
1

Memory Management

Arvind Krishnamurthy
Spring 2004

Memory Management

To support multiprogramming, we need “Protection”

n How to implement an address space?

Physical memory Abstraction: virtual memory
No protection Each program isolated from all

others and from the OS

Limited size Illusion of infinite memory

Sharing visible to programs Transparent --- can’t tell if
memory is shared

Easy to share data between Controlled sharing of data

programs

OS Evolutionary Path

n Uniprogramming without protection

n Multiprogramming without protection: linker-loader

n Multiprogrammed OS with protection:
n hardware-based approach

n address translation (support of address space)

n dual mode operation: kernel vs. user mode
n software-based approach

n type-safe languages
n software fault isolation

Uniprogramming (no protection)

n Application runs at the same place in physical memory
n load application into low memory
n load OS into high memory
n application can address any physical memory location
n application can corrupt OS and even the disk

Physical
Memory

0x000000

Operating
System

Application

0xFFFFFF

Multiprogramming

n Multiple programs share physical memory
n when copying a program into memory, use the linker-loader to

change the addresses for all load/store/jump instructions

Physical
Memory

0x000000

Operating
System0xFFFFFF

Application 1

Application 20x200000

n How the linker-loader works?
n Compiler generates .o file with code starting at location 0.

n Also record all the re-locatable addresses
n Linker (ld in Unix) scans through each .o, changing addresses to

point to where each module goes in larger program
n Loader loads the executable (a.out) to the memory and program

runs

Linker-loader Approach

2

Linker-Loader example

int y;
extern int z;

int foo() {
int x;

bar();
y = 1;
z = 1;

}
[foo.c]

int z;

void bar() {
z = 99;

}

main() {
foo();

}
[bar.c]

Link: Need to patch
references to “bar”,
“foo”, and “z”

Load: Need to relocate all
addresses based on
what programs are
running

n Problem of linker-loader --- still no protection: bugs in any
program can cause other programs to crash, even OS

n Goal: how to support protection?

Incorporating Protection

n Goal of protection
n keep user programs from crashing/corrupting OS
n keep user programs from crashing/corrupting each other

How is protection implemented?

n Almost all OS today use hardware-based approach
n address translation
n dual mode operation: kernel vs. user mode

n Other approaches: software-based solutions
n type safe languages
n software fault isolation

Address translation (1)

n Address space: state of an active program
n Hardware translates every memory reference from virtual addresses to

physical addresses
n Software sets up and manages the mapping in the translation box

n Protection: there is no way for programs to talk about other program’s
addresses

CPU
Translation Box

(MMU) physical
memory

virtual
address

physical
address

Data read or
write

Why dual mode operation ?

n If application can modify its own translation tables --- then
it can access all of physical memory --- protection is lost!

n Solution: use “dual-mode” operation
n when in the OS, can do anything (kernel-mode)
n when in a user program, restricted to only touching that program’s

memory (user-mode)

HW can require CPU to be in kernel-mode to modify address translation table

n In Nachos (as well as most OS’s):
n OS runs in kernel mode (untranslated addresses)
n User programs run in user mode (translated addresses)

n How does one switch between kernel and user modes?

Kernel à user

n The most basic of kernel-to-user transitions occur when a
new user program is started by the system

n In a traditional OS, what steps are involved in starting a
new user program?

User à kernel

How does the user program get back into the kernel ?

n Hardware interrupt (involuntarily)
n timer interrupt, IO interrupt, etc.

n Program exception (involuntarily)
n bus error (bad address --- e.g., unaligned access)
n segmentation fault (out of range address)
n page fault (important for providing illusion of infinite memory)

n System call (voluntarily)
n special instruction to jump to a specific OS handler – just like doing

a procedure call into the OS kernel
n on MIPS, it is called “OP_SYSCALL”

3

Issues with system call

n Can the user program call any routine in the OS ?
n No. Only the specific ones that the OS says are ok.

n How to pass arguments on a system call?
n via registers
n write data into user memory, kernel copies into its memory

except: user addresses --- translated
kernel addresses --- untranslated

n main problem: addresses the kernel sees are not the same
addresses as what the user sees

n What if user programs does a system call with bad
arguments? OS must check everything

User à kernel: how to switch

n On system call, interrupt exception and the system
n sets processor status to kernel mode
n changes execution stack to an OS kernel stack
n saves current program counter
n jumps to handler routine in OS kernel
n handler saves previous state of any register it uses

n Context switches between programs:
n same as with threads, except
n also save and restore pointer to translation table
n to resume a program: reload registers, change PSW, and jump to

old PC.

OS Structure

n How does Nachos’s structure fit into this model?
n Nachos is the portable OS layer – it simulates the hardware and machine-

dependent layer, and it simulates the execution of user programs running
on top

n Can still use debugger, printf, etc.
n Can run normal UNIX programs concurrently with Nachos

n Could run Nachos on real hardware by writing a machine-dependent layer

Application

Application library

Portable OS layer

Machine dependent layer

User
mode

Kernel
mode

