑛−1] ∙  [𝑀0  𝑀1 ⋯ 𝑀2𝑛−1]             (6) 

The ci elements in Eqs. (3), (4) and (6) are the same and belong to 
the binary set {0,1}. Since SFs deal with real numbers, we can further 
generalize Thm. 1 by allowing the ci’s to be any numbers in the real 
interval [0,1]. Such generalized ci coefficients can be interpreted as 
constant SNs applied to the circuit when the corresponding minterm 
mi is activated or set to 1. For example, if c0 = 0, c1 = 0.5, c2 = 0.5, 
and c3 = 1 (or in vector form [0   0.5   0.5   1]), then Eq. (4) becomes 

𝑍(𝑋1, 𝑋2) = 0.5𝑋1(1 − 𝑋2) + 0.5(1 − 𝑋1)𝑋2 + 𝑋1𝑋2         (7) 

which is the scaled add function 0.5(𝑋1 + 𝑋2). The coefficients c1 = 
c2 = 0.5 in (7) imply that when minterms m1 and m2 are activated, a 
constant SN of value 0.5 should propagate to the output. Such 
constant probabilities can be obtained from (pseudo) random number 
sources. These sources often appear as auxiliary inputs in the 
corresponding circuit. For example, the ri inputs of Figure 1 are 
auxiliary inputs that are fed with SNs of value 0.5. 

Like BFs, SFs can be expressed and interpreted in different forms, 
which are associated with different, and sometimes useful, circuit 
design styles. When Eq. (4) is expanded in the manner illustrated by 
Eq, (5), Z takes the form of a multi-linear polynomial, i.e., one which 
can contain products of Xi variables, but no variable appears with a 
power of two or higher. If bipolar instead of unipolar format is used 
then, as we saw in the case of Figure 1, Eq. (5) changes to  𝑍XOR =
−𝑋1𝑋2, a different multi-linear polynomial. Qian et al. observed that 
these expressions can be replaced by another interesting class of 
polynomials called Bernstein polynomials  [25].   

Alaghi and Hayes showed that the spectrum of a BF z obtained via 
the Fourier transform reveals z’s stochastic behavior in useful 
ways  [3]. First, to facilitate the use of spectral transforms, we map the 
usual 0 and 1 values of 𝑪𝑧  into the real numbers +1 and 1, 
respectively; see Figure 4. Then we multiply 𝑪𝑧  by an appropriate 
matrix, such as the Walsh-Hadamard matrix 𝑯𝑛. This produces a 2n-
dimensional vector (z’s spectrum) which defines yet another 
polynomial form of Z. In the case of zXOR, we get 𝑍XOR = 𝑋1𝑋2.  

Spectral transformation can be expressed symbolically as Z = 
ℱ(𝑧).  An advantage of the spectral viewpoint is that the design 
problem of finding a z to implement a given SF Z reduces to 
computing the inverse spectral transform  

z = ℱ−1(𝑍)               (8) 

A difficulty here is that there may be no BF z satisfying Eq. (8). This 
problem can be resolved by approximating Z by another function Z* 
for which Eq. (8) has a solution in the Boolean domain. This entails 
expressing Z* in a suitable (polynomial) form and introducing new 

stochastic variables and constants, a complex process for which only 
heuristic methods are known [3][10][25]. For example, the function Z 
= X0.45, commonly used in image processing, has no suitable 
polynomial form. However, it is approximated by Z* = 0.75X2 + 
1.5X + 0.25 [3]. Applying the inverse spectral transform to Z* yields 

𝑧(𝑥1, 𝑥2, 𝑟1, 𝑟2) = 𝑥1 ∨ 𝑥2 ∨ 𝑟1 ∧ 𝑟2 

which includes several new inputs. Variables x1 and x2 are supplied 
with two independent SNs representing X, while r1 and r2 are 
auxiliary inputs supplied with constant SNs of value 0.5. 

Although every BF has a unique sum-of-minterms form (3), it 
turns out, surprisingly, that several different BFs can lead to the same 
SF  [3] [10]. This happens when generalized minterm coefficients, i.e., 
real-valued constant inputs, are allowed in stochastic functions. 
Consider, for instance, the majority function zMAJ = (𝑥1  𝑥2)  
 (𝑥1  𝑟)  (𝑥2  𝑟) and the multiplexer function zMUX =(𝑥1   𝑟)   
(𝑥2  �̅�) . They map to two different SFs ZMAJ (𝑋1, 𝑋2, 𝑅) and 
ZMUX(𝑋1, 𝑋2, 𝑅), as is easily shown using Eq. (4). However, if R is set 
to 0.5, both SFs become the same, i.e. 

𝑍MAJ(𝑋1, 𝑋2, 0.5) = 𝑍MUX(𝑋1, 𝑋2, 0.5) = 0.5(𝑋1 +  𝑋2)            (9) 

This, again, is the scaled addition operation of SC. Figure 5 shows 
two-level realizations of zMAJ and zMUX. Although each is optimal in 
the usual circuit-cost sense, the multiplexer has somewhat lower cost. 
However, in some emerging nanotechnologies, majority gates are the 
fundamental building block  [15] so a majority-based scaled adder 
might be preferred. 

The preceding discussion shows that SC adds an interesting new 
twist to logic optimization, namely: Find the “best” Boolean function 
z that implements a target SF Z (or an approximation thereto) in the 
form 𝑧(𝑋V;𝑋C), where XV denotes inputs to which variable SNs are 
applied, and XC denotes auxiliary inputs to which constant SNs are 
applied. (For notational simplicity. XV may refer either to Boolean 
variables or SNs.) With slight loss of generality, we assume all 
members of XC are 0.5, i.e., 0s and 1s are applied with equal 
probability to constant inputs. This reflects the nature of the random 
sources normally used in SC.  

With these assumptions, we can now define various types of 
stochastic equivalence among Boolean functions. For example, two 
BFs 𝑧1(𝑋V; 𝑋C) and 𝑧2(𝑋V; 𝑋C)are stochastically equivalent, denoted 
𝑧1 𝑧1 , if 𝑍1(𝑋V; 𝑋C) = 𝑍2(𝑋V; 𝑋C)   [10]. Equation (9) shows that 
𝑧MAJ   𝑧MUX.  For any given size parameters |XV| = s and |XC| = t, the 

 relation partitions the set of SFs 𝑍(𝑋V; 𝑋C) into stochastic equi-

valence classes (SECs). With s = 2 and t = 1, the 223
= 256 distinct 

BFs form 81 SECs, including a 4-member class E containing zMAJ 
and zMUX. (The other two members of E result from replacing r by �̅�, 
whose value is also 0.5) Each SEC represents a potentially useful 
arithmetic component or circuit for designing stochastic circuits. Note 
that although XC is usually seen as a set of secondary inputs, they 
form an intrinsic part of an SF and consume significant circuit 
resources. This is clear from Figure 1 where the two-input SF of Eq. 
(2) requires a five-input logic circuit in which XC with t = 3 has a 
non-trivial role comparable in complexity to that of XV.  

The foregoing SEC concept can also play a useful role in 
optimizing stochastic circuits  [10].  For small s and t, an SEC 
representing some SF  𝑍(𝑋V; 𝑋C)  can be searched systematically 
either to find an optimal BF 𝑧(𝑋V; 𝑋C) implementing Z, or else to 
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Figure 4. Spectral transformation of the XOR function. 
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Figure 5. Two circuits implementing scaled addition when R = 0.5. 



 

 

 

evaluate the optimality of a known z. To illustrate, consider the 
stochastic function  

      𝑍edge = 0.5 × (|𝑋1 − 𝑋2| + |𝑋3 − 𝑋4|)                        (10) 

which defines the Roberts Cross function for edge detection in black-
and-white images. It employs a four-pixel window which outputs 
four Boolean variables x1,x2,x3,x4 on which random bit-streams 
appear that measure light intensity. Figure 6 shows a stochastic logic 
circuit implementing Eq. (10) which was derived by ad hoc means  [2]. 
(Its input SNs must meet certain correlation requirements, which we 
consider in Sec. 3, but they do not affect SEC membership.) This 
circuit’s area cost is about 100x less than that of a non-stochastic 
implementation of Eq. (10), and was thought to be optimal. Its BF is 

   𝑧edge = �̅�1𝑥2�̅�1 𝑥1�̅�2�̅�1�̅�3𝑥4𝑟1 𝑥3�̅�4𝑟1          (11) 

whose inputs  𝑥1, 𝑥2, 𝑥3 and 𝑥4 define XV, while  𝑟1 defines XC. The 
SEC for 𝑧edge  contains 256 functions. The implementation cost of 

these functions was computed in terms of literal count  [14] for an 
optimal two-level design using a conventional CAD tool, and found 
to range from 16 to 45. Since 𝑧edge’s literal cost is 16, as can be seen 

from Eq. (11), the optimality of the edge-detector design in Figure 6 
is confirmed.         

3. IMPACT OF CORRELATION  
In stochastic computations, it is often necessary to convert inputs 
from a number style such as analog or weighted-binary to stochastic 
form. This requires stochastic number generators (SNGs) which tend 
to cost far more than other SC components. The large numbers of 
them found in traditional designsFigure 1 needs up to five SNGs 
for its five inputsrender many such designs impractical.  

As shown in Figure 7, a typical SNG comprises a comparator and 
a random number source (RNS). In each clock cycle, a new random 
number is compared with the input number X* and a bit of the 
corresponding SN X appears at the output. Over the years, many 
variants of this design have been proposed. Most implement the RNS 
by a deterministic sequential circuit such as a linear feedback shift 
register (LFSR) that produces pseudo-random outputs. Alternative 
SNG designs can be found in  [1] [5]. It is also possible to combine 
non-random and pseudo-random bit-streams, but the results have 
been unpromising. “True” random sources, made possible by 
nanotechnologies like memristors  [16] and magnetic-tunnel junction 
devices  [20]  have also been proposed recently for SC. 

As noted earlier, the inputs of a stochastic circuit must usually be 
independent or uncorrelated in order to achieve the desired 
functionality. Correlation is caused by insufficient randomness 
among SNs and is a key source of inaccuracy. Reducing correlation 
requires many costly SNGs with independent RNSs. Alaghi and 
Hayes  [4] [6]  however, show that some circuits are inherently 
correlation insensitive (CI), meaning that correlation among their 
input SNs does not alter their stochastic function. A formal definition 
of CI is given in  [6], where it is shown that exploiting correlation 
insensitivity can reduce stochastic circuit area substantially.  

Correlation insensitivity is most readily seen in the scaled adder 
realized by the multiplexer of Figure 5b. The output zMUX is x1 if r = 1 
and x2 if r = 0. Hence, the inputs x1 and x2 never affect zMUX 
simultaneously, so any correlation between the SNs X1 and X2 is 
masked by the circuit.    Knowledge of this kind can be used to 
reduce the SNG costs. For instance, it implies that a scaled adder’s 
inputs x1 and x2 can share an RNS, as shown in Figure 8. 

The stochastic function of a circuit with correlated inputs can be 
expressed using modified versions of Eqs. (4) or (6). The 𝑀𝑖’s of 
these equations are the probabilities of the circuit’s various input 
combinations. For example, when n = 2, 𝑴 = [𝑀0 𝑀1 𝑀2 𝑀3]  
denotes the probability of x1x2 being 00, 01, 10, and 11, respectively.  
Suppose X1 and X2 are constant SNs with values 0.3 and 0.2, 
respectively. By Thm. 1, M is  𝑴1 = [0.56 0.14 0.24 0.06] 
when X1 and X2 are independent. But if X1 and X2 are correlated, the  
𝑀𝑖 ’s generally take different values. Suppose that, in the current 
example,  whenever X2  applies 1  to x2,  X1 always applies a 1 is to x1,  
implying that X1 and X2 have a high degree of correlation. Then 𝑴1  
changes to  𝑴2 = [0.7 0 0.1 0.2].   

Earlier we observed that a MUX-based scaled adder is CI with 
respect to 𝑋1  and 𝑋2  using the intuitive argument that the output 
function zMUX does not depend on both inputs and at the same time. 
This argument does not apply to a MAJ-based scaled adder. To 
determine whether it too is CI, consider the majority circuit of Figure 
5a. On assigning a constant SN of value 0.5 to its r input (assuming it 
is independent of the other input SNs), its truth-table vector becomes 
𝑪MAJ = [0 0.5 0.5 1] , which implements stochastic scaled 
addition  if the inputs are independent. Now assume a generic input 
vector 𝑴 = [𝑀0 𝑀1 𝑀2 𝑀3] with no specific assumptions about 
correlation between X1 and X2. From Eq. (6), we can write 

 𝑍MAJ(𝑋1, 𝑋2) = [𝑀0 𝑀1 𝑀2 𝑀3] ∙ [0 0.5 0.5 1]  

                                 = 0.5𝑀1 + 0.5𝑀2 + 𝑀3 

                       = 0.5(𝑀1 + 𝑀3) + 0.5(𝑀2 + 𝑀3) 

Noting that 𝑀1 + 𝑀3 = 𝑋1 and 𝑀2 + 𝑀3 = 𝑋2 for any possible level 
of correlation between 𝑋1  and 𝑋2 , we get 𝑍MAJ(𝑋1, 𝑋2) = 0.5(𝑋1 +
𝑋2). This implies that the majority gate is CI with respect to 𝑋1 and 
𝑋2 when the SN constant 0.5 is assigned to r.  

Systematic correlation among input SNs of a circuit is not 
necessarily a source of inaccuracy. In fact, it can change a circuit’s 
underlying stochastic function to a more desirable one  [4]. For 
example, consider the upper XOR gate of Figure 6. As shown by Eq. 
(5), it has the stochastic function 𝑍XOR(𝑋1, 𝑋2) = 𝑋1 + 𝑋2 − 2𝑋1𝑋2 
when its inputs are independent SNs. However, with maximally 
correlated input SNs, the XOR gate implements the stochastic 
function  𝑍𝑋𝑂𝑅(𝑋1, 𝑋2) = |𝑋1 − 𝑋2|, which turns out to be a key part 
of the  𝑍edgefunction implemented by the circuit of Figure 6. 

To quantify systematic correlation among SNs, a measure called 
SCC (stochastic computing correlation) is proposed in  [4]. Zero SCC 
between two SNs implies their independence. If SCC = +1, then the 
SNs have maximum overlap of 1s and 0s; if SCC = 1, then the SNs 
have a minimum overlap of 1s and 0s. It is important to note that 
these conditions hold for SNs of arbitrary value. For example, if X1 = 
11110000 and X2 = 1100000, then SCC(X1, X2) = +1, while if X1 = 
11110000 and X2= 0000011, we get SCC(X1, X2) = 1. In contrast, 
the standard Pearson correlation measure imposes constraints on the 
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Figure 6. Stochastic edge detector [2].  
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SN values. For instance, a correlation of +1 implies that the SNs are 
identical, and hence must have the same value. Thus SCC is a more 
suitable correlation measure for SC. More importantly, we can 
incorporate SCC into Thm. 1 and extend it as follows. 

Theorem 2: The correlation-dependent stochastic function 
𝑍(𝑋1, 𝑋2) implemented by the Boolean function 𝑧(𝑥1, 𝑥2) defined by 
Eq. (3) with n = 2 is 

      𝑍(𝑋1, 𝑋2) = ∑ 𝑐𝑖𝑀𝑖
′3

𝑖=0                          

where representative 𝑀𝑖
′’s are given by Figure 9.  

 SCC(X1, X2) = 0 SCC(X1, X2) = 1 SCC(X1, X2) = +1 

𝑀0
′

 (1 − 𝑋1)(1 − 𝑋2) max(1 − 𝑋1 − 𝑋2 , 0) min(1 − 𝑋1, 1 − 𝑋2) 

𝑀1
′
 (1 − 𝑋1)𝑋2 min(1 − 𝑋1, 𝑋2) max(𝑋2 − 𝑋1, 0) 

𝑀2
′
 (1 − 𝑋2)𝑋1 min(1 − 𝑋2 , 𝑋1) max(𝑋1 − 𝑋2 , 0) 

𝑀3
′
 𝑋1𝑋2 max(𝑋1 + 𝑋2 − 1,0) min(𝑋1, 𝑋2) 

Figure 9. Correlation-dependent probabilities for Thm. 2.  

 To illustrate this theorem, consider the upper XOR gate of 
Figure 6 which has the two minterms m1 and m2. When supplied by 
SNs with SCC = +1, it implements the stochastic function 

𝑍XOR = max(𝑋2 − 𝑋1, 0) + max(𝑋1 − 𝑋2, 0) = |𝑋1 − 𝑋2| 

In contrast, the SF implemented by the multiplexer of Figure 5b 
remains the same for all possible SCC values among its inputs.   

4. SEQUENTIAL STOCHASTIC CIRCUITS  
Stochastic circuits are highly sequential in that their behavior is 
determined by long sequences of binary data involving synchronous 
sequential components like SNGs and I/O registers. So far in this 
paper (and throughout the SC literature) it has been assumed that the 
data-processing functions are fully defined by combinational circuits. 
Introducing memory into these circuits changes the picture.  

Consider the circuit of Figure 10a which combines an AND gate 
with a D-flip-flop. The AND acts as a stochastic multiplier 
implementing the function 𝑍 = 𝑋(1 − 𝑌) . The D-flip-flop simply 
shifts its input bit-stream by 1 bit, and implements the stochastic 
function 𝑌 = 𝑍. Eliminating Y from the preceding equations, gives 
𝑍 = 𝑋/(1 + 𝑋) , which is the SF  implemented by the circuit of 
Figure 10a. This function does not have an appropriate polynomial 
form, and so cannot be directly implemented by combinational 
stochastic circuits. A similar example is the JK-flip-flop shown in 
Figure 10b, which has the SF 𝑍 = 𝑋1 (𝑋1 + 𝑋2)⁄ ,  and is used to 
approximate stochastic division. 

Figure 11 shows the general structure of an n-input sequential 
circuit with k flip-flops. The combinational block generates the 
output z and the next state variables 𝑦1

+, … , 𝑦𝑘
+ based on the inputs 

and the current state variables 𝑦1, … , 𝑦𝑘. The memory block merely 
copies the 𝑦𝑖

+’s values to 𝑦𝑖 at the active clock edge. The stochastic 
functions implemented by a sequential circuit C are defined by the 
stationary distribution Y of its states and the primary output Z, which 
can be derived by solving the Markov chain equations for C [12].  

As an example, let n  =  k  = 1 in the circuit of Figure 11, and 
assume that the Boolean functions 𝑦+(𝑥, 𝑦) and 𝑧(𝑥, 𝑦) realized by 
the combinational block, have the following truth-table vectors. 

𝑪𝑦+ = [𝑐0
𝑦

𝑐1
𝑦

𝑐2
𝑦 𝑐3

𝑦
] and 𝑪𝑧 = [𝑐0

𝑧 𝑐1
𝑧 𝑐2

𝑧 𝑐3
𝑧] 

Then the stationary state distribution at Y is obtained by assigning 
𝑌+ = 𝑌 in the following equation 

𝑌+(𝑋, 𝑌) = 𝑪𝑦+ ∙ [(1 − 𝑋)(1 − 𝑌) (1 − 𝑋)𝑌 𝑋(1 − 𝑌) 𝑋𝑌]  

Solving this equation gives Y’s SF.  

𝑌(𝑋) =
𝑐0

𝑦
+ 𝑋(𝑐2

𝑦
− 𝑐0

𝑦
)

1 + 𝑐0
𝑦

− 𝑐1
𝑦

− 𝑋(𝑐0
𝑦

− 𝑐1
𝑦

− 𝑐2
𝑦

+ 𝑐3
𝑦

)
 

The SF at Z can be derived similarly.  

By assigning different values to the 𝑀𝑖
𝑦

’s and 𝑀𝑗
𝑧 ’s, one can 

obtain all the possible stochastic sequential circuits with one input 
and one flip-flop. Interestingly, many of these circuits implement 
similar stochastic functions, showing that there are many equivalence 
classes of sequential stochastic circuits analogous to the 
combinational SECs mentioned in Sec. 2. For instance, the two 
circuits shown in Figure 12 implement exactly the same SF 𝑍(𝑋) =
(2𝑋 − 2) (𝑋 − 2⁄ ), so they are stochastically equivalent. Within the 
256 single-input single-flip-flop sequential circuits, there are only 55 
distinguished equivalent classes of SFs.  

These small examples show that sequential circuits implement a 
larger class of SFs than combinational circuits, namely, rational 
functions of the form 

𝑍(𝑋1, … , 𝑋𝑛) =
𝑃(𝑋1, … , 𝑋𝑛)

𝑄(𝑋1, … , 𝑋𝑛)
 

in which P and Q are polynomials.  

As noted, the stochastic function of sequential circuits can be 
obtained by solving the corresponding equations for Y and Z, but this 
can be very difficult when many state variables are involved.  To 
sidestep this problem, Gaines proposed restricting attention to finite-
state machines (FSMs) with a chain structure in which the states are 
ordered and transitions only occur between adjacent states; jumping 
over states is not allowed  [12]. This restriction allows easy Markov 
chain analysis. Figure 13 shows the state behavior of one such chain-
structured FSM, the ADDIE (ADaptive Digital Element). Gaines also 
argued that state transitions should be local to avoid excessive 
fluctuations in SF values. ADDIEs have been used in various analog-
style stochastic circuits such as filters  [12]. Similar chain structured 
sequential circuits can implement non-polynomial functions such as 
tanh and exp efficiently  [7] [18].  

Variations and extensions of Gaines’s ADDIE model have been 
proposed over the years. A 2-dimensional extension of the chain-
structured FSM was proposed by Li et al.  [18]. A more general form 
of ADDIE was used by Saraf et al.  [27] to implement SFs such as 
trigonometric functions. Evidently, sequential implementations can 
be more efficient than combinational for certain classes of SFs. 
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Figure 10. Sequential stochastic circuits implementing (a) 𝑍 = 𝑋/(1 + 𝑋) 
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However, many optimal combinational stochastic circuits exist. For 
example, the sequential edge-detection circuit in  [17] is more than 20 
times larger than the combinational edge detector of Figure 6. 

A drawback of sequential circuits is that they require a transition 
(warm-up) period before settling to the desired stationary distribution. 
During this period, which can be quite long, the circuit may produce 
inaccurate results. Another disadvantage of sequential circuits is that 
their behavior is affected by auto-correlation among the SNs. This 
refers to the correlation between a SN and its shifted or delayed 
versions. Auto-correlation imposes new requirements for the SNGs 
used for sequential circuits. Combinational circuits, being memory-
less, are not affected by auto-correlation. 

Finally, we note that unlike combinational circuits, a general 
design methodology for sequential stochastic circuits is not known. 
Most existing methods are limited to chain-structured designs. 

5. DISCUSSION  
Stochastic computing is a fascinating blend of analog and digital 
concepts. By associating data values with signal probabilities, SC 
enables analog computation to be performed using digital bit-streams 
and circuits. This hybrid approach tends to merge the advantages and 
disadvantages of analog and digital. Unsurprisingly, SC is best suited 
to applications that benefit most from the advantages (powerful low-
cost primitives and error tolerance) and are least affected by the 
disadvantages (low precision, scaling issues, and complex behavior). 

We have examined the dual nature of SC from a functional 
perspective, starting from the fact that a stochastic circuit implements 
both a Boolean function z and a stochastic function Z. Theorem 1 
states the basic connection between z and Z. This connection can be 
expressed in many different, but equivalent, ways (multi-linear 
polynomials, spectral transforms, etc.), some of which have 
interesting and potentially useful design implications.  By introducing 
auxiliary variables and constants, and accounting for phenomena like 
correlation and sequential behavior, the range of stochastic functions 
and their implementations can be greatly expanded.  

Many questions, old and new, about SC remain unanswered. We 
have only begun to investigate the full range of stochastic functions 
that are realizable, even by relatively small logic circuits. Sequential 
stochastic circuits still present many challenges. Most of what we 
know about correlation, precision, scalability and the like derives 
from studies of circuits involving just a few gates and flip-flops. It 
seems likely that many of the problems of building large stochastic 
systems have not yet been fully recognized, let alone solved.  
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Figure 13. State diagram of a generalized ADDIE [12]. 


