PRAM Algorithms

Arvind Krishnamurthy
Fall 2004

Parallel Random Access Machine (PRAM)

= Collection of numbered processors
= Accessing shared memory cells
9 Y Control
= Each processor could have local
memory (registers)
= Each processor can access any

shared memory cell in unit time |—— | Private e —
Memol

= Input stored in shared memory

cells, output also needs to be Global
stored in shared memory - e
= PRAM instructions execute in 3- MBoRy)

Memor
phase cycles Y

= Read (if any) from a shared
memory cell

= Local computation (if any) .
= Write (if any) to a shared memory —— e —
cell Memot

= Processors execute these 3-phase
PRAM instructions synchronously

Shared Memory Access Conflicts

= Different variations:

= Exclusive Read Exclusive Write (EREW) PRAM: no two processors
are allowed to read or write the same shared memory cell
simultaneously

= Concurrent Read Exclusive Write (CREW): simultaneous read
allowed, but only one processor can write

= Concurrent Read Concurrent Write (CRCW)
= Concurrent writes:
Priority CRCW: processors assigned fixed distinct priorities, highest
priority wins
Arbitrary CRCW: one randomly chosen write wins
Common CRCW: all processors are allowed to complete write if and
only if all the values to be written are equal

A Basic PRAM Algorithm

= Let there be “n” processors and “2n” inputs
= PRAM model: EREW
= Construct a tournament where values are compared

PO Processor k is active in step j
if (k % 2i) ==
At each step:
0 4 Compare two inputs,
Take max of inputs,
i 2 P4 AP6 Write result into shared memory
PO P1 P2 P3 P4 P5 P6 P7 Details:

Need to know who is the “parent” and
whether you are left or right child
Write to appropriate input field

PRAM Model Issues

= Complexity issues:
= Time complexity = O(log n)
= Total number of steps = n * log n = O(n log n)
= Optimal parallel algorithm:
= Total number of steps in parallel algorithm is equal to the number
of steps in a sequential algorithm
= Use n/logn processors instead of n
= Have a local phase followed by the global phase
= Local phase: compute maximum over log n values
= Simple sequential algorithm
= Time for local phase = O(log n)
= Global phase: take (n/log n) local maximums and compute
global maximum using the tournament algorithm
= Time for global phase = O(log (n/log n)) = O(log n)

Time Optimality

= Example: n = 16

= Number of processors, p = n/log n = 4

= Divide 16 elements into four groups of four each

= Local phase: each processor computes the maximum of its
four local elements

= Global phase: performed amongst the maximums
computed by the four processors

Finding Maximum: CRCW Algorithm

Given n elements A[0, n-1], find the maximum.
With n2 processors, each processor (i,j) compare A[i] and A[j], for Of i, j £n-1.

FAST-MAX(A): Alll

1 n- length[A]
for i - 0ton-1, in parallel 5692 9'm
¢ do mfi] - t
. fori ﬁclJ)Toln-l ;rl:sj - 0to n-1, in parallel S5FTTFT|F
: AT Ali] 6F FTFT|F
e en m[i] - false
2 fori=- 0ton-1,in parallel O9FFFFFT
8 do if m[i] =true QTTTET E
* th - All]
w0 return maxen e : 9F FFF ET
max=9

The running timeis O(1).
Note: there may be multiple maximum values, so their processors
Will write to max concurrently. Itswork=n2" O(1) =O(n?).

Broadcast and reduction

= Broadcast of 1 value to p processors in log p time

Broadcast

= Reduction of p values to 1 in log p time
= Takes advantage of associativity in +,*, min, max, etc.

1310463 2

Add-reduction

Scan (or Parallel prefix)

= What if you want to compute partial sums
= Definition: the parallel prefix operation take a binary
associative operator ©, and an array of n elements
[a, a1, 8y, .. ap4]
and produces the array
[ay, (39 ay), - (ag© a; ©... © a,4)]

= Example: add scan of
[1,2,0,4,2,1,1,3] is [1,3,3,7,9, 10, 11, 14]

= Can be implemented in O(n) time by a serial algorithm
= Obvious n-1 applications of operator will work

Prefix Sum in Parallel

1. Pairwise sum 2. Recursively Prefix 3. Pairwise Sum ‘

NN N NN

234 5 6 7 8 9 1011 1213 14 15 16

7 11 15 19 23 27 31

21. 36, 55, 78,105, 136

0
NN N N NN

3 6 10 15 21 28 36 45 55 66 78 91 105 120 136

Implementing Scans

= Tree summation 2 phases

= up sweep
= getvalues L and R from left and right child
= save L in local variable Mine
« compute Tmp =L + R and pass to parent

= down sweep
= getvalue Tmp from parent
= send Tmp to left child
= send Tmp+Mine to right child

Up sweep: Down sweep:

mine = left tmp = parent (root is 0)

tmp = left + right
6

E.g., Using Scans for Array Compression
= Given an array of n elements
[ao, a1, @, - 844l
and an array of flags
[1,0,1,1,0,0,1,...]
compress the flagged elements
[a0, a,, a3, ag, -]

= Compute a “prescan” i.e., a scan that doesn’t include the
element at position i in the sum
[0,1,1,2,3,3,4,...]
= Gives the index of the it" element in the compressed array

= If the flag for this element is 1, write it into the result array at the
given position

E.qg.. Fibonacci via Matrix Multiply Prefix
§n+19_é 19£:n 9
I:n ﬂ Oﬂanlﬂ

Can compute all F, by matmul_prefix on

dloodloodloodlodlodl adl di dl
§ 0 §1 050 §1o0p §1oopr E1 05 0f1 05 081 0 §1 0pr E1 0f

then select the upper left entry

Pointer Jumping —list ranking

= Given a single linked list L with n objects, compute,
for each object in L, its distance from the end of the
list.

= Formally: suppose next is the pointer field
bl = { 0 if next[i] = nil
d[next[i]]+1 if next[i] * nil

= Serial algorithm: Q(n)

List ranking —EREW algorithm

LIST-RANK(L) (in O(lg n) time)
1. for each processor i, in parallel

2 do if next[i]=nil
B then d[i]- 0
4 else d[i]- 1
s. while there exists an object i such that next[i]: nil
6. do for each processor i, in parallel
do if next[i]* nil
8 then d[i]- d[i]+ d[next[i]]
9 next[i] - next[next[i]]

List-ranking —EREW algorithm

3 4 6 1 0 5
@ I[P A AP a]Ha]H0]]
3 4 6 1 0 5
® 202121 2T] [1[0 [/
3 4 6 1 0 5
@ [alJaJB 211 [0

3 4 6 1 0 5
@ [5d[a[3][22 [1/ [0 /]

Recap

= PRAM algorithms covered so far:
= Finding max on EREW and CRCW models

= Time optimal algorithms: number of steps in parallel program is
equal to the number of steps in the best sequential algorithm
= Always qualified with the maximum number of processors that
can be used to achieve the parallelism
Reduction operation:

= Takes a sequence of values and applies an associative operator
on the sequence to distill a single value

= Associative operator can be: +, max, min, etc.
= Can be performed in O(log n) time with up to O(n/log n) procs
Broadcast operation: send a single value to all processors

= Also can be performed in O(log n) time with up to O(n/log n)
procs

Scan Operation

Used to compute partial sums
Definition: the parallel prefix operation take a binary associative
operator ©, and an array of n elements
[a, @y, 8, ... ay4]
and produces the array
[a5 (30 &y), .. (8@ AP ... © a,y)]

Scan(a, n):
if (n==1){ s[0] = a[0]; returns; }
for (j =0..n/2-1)
x[i] = a[2*j] © a[2*j+1];
y = Scan(x, n/2);
for odd j in {0 .. n-1}
shl = y0/2];
for even jin {0 .. n-1}
shi] = yli/2] e alil;

return's;

Work-Time Paradigm

Associate two complexity measures with a parallel
algorithm

S(n): time complexity of a parallel algorithm

= Total number of steps taken by an algorithm
W(n): work complexity of the algorithm

= Total number of operations the algorithm performs

= W;(n): number of operations the algorithm performs in step j
= W(n) = s W(n) where j=1..5(n)
Can use recurrences to compute W(n) and S(n)

Recurrences for Scan

Scan(a, n):
if (n==1){ s[0] = a[0]; returns; }
for (j =0..n/2-1)
x[i] = a[2*j] © a[2*j+1];
y = Scan(x, n/2);
for odd j in {0 .. n-1}
shl = y0/2];
for even jin{0 .. n-1}
sh] = ylhi/2] e alil;
returns;

W) =1+n/2+W(n/2) +n/2+n/2 +1
=2+ 3n/2 + W(n/2)
S(N)=1+1+S(n/2)+1+1=S(n/2) +4
Solving, W(n) = O(n); S(n) = O(log n)

Brent's Scheduling Principle

A parallel algorithm with step complexity S(n) and work
complexity W(n) can be simulated on a p-processor PRAM
in no more than T¢(n,p) = W(n)/p + S(n) parallel steps

= S(n) could be thought of as the length of the “critical path”

= Some schedule exists; need some online algorithm for dynamically

allocating different numbers of processors at different steps of the

program
= No need to give the actual schedule; just design a parallel algorithm

and give its W(n) and S(n) complexity measures
= Goals:

= Design algorithms with W(n) = Tg(n), running time of sequential

algorithm
= Such algorithms are called work-efficient algorithms
= Also make sure that S(n) = poly-log(n)
= Speedup = Tg(n) / T¢(n,p)

Application of Brent's Schedule to Scan

= Scan complexity measures:
= W(n) =0(n)
= S(n) = O(log n)

Te(n,p) = W(n)/p + S(n)

= |If p equals 1:
= Te(n,p) = O(n) + O(log n) = O(n)
= Speedup = Tg(n) / Te(n,p) =1
= If p equals n/log(n):
= Te(np) = O(log n)
= Speedup = Tg(n) / Te(n,p) = n/logn
= If p equals n:
= Te(np) = O(log n)
= Speedup = n/logn

= Scalable up to n/log(n) processors

Seamented Operations

Inputs = Ordered Pairs Change of
(operand, boolean) segmgm ivndicated
e.g. (x, T)or (x, F) by switching T/F
+2 .M (v.P
T (x+y, T) v. P
(x, F) v. T (xAy, F)
egl 1 213 4 5] 6 7] 8]
TOT F F ‘ T ‘ F ‘ T
Result ¢ 3 1 3 7 12/6 1 7| 8

Parallel prefix on a list

= A prefix computation is defined as:
= Input: <x;, Xy, ..y X>
= Binary associative operation A
= Output: <yi, Yo, ..., Yp>
Such that:
= Y1iT X%
= Y= YiaA X fork=2,3, .., n,ie,y,= A x A X, A X .
= Suppose <X, Xy, ..., X,> are stored orderly in a list.
= Define notation: [i,j]= X A X1 ..A X

Prefix computation

LIST-PREFIX(L)
1. for each processor i, in parallel

List Prefix Operations

= What is S(n)?

= What is W(n)?

= What is speedup on n/logn processors?

2 do y[i]- x[i]

s. while there exists an object i such that prev[i]* nil

4 do for each processor i, in parallel

5 do if prev[i]: nil

5 then y[prev[i]]- y[i] A y[prev[i]]

7 prev[i] - prev[prev[i]]
Announcements

= Readings:

= Lecture notes from Sid Chatterjee and Jans Prins
= Prefix scan applications paper by Guy Blelloch
= Lecture notes from Ranade (for list ranking algorithms)

= Homework:
= First theory homework will be on website tonight

= To be done individually

= TA office hours will be posted on the website soon

List Prefix

4l-H3[He6lH7[4{al{3T]

(4l [z Tl J[]J[ul][7T]
S e S e ———
(a4 Jl7]][] J[20]]J[20] J[20]]

e = S—
4] 17T 18T J[20]] [24]] [27]

Optimizing List Prefix

[4l-H3T4{6[4{7T4{4al4{3T]

Fliminate some elements:

(4] SN (o] [11]4{ 3]
\/

Perform list prefix on remainder:

(4TS (3] - (241] [271]

Integrate eliminated elements:

(47] DN (137] 20N (247] [271]

Optimizing List Prefix

= Randomized algorithm:

Goal: achieve W(n) = O(n)

= Sketch of algorithm:

1

2

3

a.

Select a set of list elements that are non adjacent

Eliminate the selected elements from the list

Repeat steps 1 and 2 until only one element remains

Fill in values for the elements eliminated in preceding steps in the
reverse order of their elimination

Optimizing List Prefix

[4[-H3T4H6[4{7T4H{al4{3T]]

Fliminate #1:

[(4]-HESHN (o] [11]4{ 3]
'_’_/

Eliminate #2:
IS S 3] (14 T]
Fliminate #3:

CaT<{8T] T4 7T] (27 1]

Randomized List Ranking

= Elimination step:
= Each processor is assigned O(log n) elements
= Processor j is assigned elements j*logn ... (j+1)*logn -1
= Each processor marks the head of its queue as a candidate
= Each processor flips a coin and stores the result along with the
candidate

= A candidate is eliminated if its coin is a HEAD and if it so happens
that the previous element is not a TAIL or was not a candidate

Find root —CREW algorithm

= Suppose a forest of binary trees, each node i has a pointer
parent[i].

= Find the identity of the tree of each node.

= Assume that each node is associated a processor.

= Assume that each node i has a field root[i].

Find-roots —CREW algorithm

] FIND-ROOTS(F)
1. for each processor i, in parallel
2 do if parent[i] = nil
3 then root[i]- i
2. while there exist a node i such that parent[i] * nil
do for each processor i, in parallel

6. do if parent[i] * nil
then root[i] - root[parent[i]]
8 parent[i] - parent[parent[i]]

Pointer Jumping Example

ot
[\ ¥
AN
AN

Pointer Jumping Example

e

Pointer Jumping Example

g?@

Analysis

Complexity measures:
= What is W(n)?
= What is S(n)?

Termination detection: When do we stop?

= All the writes are exclusive

= But the read in line 7 is concurrent, since several nodes
may have same node as parent.

Find roots —CREW vs. EREW

= How fast can n nodes in a forest determine their
roots using only exclusive read?

w(lgn)

Argument: when exclusive read, a given peace of information can only be
copied to one other memory location in each step, thus the number of locations
containing a given piece of information at most doubles at each step. Looking

at aforest with one tree of n nodes, the root identity is stored in one place initially.
After thefirst step, it is stored in at most two places; after the second step, it is
Stored in at most four places, ..., so need |g n steps for it to be stored at n places.

So CREW: O(lg d) and EREW: w(lg n).

If d=200gn) CREW outperforms any EREW algorithm.

If d=Q(lg n), then CREW runsin O(lg Ig n), and EREW is
much slower.

Euler Tours

= Technique for fast processing of tree data
= Euler circuit of directed graph:
= Directed cycle that traverses each edge exactly once
= Represent tree by Euler circuit of its directed version

Using Euler Tours

= Trees = balanced parentheses
= Parentheses subsequence corresponding to a subtree is balanced

/

Parenthesis version: (()(()()))

Depth of tree vertices

= Input:
= L[i] = position of incoming edge into i in euler tour
= R[i] = position of outgoing edge from i in euler tour

forall i in 1..n {
AlLLiT] = 1
AR = -1;

}

B = EXCL- SCAN(A, “+");

forall i in 1..n

Depth[i] = B[L[i]];

Parenthesis version COYyceHyo
Scan input: 11-111-11-1
Scan output: 01212323

N h—
bl

Divide and Conquer

= Just as in sequential algorithms
= Divide problems into sub-problems
= Solve sub-problems recursively
= Combine sub-solutions to produce solution

= Example: planar convex hull
= Give set of points sorted by x-coord
= Find the smallest convex polygon that contains the points

Convex Hull

= Overall approach:
= Take the set of points and divide the set into two halves

= Assume that recursive call computes the convex hull of the two
halves

= Conquer stage: take the two convex hulls and merge it to obtain
the convex hull for the entire set

= Complexity:
= W(n) = 2*W(n/2) + merge_cost
= S(n) = S(n/2) + merge_cost
= If merge_cost is O(log n), then S(n) is O(log2n)
= Merge can be sequential, parallelism comes from the recursive

Complex Hull Example

Complex Hull Example

subtasks
Complex Hull Example
.\
. / \\\
/ e \
/ \
// ° \\\
// .
[] yd
//
/
//
./
Complex Hull Example
O,
O / \\\
7 ° (@] \\\
/ ° \\\
/ ° o [e] N\,
(@] (@)

Merge Operation

= Challenge:
= Finding the upper and lower common tangents
= Simple algorithm takes O(n)
= We need a better algorithm

= Insight:

Resort to binary search

Consider the simpler problem of finding a tangent from a point to a
polygon

Extend this to tangents from a polygon to another polygon

More details in Preparata and Shamos book on Computational
Geometry (Lemma 3.1)

