
1

PRAM Algorithms

Arvind Krishnamurthy
Fall 2004

Parallel Random Access Machine (PRAM)

n Collection of numbered processors
n Accessing shared memory cells
n Each processor could have local

memory (registers)
n Each processor can access any

shared memory cell in unit time
n Input stored in shared memory

cells, output also needs to be
stored in shared memory

n PRAM instructions execute in 3-
phase cycles
n Read (if any) from a shared

memory cell
n Local computation (if any)
n Write (if any) to a shared memory

cell
n Processors execute these 3-phase

PRAM instructions synchronously

Control

Private
Memory

P1

Private
Memory

P2

Private
Memory

Pp

Global

Memory

Shared Memory Access Conflicts

n Different variations:
n Exclusive Read Exclusive Write (EREW) PRAM: no two processors

are allowed to read or write the same shared memory cell
simultaneously

n Concurrent Read Exclusive Write (CREW): simultaneous read
allowed, but only one processor can write

n Concurrent Read Concurrent Write (CRCW)

n Concurrent writes:
n Priority CRCW: processors assigned fixed distinct priorities, highest

priority wins
n Arbitrary CRCW: one randomly chosen write wins
n Common CRCW: all processors are allowed to complete write if and

only if all the values to be written are equal

A Basic PRAM Algorithm

n Let there be “n” processors and “2n” inputs
n PRAM model: EREW
n Construct a tournament where values are compared

v
P0

P4

P6

P0 P1 P2 P3 P4 P5 P6 P7

P2

P0

P0 P4

Processor k is active in step j
if (k % 2j) == 0

At each step:
Compare two inputs,
Take max of inputs,
Write result into shared memory

Details:
Need to know who is the “parent” and
whether you are left or right child
Write to appropriate input field

PRAM Model Issues

n Complexity issues:
n Time complexity = O(log n)
n Total number of steps = n * log n = O(n log n)

n Optimal parallel algorithm:
n Total number of steps in parallel algorithm is equal to the number

of steps in a sequential algorithm

n Use n/logn processors instead of n
n Have a local phase followed by the global phase
n Local phase: compute maximum over log n values

n Simple sequential algorithm
n Time for local phase = O(log n)

n Global phase: take (n/log n) local maximums and compute
global maximum using the tournament algorithm
n Time for global phase = O(log (n/log n)) = O(log n)

Time Optimality

n Example: n = 16
n Number of processors, p = n/log n = 4
n Divide 16 elements into four groups of four each
n Local phase: each processor computes the maximum of its

four local elements
n Global phase: performed amongst the maximums

computed by the four processors

2

Given n elements A[0, n-1], find the maximum.
With n2 processors, each processor (i,j) compare A[i] and A[j], for 0≤ i, j ≤n-1.

FAST-MAX(A):
1. n←length[A]
2. for i ←0 to n-1, in parallel
3. do m[i] ←true
4. for i ←0 to n-1 and j ←0 to n-1, in parallel
5. do if A[i] < A[j]
6. then m[i] ←false
7. for i ←0 to n-1, in parallel
8. do if m[i] =true
9. then max ← A[i]
10. return max

The running time is O(1).
Note: there may be multiple maximum values, so their processors

Will write to max concurrently. Its work = n2 × O(1) =O(n2).

5 6 9 2 9 m
5 F T T F T F
6 F F T F T F
9 F F F F F T
2 T T T F T F
9 F F F F F T

A[j]

A[i]

max=9

Finding Maximum: CRCW Algorithm Broadcast and reduction
n Broadcast of 1 value to p processors in log p time

n Reduction of p values to 1 in log p time
n Takes advantage of associativity in +,*, min, max, etc.

v

8

1 3 1 0 4 -6 3 2

Add-reduction

Broadcast

Scan (or Parallel prefix)

n What if you want to compute partial sums
n Definition: the parallel prefix operation take a binary

associative operator , and an array of n elements
[a0, a1, a2, … an-1]

and produces the array
[a0, (a0 a1), … (a0 a1 ... an-1)]

n Example: add scan of
[1, 2, 0, 4, 2, 1, 1, 3] is [1, 3, 3, 7, 9, 10, 11, 14]

n Can be implemented in O(n) time by a serial algorithm
n Obvious n-1 applications of operator will work

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 7 11 15 19 23 27 31
(Recursively Prefix)

3 10 21 36 55 78 105 136

1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136

Algorithm: 1. Pairwise sum 2. Recursively Prefix 3. Pairwise Sum

Prefix Sum in Parallel

Implementing Scans
n Tree summation 2 phases

n up sweep

n get values L and R from left and right child
n save L in local variable Mine
n compute Tmp = L + R and pass to parent

n down sweep

n get value Tmp from parent
n send Tmp to left child
n send Tmp+Mine to right child

6
54

3 2 4 1

Up sweep:

mine = left

tmp = left + right

4

6 9

5 4

3 1 2 0 4 1 1 3

6
54

3 2 4 1

0 6

0

0 3

3 4 6 6 10 11 12 15

+X = 3 1 2 0 4 1 1 3

4

4 6 6 10 11

6 11

12

Down sweep:

tmp = parent (root is 0)

right = tmp + mine

E.g., Using Scans for Array Compression
n Given an array of n elements

[a0, a1, a2, … an-1]
and an array of flags

[1,0,1,1,0,0,1,…]
compress the flagged elements

[a0, a2, a3, a6, …]

n Compute a “prescan” i.e., a scan that doesn’t include the
element at position i in the sum

[0,1,1,2,3,3,4,…]
n Gives the index of the ith element in the compressed array

n If the flag for this element is 1, write it into the result array at the
given position

3

E.g., Fibonacci via Matrix Multiply Prefix

Fn+1 = Fn + Fn-1

















=







 +

1-n

n

n

1n

F

F

01

11

F

F

Can compute all Fn by matmul_prefix on

[, , , , , , , ,]
then select the upper left entry










01

11









01

11









01

11









01

11









01

11









01

11









01

11









01

11









01

11

Slide source: Alan Edelman, MIT

Pointer Jumping –list ranking

n Given a single linked list L with n objects, compute,
for each object in L, its distance from the end of the
list.

n Formally: suppose next is the pointer field
D[i] = 0 if next[i] = nil

d[next[i]]+1 if next[i] ≠ nil

n Serial algorithm: Θ(n)

List ranking –EREW algorithm

n LIST-RANK(L) (in O(lg n) time)
1. for each processor i, in parallel
2. do if next[i]=nil

3. then d[i]←0
4. else d[i]←1
5. while there exists an object i such that next[i]≠nil
6. do for each processor i, in parallel
7. do if next[i]≠nil
8. then d[i]← d[i]+ d[next[i]]
9. next[i] ←next[next[i]]

List-ranking –EREW algorithm

1
3

1
4

1
6

1
1

1
0

0
5

(a)

3 4 6 1 0 5
(b) 2 2 2 2 1 0

3 4 6 1 0 5
(c) 4 4 3 2 1 0

3 4 6 1 0 5
(d) 5 4 3 2 1 0

Recap

n PRAM algorithms covered so far:
n Finding max on EREW and CRCW models
n Time optimal algorithms: number of steps in parallel program is

equal to the number of steps in the best sequential algorithm
n Always qualified with the maximum number of processors that

can be used to achieve the parallelism
n Reduction operation:

n Takes a sequence of values and applies an associative operator
on the sequence to distill a single value

n Associative operator can be: +, max, min, etc.
n Can be performed in O(log n) time with up to O(n/log n) procs

n Broadcast operation: send a single value to all processors
n Also can be performed in O(log n) time with up to O(n/log n)

procs

Scan Operation

n Used to compute partial sums
n Definition: the parallel prefix operation take a binary associative

operator , and an array of n elements
[a0, a1, a2, … an-1]

and produces the array

[a0, (a0 a1), … (a0 a1 ... an-1)]

Scan(a, n):
if (n == 1) { s[0] = a[0]; return s; }
for (j = 0 … n/2-1)

x[j] = a[2*j] a[2*j+1];
y = Scan(x, n/2);
for odd j in {0 … n-1}

s[j] = y[j/2];
for even j in {0 … n-1}

s[j] = y[j/2] a[j];
return s;

4

Work-Time Paradigm

n Associate two complexity measures with a parallel
algorithm

n S(n): time complexity of a parallel algorithm
n Total number of steps taken by an algorithm

n W(n): work complexity of the algorithm
n Total number of operations the algorithm performs
n Wj(n): number of operations the algorithm performs in step j

n W(n) = Σ Wj(n) where j = 1…S(n)

n Can use recurrences to compute W(n) and S(n)

Recurrences for Scan

W(n) = 1 + n/2 + W(n/2) + n/2 + n/2 + 1
= 2 + 3n/2 + W(n/2)

S(n) = 1 + 1 + S(n/2) + 1 + 1 = S(n/2) + 4
Solving, W(n) = O(n); S(n) = O(log n)

Scan(a, n):
if (n == 1) { s[0] = a[0]; return s; }
for (j = 0 … n/2-1)

x[j] = a[2*j] a[2*j+1];
y = Scan(x, n/2);
for odd j in {0 … n-1}

s[j] = y[j/2];
for even j in {0 … n-1}

s[j] = y[j/2] a[j];
return s;

Brent’s Scheduling Principle

n A parallel algorithm with step complexity S(n) and work
complexity W(n) can be simulated on a p-processor PRAM
in no more than TC(n,p) = W(n)/p + S(n) parallel steps
n S(n) could be thought of as the length of the “critical path”

n Some schedule exists; need some online algorithm for dynamically
allocating different numbers of processors at different steps of the
program

n No need to give the actual schedule; just design a parallel algorithm
and give its W(n) and S(n) complexity measures

n Goals:
n Design algorithms with W(n) = TS(n), running time of sequential

algorithm
n Such algorithms are called work-efficient algorithms

n Also make sure that S(n) = poly-log(n)
n Speedup = TS(n) / TC(n,p)

Application of Brent’s Schedule to Scan

n Scan complexity measures:
n W(n) = O(n)
n S(n) = O(log n)

n TC(n,p) = W(n)/p + S(n)

n If p equals 1:
n TC(n,p) = O(n) + O(log n) = O(n)
n Speedup = TS(n) / TC(n,p) = 1

n If p equals n/log(n):
n TC(n,p) = O(log n)
n Speedup = TS(n) / TC(n,p) = n/logn

n If p equals n:
n TC(n,p) = O(log n)
n Speedup = n/logn

n Scalable up to n/log(n) processors

Segmented Operations

2 (y, T) (y, F)

(x, T) (x y, T) (y, F)

(x, F) (y, T) (x⊕y, F)

e. g. 1 2 3 4 5 6 7 8

T T F F F T F T

1 3 3 7 12 6 7 8 Result

Inputs = Ordered Pairs
(operand, boolean)

e.g. (x, T) or (x, F)

Change of
segment indicated
by switching T/F

+

+

Parallel prefix on a list
n A prefix computation is defined as:

n Input: <x1, x2, …, xn>
n Binary associative operation ⊗

n Output: <y1, y2, …, yn>
n Such that:

n y1= x1

n yk= yk-1⊗ xk for k= 2, 3, …, n, i.e, yk= ⊗ x1 ⊗ x2 …⊗ xk .
n Suppose <x1, x2, …, xn> are stored orderly in a list.
n Define notation: [i,j]= xi ⊗ xi+1 …⊗ xj

5

Prefix computation

n LIST-PREFIX(L)
1. for each processor i, in parallel
2. do y[i]← x[i]

3. while there exists an object i such that prev[i]≠nil
4. do for each processor i, in parallel
5. do if prev[i]≠nil
6. then y[prev[i]]← y[i] ⊗ y[prev[i]]
7. prev[i] ← prev[prev[i]]

List Prefix Operations

n What is S(n)?

n What is W(n)?

n What is speedup on n/logn processors?

Announcements

n Readings:
n Lecture notes from Sid Chatterjee and Jans Prins
n Prefix scan applications paper by Guy Blelloch
n Lecture notes from Ranade (for list ranking algorithms)

n Homework:
n First theory homework will be on website tonight

n To be done individually

n TA office hours will be posted on the website soon

List Prefix

4 3 6 7 4 3

4 7 9 13 11 7

4 7 13 20 20 20

4 7 13 20 24 27

Optimizing List Prefix

4 3 6 7 4 3

4 3 9 7 11 3
Eliminate some elements:

4 3 13 7 24 27
Perform list prefix on remainder:

4 7 13 20 24 27

Integrate eliminated elements:

Optimizing List Prefix

n Randomized algorithm:
n Goal: achieve W(n) = O(n)

n Sketch of algorithm:
1. Select a set of list elements that are non adjacent
2. Eliminate the selected elements from the list
3. Repeat steps 1 and 2 until only one element remains
4. Fill in values for the elements eliminated in preceding steps in the

reverse order of their elimination

6

Optimizing List Prefix

4 3 6 7 4 3

4 3 9 7 11 3
Eliminate #1:

4 3 13 7 11 14
Eliminate #2:

4 3 13 7 11 27

Eliminate #3:

Randomized List Ranking

n Elimination step:
n Each processor is assigned O(log n) elements
n Processor j is assigned elements j*logn … (j+1)*logn –1
n Each processor marks the head of its queue as a candidate
n Each processor flips a coin and stores the result along with the

candidate

n A candidate is eliminated if its coin is a HEAD and if it so happens
that the previous element is not a TAIL or was not a candidate

Find root –CREW algorithm

n Suppose a forest of binary trees, each node i has a pointer
parent[i].

n Find the identity of the tree of each node.
n Assume that each node is associated a processor.
n Assume that each node i has a field root[i].

Find-roots –CREW algorithm
n FIND-ROOTS(F)

1. for each processor i, in parallel
2. do if parent[i] = nil

3. then root[i]←i
4. while there exist a node i such that parent[i] ≠ nil
5. do for each processor i, in parallel
6. do if parent[i] ≠ nil
7. then root[i] ← root[parent[i]]
8. parent[i] ← parent[parent[i]]

Pointer Jumping Example Pointer Jumping Example

7

Pointer Jumping Example Analysis

n Complexity measures:
n What is W(n)?
n What is S(n)?

n Termination detection: When do we stop?

n All the writes are exclusive
n But the read in line 7 is concurrent, since several nodes

may have same node as parent.

Find roots –CREW vs. EREW
n How fast can n nodes in a forest determine their

roots using only exclusive read? Ω(lg n)

Argument: when exclusive read, a given peace of information can only be
copied to one other memory location in each step, thus the number of locations
containing a given piece of information at most doubles at each step. Looking
at a forest with one tree of n nodes, the root identity is stored in one place initially.
After the first step, it is stored in at most two places; after the second step, it is
Stored in at most four places, …, so need lg n steps for it to be stored at n places.

So CREW: O(lg d) and EREW: Ω(lg n).
If d=2o(lg n), CREW outperforms any EREW algorithm.
If d=Θ(lg n), then CREW runs in O(lg lg n), and EREW is
much slower.

Euler Tours

n Technique for fast processing of tree data
n Euler circuit of directed graph:

n Directed cycle that traverses each edge exactly once

n Represent tree by Euler circuit of its directed version

Using Euler Tours

n Trees = balanced parentheses
n Parentheses subsequence corresponding to a subtree is balanced

Parenthesis version: (() (() ()))

Depth of tree vertices

n Input:
n L[i] = position of incoming edge into i in euler tour
n R[i] = position of outgoing edge from i in euler tour

forall i in 1..n {

A[L[i]] = 1;

A[R[i]] = -1;

}

B = EXCL-SCAN(A, “+”);

forall i in 1..n

Depth[i] = B[L[i]];

Parenthesis version: (() (() ()))
Scan input: 1 1 -1 1 1 -1 1 -1 -1 -1
Scan output: 0 1 2 1 2 3 2 3 2 1

8

Divide and Conquer

n Just as in sequential algorithms
n Divide problems into sub-problems
n Solve sub-problems recursively
n Combine sub-solutions to produce solution

n Example: planar convex hull
n Give set of points sorted by x-coord

n Find the smallest convex polygon that contains the points

Convex Hull

n Overall approach:
n Take the set of points and divide the set into two halves
n Assume that recursive call computes the convex hull of the two

halves
n Conquer stage: take the two convex hulls and merge it to obtain

the convex hull for the entire set

n Complexity:
n W(n) = 2*W(n/2) + merge_cost
n S(n) = S(n/2) + merge_cost
n If merge_cost is O(log n), then S(n) is O(log2n)
n Merge can be sequential, parallelism comes from the recursive

subtasks

Complex Hull Example Complex Hull Example

Complex Hull Example Complex Hull Example

9

Merge Operation

n Challenge:
n Finding the upper and lower common tangents
n Simple algorithm takes O(n)
n We need a better algorithm

n Insight:
n Resort to binary search

n Consider the simpler problem of finding a tangent from a point to a
polygon

n Extend this to tangents from a polygon to another polygon
n More details in Preparata and Shamos book on Computational

Geometry (Lemma 3.1)

