

Dimension Reduction in Statistical
Simulation of Digital Circuits

Armin Alaghi and John P. Hayes

Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI, 48109, USA

{alaghi, jhayes}@eecs.umich.edu

ABSTRACT
Statistical analysis tasks are increasingly encountered in the

design of digital circuits that implement complex Boolean

functions. Examples include analyzing the impact of soft

errors, estimating power consumption, and stochastic

computation. Common simulation techniques such as quasi-

Monte Carlo simulation often converge too slowly for large

circuits with many inputs, i.e., many dimensions. We analyze

the probabilistic properties of Boolean functions, and identify

new function classes called correlation insensitive (CI) which

tolerate input dependencies. Correlation insensitivity enables

dimension reduction, thereby significantly improving simula-

tion quality. We investigate the theory of CI functions, present

a new dimension-reduction algorithm, and show useful links to

some well-known circuit design problems.

Author Keywords

Statistical simulation; logic simulation; dimension reduction;

logic design; Boolean functions; correlation analysis.

INTRODUCTION

Integrated circuits (ICs) have long benefited from manufac-

turing improvements that have steadily increased their

structural and functional complexity. As a result, ICs are

becoming more sensitive to environmental interference and

small processing variations, which can cause non-deterministic

behavior [3]. Furthermore, IC design styles like stochastic

computing are emerging where non-deterministic features are

intentionally introduced to trade accuracy for power, area or

speed [1][7][16]. Such circuits require probabilistic methods

of analysis and simulation, unlike conventional approaches

which are strictly deterministic.

Statistical methods such as Monte Carlo (MC) simulation [8]

are widely used, mainly due to their high accuracy. Quasi-

Monte Carlo (QMC) is a variant of MC that employs carefully

selected deterministic samples instead of random samples [13].

It is preferred over MC in statistical analysis of digital circuits

where it tends to converge faster to a solution [18]. Figure 1

compares the convergence rates (in terms of mean square error

MSE) of MC and QMC for statistical simulation of the circuit

in Figure 2. As can be seen, QMC converges much faster than

MC, and exhibits an order-of-magnitude lower error rate.

To address current and future IC design needs, ever faster

simulation techniques are needed. A major factor influencing

QMC performance is the number of dimensions of the prob-

lem under consideration, i.e., the number of input parameters.

Figure 1 previews of a key result of this paper: the conver-

gence rate of QMC after applying the dimension-reduction

technique proposed here is much faster than MC and QMC. In

this example, the circuit dimension is reduced from 6 to 3, and

convergence is significantly improved. It can be shown that

the convergence rate of MC is of order 𝑂(𝑁−1/2), while that of

QMC is approximately 𝑂(𝑁−1 log𝐷(𝑁)) , where N is the

number of samples and D is the number of dimensions [13].

We propose a method to effectively reduce the dimensions of

QMC in the statistical simulation of digital circuits. The key

idea is to detect correlation insensitivity (CI) within the target

circuit. Functions with CI are not affected by input

dependencies. Hence independent dimensions associated with

inputs can be merged into one dimension without affecting the

circuit’s output probability distribution. This reduces the

circuit’s dimensionality, leading to significant improvement in

simulation performance and quality. A similar dimension

reduction technique was employed by Singhee et al. in

statistical timing analysis of digital circuits [18]. Their

technique, however, does not apply to statistical simulation.

Figure 2 illustrates the proposed dimension reduction method

in a basic form. The device shown is a 4-to-1 multiplexer,

which connects one of the four data inputs x3,x4,x5,x6 to the

output z under the control of the select inputs x1,x2. A naïve

approach to statistical simulation of this circuit is to assign six

individual dimensions, (independent random sources), to the

six input variables. However, the four data inputs never affect

the output simultaneously, so any correlation between them is

not reflected in the output z, which is therefore CI with respect

to x3,x4,x5,x6. This means that we can assign one random

source to all four data inputs and effectively reduce the

dimensions of the statistical simulation from six to three.

Number of samples N

M
e

a
n

 s
q
u

a
re

 e
rr

o
r

Monte Carlo

Quasi-Monte Carlo

Quasi-Monte Carlo

after applying the

proposed dimension

reduction technique

Figure 1. MC and QMC simulation of a 6-dimensional

problem before and after applying dimension reduction.

TMS/DEVS 2015, April 12 - 15, 2015, Alexandria, VA, USA

© 2015 Society for Modeling & Simulation International (SCS)

The paper is organized as follows. First, relevant aspects of

digital logic circuits and probabilistic analysis are reviewed

in the Background section. Then, CI is analyzed along with its

use to reduce dimensionality. A helpful connection with

existing logic design algorithms is established, and CI is

shown to occur often in benchmark circuits. Finally, CI’s

utility in several applications is demonstrated.

The main contributions of this paper are:

1. Introduction and classification of CI Boolean functions

2. Demonstration of the role of CI in reducing the dimen-

sionality of logic circuits

3. Application of CI-based dimension reduction to some

statistical simulation tasks

BACKGROUND

This section establishes a mathematical framework for

statistical simulation (SS) in the digital circuit context. The

target circuits consist of logic gates (AND, OR, NOT, etc.),

other common components (multiplexers, comparators, etc.),

and their inter-connecting wires. The signals being processed

take their values from the bit set {0,1}. Following engineering

convention, the logic operations AND, OR and NOT on these

signals are denoted by juxtaposition, + and ′, respectively. It

will usually be clear from the context when juxtaposition and

+ refer to the arithmetic operations multiply and add, e.g.,

when dealing with probabilities and probability distributions.

For SS purposes, each wire x in a circuit is associated with a

Bernoulli random variable (BRV) X with parameter pX, which

is the probability of seeing a 1 on x. The probability mass

function (pmf) of X is 𝑓𝑋(𝑘) = 𝑃[𝑋 = 𝑘], where P[A] is the

probability of event A. Since fX is a binary function, fX(1)

uniquely defines it. Note that fX(1) = pX.

The BRVs X1,…,Xn associated with x1,…,xn may be correlated.

Hence, their probabilistic behavior must be viewed as a joint

probability distribution (or a joint pmf) 𝑓𝑋1…𝑋𝑛
.

𝑓𝑋1…𝑋𝑛
(𝑘1, … , 𝑘𝑛) = 𝑃[𝑋1 = 𝑘1, … , 𝑋𝑛 = 𝑘𝑛]

The joint pmf specifies the probability of each of the 2
n

possible combinations of Xi’s. In the special case where all the

Xi’s are independent, the joint pmf reduces to the product of

the marginal distributions of the individual BRVs.

 𝑓𝑋1…𝑋𝑛
(𝑘1, … , 𝑘𝑛) = 𝑓𝑋1

(𝑘1) × … × 𝑓𝑋𝑛
(𝑘𝑛) (1)

Definition 1: Let z(x1,…,xn) be the Boolean function realized

by combinational circuit C. Statistical simulation (SS) is the

process of estimating the pmf fZ by applying samples from a

joint pmf 𝑓𝑋1…𝑋𝑛
 to C. Note that fZ can be calculated exactly

using the following equation:

𝑓𝑍(1) = ∑ ∑ …1
𝑘2=0 ∑ [𝑧(𝑘1, 𝑘2, … , 𝑘𝑛)1

𝑘𝑛=0
1
𝑘1=0

 × 𝑓𝑋1𝑋2…𝑋𝑛
(𝑘1, 𝑘2, … , 𝑘𝑛)] (2)

which, along with 𝑓𝑍(0) = 1 − 𝑓𝑍(1) , completely specifies

𝑓𝑍. Evaluating Eq. (2) is not practical, however, because of its

exponential growth with n. SS is a practical alternative

because it uses only a subset of the input combinations to

estimate 𝑓𝑍.

As an example, consider again circuit C1 in Figure 2. If the

inputs are independent BRVs with parameter 1/2, i.e.,

unbiased BRVs, then SS of C1 involves generating samples

from six independent random sources, recording the frequency

of 1s and 0s on z, and estimating fZ. As discussed earlier, we

can use the same random source for the multiplexer’s data

inputs and reduce the number of sources by three. Each

random source can be thought of as the toss of a fair coin.

Linear feedback shift registers (LFSRs) are typically used to

implement random bit generation [7]. Strictly speaking,

LFSRs are pseudo-random generators, but they work well as

random sources in practice.

In general, the input BRVs of a circuit can be biased, meaning

that they can have a parameter other than 1/2, and they also

can be non-independent (correlated). In such cases, the joint

pmf of the inputs cannot be expressed in terms of individual

pmfs, as in Eq. (1). So for SS purposes, we must sample

directly from the joint pmf. The theoretical analysis of this

paper applies to the general case. However, for ease of

presentation, and since most applications employ independent

inputs, we normally use examples that have independent RVs

at their inputs.

Figure 3 shows a typical set-up for SS of a circuit with n

independent inputs. The Bernoulli random variable generator

(BG) produces BRVs with arbitrary parameter 𝑝𝑋𝑖
. It includes

a comparator (C) and an LFSR-based random number

generator (RNG). In each clock cycle, C compares two k-bit

binary numbers: the desired parameter 𝑝𝑋𝑖
and a number ri

x1

0

1
z

2

3

x2

x3

x4

x5

x6

Dim. 1

Dim. 2

Dim. 3

Dim. 4

Dim. 5

Dim. 6

Dimension

reduction

x1

0

1
z

2

3

x2

x3

x4

x5

x6

Dim. 1

Dim. 2

Dim. 3

(b)(a)

Figure 2. Illustration of dimension reduction: z is unaffected

by correlations among data inputs x3,x4,x5,x6.

Comparator
k

A

B

A<B

Binary

number pX

k

Random no.

generator
xiC

x1

pXClock

r1

z

rn

Logic
circuit

Clock

1

xnpXn

C

C

RNG 1

RNG n

i

Bernoulli random variable generator

Figure 3. Statistical simulation set-up; random samples are

generated at 𝑟1, … , 𝑟𝑛 to estimate probability distribution fZ.

generated by the RNG. If ri < 𝑝𝑋𝑖
, then xi = 1; otherwise, xi = 0.

Hence, xi = 1 has probability 𝑝𝑋𝑖
, approximately. To generate n

independent BRVs, n BGs with independent RNGs are used.

The dimension D of a circuit is defined as the number of

independent random sources it needs for SS, and corresponds

to the number of inputs. In general, the larger D, the harder the

simulation problem. In methods like QMC [13], D directly

affects the convergence rate. Regular MC is unaffected by

dimension, but generally converges more slowly.

Methods of estimating the output pmf are known. An

analytical approach is the most straightforward way to find the

exact output pmf [14]. This is not practical for large circuits,

as its complexity grows exponentially with circuit size.

Heuristic methods exist that are quite fast but are inaccurate

[6]. MC and QMC are considered to be accurate methods of

estimating the output pmf, with accuracy increasing with

number of samples.

CORRELATION INSENSITIVITY

We first illustrate CI using the function z(x1,x4,x5) = x1x4 +

x1x5 obtained by setting x2 = x3 = 1 in Figure 4. This is

essentially the 2-to-1 multiplexer function, so it has the special

property that inputs x4 and x5 cannot propagate to the output z

simultaneously. In other words, x4 and x5 never affect z at the

same time. When x1 = 1, the path from x5 to z via G3 and G5

(highlighted in red, dashed) becomes active, and the path from

x4 through G2 (highlighted in blue) is blocked. If x1 = 0, the

opposite happens. Assuming X1 is independent of the other

variables, we can write

𝑓𝑍(1) = 𝑓𝑋1
(0)𝑓𝑍

𝑥1
′

(1) + 𝑓𝑋1
(1)𝑓𝑍𝑥1

(1)

which is the probabilistic version of Boole-Shannon expansion

(Theorem 4 in the Appendix). 𝑧𝑥1
′ = 𝑥4 is the negative

cofactor of z with respect to x1 obtained by setting x1 = 0 in z;

𝑧𝑥1
= 𝑥′5 is the positive cofactor of z obtained by setting x1 =

1. Hence,

𝑓𝑍(1) = 𝑓𝑋1
(0). 𝑓𝑋4

(1) + 𝑓𝑋1
(1). 𝑓𝑋5

(0)

implying that the output is a function of the marginal

distributions 𝑓𝑋4
 and 𝑓𝑋5

 only, and not of their joint pmf

𝑓𝑋4𝑋5
, as if X4 and X5 were independent BRVs. This is because

x4 and x5 do not appear in the x1 cofactors of z simultaneously.

A function like z is CI with respect to x4 and x5 because its

output pmf is unaffected by correlations between X4 and X5.

Definition 2: A Boolean function z(x1,…,xn) is correlation

insensitive with respect to variables x1 and x2 if the distribution

(pmf) of Z only depends on the marginal probability

distributions 𝑓𝑋2𝑋3…𝑋𝑛
 and 𝑓𝑋1𝑋3…𝑋𝑛

 and not the joint pmf

𝑓𝑋1…𝑋𝑛
. We refer to x1 and x2 as CI inputs of z.

Equivalently, we could define z(x1,…,xn) as CI with respect to

x1 and x2, if x1 and x2 do not appear in the cofactors of z with

respect to x3,…,xn, simultaneously. This equivalence is shown

in the proof of Theorem 1 in the Appendix.

In a similar SS context, Yu et al. [19] define compatibility,

which is a special case of CI. The compatible inputs of [19]

are those with independent and identically distributed BRVs,

in which case they can be tied together for SS purposes.

Definition 2, on the other hand, allows any joint distribution

among the inputs.

Example 1: Consider again the function z(x1,x4,x5) = x1x4 +

x1x5 in Figure 4. We will show that correlations between X4

and X5 do not affect the output pmf, whereas correlations

between X1 and X4 do. According to Eq. (2),

𝑓𝑍(1) = ∑ ∑ ∑ 𝑧(𝑘1, 𝑘4, 𝑘5)𝑓𝑋1𝑋4𝑋5
(𝑘1, 𝑘4, 𝑘5)

1

𝑘5=0

1

𝑘4=0

1

𝑘1=0

 = 𝑓𝑋1𝑋4𝑋5
(0,1,0) + 𝑓𝑋1𝑋4𝑋5

(0,1,1) + 𝑓𝑋1𝑋4𝑋5
(1,0,0) + 𝑓𝑋1𝑋4𝑋5

(1,1,0)

The first two terms marginalize X5 and the last two terms

marginalize X4, yielding

𝑓𝑍(1) = 𝑓𝑋1𝑋4
(0,1) + 𝑓𝑋1𝑋5

(1,0)

Z’s pmf is a function of 𝑓𝑋1𝑋4
 and 𝑓𝑋1𝑋5

 only, so by Definition

2, z is CI with respect to x4 and x5. The function z is not CI

with respect to x1 and x4 (or x1 and x5), because terms like 𝑓𝑋1𝑋4

(or 𝑓𝑋1𝑋5
) appear in the pmf of Z. The rest of the example

shows how correlations between X4 and X5 leave Z unaffected,

but those between X1 and X4 alter the distribution of Z.

Case 1: All the input BRVs X1, X4, X5 are identically

distributed and independent with 𝑓𝑋𝑖
(1) = 0.5. Consequently,

𝑓𝑍(1) = 𝑓𝑋1𝑋4
(0,1) + 𝑓𝑋1𝑋5

(1,0)

 = 𝑓𝑋1
(0)𝑓𝑋4

(1) + 𝑓𝑋1
(1)𝑓𝑋5

(0) = 0.5 (3)

Case 2: The input BRVs have the same marginal distribution

as before (𝑓𝑋𝑖
(1) = 0.5), but now X4 and X5 are highly

correlated with the following distribution, while X1 remains

independent.

𝑓𝑋4𝑋5
(0,0) = 𝑓𝑋4𝑋5

(1,1) = 0.5 and 𝑓𝑋4𝑋5
(0,1) = 𝑓𝑋4𝑋5

(1,0) = 0

or, equivalently, in vector notation, 𝑓𝑋4𝑋5
= [0.5 0 0 0.5].

The correlation here leaves Z unaffected, following (3). This

shows that Z is insensitive to correlations between X4 and X5.

Case 3: Again 𝑓𝑋𝑖
(1) = 0.5 and X5 is independent. This time

assume X1 and X4 are highly correlated with joint distribution

𝑓𝑋1𝑋4
 = [0.5 0 0 0.5]. The pmf of Z changes to

𝑓𝑍(1) = 𝑓𝑋1𝑋4
(0,1) + 𝑓𝑋1𝑋5

(1,0) = 0 + 0.25 = 0.25

indicating that z is not CI with respect to x1 and x4.

x1

z

x2

x3

x4

x5

10

G1

G2

G3

G4

G5

G6

1

1

z = x'1x4 + x1x'5

Figure 4. Five-input circuit; paths from x4 (blue) and x5

(red, dashed) are activated by different values of x1.

Whenacircuit’soutputisCIwithrespecttotwovariables,SS

can be performed as if those inputs were highly correlated,

even when they are independent. For example, if the two

inputs have the same probability, we can tie them together as if

they were one. This observation is the basis of our proposed

dimension-reduction approach, which is summarized below.

Dimension reduction: In SS of a Boolean function z that is CI

with respect to a subset S of its inputs, RNGs can be shared by

the members of S. This may introduce correlation among those

members, but the probability distribution of z is unaffected. As

a result, the dimension D of z, is reduced.

Next, we show that CI can be expressed in terms of the

Boolean difference (BD). The BD of z with respect to xi is

𝑑𝑧 𝑑𝑥𝑖⁄ = 𝑧𝑥𝑖
′⨁ 𝑧𝑥𝑖

, where denotes XOR (exclusive-OR),

and 𝑧𝑥𝑖
and 𝑧𝑥𝑖

′ are z’s cofactors [9]. For the function z = x1x4 +

x1x5 of Example 1, 𝑑𝑧 𝑑𝑥1⁄ = 𝑥4⨁ 𝑥′5,, 𝑑𝑧 𝑑𝑥4⁄ = 𝑥′1 and

𝑑𝑧 𝑑𝑥5⁄ . = 𝑥1. If 𝑑𝑧 𝑑𝑥1⁄ = 0, then x1 is redundant, meaning

that it has no influence on z. This enables X1 to be

marginalized out of Eq. (2), making fZ a function of

𝑓𝑋2…𝑋𝑛
only. In this case, according to Definition 2, z is CI with

respect to x1 and xj for any j = 2,3,…,n. This points to a

method for identifying CI functions.

Theorem 1: Function z(x1,x2,…,xn) with n > 2 variables is CI

with respect to x1 and x2 if and only if for every cube (product

term) c containing only variables x3,x4,…,xn, at least one input

(x1 or x2) is redundant in the cofactor zc(x1, x2) or, equivalently,

𝑑𝑧𝑐 𝑑𝑥1⁄ = 0 or 𝑑𝑧𝑐 𝑑𝑥2⁄ = 0

A proof can be found in the Appendix. For Example 1,

𝑑𝑧𝑥1
/𝑑𝑥4 = 0 , and 𝑑𝑧𝑥1

′ /𝑑𝑥5 = 0, so in all the cofactors of z

with respect to the remaining variable x1, at least one of the

variables x4 and x5 is redundant, confirming that z is CI with

respect to x4 and x5.

It is possible to have Boolean functions that are CI with

respect to more than two variables. In the extreme case, a

function can be CI with respect to all its inputs, in which case,

the function is just a constant and the output probability is

either 0 or 1.

Definition 3: z(x1,…,xn) is (strongly) correlation insensitive

(CI) with respect to variable set 𝕏 = {𝑥1 … , 𝑥𝑘}, if it is CI

with respect to every pair xi,xj in 𝕏.

Example 2: The circuit in Figure 5 realizes 𝑧 = 𝑥1(𝑥2
′ + 𝑥3

′ +
𝑥4 + 𝑥5)(𝑥4

′ + 𝑥6
′ + 𝑥7

′)(𝑥4
′ + 𝑥6 + 𝑥8

′) which is CI with

respect to {x5, x7}, {x5, x8} and {x7, x8}, among others. Hence,

z is CI with respect to 𝕏 = {𝑥5, 𝑥7, 𝑥8}. Other CI sets present

in this function are {𝑥2, 𝑥7, 𝑥8} and {𝑥3, 𝑥7, 𝑥8}.

Correlation insensitivity occurs in several other ways. A

function may not be CI with respect to any pair of variables,

but have a larger subset of variables that do not affect the

output at the same time.

Definition 4: z(x1, …, xn) is weakly correlation insensitive

(WCI) with respect to variables 𝕏 = {𝑥1, … , 𝑥𝑘} if the

distribution of the BRV Z is only a function of the k marginal

probability distributions in which one of the BRVs X1,…,Xk is

marginalized out, i.e., 𝑓𝑋2𝑋3…𝑋𝑘𝑋𝑘+1…𝑋𝑛
, 𝑓𝑋1𝑋3𝑋4…𝑋𝑘𝑋𝑘+1…𝑋𝑛

,…

𝑓𝑋1𝑋2𝑋3…𝑋𝑘−1𝑋𝑘+1…𝑋𝑛
. 𝕏 is called a WCI set of z.

Weak CI generalizes CI, so WCI sets can be expected to occur

more often than (strong) CI sets. A CI input-pair is a WCI set

of size 2, because if the function z is CI with respect to x1 and

x2, then the BRV Z is a function of 𝑓𝑋2…𝑋𝑛
 and 𝑓𝑋1𝑋3…𝑋𝑛

 only,

so by Definition 4, {x1, x2} is also a WCI of z. Similarly,

(strong) CI sets of variables are special cases of WCI sets.

Identifying WCI sets is harder than finding CI pairs because

more variables are involved. For simplicity, we only consider

WCI sets of size k = 3. If z(x1,…,xn) is WCI with respect to {x1,

x2, x3}, then for every cube c containing x4,…,xn, at least one

variable from the set {X1, X2, X3} must be marginalized out in

the corresponding iteration of Eq. (2). This is only possible if

some variable is redundant in zc, or if zc is CI with respect to at

least one pair of its variables. Hence, z is WCI with respect to

{x1, x2, x3} if and only if for every cube c containing the

variables x4,…,xn, the cofactor zc is CI with respect to {x1, x2},

{x1, x3} or {x2, x3}.

Theorem 2: z is WCI with respect to 𝕏 = {𝑥1, … , 𝑥𝑘} if and

only if for every cube c containing the variables xk+1,…,xn, zc

is WCI with respect to at least one subset of size k 1 of 𝕏.

Example 3: The function 𝑧 = 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥′4𝑥5
′ +

𝑥2𝑥3𝑥4
′ 𝑥5 (Figure 6) has no pair of CI inputs. However, z is

WCI with respect to {𝑥1, 𝑥2, 𝑥3} as it has the cofactors

𝑧𝑥4
′ 𝑥5

′ = 𝑥1𝑥3 , 𝑧𝑥4
′ 𝑥5

= 𝑥2𝑥3 and 𝑧𝑥4𝑥5
′ = 𝑧𝑥4𝑥5

= 𝑥1𝑥2, which

are CI with respect to {𝑥1, 𝑥2}, {𝑥1, 𝑥2} and {𝑥1, 𝑥3}, resp. Like

strong CI sets, WCI sets provide dimension reduction in SS.

Finally, we observe that correlation insensitivity is not directly

related to the similar-sounding concept of correlation immunity

used in cryptography [17]. The latter measures the extent to

which a Boolean function’s outputs are statistically

independent of (uncorrelated with) subsets of its inputs.

Correlation insensitivity is only concerned with dependencies

among the inputs, and those dependencies are of a more

restricted type.

x1

z

x2
x3

x4
x5

x6

G1

x7

G2

G3

G5 G7

C3

C2

C1

y1

y2

x8
G4

G6

Figure 5. Circuit used in Examples 2 and 4.

z

x1
x2
x4

x3

x5

Figure 6. Circuit with weak CI set {x1, x2, x3}.

DETECTING CORRELATION INSENSITIVITY

Theorem 1 implicitly provides a way to detect CI. To construct

a more practical method, we relate CI detection to a well-

known problem in the digital circuit field, automatic test

pattern generation (ATPG) [5]. In order to find CI inputs of a

circuit, we only need to perform ATPG for the faults that

occur on the inputs. (See Theorem 5 in the Appendix.)

To gauge CI’s frequency in real circuits, we examined the

individual output functions of the widely-used ISCAS suite of

benchmark circuits [11], and also a 16-bit binary adder circuit.

We counted their CI input pairs and WCI sets of size three via

an ATPG-based program; Table 1 shows the results. Several

outputs were sampled from each circuit. For example,

adder16_cout referstheadder’sfinal carry-out function, while

c432_o1 refers to the first output of the c432 benchmark.

These results show that CI is commonplace. It varies

significantly from circuit to circuit, but generally increases

with circuit size.

To make the CI detection algorithm more scalable, divide-and-

conquer can be used. Our approach is to partition the circuit

into supergates [19], which confine reconvergent fanout to

single-output sub-circuits. The overall circuit then becomes a

tree of supergates with no high-level fanout. Hence, we only

need to search within the supergates in order to find CI.

Furthermore, it can be shown that in such tree-structured

circuits, the CI of the intermediate signals propagates to their

fan-in cones and to the output, leading to the following result.

 Corollary 3: Consider the Boolean function z(g, h), in which

g(x1,…,xn) and h(y1,…,ym) are sub-functions. If z is CI with

respect to g and h, then z is also CI with respect to xi and yj for

any i and j. Further, if g is CI with respect to x1 and x2, then z

is also CI with respect to x1 and x2.

Example 4: The circuit of Figure 5 can be partitioned into

three supergates C1, C2 and C3 as indicated by dashed lines.

Supergate C2 realizes 𝑦2 = 𝑦1𝑥′4 + 𝑥4
′ 𝑥5 + 𝑥4𝑥6𝑥7

′ + 𝑥4𝑥6
′ 𝑥8

′

and is the only one containing reconvergent fanout. Since C2 is

smaller than the original circuit, its CI sets can be detected

more quickly. Analysis shows that y2 is CI with respect to

seven pairs: {y1, x6}, {y1, x7}, {y1, x8}, {x5, x6}, {x5, x7}, {x5,

x8} and {x7, x8}. According to Corollary 3, all CI relations of

y1 propagate to its fan-in cone x2 and x3, and all the CI

properties of y2 propagate to the output z. Thus we can

conclude that z is CI with respect to x2 and x8, a result already

seen in Example 2.

The scalability of the proposed approach depends on the

number and the size of the supergates of the circuit. Super-

gates are often much smaller than the circuits that contain

them. Min and Park [11] show that for the ISCAS circuits,

more than 87% of the supergates have 10 or fewer gates, and

over 99% have 100 or fewer gates. The average supergate size

is around 8 gates. These numbers suggest that supergate

partitioning is effective at detecting CI in larger circuits. CI

detection for adder16_cout was reduced from 4 minutes to a

fraction of a second using this divide-and-conquer approach.

CASE STUDIES

This section demonstrates several applications of the proposed

dimension-reduction technique to circuit design problems.

Dimension reduction in c1196
As reported in Table 1, many CI pairs and WCI sets exist in

c1196, the combinational part of ISCAS benchmark s1196.

Consider the single-output sub-circuit denoted c1196_o1 in

Table 1. It has 21 inputs x1,…,x21 and 24 CI pairs. Figure 7

illustrates c1196’s CI relations in graph form. The vertices

correspond to the inputs, and a solid edge between xi and xj

means that the output is CI with respect to them.

Even though c1196 has 24 CI pairs, it is not possible to merge

them all. For instance, the output is CI with respect to {x5, x19}

and {x6, x19}, but we cannot combine these three inputs

because the output is still sensitive to correlations between x5

and x6. By Definition 3, in order to have a (strong) CI set,

every pair of inputs must be CI. This corresponds to a fully-

connected sub-graph or clique in the graph representation.

Finding the maximal CI sets can now be done by clique

partitioning [9]. Figure 7 shows one of many such partitions.

The sets {x18, x19, x20, x21} (shown in blue) and{x16, x17 } (red)

are identified as (strong) CI sets and can be merged during

statistical simulation.

x15

x1

x2

x5x6

x19

x17x16

x21x20

x18

x10

x7

CI Set #1

CI Set #2

Weak CI

Set

Figure 7. Graph illustrating CI sets of the c1196 benchmark;

the clustered nodes can be merged during SS.

Circuit
No. of
inputs

No. of
gates

No. of CI
input-pairs

No. of WCI
sets of size 3

adder16_cout 32 125 0 0

c432_o1 18 20 0 0

c432_o2 27 58 0 0

c880_o1 36 80 1 38

c880_o2 32 63 1 34

c1196_o1 21 180 24 377

c1196_o2 20 118 12 204

c1196_o3 19 132 16 222

c1196_o4 23 187 36 586

c1196_o5 22 203 58 652

c1238_o1 21 203 23 358

c1238_o2 23 209 36 586

c1238_o3 15 52 9 99

c1238_o4 10 39 0 0

c2670_o1 11 24 28 140

c2670_o2 12 22 32 180

c5315_o1 14 50 41 279

c5315_o2 24 78 72 1,044

c6288_o1 24 630 0 0

c6288_o2 26 747 0 0

c7552_o1 29 342 108 1,817

c7552_o2 29 153 108 1,818

c7552_o3 20 97 54 591

Table 1. Presence of CI in some benchmark circuits.

Besides strong CI sets, c1196 has many weak CI sets that may

or may not overlap strong ones. One non-overlapping WCI set

is depicted in Figure 7 (green dashed lines). Thus, the WCI set

{x1, x2, x15} can also be used to further reduce the dimensions

of c1196 simulation. The three CI sets of Figure 7 reduce the

dimensions of c1196 from 21 to 16 for SS purposes. Figure 8

shows a simulation set-up for c1196: only 16 independent

RNGs are needed after applying dimension reduction. Note

that the random number sources for x15 are obtained by XOR-

ing the RNGs of x1 and x2; this is explained later.

Soft error analysis

Next, we show how our dimension reduction technique can

improve soft-error analysis. Figure 9 gives a 5-input circuit in

which an XOR gate is added to the output of each gate in order

to model soft errors affecting the circuit, a standard technique

in simulation-based reliability analysis. Since this falls into the

SS category it is possible to exploit correlation insensitivity.

For example, z is CI with respect to {x1, x4}, {x2, x5}, and {e1,

e2}, so we can share independent random sources among them.

Such dimension reduction can improve simulation quality,

especially if QMC is used. Figure 10 shows that after

exploiting CI, the simulation quality improves significantly

Stochastic circuits

Stochastic computing (SC) is an unconventional computing

style that represents a number by a (pseudo) random bit-stream

in which the fractionof1’sdenote a probability value [1][7].

For example, X = 00001101 is one of many possible

representations of the probability pX = 3/8. Computation is

performed by applying such bit-streams to a conventional

logic circuit and estimating the probability of each output bit-

stream. This process is, in fact, a kind of hardware-based SS.

The key advantage of SC is that it uses extremely small and

error-tolerant logic circuits to implement arithmetic operations

which require orders of magnitude more hardware with

conventional binary numbers. For example, a single AND gate

performs the multiplication pXpY, while a multiplexer performs

the scaled addition (pX + pY)/2; see Figure 11. An error that

flips a bit of an N-bit stream X has little effect on pX provided

N is sufficiently large. On the other hand, SC tends to be much

slower and less accurate than conventional binary arithmetic.

Nevertheless, SC is an attractive technology for certain

applications such as implantable biomedical devices [2].

An AND gate with N-bit inputs X and Y computes pXpY only if

the inputs are statistically independent, i.e., uncorrelated, and

N is sufficiently large; see Figure 11a. Figure 11b shows a

case where the bit-streams for X and Y have identical bit

patterns as well as values (they are maximally correlated). This

produces the output pX instead of 𝑝𝑋
2 , a big inaccuracy. In

general the inputs to a stochastic circuit need to be statistically

independent. Generating many independent inputs for a

stochastic circuit has significant area cost [15]. If, however,

the output of the circuit is CI with respect to some inputs, the

random number sources can be shared among those inputs

thereby reducing the overall cost. Note that the stochastic

adder is unaffected by correlations among its data inputs, as

seen in Figure 11d.

Consider again the Boolean function z(r, x, y) = rx + ry which

implements a stochastic adder; see Figure 11c. Assuming the

three inputs are BRVs with parameter 0.5, we need three

independent random sources. These are usually obtained from

a 3-bit LFSR [7]. The joint pmf of X and Y then is 𝑓𝑋𝑌 =
[0.25 0.25 0.25 0.25] . However, as seen in a similar

(a) (b)

C

C

x1

x2

o1

C

C

c1196

x1

x2

x15
C

x14

C

x17
C

x16
C

x21
C

x18
CRNG 16

c1196

x21

C

o1

Comparator C

RNG 15

RNG 14

RNG 2

RNG 1

RNG 2

RNG 1

RNG 21

Figure 8. Set-up for SS of the c1196_o1 benchmark circuit (a)

before and (b) after applying dimension reduction.

x1

x2

e1

x4

x5

x3

e2

e3

e4

e5

z

Figure 9. 5-input circuit with XOR gates to model soft errors.

Number of samples N

M
e

a
n

 s
q
u

a
re

 e
rr

o
r

Monte Carlo

Quasi-Monte Carlo

Quasi-Monte Carlo

after applying the

proposed dimension

reduction technique

Figure 10. Simulation data for the circuit of Figure 9 showing

that dimension reduction significantly decreases MSE.

01011010 (4/8)

(a)

11101000 (4/8)
01001000 (2/8)

(b)

01011010 (4/8)

01011010 (4/8)
01011010 (4/8)x z

01101001 (4/8)

11011011 (6/8)

11101001 (5/8)
0

1

r
11001100 (4/8)

01100110 (4/8)

(c) (d)

x
z

y 01101111 (6/8)

01101110 (5/8)
0

1

r
11001100 (4/8)

x
z

y

y

x
z

y

Figure 11. (a) Stochastic multiplier with independent and (b)

correlated input bit-streams. Stochastic adder with (c)

independent and (d) correlated input bit-streams.

function in Example 1, we can replace this with 𝑓∗
𝑋𝑌

=

[0.5 0 0 0.5] without altering the output pmf. Having 𝑓∗
𝑋𝑌

means that X and Y have the same value; so inputs x and y can

be connected.

 If a stochastic circuit needs arbitrary input values, we must

add Bernoulli random variable generators (BGs) to the inputs.

Figure 12a shows two BGs connected to a multiplexer-based

stochastic adder. Two independent m-bit LFSRs are used as

RNGs in this example. Counting the comparators we get a

circuit with 2m + 1 inputs (r1, r2 and themultiplexer’sselect

input r), each with value 0.5. As noted earlier, correlation

insensitivity propagates through the fan-in cones of x and y,

i.e., the comparators. So the newly obtained function z is CI to

every input pair r1[i] and r2[j] taken from bits of r1 and r2.

Since all the inputs have value 0.5, we can connect each bit of

r1 to a corresponding bit at r2. This yields the circuit in Figure

12b which uses only one LFSR.

 This idea can be immediately extended to strongly CI sets.

For example, the reconfigurable stochastic architecture

described by Qian et al. [15] is similar to that of Figure 2 in

that its main component is a k-to-1 multiplexer, where k is the

degree of a polynomial being implemented. Since the

multiplexer is CI with respect to all its data inputs, one RNG

can be shared among all k inputs, leading to significant cost

reduction.

 Weakly CI sets can also be exploited to reduce the cost of

SC. Consider Figure 6 again, and assume that all the inputs are

SNs of value 0.5. The joint pmf of X1, X2, and X3 is thus

𝑓𝑋1𝑋2𝑋3
= [0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125]

However, since z is weakly CI with respect to {x1, x2, x3}, we

can replace the input pmf with the following:

𝑓∗
𝑋1𝑋2𝑋3

= [0.25 0 0 0.25 0 0.25 0.25 0]

without altering the output pmf. Note that even though the

joint pmf is changed, the marginal distributions of each pair,

i.e., 𝑓∗
𝑋1𝑋2

, 𝑓∗
𝑋1𝑋3

, and 𝑓∗
𝑋2𝑋3

, are the same as before. Since

the output pmf is only a function of the marginal distributions,

it remains unaffected. The new pmf 𝑓∗
𝑋1𝑋2𝑋3

 can be generated

by assigning two random bits to x1 and x2, and assigning x3 =

x1 x2. This guarantees that each pair remains independent.

Extending the foregoing concepts to inputs of arbitrary value,

we can replace one RNG by a bit-wise XOR function of the

other RNGs if weakly CI sets are present in the circuit. In

Figure 8b, the RNG used for x15 is obtained by XORing the

RNGs of x1 and x2, because {x1, x2, x15} form a WCI set.

To illustrate the effectiveness of CI-based dimension reduction

in stochastic circuits, we compare the area of several existing

SC designs before and after applying our method. All the

designs were mapped to ICs using a standard layout tool, the

Berkeley sis program, Table 2 summarizes the results, and

indicates that dimension reduction can save up to 68% in IC

area. In the case of CheckNode, no correlation insensitivity

was detected, so no area reduction was achieved.

CONCLUSIONS

We have introduced and analyzed a property of Boolean

functions called correlation insensitivity which is very useful

for statistical simulation. Correlation-insensitive (CI) functions

are unaffected by statistical dependencies among certain

inputs. This makes it possible to merge those inputs and so

reduce the dimensions of the simulation problem. We

presented rigorous definitions of basic CI properties including

strong and weak correlation insensitivity. We also described a

practical way of detecting them via test pattern generation. We

found that some degree of CI is widespread in circuits like the

ISCAS bench-marks. Finally, we showed, that our dimension

reduction method can significantly improve simulation quality,

and also improve the design of stochastic circuits.

ACKNOWLEDGEMENT

This work was supported by Grant CCF-1318091 from the

National Science Foundation.

REFERENCES
1. A. Alaghi and J.P. Hayes. Survey of stochastic computing.

ACM Trans. Embed. Comp. Sys., 12 (2013), art. 92.

2. A. Alaghi, C. Li, and J.P. Hayes. Stochastic circuits for real-

time image-processing applications. Proc. DAC 2013, paper

136.

3. S. Borkar. Designing reliable systems from unreliable

components. IEEE Micro, 25 (2005), 10-16.

4. B.D. Brown and H.C. Card. Stochastic neural computation. I.

Computational elements. IEEE Trans. Comp. 50 (2013), 891-

905.

pX

x
r1

y

z

pY

r2

0

1

m

m

m

m

Clock

pX

x
r1

y

z

pY

0

1

m

m

m

m

r2=r1

(a)

(b)

RNG (LFSR) 1

Clock

RNG (LFSR) 2

Clock

RNG (LFSR) 1

C

C

C

C

r

r

Figure 12. Dimension reduction in a stochastic adder; (a)

with independent RNGs and (b) with shared RNGs.

Circuit

Initial
area

(m
2
)

No. of
CI

input-
pairs

Area after
dimension
reduction

(m
2
)

Example from [15] 2,393 6 818

Gamma correction [15] 10,524 21 3,291

Gaussian function [10] 10,436 120 4,039

Degree-3 CheckNode [12] 2,649 0 2,649

4-input SC neuron* [4] 15,426 24 8,932

8-input SC neuron* [4] 30,906 112 15,752

Circuit of Figure 6** 9,495 0 ** 9,046

Stochastic adder* [7] 3,925 1 2,842

* Eight-bit BGs are included in the area calculations.
** This circuit has no CI pairs but has one weakly CI set of size 3.

Table 2. Impact of dimension reduction on circuit area.

5. M.L. Bushnell and V.D. Agrawal. Essentials of Electronic

Testing, New York: Springer, 2000.

6. S. Ercolani el al. Estimate of signal probability in combi-

national logic networks. Proc. ETC 1989, 132-138.

7. B.R. Gaines. Stochastic computing systems. Advances in

Information Systems Science, 2 (1969), 37-172.

8. J.M. Hammersley and D.C. Handscomb. Monte Carlo

Methods. London: Methuen, 1964.

9. G.D. Hachtel and F. Somenzi. Logic Synthesis and Verifi-

cation Algorithms. Boston: Kluwer, 1996.

10. P. Li et al. The synthesis of complex arithmetic computation

on stochastic bit streams using sequential logic. Proc.

ICCAD 2012, 480-487.

11. H.B. Min and E.S. Park. Graph-theoretic algorithm for

finding maximal supergates in combinational logic circuits.

IEE Proc. Circuits, Devices and Syst., 143 (1996), 313-318.

12. A. Naderi et al. Delayed stochastic decoding of LDPC codes.

IEEE Trans. Signal Proc. (2011), 5617-5626.

13. H. Niederreiter. Random Number Generation and Quasi-

Monte Carlo Methods, SIAM Series App. Math., 32 (1992).

14. K.P. Parker and E.J. McCluskey. Probabilistic treatment of

general combinational networks. IEEE Trans. Comp. (1975)

668-670.

15. W. Qian et al. An architecture for fault-tolerant computation

with stochastic logic, IEEE Trans. Comp., (2011), 93-105.

16. N.R. Shanbhag et al. Stochastic computation. Proc. DAC

2010, 859-864.

17. T. Siegenthaler. Correlation-immunity of nonlinear com-

bining functions for cryptographic applications. IEEE Trans.

Info. Th., (1984), 776–780.

18. A. Singhee et al. Practical, fast Monte Carlo statistical static

timing analysis: Why and how. Proc. ICCAD 2008, 190-195.

19. C.C. Yu et al. Scalable sampling methodology for logic

simulation: Reduced-Ordered Monte Carlo. Proc. ICCAD

2012, 195-201.

Appendix: Theorem Proofs

This appendix proves Theorem 1. Theorem 2 is a straight-

forward generalization of Theorem 1, so its proof is omitted.

Two additional theorems (Theorems 4 and 5) are also

presented and proven.

Theorem 1: Proof: (Sufficiency) For every combination of

x3…xn, i.e., for every cube c containing only the variables

x3,x4,…,xn, the cofactor zc is a function of one of the variables

x1 or x2, but not both. This means that 𝑑𝑧𝑐 𝑑𝑥1⁄ =
𝑧𝑐(0, 𝑥2) ⊕ 𝑧𝑐(1, 𝑥2) = 0 or 𝑑𝑧𝑐 𝑑𝑥2⁄ = 𝑧𝑐(𝑥1, 0) ⊕
𝑧𝑐(𝑥1, 1) = 0, implying

𝑧𝑐(0,0) = 𝑧𝑐(1,0) and 𝑧𝑐(0,1) = 𝑧𝑐(1,1)
or (4)
 𝑧𝑐(0,0) = 𝑧𝑐(0,1) and 𝑧𝑐(1,0) = 𝑧𝑐(1,1)

Next, we express fZ(1) using Eq. (2) and unroll the first two

sums (with respect to k1 and k2) to enumerate all the four

possible cases of 𝑧𝑐(0,0), 𝑧𝑐(0,1), 𝑧𝑐(1,0) and 𝑧𝑐(1,1):

 ∑ …1
𝑘3=0 ∑ [𝑧(0,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛

(0,0, 𝑘3, … , 𝑘𝑛) +1
𝑘𝑛=0

 𝑧(0,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛
(0,1, 𝑘3, … , 𝑘𝑛) +

 𝑧(1,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛
(1,0, 𝑘3, … , 𝑘𝑛) +

 𝑧(1,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛
(1,1, 𝑘3, … , 𝑘𝑛)] (5)

Equations (4) implies that for each iteration of the preceding

summation, we can marginalize either X1 or X2, yielding

 𝑧(0,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋2…𝑋𝑛
(0, 𝑘3, … , 𝑘𝑛) +

𝑧(1,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋2…𝑋𝑛
(1, 𝑘3, … , 𝑘𝑛)

or

 𝑧(0,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋3…𝑋𝑛

(0, 𝑘3, … , 𝑘𝑛) +

𝑧(1,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋3…𝑋𝑛
(1, 𝑘3, … , 𝑘𝑛)

So the distribution of Z is a function of the marginal

distributions 𝑓𝑋2…𝑋𝑛
 and 𝑓𝑋1𝑋3…𝑋𝑛

. From Definition 2, z is CI

with respect to x1 and x2.

 (Necessity) By way of contradiction, if z is CI with respect to

x1 and x2, but there is a cube c with 𝑑𝑧𝑐 𝑑𝑥1⁄ ≠ 0

and 𝑑𝑧𝑐 𝑑𝑥2⁄ ≠ 0, then zc is a non-degenerate function of both

x1 and x2. By enumerating all possibilities for zcthere are

only 10 non-degenerate functions of two variableswe see

that for the particular iteration of (5) that corresponds to c,

none of the variables X1 and X2 can be marginalized. Hence, z

is not CI with respect to x1 and x2, a contradiction from which

the necessary condition follows.

Theorem 4: (Probabilistic Boole-Shannon expansion) For a

Boolean function z(x1,…, xn), if BRV X1 is independent of the

remaining variables, then

𝑓𝑍(1) = 𝑓𝑋1
(0)𝑓𝑍𝑥′1

(1) + 𝑓𝑋1
(1)𝑓𝑍𝑥1

(1)

where 𝑍𝑥1
 and 𝑍𝑥1

′ are the BRVs corresponding to the positive

and negative cofactors, respectively, of z with respect to x1.

Proof: The events X1 = 0 and X1 = 1 are complementary, so

𝑓𝑍(1) = 𝑓𝑍|𝑋′
1
(1). 𝑃[𝑋1 = 0] + 𝑓𝑍|𝑋1

(1). 𝑃[𝑋1 = 1]

 = 𝑓𝑍|𝑋′
1
(1). 𝑓𝑋1

(0) + 𝑓𝑍|𝑋1
(1). 𝑓𝑋1

(1) (6)

𝑓𝑍|𝑋1
 (𝑓𝑍|𝑋′

1
) is the conditional distribution of Z with respect to

the event X1 = 1 (X1 = 0), and is defined as 𝑓𝑍|𝑋1
(1) =

𝑓𝑍𝑋1
(1,1) 𝑓𝑋1

(1)⁄ . Since X1 is independent of the remaining

variables, we have 𝑓𝑍|𝑋1
(1) = 𝑓𝑍𝑥1

(1). Similarly, 𝑓𝑍|𝑋1
′ (1) =

𝑓𝑍
𝑥′

1
(1), so by Eq. (6)

 𝑓𝑍(1) = 𝑓𝑋1
(0). 𝑓𝑍

𝑥1
′

(1) + 𝑓𝑋1
(1). 𝑓𝑍𝑥1

(1)

Theorem 5: z(x1,…,xn) is CI with respect to x1 and x2 if and

only if there are no test patterns that detect a single stuck-at

fault on x1 and a single stuck-at fault on x2.

Proof: The solutions to 𝑑𝑧/𝑑𝑥1= 1 are all possible test patterns

that detect the faults on x1. Similarly, the solutions to 𝑑𝑧/𝑑𝑥2

= 1 are all tests for the faults on x2. An input pattern that

detects both fault sets must be a solution to both equations.

However, if z is CI with respect to x1 and x2, then according to

Theorem 1, for every cube c containing the variables x3,…,xn,

we have 𝑑𝑧𝑐 𝑑𝑥1⁄ = 0 or 𝑑𝑧𝑐 𝑑𝑥2⁄ = 0. This means there is no

input combination for which both 𝑑𝑧𝑐 𝑑𝑥1⁄ = 1 and

 𝑑𝑧𝑐 𝑑𝑥2⁄ = 1, implying that no test pattern exists that detects

both faults sets.

Conversely, if a test pattern exists, then for the cube c

(containing the variables x3,…,xn) taken from the test pattern,

both 𝑑𝑧𝑐 𝑑𝑥1⁄ ≠ 0 and 𝑑𝑧𝑐 𝑑𝑥2⁄ ≠ 0, so z is not CI.

