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ABSTRACT 
Statistical analysis tasks are increasingly encountered in the 

design of digital circuits that implement complex Boolean 

functions. Examples include analyzing the impact of soft 

errors, estimating power consumption, and stochastic 

computation. Common simulation techniques such as quasi-

Monte Carlo simulation often converge too slowly for large 

circuits with many inputs, i.e., many dimensions. We analyze 

the probabilistic properties of Boolean functions, and identify 

new function classes called correlation insensitive (CI) which 

tolerate input dependencies. Correlation insensitivity enables 

dimension reduction, thereby significantly improving simula-

tion quality. We investigate the theory of CI functions, present 

a new dimension-reduction algorithm, and show useful links to 

some well-known circuit design problems.  
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INTRODUCTION 

Integrated circuits (ICs) have long benefited from manufac-

turing improvements that have steadily increased their 

structural and functional complexity. As a result, ICs are 

becoming more sensitive to environmental interference and 

small processing variations, which can cause non-deterministic 

behavior [3]. Furthermore, IC design styles like stochastic 

computing are emerging where non-deterministic features are 

intentionally introduced to trade accuracy for power, area or 

speed [1][7][16].  Such circuits require probabilistic methods 

of analysis and simulation, unlike conventional approaches 

which are strictly deterministic.  

Statistical methods such as Monte Carlo (MC) simulation [8] 

are widely used, mainly due to their high accuracy. Quasi-

Monte Carlo (QMC) is a variant of MC that employs carefully 

selected deterministic samples instead of random samples [13]. 

It is preferred over MC in statistical analysis of digital circuits 

where it tends to converge faster to a solution [18]. Figure 1 

compares the convergence rates (in terms of mean square error 

MSE) of MC and QMC for statistical simulation of the circuit 

in Figure 2. As can be seen, QMC converges much faster than 

MC, and exhibits an order-of-magnitude lower error rate.  

To address current and future IC design needs, ever faster 

simulation techniques are needed. A major factor influencing 

QMC performance is the number of dimensions of the prob-

lem under consideration, i.e., the number of input parameters. 

Figure 1 previews of a key result of this paper: the conver-

gence rate of QMC after applying the dimension-reduction 

technique proposed here is much faster than MC and QMC. In 

this example, the circuit dimension is reduced from 6 to 3, and 

convergence is significantly improved. It can be shown that 

the convergence rate of MC is of order 𝑂(𝑁−1/2), while that of 

QMC is approximately 𝑂(𝑁−1 log𝐷(𝑁)) , where N is the 

number of samples and D is the number of dimensions [13].  

We propose a method to effectively reduce the dimensions of 

QMC in the statistical simulation of digital circuits. The key 

idea is to detect correlation insensitivity (CI) within the target 

circuit. Functions with CI are not affected by input 

dependencies. Hence independent dimensions associated with 

inputs can be merged into one dimension without affecting the 

circuit’s output probability distribution. This reduces the 

circuit’s dimensionality, leading to significant improvement in 

simulation performance and quality. A similar dimension 

reduction technique was employed by Singhee et al. in 

statistical timing analysis of digital circuits [18]. Their 

technique, however, does not apply to statistical simulation.  

Figure 2 illustrates the proposed dimension reduction method 

in a basic form. The device shown is a 4-to-1 multiplexer, 

which connects one of the four data inputs x3,x4,x5,x6 to the 

output z under the control of the select inputs x1,x2. A naïve 

approach to statistical simulation of this circuit is to assign six 

individual dimensions, (independent random sources), to the 

six input variables. However, the four data inputs never affect 

the output simultaneously, so any correlation between them is 

not reflected in the output z, which is therefore CI with respect 

to x3,x4,x5,x6. This means that we can assign one random 

source to all four data inputs and effectively reduce the 

dimensions of the statistical simulation from six to three. 
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Figure 1. MC and QMC simulation of a 6-dimensional 

problem before and after applying dimension reduction. 
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The paper is organized as follows. First, relevant aspects of 

digital logic circuits and probabilistic analysis are reviewed   

in the Background section. Then, CI is analyzed along with its 

use to reduce dimensionality. A helpful connection with 

existing logic design algorithms is established, and CI is 

shown to occur often in benchmark circuits. Finally, CI’s

utility in several applications is demonstrated.  

The main contributions of this paper are: 

1. Introduction and classification of CI Boolean functions 

2. Demonstration of the role of CI in reducing the dimen-

sionality of logic circuits 

3. Application of CI-based dimension reduction to some 

statistical simulation tasks  

BACKGROUND  

This section establishes a mathematical framework for 

statistical simulation (SS) in the digital circuit context. The 

target circuits consist of logic gates (AND, OR, NOT, etc.), 

other common components (multiplexers, comparators, etc.), 

and their inter-connecting wires.  The signals being processed 

take their values from the bit set {0,1}. Following engineering 

convention, the logic operations AND, OR and NOT on these 

signals are denoted by juxtaposition, + and ′, respectively. It

will usually be clear from the context when juxtaposition and 

+ refer to the arithmetic operations multiply and add, e.g., 

when dealing with probabilities and probability distributions.   

For SS purposes, each wire x in a circuit is associated with a 

Bernoulli random variable (BRV) X with parameter pX, which 

is the probability of seeing a 1 on x. The probability mass 

function (pmf) of X is 𝑓𝑋(𝑘) = 𝑃[𝑋 = 𝑘], where P[A] is the 

probability of event A. Since fX is a binary function, fX(1) 

uniquely defines it. Note that fX(1) = pX. 

The BRVs X1,…,Xn associated with x1,…,xn may be correlated. 

Hence, their probabilistic behavior must be viewed as a joint 

probability distribution (or a joint pmf) 𝑓𝑋1…𝑋𝑛
.  

𝑓𝑋1…𝑋𝑛
(𝑘1, … , 𝑘𝑛) = 𝑃[𝑋1 = 𝑘1, … , 𝑋𝑛 = 𝑘𝑛] 

The joint pmf specifies the probability of each of the 2
n
 

possible combinations of Xi’s. In the special case where all the 

Xi’s are independent, the joint pmf reduces to the product of 

the marginal distributions of the individual BRVs.  

 𝑓𝑋1…𝑋𝑛
(𝑘1, … , 𝑘𝑛) = 𝑓𝑋1

(𝑘1) × … × 𝑓𝑋𝑛
(𝑘𝑛)      (1) 

Definition 1: Let z(x1,…,xn) be the Boolean function realized 

by combinational circuit C. Statistical simulation (SS) is the 

process of estimating the pmf fZ by applying samples from a 

joint pmf 𝑓𝑋1…𝑋𝑛
 to C. Note that fZ can be calculated exactly 

using the following equation: 

𝑓𝑍(1) = ∑ ∑ …1
𝑘2=0 ∑ [𝑧(𝑘1, 𝑘2, … , 𝑘𝑛)1

𝑘𝑛=0
1
𝑘1=0   

   × 𝑓𝑋1𝑋2…𝑋𝑛
(𝑘1, 𝑘2, … , 𝑘𝑛)]   (2) 

which, along with  𝑓𝑍(0) = 1 − 𝑓𝑍(1) , completely specifies 

𝑓𝑍. Evaluating Eq. (2) is not practical, however, because of its 

exponential growth with n. SS is a practical alternative 

because it uses only a subset of the input combinations to 

estimate 𝑓𝑍. 

As an example, consider again circuit C1 in Figure 2. If the 

inputs are independent BRVs with parameter 1/2, i.e., 

unbiased BRVs, then SS of C1 involves generating samples 

from six independent random sources, recording the frequency 

of 1s and 0s on z, and estimating fZ. As discussed earlier, we 

can use the same random source for the multiplexer’s data 

inputs and reduce the number of sources by three.  Each 

random source can be thought of as the toss of a fair coin. 

Linear feedback shift registers (LFSRs) are typically used to 

implement random bit generation [7]. Strictly speaking, 

LFSRs are pseudo-random generators, but they work well as 

random sources in practice. 

In general, the input BRVs of a circuit can be biased, meaning 

that they can have a parameter other than 1/2, and they also 

can be non-independent (correlated). In such cases, the joint 

pmf of the inputs cannot be expressed in terms of individual 

pmfs, as in Eq. (1). So for SS purposes, we must sample 

directly from the joint pmf. The theoretical analysis of this 

paper applies to the general case. However, for ease of 

presentation, and since most applications employ independent 

inputs, we normally use examples that have independent RVs 

at their inputs. 

Figure 3 shows a typical set-up for SS of a circuit with n 

independent inputs. The Bernoulli random variable generator 

(BG) produces BRVs with arbitrary parameter 𝑝𝑋𝑖
. It includes 

a comparator (C) and an LFSR-based random number 

generator (RNG). In each clock cycle, C compares two k-bit 

binary numbers: the desired parameter 𝑝𝑋𝑖
and a number ri 
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Figure 2. Illustration of dimension reduction: z is unaffected 

by correlations among data inputs x3,x4,x5,x6. 

Comparator
k

A

B

A<B

Binary 

number pX

k

Random no. 

generator
xiC

x1

pXClock

r1

z

rn

Logic
circuit

Clock

1

xnpXn

C

C

RNG 1

RNG n

i

Bernoulli random variable generator

 

Figure 3. Statistical simulation set-up; random samples are 

generated at 𝑟1, … , 𝑟𝑛 to estimate probability distribution fZ. 



 

 

generated by the RNG. If ri < 𝑝𝑋𝑖
, then xi = 1; otherwise, xi = 0. 

Hence, xi = 1 has probability 𝑝𝑋𝑖
, approximately. To generate n 

independent BRVs, n BGs with independent RNGs are used.  

The dimension D of a circuit is defined as the number of 

independent random sources it needs for SS, and corresponds 

to the number of inputs. In general, the larger D, the harder the 

simulation problem. In methods like QMC [13], D directly 

affects the convergence rate. Regular MC is unaffected by 

dimension, but generally converges more slowly.  

Methods of estimating the output pmf are known. An 

analytical approach is the most straightforward way to find the 

exact output pmf [14]. This is not practical for large circuits, 

as its complexity grows exponentially with circuit size. 

Heuristic methods exist that are quite fast but are inaccurate 

[6]. MC and QMC are considered to be accurate methods of 

estimating the output pmf, with accuracy increasing with 

number of samples. 

CORRELATION INSENSITIVITY 

We first illustrate CI using the function z(x1,x4,x5) = x1x4 + 

x1x5 obtained by setting x2 = x3 = 1 in Figure 4.  This is 

essentially the 2-to-1 multiplexer function, so it has the special 

property that inputs x4 and x5 cannot propagate to the output z 

simultaneously. In other words, x4 and x5 never affect z at the 

same time. When x1 = 1, the path from x5 to z via G3 and G5 

(highlighted in red, dashed) becomes active, and the path from 

x4 through G2 (highlighted in blue) is blocked.  If x1 = 0, the 

opposite happens. Assuming X1 is independent of the other 

variables, we can write  

𝑓𝑍(1) = 𝑓𝑋1
(0)𝑓𝑍

𝑥1
′

(1) + 𝑓𝑋1
(1)𝑓𝑍𝑥1

(1) 

which is the probabilistic version of Boole-Shannon expansion 

(Theorem 4 in the Appendix). 𝑧𝑥1
′ = 𝑥4  is the negative 

cofactor of z with respect to x1 obtained by setting x1 = 0 in z;  

𝑧𝑥1
= 𝑥′5 is the positive cofactor of z obtained by setting x1 = 

1. Hence, 

𝑓𝑍(1) = 𝑓𝑋1
(0). 𝑓𝑋4

(1) + 𝑓𝑋1
(1). 𝑓𝑋5

(0) 

implying that the output is a function of the marginal 

distributions  𝑓𝑋4
  and  𝑓𝑋5

 only, and not of their joint pmf 

𝑓𝑋4𝑋5
, as if X4 and X5 were independent BRVs. This is because 

x4 and x5 do not appear in the x1 cofactors of z simultaneously. 

A function like z is CI with respect to x4 and x5 because its 

output pmf is unaffected by correlations between X4 and X5. 

Definition 2: A Boolean function z(x1,…,xn) is correlation 

insensitive with respect to variables x1 and x2 if the distribution 

(pmf) of Z only depends on the marginal probability 

distributions 𝑓𝑋2𝑋3…𝑋𝑛
 and 𝑓𝑋1𝑋3…𝑋𝑛

 and not the joint pmf 

𝑓𝑋1…𝑋𝑛
. We refer to x1 and x2 as CI inputs of z.  

Equivalently, we could define z(x1,…,xn) as CI with respect to 

x1 and x2, if x1 and x2 do not appear in the cofactors of z with 

respect to x3,…,xn, simultaneously. This equivalence is shown 

in the proof of Theorem 1 in the Appendix. 

In a similar SS context, Yu et al. [19] define compatibility, 

which is a special case of CI. The compatible inputs of [19] 

are those with independent and identically distributed BRVs, 

in which case they can be tied together for SS purposes. 

Definition 2, on the other hand, allows any joint distribution 

among the inputs.  

Example 1: Consider again the function z(x1,x4,x5) = x1x4 + 

x1x5 in Figure 4. We will show that correlations between X4 

and X5 do not affect the output pmf, whereas correlations 

between X1 and X4 do. According to Eq. (2), 

𝑓𝑍(1) = ∑ ∑ ∑ 𝑧(𝑘1, 𝑘4, 𝑘5)𝑓𝑋1𝑋4𝑋5
(𝑘1, 𝑘4, 𝑘5)

1

𝑘5=0

1

𝑘4=0

1

𝑘1=0

 

  = 𝑓𝑋1𝑋4𝑋5
(0,1,0) + 𝑓𝑋1𝑋4𝑋5

(0,1,1) + 𝑓𝑋1𝑋4𝑋5
(1,0,0) + 𝑓𝑋1𝑋4𝑋5

(1,1,0) 

The first two terms marginalize X5 and the last two terms 

marginalize X4, yielding 

𝑓𝑍(1) = 𝑓𝑋1𝑋4
(0,1) + 𝑓𝑋1𝑋5

(1,0) 

Z’s pmf is a function of 𝑓𝑋1𝑋4
 and 𝑓𝑋1𝑋5

 only, so by Definition 

2, z is CI with respect to x4 and x5. The function z is not CI 

with respect to x1 and x4 (or x1 and x5), because terms like 𝑓𝑋1𝑋4
 

(or 𝑓𝑋1𝑋5
) appear in the pmf of Z. The rest of the example 

shows how correlations between X4 and X5 leave Z unaffected, 

but those between X1 and X4 alter the distribution of Z. 

Case 1: All the input BRVs X1, X4, X5 are identically 

distributed and independent with 𝑓𝑋𝑖
(1) = 0.5. Consequently, 

𝑓𝑍(1) = 𝑓𝑋1𝑋4
(0,1) + 𝑓𝑋1𝑋5

(1,0) 

          = 𝑓𝑋1
(0)𝑓𝑋4

(1) + 𝑓𝑋1
(1)𝑓𝑋5

(0) = 0.5                         (3) 

Case 2: The input BRVs have the same marginal distribution 

as before ( 𝑓𝑋𝑖
(1) = 0.5 ), but now X4 and X5 are highly 

correlated with the following distribution, while X1 remains 

independent. 

𝑓𝑋4𝑋5
(0,0) = 𝑓𝑋4𝑋5

(1,1) = 0.5 and 𝑓𝑋4𝑋5
(0,1) = 𝑓𝑋4𝑋5

(1,0) = 0 

or, equivalently, in vector notation,  𝑓𝑋4𝑋5
= [0.5   0    0   0.5]. 

The correlation here leaves Z unaffected, following (3). This 

shows that Z is insensitive to correlations between X4 and X5. 

Case 3: Again 𝑓𝑋𝑖
(1) = 0.5 and X5 is independent. This time 

assume X1 and X4 are highly correlated with joint distribution 

𝑓𝑋1𝑋4
 = [0.5    0    0    0.5]. The pmf of Z changes to 

𝑓𝑍(1) = 𝑓𝑋1𝑋4
(0,1) + 𝑓𝑋1𝑋5

(1,0) = 0 + 0.25 = 0.25 

indicating that z is not CI with respect to x1 and x4.                     
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Figure 4. Five-input circuit; paths from x4 (blue) and x5   

(red, dashed) are activated by different values of x1. 



 

 

Whenacircuit’soutputisCIwithrespecttotwovariables,SS

can be performed as if those inputs were highly correlated, 

even when they are independent. For example, if the two 

inputs have the same probability, we can tie them together as if 

they were one. This observation is the basis of our proposed 

dimension-reduction approach, which is summarized below.  

Dimension reduction: In SS of a Boolean function z that is CI 

with respect to a subset S of its inputs, RNGs can be shared by 

the members of S. This may introduce correlation among those 

members, but the probability distribution of z is unaffected. As 

a result, the dimension D of z, is reduced. 

Next, we show that CI can be expressed in terms of the 

Boolean difference (BD). The BD of z with respect to xi is 

𝑑𝑧 𝑑𝑥𝑖⁄ = 𝑧𝑥𝑖
′⨁ 𝑧𝑥𝑖

, where  denotes XOR (exclusive-OR), 

and 𝑧𝑥𝑖
and 𝑧𝑥𝑖

′ are z’s cofactors [9]. For the function z = x1x4 + 

x1x5 of Example 1, 𝑑𝑧 𝑑𝑥1⁄ = 𝑥4⨁ 𝑥′5,,  𝑑𝑧 𝑑𝑥4⁄ = 𝑥′1  and  

𝑑𝑧 𝑑𝑥5⁄ .  = 𝑥1. If 𝑑𝑧 𝑑𝑥1⁄ = 0, then x1 is redundant, meaning 

that it has no influence on z. This enables X1 to be 

marginalized out of Eq. (2), making fZ a function of 

𝑓𝑋2…𝑋𝑛
only. In this case, according to Definition 2, z is CI with 

respect to x1 and xj for any j = 2,3,…,n. This points to a 

method for identifying CI functions.  

Theorem 1: Function z(x1,x2,…,xn) with n > 2 variables is CI 

with respect to x1 and x2 if and only if for every cube (product 

term) c containing only variables x3,x4,…,xn, at least one input 

(x1 or x2) is redundant in the cofactor zc(x1, x2) or, equivalently, 

𝑑𝑧𝑐 𝑑𝑥1⁄ = 0       or       𝑑𝑧𝑐 𝑑𝑥2⁄ = 0 

A proof can be found in the Appendix. For Example 1, 

𝑑𝑧𝑥1
/𝑑𝑥4 = 0 , and 𝑑𝑧𝑥1

′ /𝑑𝑥5 = 0, so in all the cofactors of z 

with respect to the remaining variable x1, at least one of the 

variables x4 and x5 is redundant, confirming that z is CI with 

respect to x4 and x5.   

It is possible to have Boolean functions that are CI with 

respect to more than two variables. In the extreme case, a 

function can be CI with respect to all its inputs, in which case, 

the function is just a constant and the output probability is 

either 0 or 1.  

Definition 3: z(x1,…,xn) is (strongly) correlation insensitive 

(CI) with respect to variable set  𝕏 = {𝑥1 … , 𝑥𝑘}, if it is CI 

with respect to every pair  xi,xj in 𝕏. 

Example 2: The circuit in Figure 5 realizes 𝑧 = 𝑥1(𝑥2
′ + 𝑥3

′ +
𝑥4 + 𝑥5)(𝑥4

′ + 𝑥6
′ + 𝑥7

′ )(𝑥4
′ + 𝑥6 + 𝑥8

′ )  which is CI with 

respect to {x5, x7}, {x5, x8} and {x7, x8}, among others. Hence, 

z is CI with respect to  𝕏 = {𝑥5, 𝑥7, 𝑥8}. Other CI sets present 

in this function are {𝑥2, 𝑥7, 𝑥8} and {𝑥3, 𝑥7, 𝑥8}.                        

Correlation insensitivity occurs in several other ways. A 

function may not be CI with respect to any pair of variables, 

but have a larger subset of variables that do not affect the 

output at the same time.  

Definition 4: z(x1, …, xn) is weakly correlation insensitive 

(WCI) with respect to variables 𝕏 = {𝑥1, … , 𝑥𝑘}  if the 

distribution of the BRV Z is only a function of the k marginal 

probability distributions in which one of the BRVs X1,…,Xk is 

marginalized out, i.e., 𝑓𝑋2𝑋3…𝑋𝑘𝑋𝑘+1…𝑋𝑛
, 𝑓𝑋1𝑋3𝑋4…𝑋𝑘𝑋𝑘+1…𝑋𝑛

,…

𝑓𝑋1𝑋2𝑋3…𝑋𝑘−1𝑋𝑘+1…𝑋𝑛
. 𝕏 is called a WCI  set of z. 

Weak CI generalizes CI, so WCI sets can be expected to occur 

more often than (strong) CI sets. A CI input-pair is a WCI set 

of size 2, because if the function z is CI with respect to x1 and 

x2,  then the BRV Z is a function of  𝑓𝑋2…𝑋𝑛
 and 𝑓𝑋1𝑋3…𝑋𝑛

 only, 

so by Definition 4, {x1, x2} is also a WCI of z. Similarly, 

(strong) CI sets of variables are special cases of WCI sets. 

Identifying WCI sets is harder than finding CI pairs because 

more variables are involved. For simplicity, we only consider 

WCI sets of size k = 3. If z(x1,…,xn) is WCI with respect to {x1, 

x2, x3}, then for every cube c containing x4,…,xn, at least one 

variable from the set {X1, X2, X3} must be marginalized out in 

the corresponding iteration of Eq. (2). This is only possible if 

some variable is redundant in zc, or if zc is CI with respect to at 

least one pair of its variables.  Hence, z is WCI with respect to 

{x1, x2, x3} if and only if for every cube c containing the 

variables x4,…,xn, the cofactor zc is CI with respect to {x1, x2}, 

{x1, x3} or {x2, x3}.  

Theorem 2: z is WCI with respect to 𝕏 = {𝑥1, … , 𝑥𝑘} if and 

only if for every cube c containing the variables xk+1,…,xn, zc 

is WCI with respect to at least one subset of size k  1 of 𝕏. 

Example 3: The function 𝑧 = 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥′4𝑥5
′ +

𝑥2𝑥3𝑥4
′ 𝑥5 (Figure 6) has no pair of CI inputs. However, z is 

WCI with respect to {𝑥1, 𝑥2, 𝑥3}  as it has the cofactors 

𝑧𝑥4
′ 𝑥5

′ = 𝑥1𝑥3 , 𝑧𝑥4
′ 𝑥5

= 𝑥2𝑥3  and 𝑧𝑥4𝑥5
′ = 𝑧𝑥4𝑥5

= 𝑥1𝑥2,  which 

are CI with respect to {𝑥1, 𝑥2}, {𝑥1, 𝑥2} and {𝑥1, 𝑥3}, resp. Like 

strong CI sets, WCI sets provide dimension reduction in SS.   

Finally, we observe that correlation insensitivity is not directly 

related to the similar-sounding concept of correlation immunity 

used in cryptography [17].  The latter measures the extent to 

which a Boolean function’s outputs are statistically 

independent of (uncorrelated with) subsets of its inputs. 

Correlation insensitivity is only concerned with dependencies 

among the inputs, and those dependencies are of a more 

restricted type. 
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Figure 5. Circuit used in Examples 2 and 4.  
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Figure 6. Circuit with weak CI set {x1, x2, x3}.  



 

 

DETECTING CORRELATION INSENSITIVITY 

Theorem 1 implicitly provides a way to detect CI. To construct 

a more practical method, we relate CI detection to a well-

known problem in the digital circuit field, automatic test 

pattern generation (ATPG) [5]. In order to find CI inputs of a 

circuit, we only need to perform ATPG for the faults that 

occur on the inputs. (See Theorem 5 in the Appendix.) 

To gauge CI’s frequency in real circuits, we examined the 

individual output functions of the widely-used ISCAS suite of 

benchmark circuits [11], and also a 16-bit binary adder circuit. 

We counted their CI input pairs and WCI sets of size three via 

an ATPG-based program; Table 1 shows the results. Several 

outputs were sampled from each circuit. For example, 

adder16_cout referstheadder’sfinal carry-out function, while 

c432_o1 refers to the first output of the c432 benchmark. 

These results show that CI is commonplace. It varies 

significantly from circuit to circuit, but generally increases 

with circuit size. 

To make the CI detection algorithm more scalable, divide-and-

conquer can be used. Our approach is to partition the circuit 

into supergates [19], which confine reconvergent fanout to 

single-output sub-circuits. The overall circuit then becomes a 

tree of supergates with no high-level fanout. Hence, we only 

need to search within the supergates in order to find CI. 

Furthermore, it can be shown that in such tree-structured 

circuits, the CI of the intermediate signals propagates to their 

fan-in cones and to the output, leading to the following result.  

 Corollary 3: Consider the Boolean function z(g, h), in which 

g(x1,…,xn) and h(y1,…,ym) are sub-functions. If z is CI with 

respect to g and h, then z is also CI with respect to xi and yj for 

any i and j. Further, if g is CI with respect to x1 and x2, then z 

is also CI with respect to x1 and x2. 

Example 4: The circuit of Figure 5 can be partitioned into 

three supergates C1, C2 and C3 as indicated by dashed lines. 

Supergate C2 realizes 𝑦2 = 𝑦1𝑥′4 + 𝑥4
′ 𝑥5 + 𝑥4𝑥6𝑥7

′ + 𝑥4𝑥6
′ 𝑥8

′  

and is the only one containing reconvergent fanout. Since C2 is 

smaller than the original circuit, its CI sets can be detected 

more quickly. Analysis shows that y2 is CI with respect to 

seven pairs: {y1, x6}, {y1, x7}, {y1, x8}, {x5, x6}, {x5, x7}, {x5, 

x8} and {x7, x8}. According to Corollary 3, all CI relations of 

y1 propagate to its fan-in cone x2 and x3, and all the CI 

properties of y2 propagate to the output z. Thus we can 

conclude that z is CI with respect to x2 and x8, a result already 

seen in Example 2.                                  

The scalability of the proposed approach depends on the 

number and the size of the supergates of the circuit. Super-

gates are often much smaller than the circuits that contain 

them. Min and Park [11] show that for the ISCAS circuits, 

more than 87% of the supergates have 10 or fewer gates, and 

over 99% have 100 or fewer gates. The average supergate size 

is around 8 gates. These numbers suggest that supergate 

partitioning is effective at detecting CI in larger circuits. CI 

detection for adder16_cout was reduced from 4 minutes to a 

fraction of a second using this divide-and-conquer approach.  

CASE STUDIES 

This section demonstrates several applications of the proposed 

dimension-reduction technique to circuit design problems. 

Dimension reduction in c1196  
As reported in Table 1, many CI pairs and WCI sets exist in 

c1196, the combinational part of ISCAS benchmark s1196.   

Consider the single-output sub-circuit denoted c1196_o1 in 

Table 1. It has 21 inputs x1,…,x21 and 24 CI pairs. Figure 7 

illustrates c1196’s CI relations in graph form. The vertices

correspond to the inputs, and a solid edge between xi and xj 

means that the output is CI with respect to them. 

Even though c1196 has 24 CI pairs, it is not possible to merge 

them all. For instance, the output is CI with respect to {x5, x19} 

and {x6, x19}, but we cannot combine these three inputs 

because the output is still sensitive to correlations between x5 

and x6. By Definition 3, in order to have a (strong) CI set, 

every pair of inputs must be CI. This corresponds to a fully-

connected sub-graph or clique in the graph representation. 

Finding the maximal CI sets can now be done by clique 

partitioning [9]. Figure 7 shows one of many such partitions. 

The sets {x18, x19, x20, x21} (shown in blue) and{x16, x17 } (red) 

are identified as (strong) CI sets and can be merged during 

statistical simulation. 
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Figure 7. Graph illustrating CI sets of the c1196 benchmark; 

the clustered nodes can be merged during SS. 

Circuit 
No. of  
inputs 

No. of  
gates 

No. of CI  
input-pairs 

No. of WCI 
sets of size 3 

adder16_cout 32 125 0 0 

c432_o1 18 20 0 0 

c432_o2 27 58 0 0 

c880_o1 36 80 1 38 

c880_o2 32 63 1 34 

c1196_o1 21 180 24 377 

c1196_o2 20 118 12 204 

c1196_o3 19 132 16 222 

c1196_o4 23 187 36 586 

c1196_o5 22 203 58 652 

c1238_o1 21 203 23 358 

c1238_o2 23 209 36 586 

c1238_o3 15 52 9 99 

c1238_o4 10 39 0 0 

c2670_o1 11 24 28 140 

c2670_o2 12 22 32 180 

c5315_o1 14 50 41 279 

c5315_o2 24 78 72 1,044 

c6288_o1 24 630 0 0 

c6288_o2 26 747 0 0 

c7552_o1 29 342 108 1,817 

c7552_o2 29 153 108 1,818 

c7552_o3 20 97 54 591 

Table 1. Presence of CI in some benchmark circuits. 



 

 

Besides strong CI sets, c1196 has many weak CI sets that may 

or may not overlap strong ones. One non-overlapping WCI set 

is depicted in Figure 7 (green dashed lines). Thus, the WCI set 

{x1, x2, x15} can also be used to further reduce the dimensions 

of c1196 simulation. The three CI sets of Figure 7 reduce the 

dimensions of c1196 from 21 to 16 for SS purposes. Figure 8 

shows a simulation set-up for c1196: only 16 independent 

RNGs are needed after applying dimension reduction. Note 

that the random number sources for x15 are obtained by XOR-

ing the RNGs of x1 and x2; this is explained later. 

Soft error analysis  

Next, we show how our dimension reduction technique can 

improve soft-error analysis. Figure 9 gives a 5-input circuit in 

which an XOR gate is added to the output of each gate in order 

to model soft errors affecting the circuit, a standard technique 

in simulation-based reliability analysis. Since this falls into the 

SS category it is possible to exploit correlation insensitivity. 

For example, z is CI with respect to {x1, x4}, {x2, x5}, and {e1, 

e2}, so we can share independent random sources among them. 

Such dimension reduction can improve simulation quality, 

especially if QMC is used. Figure 10 shows that after 

exploiting CI, the simulation quality improves significantly 

Stochastic circuits  

Stochastic computing (SC) is an unconventional computing 

style that represents a number by a (pseudo) random bit-stream 

in which the fractionof1’sdenote a probability value [1][7]. 

For example, X = 00001101 is one of many possible 

representations of the probability pX = 3/8.  Computation is 

performed by applying such bit-streams to a conventional 

logic circuit and estimating the probability of each output bit-

stream. This process is, in fact, a kind of hardware-based SS. 

The key advantage of SC is that it uses extremely small and 

error-tolerant logic circuits to implement arithmetic operations 

which require orders of magnitude more hardware with 

conventional binary numbers. For example, a single AND gate 

performs the multiplication pXpY, while a multiplexer performs 

the scaled addition (pX + pY)/2; see Figure 11. An error that 

flips a bit of an N-bit stream X has little effect on pX provided 

N is sufficiently large. On the other hand, SC tends to be much 

slower and less accurate than conventional binary arithmetic. 

Nevertheless, SC is an attractive technology for certain 

applications such as implantable biomedical devices [2]. 

An AND gate with N-bit inputs X and Y computes pXpY only if 

the inputs are statistically independent, i.e., uncorrelated, and  

N  is  sufficiently  large;  see Figure 11a. Figure 11b shows a 

case where the bit-streams for X and Y have identical bit 

patterns as well as values (they are maximally correlated). This 

produces the output pX instead of 𝑝𝑋
2 , a big inaccuracy. In 

general the inputs to a stochastic circuit need to be statistically 

independent. Generating many independent inputs for a 

stochastic circuit has significant area cost [15]. If, however, 

the output of the circuit is CI with respect to some inputs, the 

random number sources can be shared among those inputs 

thereby reducing the overall cost. Note that the stochastic 

adder is unaffected by correlations among its data inputs, as 

seen in Figure 11d. 

Consider again the Boolean function z(r, x, y) = rx + ry which 

implements a  stochastic adder; see Figure 11c. Assuming the 

three inputs are BRVs with parameter 0.5, we need three 

independent random sources. These are usually obtained from 

a 3-bit LFSR [7]. The joint pmf of X and Y then is 𝑓𝑋𝑌 =
[0.25   0.25    0.25   0.25] . However, as seen in a similar 
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Figure 8. Set-up for SS of the c1196_o1 benchmark circuit (a) 

before and (b) after applying dimension reduction. 
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Figure 9. 5-input circuit with XOR gates to model soft errors. 
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Figure 11. (a) Stochastic multiplier with independent and (b) 

correlated input bit-streams. Stochastic adder with (c) 

independent and (d) correlated input bit-streams.  



 

 

function in Example 1, we can replace this with 𝑓∗
𝑋𝑌

=

[0.5   0    0   0.5] without altering the output pmf. Having 𝑓∗
𝑋𝑌

 

means that X and Y have the same value; so inputs x and y can 

be connected.  

     If a stochastic circuit needs arbitrary input values, we must 

add Bernoulli random variable generators (BGs) to the inputs.  

Figure 12a shows two BGs connected to a multiplexer-based 

stochastic adder. Two independent m-bit LFSRs are used as 

RNGs in this example. Counting the comparators we get a 

circuit with 2m + 1 inputs (r1, r2 and themultiplexer’sselect

input r), each with value 0.5. As noted earlier, correlation 

insensitivity propagates through the fan-in cones of x and y, 

i.e., the comparators. So the newly obtained function z is CI to 

every input pair r1[i] and r2[j] taken from bits of r1 and r2. 

Since all the inputs have value 0.5, we can connect each bit of 

r1 to a corresponding bit at r2. This yields the circuit in Figure 

12b which uses only one LFSR. 

    This idea can be immediately extended to strongly CI sets. 

For example, the reconfigurable stochastic architecture 

described by Qian et al. [15] is similar to that of Figure 2 in 

that its main component is a k-to-1 multiplexer, where k is the 

degree of a polynomial being implemented. Since the 

multiplexer is CI with respect to all its data inputs, one RNG 

can be shared among all k inputs, leading to significant cost 

reduction. 

     Weakly CI sets can also be exploited to reduce the cost of 

SC. Consider Figure 6 again, and assume that all the inputs are 

SNs of value 0.5. The joint pmf of X1, X2, and X3 is thus 

𝑓𝑋1𝑋2𝑋3
= [0.125   0.125    0.125   0.125   0.125   0.125    0.125   0.125]  

However, since z is weakly CI with respect to {x1, x2, x3}, we 

can replace the input pmf with the following: 

𝑓∗
𝑋1𝑋2𝑋3

= [0.25   0    0   0.25   0   0.25    0.25   0] 

without altering the output pmf. Note that even though the 

joint pmf is changed, the marginal distributions of each pair, 

i.e., 𝑓∗
𝑋1𝑋2

, 𝑓∗
𝑋1𝑋3

, and 𝑓∗
𝑋2𝑋3

, are the same as before. Since 

the output pmf is only a function of the marginal distributions, 

it remains unaffected. The new pmf 𝑓∗
𝑋1𝑋2𝑋3

 can be generated 

by assigning two random bits to x1 and x2, and assigning x3 = 

x1  x2. This guarantees that each pair remains independent. 

Extending the foregoing concepts to inputs of arbitrary value, 

we can replace one RNG by a bit-wise XOR function of the 

other RNGs if weakly CI sets are present in the circuit. In 

Figure 8b, the RNG used for x15 is obtained by XORing the 

RNGs of x1 and x2, because {x1, x2, x15} form a WCI set. 

To illustrate the effectiveness of CI-based dimension reduction 

in stochastic circuits, we compare the area of several existing 

SC designs before and after applying our method. All the 

designs were mapped to ICs using a standard layout tool, the 

Berkeley sis program, Table 2 summarizes the results, and 

indicates that dimension reduction can save up to 68% in IC 

area. In the case of CheckNode, no correlation insensitivity 

was detected, so no area reduction was achieved.  

CONCLUSIONS 

We have introduced and analyzed a property of Boolean 

functions called correlation insensitivity which is very useful 

for statistical simulation. Correlation-insensitive (CI) functions 

are unaffected by statistical dependencies among certain 

inputs. This makes it possible to merge those inputs and so 

reduce the dimensions of the simulation problem. We 

presented rigorous definitions of basic CI properties including 

strong and weak correlation insensitivity. We also described a 

practical way of detecting them via test pattern generation. We 

found that some degree of CI is widespread in circuits like the 

ISCAS bench-marks. Finally, we showed, that our dimension 

reduction method can significantly improve simulation quality, 

and also improve the design of stochastic circuits. 
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Appendix: Theorem Proofs 

This appendix proves Theorem 1. Theorem 2 is a straight-

forward generalization of Theorem 1, so its proof is omitted. 

Two additional theorems (Theorems 4 and 5) are also 

presented and proven. 

Theorem 1:  Proof: (Sufficiency) For every combination of 

x3…xn, i.e., for every cube c containing only the variables 

x3,x4,…,xn, the cofactor zc is a function of one of the variables 

x1 or x2, but not both. This means that   𝑑𝑧𝑐 𝑑𝑥1⁄ =
𝑧𝑐(0, 𝑥2) ⊕ 𝑧𝑐(1, 𝑥2) = 0 or 𝑑𝑧𝑐 𝑑𝑥2⁄ = 𝑧𝑐(𝑥1, 0) ⊕
𝑧𝑐(𝑥1, 1) = 0, implying  

𝑧𝑐(0,0) = 𝑧𝑐(1,0) and 𝑧𝑐(0,1) = 𝑧𝑐(1,1) 
or           (4) 
     𝑧𝑐(0,0) = 𝑧𝑐(0,1) and 𝑧𝑐(1,0) = 𝑧𝑐(1,1) 

Next, we express fZ(1) using Eq. (2) and unroll the first two 

sums (with respect to k1 and k2) to enumerate all the four 

possible cases of 𝑧𝑐(0,0), 𝑧𝑐(0,1), 𝑧𝑐(1,0) and 𝑧𝑐(1,1):  

 ∑ …1
𝑘3=0 ∑ [𝑧(0,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛

(0,0, 𝑘3, … , 𝑘𝑛) +1
𝑘𝑛=0  

             𝑧(0,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛
(0,1, 𝑘3, … , 𝑘𝑛) + 

           𝑧(1,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛
(1,0, 𝑘3, … , 𝑘𝑛) + 

          𝑧(1,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋2…𝑋𝑛
(1,1, 𝑘3, … , 𝑘𝑛)]    (5) 

Equations (4) implies that for each iteration of the preceding 

summation, we can marginalize either X1 or X2, yielding 

   𝑧(0,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋2…𝑋𝑛
(0, 𝑘3, … , 𝑘𝑛) +

𝑧(1,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋2…𝑋𝑛
(1, 𝑘3, … , 𝑘𝑛)

 

or 

                
   𝑧(0,0, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋3…𝑋𝑛

(0, 𝑘3, … , 𝑘𝑛) +

𝑧(1,1, 𝑘3, … , 𝑘𝑛)𝑓𝑋1𝑋3…𝑋𝑛
(1, 𝑘3, … , 𝑘𝑛)

 

So the distribution of Z is a function of the marginal 

distributions 𝑓𝑋2…𝑋𝑛
 and 𝑓𝑋1𝑋3…𝑋𝑛

. From Definition 2, z is CI 

with respect to x1 and x2.  

 (Necessity) By way of contradiction, if z is CI with respect to 

x1 and x2, but there is a cube c with 𝑑𝑧𝑐 𝑑𝑥1⁄ ≠ 0 

and 𝑑𝑧𝑐 𝑑𝑥2⁄ ≠ 0, then zc is a non-degenerate function of both 

x1 and x2. By enumerating all possibilities for zcthere are 

only 10 non-degenerate functions of two variableswe see 

that for the particular iteration of (5) that corresponds to c, 

none of the variables X1 and X2 can be marginalized. Hence, z 

is not CI with respect to x1 and x2, a contradiction from which 

the necessary condition follows.      

Theorem 4: (Probabilistic Boole-Shannon expansion) For a 

Boolean function z(x1,…, xn), if BRV X1 is independent of the 

remaining variables, then 

𝑓𝑍(1) = 𝑓𝑋1
(0)𝑓𝑍𝑥′1

(1) + 𝑓𝑋1
(1)𝑓𝑍𝑥1

(1) 

where  𝑍𝑥1
 and 𝑍𝑥1

′  are the BRVs corresponding to the positive 

and negative cofactors, respectively, of z with respect to x1. 

Proof: The events X1  = 0 and X1 = 1 are complementary, so  

𝑓𝑍(1) =  𝑓𝑍|𝑋′
1
(1). 𝑃[𝑋1 = 0] + 𝑓𝑍|𝑋1

(1). 𝑃[𝑋1 = 1] 

                       = 𝑓𝑍|𝑋′
1
(1). 𝑓𝑋1

(0) + 𝑓𝑍|𝑋1
(1). 𝑓𝑋1

(1)      (6)                    

𝑓𝑍|𝑋1
 (𝑓𝑍|𝑋′

1
) is the conditional distribution of Z with respect to 

the event X1 = 1 (X1 = 0), and is defined as 𝑓𝑍|𝑋1
(1) =

𝑓𝑍𝑋1
(1,1) 𝑓𝑋1

(1)⁄ . Since X1 is independent of the remaining 

variables, we have 𝑓𝑍|𝑋1
(1) = 𝑓𝑍𝑥1

(1).  Similarly, 𝑓𝑍|𝑋1
′ (1) =

𝑓𝑍
𝑥′

1
(1), so by Eq. (6) 

 𝑓𝑍(1) = 𝑓𝑋1
(0). 𝑓𝑍

𝑥1
′

(1) + 𝑓𝑋1
(1). 𝑓𝑍𝑥1

(1)        

Theorem 5: z(x1,…,xn) is CI with respect to x1 and x2 if and 

only if there are no test patterns that detect a single stuck-at 

fault on x1 and a single stuck-at fault on x2. 

Proof: The solutions to 𝑑𝑧/𝑑𝑥1= 1 are all possible test patterns 

that detect the faults on x1. Similarly, the solutions to 𝑑𝑧/𝑑𝑥2 

= 1 are all tests for the faults on x2. An input pattern that 

detects both fault sets must be a solution to both equations. 

However, if z is CI with respect to x1 and x2, then according to 

Theorem 1, for every cube c containing the variables x3,…,xn, 

we have 𝑑𝑧𝑐 𝑑𝑥1⁄ = 0 or 𝑑𝑧𝑐 𝑑𝑥2⁄ = 0. This means there is no 

input combination for which both  𝑑𝑧𝑐 𝑑𝑥1⁄ = 1  and 

 𝑑𝑧𝑐 𝑑𝑥2⁄ = 1, implying that no test pattern exists that detects 

both faults sets. 

Conversely, if a test pattern exists, then for the cube c 

(containing the variables x3,…,xn) taken from the test pattern, 

both  𝑑𝑧𝑐 𝑑𝑥1⁄ ≠ 0 and  𝑑𝑧𝑐 𝑑𝑥2⁄ ≠ 0, so z is not CI.             


