Consensus & Agreement

Arvind Krishnamurthy
Fall 2003

Group Communication

- Unicast messages: from a single source to a single destination
- Multicast messages: from a single source to multiple destinations (designated as a group)
- Issues:
 - Fault tolerance: two kinds of faults in distributed systems
 - “Crash faults” (also known as fail-stop or benign faults): process fails and simply stops operating
 - “Byzantine faults”: process fails and acts in an arbitrary manner (or malicious agent is trying to bring down the system)
 - Ordering:
 - Achieve some kind of consistency in how messages of different multicasts are delivered to the processes
Basic Multicast

- Channels are assumed to be reliable (do not corrupt messages and deliver them exactly once)

- A straightforward way to implement B-multicast is to use a reliable one-to-one send operation:
 - B-multicast(g, m): for each process p in g, send (p, m).
 - receive(m): B-deliver(m) at p.

- A basic multicast primitive guarantees a correct process will eventually deliver the message, as long as the multicaster (sender) does not crash.

Reliable Multicast

- Desired properties:
 - Integrity: A correct (i.e., non-faulty) process p delivers a message m at most once.
 - Validity: If a correct process multicasts message m, then it will eventually deliver m. (Local liveness)
 - Agreement: If a correct process delivers message m, then all the other correct processes in group(m) will eventually deliver m.
 - Property of “all or nothing.”

- Validity and agreement together ensure overall liveness

- Question: how do you build reliable multicast using basic multicast?
Reliable multicast (contd.)

On initialization
Received := {};

For process p to \(R\)-multicast message \(m \) to group \(g \)
\(B\)-multicast(g, m); // \(p \in g \) is included as a destination

On \(B\)-deliver(\(m \)) at process \(q \) with \(g = \text{group}(m) \)
if \((m \notin \text{Received}) \)
then
 Received := Received \cup \{m\};
 if \((q \neq p) \) then \(B\)-multicast(g, m); end if
 R-deliver m;
end if

Ordered Multicast

- Desirable ordering properties:
 - FIFO ordering: If a correct process issues \(\text{multicast}(g,m) \) and then \(\text{multicast}(g,m') \), then every correct process that delivers \(m' \) will deliver \(m \) before \(m' \).
 - Causal ordering: If \(\text{multicast}(g,m) \rightarrow \text{multicast}(g,m') \) then any correct process that delivers \(m' \) will deliver \(m \) before \(m' \).
 - Total ordering: If a correct process delivers message \(m \) before \(m' \), then any other correct process that delivers \(m' \) will deliver \(m \) before \(m' \).

- Causal ordering implies FIFO ordering
- Causal ordering does not imply total ordering
- Total ordering does not imply causal ordering
Implementing Total Ordering

- Multic peace a message, solicit sequence numbers from processes, multicast a sequence number that is computed based on solicited values

\[\text{Message processing} \]

1. Process \(p \) B-multicasts \(<m, i>\) to \(g \), where \(i \) is a unique identifier for \(m \).
2. Each process \(q \) replies to the sender \(p \) with a proposal for the message's agreed sequence number of
 \[P_q := \max(A_q, P_q) + 1. \]
 Places it in its hold-back queue
3. \(p \) collects all the proposed sequence numbers and selects the largest as the next agreed sequence number, \(a \).
 It B-multicasts \(<i, a>\) to \(g \).
4. Recipients set \(A_q := \max(A_q, a) \), attach \(a \) to the message and reorder hold-back queue.
Consensus

- **Consensus**: N Processes agree on a value.
 - For example, synchronized action (go / abort)
- Consensus may have to be reached in the presence of failure.
 - Process failure – process crash (fail-stop failure), arbitrary failure.
 - Communication failure – lost or corrupted messages.
- In a consensus algorithm:
 - All \(P_i \) start in an “undecided” state.
 - Each \(P_i \) proposes a value \(v_i \) from a set \(D \) and communicates it to some or all other processes.
 - A consensus is reached if all non-failed processes agree on the same value, \(d \).
 - Each non-failed \(P_i \) sets its decision variable to \(d \) and changes its state to “decided.”

Consensus Requirements

- **Termination**:
 - Eventually each correct process sets its decision value.
- **Agreement**:
 - The decision value is the same for all correct processes, i.e., if \(p_i \) and \(p_j \) are correct and have entered the decided state, then \(d_i = d_j \)
- **Integrity**:
 - If all correct processes \(P_i \)’s propose the same value, \(d \), then any correct process in the decided state has decision value = \(d \).

- **Rich problem space**:
 - Synchronous vs. asynchronous systems
 - Fail-stop vs. byzantine failures
 - Process vs. message failures
Interactive Consistency Problem

- Interactive consistency is a special case of consensus where processes agree on a vector of values, one value for each process.

Byzantine Generals Problem

- 3 or more generals need to agree to attack or to retreat.
- Problem
 - The commander issues the order.
 - One or more of the generals (including the commander) could be a traitor who'll give wrong information.
 - Each general sends his/her information to all others (assuming reliable communication).
 - Once each general has collected all values, it determines the right value (attack or retreat).
- The requirements are termination, agreement, and integrity.
Problem Equivalence

- Interactive consistency (IC) can be solved if there is a solution for Byzantine Generals (BG) problem:
 - Just run BG “n” times
- Consensus (C) can be solved if there is a solution for IC:
 - Run IC to produce a vector of values at each process
 - Then apply the majority function on the vector
 - Resulting value is the consensus value
 - If no majority, choose a “bottom” value
- BG is solvable if there is a solution to C:
 - Commander sends its proposed value to itself and each of the other generals
 - All processes run C with the values received
 - Resulting consensus value is the value required by BG

Consensus in a synchronous system

- For a system with at most f processes crashing, the algorithm proceeds in f+1 rounds, using basic multicast.
- Valuesr_i: the set of proposed values known to P_i at the beginning of round r.
- Initially Values$^0_i = {}$; Values$^1_i = \{v_i\}$

for round = 1 to f+1 do
 B-multicast (Valuesr_i - Values$^{r-1}_i$)
 Values$^{r+1}_i \leftarrow$ Valuesr_i
 for each V_j received
 Values$^{r+1}_i = $ Values$^{r+1}_i \cup V_j$
 end
end
$d_i = \text{minimum}(\text{Values}^{f+1})$
Proof of correctness

- Proof by contradiction.
- Assume that two processes differ in their final set of values.
- Assume that p_i possesses a value v that p_j does not possess.
 - A third process (p_k) sent v to p_i and crashed before sending v to p_j.
 - Any process sending v in the previous round must have crashed; otherwise, both p_k and p_i should have received v.
 - Proceeding in this way, we infer at least one crash in each of the preceding rounds.
 - But we have assumed at most f crashes can occur and there are $f+1$ rounds \rightarrow contradiction.

Byzantine Generals in a synchronous system

- A faulty process may send any message with any value at any time; or it may omit to send any message.
- In the case of arbitrary failure, no solution exists if $N\leq 3f$.

\[p_1 (Commander) \]
\[p_2
\]
\[1:v \]
\[2:1:w \]
\[3:1:u \]
\[p_3 \]

\[p_1 (Commander) \]
\[p_2
\]
\[1:w \]
\[2:1:w \]
\[3:1:x \]
\[p_3 \]
Solution

- To solve the Byzantine generals problem in a synchronous system, we require $N \geq 3f + 1$
- Consider $N=4$, $f=1$
 - In the first round, the commander sends a value to each of the other generals
 - In the second round, each of the other generals sends the value it received to its peers.
 - The correct generals need only apply a simple majority function on the set of values received.

Four generals, one fault
Consensus Algorithms for Byzantine Failures

- Minimum number of rounds is $f + 1$
- Exponential tree algorithm:
 - Each processor maintains a tree data structure in its local state
 - Each node of the tree is labeled with a sequence of processor indices with no repeats
 - Root’s label is empty sequence
 - Root has n children labeled 0 through $n-1$
 - Child node labeled “i” has $n-1$ children labeled 0 through $i-1$ and $i+1$ through $n-1$
 - In general, node at level d with label v has $n-d$ children skipping any index already present in v
 - Nodes at level $f+1$ are the leaves

Example of exponential tree

- Tree when $n = 4$ and $f = 1$
Exponential Tree Algorithm

- Each processor fills in the tree nodes with values as the rounds go by.
- Initially, store your input in the root (level 0).
- Round 1: send level 0 of your tree (the root); store value received from \(p_j \) in node \(j \) (level 1).
- Round 2: send level 1 of your tree; store value received from \(p_j \) for node \(k \) in node \(k:j \) (level 2).
 - This is the “value that \(p_j \) told me that \(p_k \) told \(p_j \)”.
- Continue for \(f + 1 \) rounds.

Computing Decision Value

- In the last round, each processor uses the values in its tree to compute its decision.
 - Decision is \(\text{resolve}(\lambda) \).
 - Where \(\text{resolve}(\pi) \) equals:
 - Value in tree node labeled “\(\pi \)” if it is a leaf.
 - \(\text{majority}\{\text{resolve}\left(\pi'\right): \pi' \text{ is a child of } \pi\} \).
Building Tree: top-down phase

- Assume that nodes 0, 1, and 2 are legitimate; they contribute value 5
- Assume that node 3 is byzantine

Resolving nodes

- Resolve a leaf node: return the value of the node
- Resolve an internal node: return the majority value of children
- Decision by processor: resolve the root
Proof of algorithm

Resolve Lemma: Non-faulty processor p_i's resolved value for node $\pi = \pi'$ equals what p_j has stored for π'.

Proof: By induction on the height of π.

Basis: π is a leaf.
1) Then p_i stores in node π what p_j sends it for π' in the last round.
2) For leaves, the resolved value is the tree value.

Proof (contd.)

Induction: π is not a leaf.
By tree definition, π has at least $n - f$ children
Since $n > 3f$, π has majority of non-faulty children

Let "π_k" be a child of π such that p_k is non-faulty.

Since p_j is non-faulty, p_j correctly reports to p_k that it has some value v in node π'; thus p_k stores v in node $\pi = \pi'$

By induction, p_j's resolved value for "πk" equals the value v that p_k has in its tree node π.

So all of π's non-faulty children resolve to v in p_j's tree, and thus π resolves to v in p_j's tree.
Proof (contd.)

Non-faulty P_j

$\pi \vdash v/b$

$\pi' \vdash v/b$

Non-faulty P_k

Non-faulty P_i

$\pi' \vdash v/b$

$\pi: j \vdash v/b$

Resolves to v by induction hypothesis

Majority of children are non-faulty

Proof of Validity

- Suppose all inputs are “v”
 - Non-faulty processor p_i decides on $\text{resolve}(\lambda)$, which is the majority among $\text{resolve}(j)$ (for all j from 0 to $n-1$)
 - The previous lemma implies that for each non-faulty p_j
 - $\text{resolve}(j)$ for $p_j = \text{value stored at the root of } p_j$’s tree
 - Value stored at the root is p_j’s input = v
 - Thus p_i decides v
Proof of Agreement

- Show that all non-faulty processors resolve to the same value for their tree roots.
- A node is common if all non-faulty processors resolve to the same value for it. (We will need to show that the root is common.)
- Strategy:
 - Show that every node with a certain property is common.
 - Show that the root has the property.
- Lemma: If every π-to-leaf path has a common node, then π is common.
- Proof by Induction:
 - Basis: π is a leaf. Then every π-to-leaf path consists solely of π, and since the path is assumed to contain a common node, that node is π.

Lemma (contd.)

- Induction Step:
 - π is not a leaf. Suppose in contradiction π is not common.
 - Then every child π' of π has the property that every π'-to-leaf path has a common node.
 - Since the height of π' is smaller than the height of π, the inductive hypothesis implies that π' is common.
 - Therefore, all non-faulty processors compute the same resolved value for π, and thus π is common.
Prove that root has the property

- Show that every root-to-leaf path has a common node:
 - There are f+2 nodes on a root-to-leaf path
 - The label of each non-root node on a root-to-leaf path ends in a distinct processor index (the processor from which the value is to be received)
 - At least one of these indices is that of a non-faulty processor
 - "Resolve Lemma" implies that the node whose label ends with a non-faulty processor is a common node

Polynomial Algorithm for Byzantine Agreement

- Can reduce the message size with a simple algorithm that increases the number of processors to n > 4f and number of rounds to 2(f + 1)
- Phase King Algorithm: Uses f + 1 phases, each taking two rounds

 Code for p_i

 pref = my input

 First round of phase k:

 send pref to all

 receive prefs of others

 let “maj” be the value that occurs > n/2 times among all prefs (0 if none)

 let “mult” be the number of times “maj” occurs
Algorithm (contd.)

Second round of phase k:
if my_proc == k then send “maj” // I am the phase king
receive tie-breaker from p_k
if mult > n/2 + f
 then pref = maj
 else pref = tie-breaker
if k == f+1 then decide pref

Proof of Phase King Algorithm

- Lemma: If all non-faulty processors prefer v at start of phase k, then all do at end of phase k.
- Proof:
 - Each non-faulty processor receives at least n – f preferences (including its own) for v in the first round of phase k
 - Since n > 4 f:
 - n/2 > 2f
 - (n – n/2) > f + f
 - n – f > n/2 + f.
 - Thus the processors still prefer v.

- Validity: follows from above lemma
 - All non-faulty processors start with the same value
Proof (contd.)

Lemma: If the king of phase k is non-faulty, then all non-faulty processors have the same preference at the end of phase k.

Proof:
- Consider two non-faulty processors p_i and p_j.
 - Case 1: p_i and p_j both use p_k's tie-breaker. Since p_k is non-faulty, they agree.
 - Case 2: p_i uses its majority value and p_j uses the king's tie-breaker.
 - p_i's majority value is v
 - p_i receives more than $n/2 + f$ preferences for v
 - p_k receives more than $n/2$ preferences for v
 - p_k's tie-breaker is v

Proof (contd.)

Case 3: p_i and p_j both use their own majority values.
- p_i's majority value is v
- p_i receives more than $n/2 + f$ preferences for v
- p_k receives more than $n/2$ preferences for v
- p_j's majority value is also v

Since there are $f + 1$ phases, at least one has a non-faulty king.
- At the end of that phase, all non-faulty processors have the same preference.
- From that phase onward, the non-faulty preferences stay the same.
- Thus the decisions are the same.
Fischer-Lynch-Patterson (1985)

- No completely asynchronous consensus protocol can tolerate even a single unannounced process death

Assumptions

- Fail-stop failure:
 - Impossibility result holds for byzantine failure
- Reliable message system:
 - Messages are delivered correctly and exactly once
- Asynchronous:
 - No assumptions regarding the relative speeds of processes or the delay time in delivering a message
 - No synchronized clock
 - Algorithms based on time-out can not be used
 - No ability to detect the death of a process
The weak consensus problem

- Initial state: 0 or 1 (input register)
- Decision state:
 - Non-faulty process decides on a value in \{0, 1\}
 - Stores the value in a write-once output register
- Requirement:
 - All non-faulty processes that make a decision must choose the same value.
 - For proof: assume that some processes eventually make a decision (weaker requirement)
- Trivial solution is ruled out
 - Cannot choose 0 arbitrarily
- Processes modeled by deterministic state machines

Notation

- A configuration consists of
 - All internal state of each process, the contents of message buffer
- Message system (think of the undelivered messages stored in a bag)
 - send(p, m)
 - receive(p) \rightarrow returns some message to be received by “p” or an empty message
- A step is a transition of one configuration C to another e(C), including 2 phases:
 - First, receive(p) to get a message m
 - Based on p’s internal state and m, p enters a new internal state and sends finite messages to other
- e = (p, m) is called an event and said e can be applied to C
Schedule, run, reachable and accessible

- A schedule from C:
 - a finite or infinite sequence of events that can be applied, in turn, starting from C
 - The associated sequence of steps is called a run
 - (C) denotes the resulting configuration and is said to be reachable from C
- An accessible configuration C
 - If C is reachable from some initial configuration

Lemma 1

- Suppose that from some configuration C, the schedules σ_1 and σ_2 lead to configuration C_1 and C_2 respectively.
 - If the sets of processes taking steps in σ_1 and σ_2 respectively, are disjoint:
 - Then σ_2 can be applied to C_1 and σ_1 can be applied to C_2, and both lead to the same configuration.
Definitions

- A process is non-faulty
 - If it takes infinitely many steps

- A configuration C has decision value v if some process p is in a decision state with output register containing v.

- Deciding run
 - Some process reaches a decision state

- Admissible run
 - At most one process is faulty and all messages sent to non-faulty processes are eventually received

Bivalent, 0-valent/1-valent

- Let C be a configuration, V the set of decision values of configurations reachable from C
 - C is bivalent if |V| = 2.
 - C is univalent if |V| = 1.

- 0-valent or 1-valent according to the corresponding decision value.
Correctness

- A consensus protocol P is totally correct in spite of one fault:
 - No trivial solutions (there are some configurations that lead to result 0 and some that lead to result 1)
 - No accessible configuration has more than one decision value
 - Every admissible run is a deciding run

Theorem 1

- No consensus protocol is totally correct in spite of one fault.

Proof strategy:
- There must be some initial configuration that is bivalent
- Consider some event $e = (p, m)$ that is applicable to a bivalent configuration, C
 - Consider the set of configurations reachable from C w/o applying e (let this set be Σ)
 - Apply e to each one of these configurations to get the set D
 - Show that D contains a bivalent configuration
- Construct an infinite sequence of stages where each stage starts with a bivalent configuration and ends with a bivalent configuration
Lemma 2

- P has a bivalent initial configuration (Proof by contradiction)
- Consider configuration \(C_1 = \{ 0, 0, 0, \ldots, 0 \} \)
 - Every processor starts with input value 0
 - \(C_1 \) is 0-valent
- Consider configuration \(C_2 = \{ 1, 1, 1, \ldots, 1 \} \)
 - \(C_2 \) is 1-valent
- Transform \(C_1 \) to \(C_2 \) with at most one processor changing its input value
 - There must be two configurations \(C_3 \) and \(C_4 \):
 - \(C_3 \) is 0-valent, \(C_4 \) is 1-valent
 - Some processor \(p \) changed its value from 0 to 1
 - Consider some admissible deciding run from \(C_3 \) involving no \(p \)-events.
 - Let \(\sigma \) be associated schedule.
 - Apply \(\sigma \) to \(C_4 \). Clearly, resulting state should be 0.
 - Implies contradiction.

Lemma 3

- Let \(C \) be a bivalent configuration of \(P \).
 - Let \(e = (p, m) \) be an event that is applicable to \(C \).
 - Let \(\Sigma \) be the set of configurations reachable from \(C \) without applying \(e \), and let \(D = e(\Sigma) = \{ e(E) \mid E \in \Sigma \} \).
 - Then, \(D \) contains a bivalent configuration.
Proof

- There must be two states such that:
 \(C \sim E_0 \) and \(C \sim E_1 \)
 where \(E_0 \) is 0-valent and \(E_1 \) is 1-valent

- Consider \(E_0 \):
 - If \(E_0 \) belongs to \(\Sigma \), then \(e(E_0) = F_0 \) belongs to \(D \)
 - If \(E_0 \) does not belong to \(\Sigma \), then there is a \(F_0 \):
 - Such that \(F_0 \) belongs to \(D \)
 - \(F_0 \sim E_0 \)
 - In either case, there is a \(F_0 \in D \) and \(F_0 \) is 0-valent

- Similarly there exists a \(F_1 \) which is 1-valent and \(F_1 \in D \)
- \(D \) contains 0-valent and 1-valent configurations
Two Cases

Proof (contd.)

There exists two adjacent states G_0 and G_1 in Σ, such that $e(G_0)$ is 0-valent and $e(G_1)$ is 1-valent.
Assume that the event that transforms G_0 to G_1 is $e' = (p', m')$ and let $p' \neq p$.

Recall that p is the processor with the delayed message (and the delayed event e).

- e' is applicable to D_0 and transforms D_0 to D_1 (commutativity lemma).
- What does this imply?

If p' is same as p: consider some configuration A that is reachable from G_0 that involves no events to p, and is deciding. Let ω be the schedule.
Proof Wrapup

- Goal is to construct an infinite sequence of events:
 - No processor fails
 - Each processor executes an infinite steps
 - All messages sent to a processor is delivered in finite time
 - Every configuration in the sequence is bivalent
 - Previous theorem states that:
 - Start with a bivalent configuration
 - Delay some message
 - Can always find some other bivalent configuration that is reached by delivering the message
Block a message for the next processor, construct another possible bivalent configuration.

Construction can go on for ever:
- No faults (infinite steps for each processor, messages delivered in finite time)
- Always goes from one bivalent configuration to another bivalent configuration
Paxos Consensus

- Assume that a collection of processes that “can” propose values, choose a value
 - Only a value that has been proposed may be chosen
 - Only a single value is chosen
- Three classes of agents: proposers, acceptors, and learners
 - A single process may act as more than one agent
- Model:
 - Asynchronous messages
 - Agents operate at arbitrary speed, may fail by starting, and may restart. (If agents fail and restart, assume that there is non-volatile storage.)
 - Guarantee safety and not liveness

Simple solutions

- Have a single acceptor agent
- Proposers send a proposal to the acceptor:
 - Acceptor chooses the first proposed value
 - Rejects all subsequent values
 - Failure of acceptor means no further progress
- Let’s use multiple acceptor agents
 - Proposer sends a value to a large enough set of acceptors
 - What is large enough?
 - Some majority of acceptors, which implies that only one value will be chosen
 - Because any two majorities will have at least one common acceptor
Some Other Ground Rules

- There might be just one proposer
 - Number of proposers is unknown

- No liveness requirements:
 - If a proposal does not succeed, you can always restart a new proposal

- The three important actions in the system are:
 - Proposing a value
 - Accepting a value
 - Choosing a value (if a majority of acceptors accept a value)

Solutions that don't work

- There could be just one proposed value
 - An acceptor should accept the first value

```
P1  3  A1
   3  A2
   3  A3
P2  4  A4
   4  A5
   4  A6
```
Refinements

- Allow an acceptor to accept multiple proposals
 - Which implies that multiple proposals could be chosen
 - P1: Have to make all of the chosen proposals be the same value!
 - Trivially satisfies the condition that only a single value is chosen
 - Requires coordination between proposers and acceptors

- Let proposals be ordered
 - One possibility: each proposal is a 2-tuple [proposal-number, processor-number]

- Ensure the following property:
 - P2: If a proposal with value v is chosen, then every higher-numbered proposal that is chosen has the value v
 - P2 ==> P1

More refinements

- Consider the following property:
 - P3: If a proposal with value v is chosen, then every higher-numbered proposal that is accepted has the value v
 - P3 ==> P2 ==> P1

- Consider an even stronger property:
 - P4: If a proposal with value v is chosen, then every higher-numbered proposal that is proposed by any processor has value v
 - P4 ==> P3 ==> P2 ==> P1
One more refinement

P5: For a proposal numbered n with value v:
- It is issued only if there is a set S consisting of a majority of acceptors such that either:
 - No acceptor in S has accepted any proposal numbered less than n, or
 - v is the value of the highest-numbered proposal among all proposals numbered less than n accepted by the acceptors in S

One can satisfy P4 by maintaining the invariant P5

How does one enforce P5?

Phase 1: prepare request

(1) A proposer chooses a new proposal version number n, and sends a prepare request ("prepare", n) to a majority of acceptors:

(a) Can I make a proposal with number n?

(b) if yes, do you suggest some value for my proposal?
Phase 1 (receive prepare request)

(2) If an acceptor receives a prepare request
(“prepare”, \(n\)) with \(n\) greater than that of any prepare request it has already responded, sends out ("ack", \(n\), \(n'\), \(v'\)) or ("ack", \(n\), ⊥, ⊥)

(a) responds to the request with a promise not to accept any more proposals numbered less than \(n\).

(b) suggest the value \(v\) of the highest-number proposal that it has accepted if any, otherwise ⊥.

Phase 2: accept request

(3) If the proposer receives the requested responses from a majority of the acceptors, then it can issue a propose request
("propose", \(n\), \(v\)) with number \(n\) and value \(v\):

(a) \(n\) is the number that appears in the prepare request.

(b) \(v\) is the value of the highest-numbered proposal among the responses

(4) If the acceptor receives a request ("propose", \(n\), \(v\)), it accepts the proposal unless it has already responded to a prepare request having a number greater than \(n\).
In Well-Behaved Runs

Example
Example

Ack, 2, \perp, \perp

Example

Prepare, Prop #: 1
Example

Propose, Prop #: 2, Val: 99

Accept, Prop #: 2, Val: 99

Prepare, Prop #: 3

Ack, 3, ⊥, ⊥
Example

Propose, Prop #: 3, Val: 42

Accept, Prop #: 3, Val: 42

Prepare, Prop #: 4

Example

Ack, 4, ⊥, ⊥

Ack, 4, 3, 42

Ack, 4, 3, 42

Ack, 4, 3, 42
Example

Propose, 4, 42

Prepare, Prop #: 5

Ack, 5, 2, 99
Ack, 5, 3, 42

Ack, 5, 2, 99
Ack, 5, 3, 42

Example

Propose 5, 42

Accept, 5, 42
Paxos: other issues

- A proposer can make multiple proposals
 - It can abandon a proposal in the middle of the protocol at any time
 - Probably a good idea to abandon a proposal if some processor has begun trying to issue a higher-numbered one

- If an acceptor ignores a prepare or accept request because it has already received a prepare request with a higher number:
 - It should probably inform the proposer who should then abandon its proposal

- Persistent storage:
 - Each acceptor needs to remember the highest numbered proposal it has accepted and the highest numbered prepare request that it has acked.

Progress

- Easy to construct a scenario in which two proposers each keep issuing a sequence of proposals with increasing numbers
 - P completes phase 1 for a proposal numbered n1
 - Q completes phase 1 for a proposal numbered n2 > n1
 - P’s accept requests in phase 2 are ignored by some of the processors
 - P begins a new proposal with a proposal number n3 > n2
 - And so on...
Announcements

- Class lecture notes updated

- Upcoming topics:
 - Secure routing (avoiding denial of service attacks)
 - Overlay/sensor networks

- Project checkpoint due