
1

Logical Clocks

Arvind Krishnamurthy
Fall 2003

Clock Synchronization

n Time is unambiguous in centralized systems
n System clock keeps time, all entities use this for time

n Distributed systems: each node has own system clock
n Two clocks could differ at a given point in time (skew)
n Clocks that agree at time t might disagree later (drift)

n Makes it harder to reason about events on different
systems

n Some examples:
n Makefile: edit on one system, compile on another system
n Kerberos leases: valid only for a certain period of time
n Using timestamps to serialize transactions

Pair-wise synchronization: Cristian’s
Algorithm

n Synchronize machines to a time
server with a UTC receiver
(some trusted physical clock)

n Machine P requests time from
server (every once in a while)
n Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

n Use (treq+treply)/2 as an estimate
of treply

n Improve accuracy by making a
series of measurements

Berkeley Algorithm

n Used in systems without UTC receiver
n Keep clocks synchronized with one another
n One computer is master, other are slaves
n Master periodically polls slaves for their times

n Average times and return differences to slaves
n Communication delays compensated as in Cristian’s algo

n Failure of master => election of a new master

Logical Clocks

n For many problems, internal consistency of clocks is
important
n Absolute time is less important
n Use logical clocks

n Key idea:
n Clock synchronization need not be absolute
n If two machines do not interact, no need to synchronize them

n More importantly, processes need to agree on the order in which
events occur rather than the time at which they occurred

Logical Ordering of Events

n Two kinds of ordering:
n If a process p1 does operation o1 followed by operation o2, then

we would like to say o1 occurred before o2
n If a message is sent/received:

n Process p1 sends message m (let this be operation o1)
n Process p2 receives the message m (let this be operation o2)

n Then o1 occurred before o2
n Relations are transitive:

n If o1 occurred before o2 and o2 occurred before o3, then o1
occurred before o3

2

Logical clocks

n Each process maintains a local counter
n Counter is incremented for every local event (including send events)
n Counter value is sent along with every message
n When message is received:

n Take max of local counter and message’s counter à new local
counter

n Increment local counter by one

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Analysis of logical clocks

n If event e1 happened before e2:
LC(e1) < LC(e2)

n Are we done? Are logical clocks sufficient to reason about
distributed systems?

Vector Clocks

n Each process i maintains a vector Vi
n Vi[i] : number of events that have occurred at i
n Vi[j] : number of events i knows have occurred at process j

n Update vector clocks as follows
n Local event: increment Vi[I]

n Send a message :piggyback entire vector V
n Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

n Receiver is told about how many events the sender knows
occurred at another process k

n Also Vj[i] = Vj[i]+1

n Convince yourself that if V(A)<V(B), then A precedes B

Vector Clocks Example

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Motivating Example for Reasoning about
Global State

n Assume that we have processes interacting in a client-
server mode

n Client makes request to server
n Waits for response
n While waiting for response, client simply blocks; does not satisfy

requests from other nodes

A

B

C

A B

Deadlock Detection

n Assume that you have a centralized server
n It queries each node

n Each node responds with a list of requests that are pending
(requests for which a response has not been sent)

n Centralized server can then build a “waits-for” graph:
n Cycle in graph implies deadlock

3

Possible Execution

A

B

C

Physical
time

A

B

C

Waits-for graph

Different Observation

A

B

C

Physical
time

A

B

C

Waits-for graph

Consistent & Inconsistent Cuts

n A cut is inconsistent if:
n You include an event e2 in p2
n Event e1 of p1 influences e2
n But e1 is not included

m1 m2

p1

p2
Physical

time

e1
0

Consistent cut
Inconsistent cut

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

Other Applications

p2p1

message

garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate
passive passivec. Termination

Snapshot

n Develop a simple synchronous protocol
n Refine protocol as we relax assumptions
n Initial assumptions:

n Real time clock known to all processes
n Message delays are bounded

n Algorithm: (assume that all messages are timestamped)
n Process P0 selects “tss”
n P0 sends “take a snapshot at tss” to all processes
n When clock of Pi reads tss then it:

n Records its local state (σi)
n Sends an empty message along all its outgoing channels
n Starts recording messages on each of incoming channels
n Stops recording a channel when it receives first message with

timestamp greater than or equal to tss

Snapshot (2nd attempt)

n Operate with logical clocks
n Algorithm:

n P0 sends “take a snapshot”
n When Pi receives “take a snapshot” for the first time from Pj :

n Records its local state (σi)
n Sends “take a snapshot” along all its outgoing channels
n Sets channel from Pj to be empty

n Starts recording messages on each of incoming channels
n When Pi receives “take a snapshot” beyond the first time from Pk

n Stops recording channel from Pk

n When Pi has received “take a snapshot” on all channels, it sends
collected state to Po and stops

4

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed
snapshot

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its
local state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes

recording the state of the incoming channel

Distributed Snapshot

n A process finishes when
n It receives a marker on each incoming channel and processes them

all
n State: local state plus state of all channels
n Send state to initiator, initiator analyzes state

n Any process can initiate snapshot
n Multiple snapshots may be in progress

n Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

A Different Approach

n Monitor process does not query explicitly
n It just passively collects information
n Uses it to build an “observation”

A

B

C

Physical
time

Delivery of messages to monitor

n What properties do we need to satisfy in delivering
messages to the monitor?

Causal Delivery

n A message cannot be delayed to appear after a later
message

A

B

C

5

Summary so far…

n Interested in “global predicate detection”
n Whether the state of a distributed application matches some

predicated (deadlocks, termination, distributed garbage collection,
etc.)

n Two approaches:
n A centralized process sends messages to capture the current state

of all processes
n Centralized process needs to observe a “consistent cut”
n Snapshot protocol finds a consistent cut

n Intuition: rely on FIFO property of channels; propagate markers
along channels and save state as marker messages reach
processes

n Each process continually sends messages to centralized process
when “interesting” events happen
n Centralized process builds global state – can compute all

possible global states that may or may not occur in the system

Delivery of events to centralized process

n Requirements:
n FIFO: messages from same processor is delivered in order

n eA
1 should be reported before eA

2

n Causal properties are preserved; consistent observations are made
n eA

1 should be reported before eC
4

A

B

C

Physical
time

eA
2 eA

3 eA
4

eB
1 eB

4

eC
1 eC

2 eC
3 eC

4

eB
2 eB

3

eA
1

How to deliver messages?

n Each event notification is tagged with logical clock value
n Messages are “delivered” to observing process in a manner

that satisfies above properties
n Delivery manager delivers messages in increasing order of

logical clock values
n Ties are broken based on processor ids

Observing Process

Message Layer

Delivery Manager

Gap Detection

n Consider the following state:
n Observing processor has received the following event notifications:

eA
1 eA

2 eB
1 eA

3 eB
2

n Notification of eC
1 has been delayed

n Gap detection problem: given two events e1 and e2, detect
whether or not there is another event e3 that occurs in the middle

A

B

C

eA
2 eA

3 eA
4

eB
1 eB

4

eC
1 eC

2 eC
3 eC

4

eB
2 eB

3

eA
1

1 2 3 4

1 2 3 4

1 32 4

Gap detection using logical clocks

n Wait for a while until there is at least one undelivered
observation from each process

n Deliver the event with the lowest logical clock value

n Has liveness issues:
n Requires processors to continually send observations to observing

processor

n Is there a better solution? Is there some way of deciding
whether or not to delay delivery as soon as a message is
received?

Global Predicate Evaluation

n Two methods:
n Distributed snapshot initiated at arbitrary times
n Centralized observations made using reports of all events

n Global predicates that can be evaluated using either
method:
n Deadlock detection

n Termination detection
n Garbage collection

n When would you use distributed snapshots and when
would you use centralized observations?

6

Formalisms

n Denote global states by ∑
n For example, assume two processes

n ∑ij would refer to process 1 at state i and process 2 at state j

n Define a lattice of valid global states

Reachability

Why do we care about ∑?

n Deadlock is a stable property
n Deadlock now implies deadlock in the future

n If ∑i is initial state and ∑f is termination state for snapshot:
∑i ∼ ∑s ∼ ∑f

n Deadlock in ∑s implies deadlock in ∑f

n No deadlock in ∑s implies no deadlock in ∑i

A

B

C

Global Predicate Detection

n What if we want to detect non-stable predicates?
n Say we want to evaluate predicate at ∑ij

n Cannot use snapshots
n Example: detect if “x == y” or “x == y – 2”

The Lattice

n In ∑31 or ∑41, the predicate
(x == y – 2) is detected
(Notice that it might be
detected, but might never
have occurred.)

n We know that (x == y) has
occurred, but it may not be
detected if tested before ∑32

or after ∑54

n Not enough to look at one
state: look at all observations
instead

Possibly and Definitely

n Possibly: There exists a consistent observation O of the
computation such that the predicate holds in a global state
of O

n Definitely: For every consistent observation O of the
computation, there exists a global state of O in which the
predicate holds

7

Computing Possibly and Definitely

n Scan lattice level after level

n To compute Possibly(Φ):
n If Φ holds in one global state, then

declare Possibly(Φ) to be true

n To compute Definitely(Φ):
n Given a level, only expand those

nodes that correspond to states in
which !Φ holds

n If no such state, announce
Definitely(Φ)

Building the lattice

n P0 collects local state from each process
n For each process, keep a sequence Q of local states in

FIFO order
n Construct global states as combination of all possible local

states

n When is it safe to “drop” a local state?
n How to build level i+1 of lattice given level i?

Earliest Consistent Global State Notation and Terminology

n ∑i1 i2 i3…in represents the global state after i1 operations by
processor 1, i2 operations by processor 2, etc.

n Level of ∑i1 i2 i3…in is i1 + i2 + … + in

n σi
j represents state of processor i after j operations

n Earliest consistent global state: ∑min(σi
j), latest consistent

global state: ∑max(σi
j)

Earliest & Latest Consistent Global State

n For state σ2
5 :

n Earliest consistent global state: σ1
1, σ2

5, σ3
1

n Level of earliest consistent global state = 1 + 5 + 1 = 7
n Latest consistent global state: σ1

5, σ2
5, σ3

5

n Corresponding level: 15

Building the lattice

Monitor

σ1
3

σ1
2

σ1
1

σ2
3

σ2
2

σ2
1

σ3
3

σ3
2

σ3
1

n Collect states at the monitor
n Store them in separate queues

n Constructing level by level
n To build level l: wait until all the

states required for the level are
available

n Earliest level for σ1
3: 3 + 4 + 1 = 8,

for σ2
3: 5, for σ3

3: 9
n Can construct levels 1 through 5

8

Building the lattice (contd.)

n Once monitor decides to build level L+1:
n It takes all the consistent global states of level L
n Extends them by one extra step for some processor
n For example: ∑i1 i2 i3…in is a level L global state (stored in the lattice),

then construct ∑i1+1 i2 i3…in , ∑i1 i2+1 i3…in , … , ∑i1 i2 i3…in+1

n Some of these are inconsistent states: can be detected by looking
at the vector clock values of local states

n Discard these spurious global states

Building the lattice (contd.)

n Once the monitor has finished building level L, it can discard some of
the local states from its queue

n Consider σ2
5: latest consistent global state it belongs to is σ1

5 σ2
5 σ3

5

n Corresponding level = 15
n Discard σ2

5 after computing level 15

What about shared memory programs?

n So far we discussed message passing programs

n For shared memory programs:
n How do we order events?
n And make consistent observations?

