
1

Shared Memory Programming

Arvind Krishnamurthy
Fall 2004

Parallel Programming Overview

Basic parallel programming problems:

1. Creating parallelism & managing parallelism
Scheduling to guarantee parallelism and load-balance

2. Communication between processors
Building shared data structures

3. Synchronization
Point-to-point or “pairwise”
Global synchronization (barriers)

Make use of a running example, “Sharks and Fish”

2

A Model Problem: Sharks and Fish

Illustration of parallel programming
Original version (discrete event only) proposed by Geoffrey Fox
Called WATOR

Sharks and fish living in a 2D toroidal ocean

We can imagine several variations to show different
physical phenomenon

Basic idea: sharks and fish living in an ocean
rules for movement
breeding, eating, and death
forces in the ocean
forces between sea creatures

Sharks and Fish as Discrete Event System

Ocean modeled as a 2D toroidal grid
Each cell occupied by at most one sea creature

3

Fish-only: the Game of Life

A new fish is born if
a cell is empty
exactly 3 (of 8) neighbors contain fish

A fish dies (of overcrowding) if
cell contains a fish
4 or more neighboring cells are full

A fish dies (of loneliness) if
cell contains a fish
less than 2 neighboring cells are full

Other configurations are stable

The original Wator problem adds fish-eating sharks

Parallelism in Sharks and Fish
The activities in this system are discrete events
The simulation is synchronous

use two copies of the grid (old and new)
the value of each new grid cell in new depends only on the 9 cells
(itself plus neighbors) in old grid

Each grid cell update is independent: reordering or parallelism OK
simulation proceeds in timesteps, where (logically) each cell is
evaluated at every timestep

old ocean new ocean

4

Parallelism in Sharks and Fish
Parallelism is straightforward

ocean is regular data structure
even decomposition across processors gives load balance

Locality is achieved by using large patches of the ocean
boundary values from neighboring patches are needed
communication (either explicit or implicit as in cache transfers)

Advanced optimization: visit only occupied cells (and neighbors)
load balance is more difficult

Language Notions of Thread Creation

cobegin/coend

fork/join

cobegin cleaner, but fork is more general

cobegin
job1(a1);
job2(a2);

coend

•Statements in block may run in parallel

•cobegins may be nested

•Scoped, so you cannot have a missing coend

tid1 = fork(job1, a1);
job2(a2);
join tid1; •Forked function runs in parallel with current thread

•join waits for completion (may be in different function)

5

Several Thread Libraries
PTHREADS is the Posix Standard

Solaris threads are very similar
Relatively low level
Portable but sometimes slow

P4 (Parmacs) is a widely used portable package
Higher level than Pthreads http://www.netlib.org/p4/index.html

OpenMP is newer standard
Support for scientific programming on shared memory
http://www.openMP.org

User-level vs. kernel level threads
User-level threads cannot make use of multi-processors!
Kernel-level threads have more overhead
Kernel-level threads better integrated with OS actions (page-faults
etc.)

Programming with Threads

thread_id is the thread id or handle (used to halt, etc.)
thread_attribute various attributes

standard default values obtained by passing a NULL pointer
thread_fun the function to be run (takes and returns void*)
fun_arg an argument can be passed to thread_fun when it starts
errorcode will be set nonzero if the create operation fails

int pthread_create(pthread_t *,
const pthread_attr_t *,
void * (*)(void *),
void *);

Example call:
errcode = pthread_create(&thread_id; &thread_attribute

&thread_fun; &fun_arg);

Signature:

Forking Posix Threads

6

Posix Thread Example

#include <pthread.h>
void print_fun(void *message) {

printf("%s \n", message);
}

main() {
pthread_t thread1, thread2;
char *message1 = "Hello";
char *message2 = "World";

pthread_create(&thread1,
NULL,
(void*)&print_fun,
(void*) message1);

pthread_create(&thread2,
NULL,
(void*)&print_fun,
(void*) message2);

return(0);
}

Compile using gcc –lpthread

Note: There is a race
condition in the print
statements

Loop Level Parallelism

Many scientific application have parallelism in loops

With threads:
… ocean [n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
… pthread_create (update_cell, …, ocean);

What’s wrong with this approach?

Also needs i & j

7

SPMD Parallelism with Threads
Creating a fixed number of threads is common:

pthread_t threads[NTHREADS]; /* thread info */
int errcode; /* error code */
int *status; /* return code */

for (int worker=0; worker<NTHREADS; worker++) {
ids[worker]=worker;
errcode=pthread_create(&threads[worker],

NULL, work,
&ids[worker]));

if (errcode) { . . . }
}

for (worker=0; worker<NTHREADS; worker++) {
errcode=pthread_join(threads[worker],

(void *) &status));
if (errcode !! *status != worker) { . . . }

}

Loop Level Parallelism

Many scientific application have parallelism in loops
degree may be fixed by data, either

start p threads and partition data (SPMD style)
start a thread per loop iteration

Parallel degree may be fixed, but not work
self-scheduling: have each processor grab the next fixed-sized
chunk of work

want this to be larger than 1 array element
guided self-scheduling: decrease chunk size as a remaining
work decreases [Polychronopoulos]

How to do this:
With threads, create a data structure to keep track of chunks

8

Dynamic Parallelism
Divide-and-Conquer problems are task-parallel

classic example is search (recursive function)
arises in numerical algorithms, dense as well as sparse
natural style is to create a thread at each divide point

too much parallelism at the bottom
thread creation time too high

Stop splitting at some point to limit overhead
Use a “task queue” to schedule

have a pool of worker threads
place root in a bag (unordered queue)
at each divide point, put children
this isn’t this the same as forking them

Shared Data and Threads

Variables declared outside of main are shared
Object allocated on the heap may be shared (if pointer
is passed)

For Sharks and Fish, natural to share 2 oceans
Also need indices i and j, or range of indices to update

Often done by creating a large “thread data” struct
Passed into all threads as argument

9

Synchronization in Sharks and Fish

We use 2 copies of the ocean mesh to avoid synchronization of
each element
Need to coordinate

Every processor must be done updating one grid before using it
Also useful to swap old/new to avoid overhead of allocation

Need to make sure done with old before making into new

Global synchronization of this kind is very common
Timesteps, iterations in solvers, etc.

Barrier -- global synchronization
fork multiple copies of the same function “work”

SPMD “Single Program Multiple Data”
simple use of barriers -- threads hit the same one

more complicated -- barriers on branches (or loops)

barriers are not provided in many thread libraries

Basic Types of Synchronization: Barrier

work_on_my_subgrid();

barrier;

read_neighboring_values();

barrier;

if (tid % 2 == 0) {

work1();

barrier

} else { barrier }

10

Pairwise Synchronization

Sharks and Fish example needs only barriers

Imagine other variations in which pairs of processors
would synchronization:

World divided into independent “ponds” with creatures rarely
moving between them

Producer-consumer model of parallelism

All processors updating some global information, such as total
population count asynchronously

Mutual exclusion needed

Basic Types of Synchronization: Mutexes

Mutexes -- mutual exclusion aka locks
threads are working mostly independently
need to access common data structure

Java and other languages have lexically scoped
synchronization

similar to cobegin/coend vs. fork and join

Semaphores are locks plus shared counters and can be used
for mutual exclusion

Locks only affect processors using them:
pair-wise synchronization

lock *l = alloc_and_init(); /* shared */

acquire(l);

access data

release(l);

11

Pthreads Locks

Steps: declare a lock and initialize it; make sure it is locked before
doing something critical

Standard locks semantics: only one can thread can have it

pthread_mutex_lock(&pond_lock[i]);
pthread_mutex_lock(&pond_lock[j]);
move_fish(fish, pond[i], pond[j]);
pthread_mutex_unlock(&pond_lock[j]);
pthread_mutex_unlock(&pond_lock[i]);

pthread_mutex_t pond_lock[n]; // declaration
pthread_mutex_init(&pond_lock[i], NULL); // initialization

Locking Issues

Repeated locking of the same lock
Linux has “fast” vs. “recursive” locks

Reader/writer locks: allow multiple readers to own a lock at
any time, but not allow any readers if there is a writer
pthread_mutex_trylock is non-blocking (“non-committal”)
Deadlock issues:

Example: T1 locks pond1 followed by pond2, T2 locks pond2
followed by pond1
Deadlocks can be analyzed with the “waits-for” graph
T1 is waiting for T2 (to release pond2), and T2 is waiting for T1 (to
release pond1), and a cycle in this graph implies deadlock
Deadlock avoidance: order locks, and each thread obtains the locks
it needs in increasing order of relevance no cycles!

12

Condition Variables

Allows for threads to wait for a condition to be satisfied
Used along with a mutex lock
pthread_cond_wait puts a thread to sleep waiting for a
pthread_cond_signal to be issued by another thread
Example: producer-consumers interaction, wake up a
consumer when there is a task available

pthread_mutex_lock(&mut);
while (tasks_left == 0) {

pthread_cond_wait(&cv, &mut);
}
pthread_mutex_unlock(&mut);

pthread_mutex_lock(&mut);
if (tasks_left != 0) {

pthread_cond_signal(&cv, &mut);
}
pthread_mutex_unlock(&mut);

Condition Variable Issues
Programming discipline: always obtain the lock before signaling or
waiting on a condition variable

Makes sure that no signals are lost

pthread_cond_wait implicitly relinquishes the lock and obtains it back
when woken up

pthread_cond_signal wakes up exactly one waiting thread,
pthread_cond_broadcast wakes up all waiting threads

signal could be used without locking

A thread could wake up and reset the program level criteria; broadcast
does not imply all threads are runnable

