Shared Memory Programming

Arvind Krishnamurthy
Fall 2004

Parallel Programming Overview

Basic parallel programming problems:

1. Creating parallelism & managing parallelism

= Scheduling to guarantee parallelism and load-balance
2. Communication between processors

= Building shared data structures
3. Synchronization

= Point-to-point or “pairwise”

= Global synchronization (barriers)

Make use of a running example, “Sharks and Fish”

A Model Problem: Sharks and Fish

= lllustration of parallel programming
= Original version (discrete event only) proposed by Geoffrey Fox
= Called WATOR
= Sharks and fish living in a 2D toroidal ocean

= We can imagine several variations to show different
physical phenomenon

= Basic idea: sharks and fish living in an ocean
= rules for movement
= breeding, eating, and death
= forces in the ocean
= forces between sea creatures

Sharks and Fish as Discrete Event System

= Ocean modeled as a 2D toroidal grid
= Each cell occupied by at most one sea creature

£ o>
"
& [

Fish-only: the Game of Life

A new fish is born if

= acell is empty

= exactly 3 (of 8) neighbors contain fish
A fish dies (of overcrowding) if

= cell contains a fish

= 4 or more neighboring cells are full
A fish dies (of loneliness) if

= cell contains a fish

= less than 2 neighboring cells are full

Other configurations are stable

The original Wator problem adds fish-eating sharks

Parallelism in Sharks and Fish

= The activities in this system are discrete events
= The simulation is synchronous
= use two copies of the grid (old and new)

= the value of each new grid cell in new depends only on the 9 cells
(itself plus neighbors) in old grid

= Each grid cell update is independent: reordering or parallelism OK

= simulation proceeds in timesteps, where (logically) each cell is
evaluated at every timestep

old ocean new ocean

Parallelism in Sharks and Fish

= Parallelism is straightforward

= Ocean is regular data structure

= even decomposition across processors gives load balance
= Locality is achieved by using large patches of the ocean

= boundary values from neighboring patches are needed =
communication (either explicit or implicit as in cache transfers)

= Advanced optimization: visit only occupied cells (and neighbors)
- load balance is more difficult

Language Notions of Thread Creation

= cobegin/coend

cobeg_;in «Statements in block may run in parallel
jobl(al); _
job2(a2); scobegins may be nested
coend +Scoped, so you cannot have a missing coend
= fork/join

tidl = fork(jJobl, al);
job2(a2);

join tidl; *Forked function runs in parallel with current thread

ejoin waits for completion (may be in different function)

= cobegin cleaner, but fork is more general

Programming with Threads

Several Thread Libraries

= PTHREADS is the Posix Standard
= Solaris threads are very similar
= Relatively low level
= Portable but sometimes slow
= P4 (Parmacs) is a widely used portable package
= Higher level than Pthreads http://www.netlib.org/p4/index.html
= OpenMP is newer standard
= Support for scientific programming on shared memory
http://www.openMP.org
= User-level vs. kernel level threads
= User-level threads cannot make use of multi-processors!
= Kernel-level threads have more overhead

= Kernel-level threads better integrated with OS actions (page-faults
etc.)

Forking Posix Threads

Signature:

int pthread_create(pthread_t *,
const pthread_attr_t *,
void * (*)(void *),
void *);

Example call:
errcode = pthread_create(&thread_id; &thread_attribute
&thread_fun; &fun_arg);

= thread id is the thread id or handle (used to halt, etc.)
= thread_attribute various attributes
= standard default values obtained by passing a NULL pointer
= thread_fun the function to be run (takes and returns void*)
= fun_arg an argument can be passed to thread_fun when it starts
= errorcode will be set nonzero if the create operation fails

Posix Thread Example

#include <pthread.h>
void print_fun(void *message) {

printf(""%s \n", message);

’ Compile using gcc —Ipthread

main() {
pthread_t threadl, thread2;
char *messagel = "Hello";
char *message2 = "World";

pthreﬁajjreate(&threadl, Note: There is a race

(void*)&print_fun condition in the print
(void*) messagel); statements

pthread_create(&thread2,
NULL,
(void*)&print_fun,
(void*) message?);
return(0);

Loop Level Parallelism

= Many scientific application have parallelism in loops

= With threads:
. ocean [n][n];
for (int i = 0; 1 < nj; i++)
for (int j = 0; j < n; j++)
.. pthread_create (update_cell, .., ocean);

’ Also needs i & j ‘

= What's wrong with this approach?

SPMD Parallelism with Threads

Creating a fixed number of threads is common:

pthread t threads[NTHREADS]; /* thread info */
int errcode; /* error code */
int *status; /* return code */

for (int worker=0; worker<NTHREADS; worker++) {
ids[worker]=worker;
errcode=pthread_create(&threads[worker],
NULL, work,
&ids[worker]));
if (errcode) { . . . }

}

for (worker=0; worker<NTHREADS; worker++) {
errcode=pthread_join(threads[worker],
(void *) &status));
if (errcode !! *status != worker) { . . . }

¥

Loop Level Parallelism

= Many scientific application have parallelism in loops
= degree may be fixed by data, either
=« Start p threads and partition data (SPMD style)
= start a thread per loop iteration

= Parallel degree may be fixed, but not work

= self-scheduling: have each processor grab the next fixed-sized
chunk of work

= want this to be larger than 1 array element
= guided self-scheduling: decrease chunk size as a remaining
work decreases [Polychronopoulos]
= How to do this:
= With threads, create a data structure to keep track of chunks

Dynamic Parallelism

= Divide-and-Conquer problems are task-parallel
= classic example is search (recursive function)
= arises in numerical algorithms, dense as well as sparse
= natural style is to create a thread at each divide point
too much parallelism at the bottom
thread creation time too high

= Stop splitting at some point to limit overhead
= Use a “task queue” to schedule

= have a pool of worker threads

= place root in a bag (unordered queue)

= at each divide point, put children

= this isn’t this the same as forking them

Shared Data and Threads

= Variables declared outside of main are shared

= Object allocated on the heap may be shared (if pointer
is passed)

» For Sharks and Fish, natural to share 2 oceans
= Also need indices i and j, or range of indices to update

= Often done by creating a large “thread data” struct
= Passed into all threads as argument

Svnchronization in Sharks and Fish

We use 2 copies of the ocean mesh to avoid synchronization of
each element

= Need to coordinate

Every processor must be done updating one grid before using it
= Also useful to swap old/new to avoid overhead of allocation
= Need to make sure done with old before making into new

= Global synchronization of this kind is very common
= Timesteps, iterations in solvers, etc.

Basic Types of Synchronization: Barrier

Barrier -- global synchronization
= fork multiple copies of the same function “work”
= SPMD *“Single Program Multiple Data”
= simple use of barriers -- threads hit the same one

work on my subgrid();
barrier;

read neighboring values() ;
barrier;
= more complicated -- barriers on branches (or loops)

if (tid % 2 == 0) {
workl () ;
barrier

} else { barrier }

= barriers are not provided in many thread libraries

Pairwise Synchronization

= Sharks and Fish example needs only barriers

= Imagine other variations in which pairs of processors
would synchronization:

= World divided into independent “ponds” with creatures rarely
moving between them

= Producer-consumer model of parallelism

= All processors updating some global information, such as total
population count asynchronously

= Mutual exclusion needed

Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
= threads are working mostly independently
= need to access common data structure
lock *1 = alloc_and init(); /* shared */
acquire (1) ;
access data
release(l);

= Java and other languages have lexically scoped
synchronization

= similar to cobegin/coend vs. fork and join

= Semaphores are locks plus shared counters and can be used
for mutual exclusion

= Locks only affect processors using them:
= pair-wise synchronization

10

Pthreads Locks

m Steps: declare a lock and initialize it; make sure it is locked before
doing something critical

= Standard locks semantics: only one can thread can have it

pthread_mutex_t pond_lock[n]; /I declaration
pthread_mutex_init(&pond_lock[i], NULL); // initialization

pthread_mutex_lock(&pond_lock]i]);
pthread_mutex_lock(&pond_lock[j]);
move_fish(fish, pond[i], pond[j]);
pthread_mutex_unlock(&pond_lock]j]);
pthread_mutex_unlock(&pond_lock[i]);

Locking Issues

= Repeated locking of the same lock
= Linux has “fast” vs. “recursive” locks

= Reader/writer locks: allow multiple readers to own a lock at
any time, but not allow any readers if there is a writer

= pthread_mutex_trylock is non-blocking (“non-committal™)

= Deadlock issues:

= Example: T1 locks pond1l followed by pond2, T2 locks pond2
followed by pond1l

= Deadlocks can be analyzed with the “waits-for” graph

= T1is waiting for T2 (to release pond2), and T2 is waiting for T1 (to
release pondl), and a cycle in this graph implies deadlock

= Deadlock avoidance: order locks, and each thread obtains the locks
it needs in increasing order of relevance - no cycles!

11

Condition Variables

Allows for threads to wait for a condition to be satisfied
Used along with a mutex lock

pthread_cond_wait puts a thread to sleep waiting for a
pthread_cond_signal to be issued by another thread

Example: producer-consumers interaction, wake up a
consumer when there is a task available

pthread_mutex_lock(&mut);
while (tasks_left == 0) {

pthread_cond_wait(&cv, &mut);
pthread_mutex_lock(&mut);

pthread_mutex_unlock(&mut); if (tasks_left !=0) {

pthread_cond_signal(&cv, &mut);
}

pthread_mutex_unlock(&mut);

Condition Variable Issues

Programming discipline: always obtain the lock before signaling or
waiting on a condition variable

Makes sure that no signals are lost

pthread_cond_wait implicitly relinquishes the lock and obtains it back
when woken up

pthread_cond_signal wakes up exactly one waiting thread,
pthread_cond_broadcast wakes up all waiting threads

signal could be used without locking

A thread could wake up and reset the program level criteria; broadcast
does not imply all threads are runnable

12

