
1

Network Routing and Network Protocols

Arvind Krishnamurthy
Spring 2004

Routing

4

3

6

2
1

9

1

1

n Routing algorithms view the
network as a graph

n Problem: find lowest cost
path between two nodes

n Factors:
n Static topology
n Dynamic load
n Policy

n Two main approaches:
n Link state protocol

n Each node builds a local
copy of the entire network

n Distance-vector protocol

D

A

F
E

B

C

2

Distributed Bellman-Ford

• Start Conditions:
•Each router starts with a vector of distances to all directly attached
networks

• Send step:
•Each router advertises its current vector to all neighboring routers

• Receive step:
•For every network X, router finds shortest distance to X

•Considers current distance to X
•Then takes into account distance to X from its neighbors

•Router updates its cost to X
•After doing this for all X, router goes to send step

Example - Initial Distances

A

B

E

C

D

Info at
Node

A

B

C

D

A B C

0 7 ~

7 0 1

~ 1 0

~ ~ 2

7

1

1

2

28

Distance to Node

D

~

~

2

0

E 1 8 ~ 2

1

8

~

2

0

E

3

Info at
Node

A

B

C

D

A B C

0 7 ~

7 0 1

~ 1 0

~ ~ 2

Distance to Node

D

~

~

2

0

E 1 8 4 2

1

8

~

2

0

E

A

B

E

C

D

7

1

1

2

28

E receives D’s routes; Updates Costs

Final Distances

Info at
Node

A

B

C

D

A B C

0 6 5

6 0 1

5 1 0

3 3 2

Distance to Node

D

3

3

2

0

E 1 5 4 2

1

5

4

2

0

E

A

B

E

C

D

7

1

1

2

28

4

Complexity

n How many steps does it take to converge?

n What is the message complexity of the algorithm?

n How does this compare to link state routing protocol?

The Bouncing Effect

A

25

1

1

B

C

B

C 2
1

dest cost

A

C 1
1

dest cost

A

B 1
2

dest cost

X

5

C Sends Routes to B

A

25 1

B

C

B

C 2
1

dest cost

A

C 1
~

dest cost

A

B 1
2

dest cost

B Updates Distance to A

A

25 1

B

C

B

C 2
1

dest cost

A

C 1
3

dest cost

A

B 1
2

dest cost

6

B Sends Routes to C

A

25 1

B

C

B

C 2
1

dest cost

A

C 1
3

dest cost

A

B 1
4

dest cost

C Sends Routes to B

A

25 1

B

C

B

C 2
1

dest cost

A

C 1
5

dest cost

A

B 1
4

dest cost

7

Solutions

n Problems arise:
n When metric increases
n Implicit path has loops

n “Solutions”:
n If metric increases, delay propagating information

n Adversely affects convergence
n Split horizon: C does not advertise route to B
n Poisoned reverse: C advertises route to B with infinite distance

n Works for two node loops
n Does not work for loops with more nodes

Example Where Split Horizon Fails

1

11

1

A

n When link breaks, C marks D as
unreachable and reports that to A and B

n Suppose A learns it first
n A now thinks best path to D is through B
n A reports D unreachable to B and a

route of cost=3 to C

n C thinks D is reachable through A at cost
4 and reports that to B

n B reports a cost 5 to A who reports new
cost to C

n etc...X

B

C

D

8

Solution: Enhanced Distance Vector

n Each routing update carries the entire path
n Loops are detected as follows:

n When node gets route check if node is already in path
n If yes, reject route
n If no, add self and (possibly) advertise route further

n Advantage:
n Metrics are local - node chooses path, protocol ensures no loops

Border Gateway Protocol (BGP)

n Designed for scalability
n Granularity is at the level of “autonomous systems” (ASs)
n Usual BGP table has a few thousand entries
n Each entries contains the entire AS-path for getting to a

destination
n Uses simple hop-count metric – does not propagate

information about bandwidth or congestion in the system
n Some problems:

n ASes do not necessarily convey packets through shortest paths
n Some adopt “early exit” strategy – get rid of packet as soon as

possible
n Some send packets only through other ASes with which they

have contractual agreements

9

Networking Software Goals

n Simple

n Scalability
n Predict what will happen in the future: everything will have a network

address

n Heterogeneity (not a goal – but have to support it)

n Robustness: failure, structural changes
n Something is changing; not a clean reboot

n Performance:
n Latency: minimum cost (or amount of work to get nothing done!)

n Measured in time
n Bandwidth: incremental cost; measured in bytes/second
n Latency more important than bandwidth

n Most common mistake in systems is to ignore latency

Issues (Problems to solve)

n Link transmission: how do you get a packet of data from one machine
to another machine “connected” to it

n Routing

n Naming: mapping names to network addresses

n Multiplexing (how do you share resources, protocols)

n Reliable delivery (cannot guarantee that every packet will be delivered)
[ack, timeout, retransmit]
n Duplicate packets

n Sequencing (process packets in the same order as it was sent; one
approach is to have only packet outstanding)

10

Issues (contd.)

n Fragmentation & reassembly

n Flow control
n Sender generating data faster than the receiver can handle
n Feedback required from receiver to sender

n Congestion control
n Related to flow control; similar in many ways
n There is more than the sender & receiver
n Problem gets rediscovered every once in a while!

n Presentation
n Endian-ness, floating point format

n Security (authentication)

Solution: Layered Protocols

n Collection of protocols
n Stacked together
n Each solves one of the problems

n Protocol has three interfaces:
n Provides service to higher levels of the protocol stack
n Depends on some lower transport protocol
n Has a peer-to-peer interface

11

Simple File Transfer

n Copy file to remote machine
Send(fname,

hostname)

Send(packet,
hostname)

Recv(hostname,
buffer)

fname, userid

block1

ok

ack

block2

ack

Protocol Stack

IP

Ethernet FDDI 802.11

UDP TCP

RPC

NFS WWW E-mail rlogin

12

Internet Protocol (IP)

n Datagram protocol (as opposed to stream protocol)
n No sequencing
n Stateless
n Unreliable
n Host-to-host (not program-to-program)

n IP Functions:
n Addressing and routing (not naming)

n Does not know about names
n Understands addresses
n Uses route information computed by some other entity

n Fragmentation (controversial functionality)
n Other option: let network layer take care of fragmentation

Fragmentation

n If a network has a small packet size, two approaches:
n Transparent approach at the network level
n IP fragments:

n Packet stays fragmented till it reaches destination
n Reassembled at destination
n Makes it not stateless!
n Destination needs to wait for all the fragments to dribble in

n Keeps track of a partial datagram, and a map of useful parts
n Packet needs to have a:

host-id (32 bits), datagram id (16 bits), position (16 bits), length

n IP approach vs. network layer fragmentation/reassembly
n Question: which is better?

13

“Time-to-live”

n Field on an IP packet header:
n 8 bit header (255 secs or ticks)
n Every router/gateway forwards a packet, it subtracts at least 1 tick
n When it gets to zero, packet is trashed
n Prevents packets from roaming around for ever
n Question: what are the implications of time-to-live?

Features and Limitations

n IP packet headers are variable length:
n Route that a packet takes can be recorded
n Source routing: specify the route from the source

n What are the IP limits?
n 32 bits of address
n Reliability: requires to get to destination in one shot
n Speed limitations?

14

Transmission Control Protocol

n Connection oriented
n End-to-end reliable
n Flow controlled
n Congestion controlled

open
close
write
push
read

Send packet
Recv packet

Overall Features

n Reliable
n Sequence numbers (per byte basis)
n Acknowledgements
n Timeout/retransmit

n Flow control
n “sliding window protocol”
n Purpose: pipeline communication through overlap

n Multiplexing
n Several connections to be open (sockets: host, port number)

n Connection-based: state kept at both ends

n Out of band data: “urgent”

15

Reliable Message Delivery

n All of these networks can garble, drop messages
n Physical media can garble packets or have interference
n Congestion: too many packets at an intermediate node
n Destination cannot receive packets as fast as the sender

n What can we do?
n Detect garbling using checksums
n Receiver ack’s if received properly and timeout at sender

n If ack gets dropped, sender retransmits
n Put sequence number in message to identify retransmissions

n Requires sender to keep copy of all packets sent
n Receiver must keep track of message ids that could be a duplicate (When

can receiver know it’s ok to forget?)

n Destination controls window to indicate its willingness to receive messages

n Solutions:
n Alternating bit protocol
n Window based protocol (TCP)

Alternating Bit Protocol

n Send one message at a
time

n Don’t send next message
until ack received

n Receiver keeps track of
sequence # of last
message received

n Simple
n Small overhead
n Poor performance:

Bandwidth =
packet_size/RTT

msg, #0

msg, #1

msg, #2

ack, #0

ack, #1

ack, #2

Source Dest

16

Window Based Protocol

n Send up to N messages at a time without waiting for acks
n “Window” also reflects storage at receiver – sender shouldn’t overrun

receiver’s buffer space
n Each message has sequence number. Receiver can discard state of

messages outside the window
n If messages are received out of order:

n Keep copy until sender fills in the missing pieces

Source Dest

Peak Bandwidth:
Packets_in_window * packet_size/ RTT

or
packet_size/message_init_overhead

Flow Control Details

Sender messages

sent, acked sent, not acked not sent

“in window”

not sent

not “in window”

Receiver messages

maybe received

not acked

not yet receivedreceived

given to app

received, acked

buffered

n Receiver acks: “got all messages up to #”
n Duplicate acks implies holes in received message sequence

n Sender can perform “fast retransmit”

17

TCP Flow Control

n Assume:
n Receiver window size = 8K
n TCP minimum threshold for sending = 1K
n Initial sequence number = 3000

User User

Send 3 bytes

Buffer: 3

TCP Flow Control 2

n Acknowledge message: “expecting byte # x”

User User

Send 997 bytes

Buffer: 0 Seq: 3000, Size: 1K

User User

Buffer: 0 Ack: 4000 Buffer: 1K

18

TCP Flow Control 3

n Send only up to the receiver window

User User

Send 4K bytes

Buffer: 1K Seq: 4000, Size: 3K

User User

Buffer: 1K Ack: 7000 Buffer: 4K

Buffer: 1K

TCP Flow Control 4

n Receiver sends a window update when user picks up data

User User

Buffer: 1K Window: 2K

User User

Buffer: 0K Seq: 7000, Size: 1K Buffer: 3K

Buffer: 2K

Recv 2K bytes

19

TCP Flow Control 5

User User

Buffer: 0K Window: 3K

User User

Buffer: 0K

Seq: 8000, Size: 1K

Buffer: 3K

Buffer: 0K

Recv 3K bytes

3 x Send 1K bytes

Seq: 9000, Size: 1K

Seq: 10000, Size: 1K

TCP Flow Control 6

User User

Buffer: 0K Ack: 9000, Wdw: 1K

User User

Buffer: 0K Buffer: 2K

Buffer: 1K

Recv 1K bytes

Seq: 9000, Size: 1K

Ack: 11000

20

Congestion Control

n Window size controls flow and congestion
n Receiver advertised window is maximum amount of data that can

be outstanding
n Have a smaller window if there is congestion in the system

n Canonical congestion problem:
n Flow between A-B uses up link capacity
n Flow between C-D starts, resulting in congestion on the link

A

C

B

D

Issues

n Flows need to find a fair use of link resources
n When a flow starts, it needs to find what is available reasonably

fast and under different network capacities

n Flows need to distinguish packet losses from packet delays
n Spurious detection of packet loss results in more traffic, more

congestion, more delays, and so on

n Flows need to adapt to changing network conditions
n Sometimes increase its utilization, sometimes lower its utilization

21

Finding Equilibrium from Startup

n Two features:
n Self-clocking mechanism
n “Slow start” mechanism – actually ramps up rather fast!

n Self-clocking:
n Send a new packet only when a previous packet is acknowledged
n Soon packets are sent at the rate they are received

Pr

Pb

Ar
Ab

ReceiverSender

As

Slow Start Mechanism

n Initially set cwnd to be 1
n Maintain the invariant that cwnd < window given by receiver
n Increment cwnd by 1 for every acknowledgement

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

22

Accurate Round Trip Time Estimates

n How long should timeout be?
n Too long? Wastes time
n Too short? Retransmits even though message is not lost
n Maintain running estimate of “R”

R = (1-α)*R + α * M
where M is new measurement, α is decay constant

n High α makes it unstable
n Low α makes the system have too much history

n Also measure the error or variance in measurements
n Set timeout to be R + 4*variance

Congestion Avoidance Algorithm

n React to changing network conditions by modifying cwnd
n At loss: (multiplicative decrease)

cwnd = cwnd / 2
Better to have a drastic decrease when losses occur

n After loss: (additive increase)
cwnd += 1/cwnd
Results in slow increase; probes for available bandwidth
Better to have a conservative increase policy

cwnd

23

Announcements

n Assignment 4 has been posted
n Wednesday reading: “Authentication in distributed

systems”
n Friday reading: “Andrew File System”

n Background reading: “Implementing Remote Procedure Calls” and
“Sun’s Network File Systems”

Congestion Control at Routers

n Router queues can fill up
n When they fill up?

n What to drop?
n When to drop?

n Random Early Detection (RED) algorithm: use
randomization

n Router can be in one of three states:
n Few packets in the queues: do not drop any packets (normal

operating phase)
n Lots of packets in the queues: drop for sure (congestion phase)
n Intermediate number of packets: calculate probability for dropping

based on queue length and number of packets since last drop
(congestion avoidance phase)

24

RED Drop Probability

n Voodoo constants: minqThresh, maxqThresh, maxp
n Step 1:

p = maxp * (avgQlen – minqThresh)/(maxqThresh – minqThresh)
p <= maxp
avgQlen is calculated as a weighted average over time

n Step 2:
Drop probability = p / (1 – count*p)
count is number of packets since last drop
Try to avoid cascading drops

p

avgQlen

Connections

n Requires three-way handshakes
n Setup:

n Open request packet (SYN, initial sequence number)
n Acknowledgement (SYN, own sequence number, ack number)
n Acknowledgement of the acknowledgement

n SYN occupies 1 byte of sequence space

SYN, #10

SYN, #100, ACK-#10

A B

ACK-#100

25

Failure Scenarios

n Cannot reuse sequence number if there are some old live data
n Keep track of previous recent connections

n What if machines go up and down?
n Wait for a while when machine reboots
n Let old packets die

n What if connection packets get lost?
n Timeout and retransmit
n But initially very conservative estimate of RTT

Connection Tear Down

FIN, #100

A B

ACK-#100

FIN, #1000

ACK-#1000

n Keep connection state
around for some more time
n FIN occupies 1 byte in

sequence space
n Connection state is last

byte received in sequence

n Typically kept for 2*RTT
duration

n No clean solution as to
when state can be
forgotten

n A distributed consensus
problem

26

General’s Problem

n Two generals on separate mountains
n Can communicate only via messengers

n Messengers can be captured

n Need to coordinate an attack
n If they attack at the same time, they win
n Else they will all die

n Devise a protocol to coordinate the two generals

