
1

Consensus & Agreement

Arvind Krishnamurthy
Fall 2003

Group Communication

n Unicast messages: from a single source to a single
destination

n Multicast messages: from a single source to multiple
destinations (designated as a group)

n Issues:
n Fault tolerance: two kinds of faults in distributed systems

n “Crash faults” (also known as fail-stop or benign faults): process
fails and simply stops operating

n “Byzantine faults”: process fails and acts in an arbitrary manner
(or malicious agent is trying to bring down the system)

n Ordering:
n Achieve some kind of consistency in how messages of different

multicasts are delivered to the processes

Basic Multicast

n Channels are assumed to be reliable (do not corrupt
messages and deliver them exactly once)

n A straightforward way to implement B-multicast is to use a
reliable one-to-one send operation:
n B-multicast(g,m): for each process p in g, send (p,m).
n receive(m): B-deliver(m) at p.

n A basic multicast primitive guarantees a correct process will
eventually deliver the message, as long as the multicaster
(sender) does not crash.

Reliable Multicast

n Desired properties:
n Integrity: A correct (i.e., non-faulty) process p delivers a message

m at most once.
n Validity: If a correct process multicasts message m, then it will

eventually deliver m. (Local liveness)

n Agreement: If a correct process delivers message m, then all the
other correct processes in group(m) will eventually deliver m.

n Property of “all or nothing.”

n Validity and agreement together ensure overall liveness

n Question: how do you build reliable multicast using basic multicast?

Reliable multicast (contd.) Ordered Multicast

n Desirable ordering properties:
n FIFO ordering: If a correct process issues multicast(g,m) and then

multicast(g,m’), then every correct process that delivers m’ will
deliver m before m’.

n Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will deliver m before m’.

n Total ordering: If a correct process delivers message m before m’,
then any other correct process that delivers m’ will deliver m before
m’.

n Causal ordering implies FIFO ordering
n Causal ordering does not imply total ordering
n Total ordering does not imply causal ordering

2

Implementing Total Ordering

n Multicast a message, solicit sequence numbers from processes,
multicast a sequence number that is computed based on solicited
values

2

1

1

2

2

1 Message

2 Proposed Seq

P2

P3

P1

P4

3 Agreed Seq

3

3

Figure 11.15

Implementing Total Ordering
n Each process, q keeps:

n Aq
g the largest agreed

sequence number it has seen
n Pq

g its own largest proposed
sequence number

1. Process p B-multicasts <m, i>
to g, where i is a unique
identifier for m.

2. Each process q replies to the
sender p with a proposal for
the message’s agreed
sequence number of
n Pq

g := Max(Aq
g, Pq

g) + 1.
n places it in its hold-back

queue
3. p collects all the proposed

sequence numbers and selects
the largest as the next agreed
sequence number, a.
It B-multicasts <i, a> to g.

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

4. Recipients set Aq
g := Max(Aq

g,a),
attach a to the message and re-
order hold-back queue.

Consensus

§ Consensus: N Processes agree on a value.
§ For example, synchronized action (go / abort)

§ Consensus may have to be reached in the presence of
failure.
§ Process failure – process crash (fail-stop failure), arbitrary failure.
§ Communication failure – lost or corrupted messages.

§ In a consensus algorithm:
§ All Pi start in an “undecided” state.
§ Each Pi proposes a value vi from a set D and communicates it to

some or all other processes.
§ A consensus is reached if all non-failed processes agree on the

same value, d.
§ Each non-failed Pi sets its decision variable to d and changes its

state to “decided.”

Consensus Requirements

§ Termination:
§ Eventually each correct process sets its decision value.

§ Agreement:
§ The decision value is the same for all correct processes, i.e., if pi

and pj are correct and have entered the decided state, then di=dj

§ Integrity:
§ If all correct processes Pi’s propose the same value, d, then any

correct process in the decided state has decision value = d.

§ Rich problem space:
§ Synchronous vs. asynchronous systems
§ Fail-stop vs. byzantine failures

§ Process vs. message failures

Interactive Consistency Problem

§ Interactive consistency is a special case of consensus
where processes agree on a vector of values, one value for
each process

P1

P2 P3

P4
Crashed

C
on

se
ns

us

A
lg

.

V1 = 5

V3 = 2V2 = 7

V4 = ⊥⊥

d1 ←← (5,7,2, -)

d2 ←← (5,7,2, -) d3 ←← (5,7,2, -)

Interactive
Consistency

Byzantine Generals Problem

§ 3 or more generals need to agree to attack or to retreat.
§ Problem

§ The commander issues the order.
§ One or more of the generals (including the commander) could be a

traitor who’ll give wrong information.

§ Each general sends his/her information to all others (assuming
reliable communication).

§ Once each general has collected all values, it determines the right
value (attack or retreat).

§ The requirements are termination, agreement, and integrity.

3

Problem Equivalence

n Interactive consistency (IC) can be solved if there is a
solution for Byzantine Generals (BG) problem:
n Just run BG “n” times

n Consensus (C) can be solved if there is a solution for IC:
n Run IC to produce a vector of values at each process
n Then apply the majority function on the vector
n Resulting value is the consensus value

n If no majority, choose a “bottom” value

n BG is solvable if there is a solution to C:
n Commander sends its proposed value to itself and each of the other

generals
n All processes run C with the values received
n Resulting consensus value is the value required by BG

Consensus in a synchronous system

§ For a system with at most f processes crashing, the algorithm proceeds
in f+1 rounds, using basic multicast.

§ Valuesr
i: the set of proposed values known to Pi at the beginning of

round r.
§ Initially Values0

i = {} ; Values1
i = {vi}

for round = 1 to f+1 do
B-multicast (Values r

i – Valuesr-1
i)

Values r+1
i ß Valuesr

i

for each Vj received
Values r+1

i = Values r+1
i ∪ Vj

end
end

di = minimum(Values f+1
i)

Proof of correctness

n Proof by contradiction.
n Assume that two processes differ in their final set of

values.
n Assume that pi possesses a value v that pj does not

possess.
à A third process (pk) sent v to pi and crashed before sending v to pj

à Any process sending v in the previous round must have crashed;
otherwise, both pk and pi should have received v.

à Proceeding in this way, we infer at least one crash in each of the
preceding rounds.

à But we have assumed at most f crashes can occur and there are
f+1 rounds à contradiction.

Byzantine Generals in a synchronous
system

n A faulty process may send any message with any value at
any time; or it may omit to send any message.

n In the case of arbitrary failure, no solution exists if N<=3f.

p1 (Commander)

p2 p 3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Solution

n To solve the Byzantine generals problem in a synchronous system, we
require. N>=3f+1

n Consider N=4, f=1
n In the first round, the commander sends a value to each of the other

generals
n In the second round, each of the other generals sends the value it received

to its peers.
n The correct generals need only apply a simple majority function on the set

of values received.

Four generals, one fault

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

4

Consensus Algorithms for Byzantine
Failures

n Minimum number of rounds is f + 1
n Exponential tree algorithm:

n Each processor maintains a tree data structure in its local state
n Each node of the tree is labeled with a sequence of processor

indices with no repeats
n Root’s label is empty sequence

n Root has n children labeled 0 through n-1
n Child node labeled “i” has n-1 children labeled 0 through i-1 and

i+1 through n-1
n In general, node at level d with label v has n- d children

skipping any index already present in v

n Nodes at level f+1 are the leaves

Example of exponential tree

n Tree when n = 4 and f = 1

Exponential Tree Algorithm

n Each processor fills in the tree nodes with values as the
rounds go by

n Initially, store your input in the root (level 0)
n Round 1: send level 0 of your tree (the root); store value

received from pj in node j (level 1)
n Round 2: send level 1 of your tree; store value received

from pj for node k in node “k:j” (level 2)
n This is the “value that pj told me that pk told pj”

n Continue for f + 1 rounds

Computing Decision Value

n In the last round, each processor uses the values in its tree
to compute its decision
n Decision is resolve(λ)
n Where resolve(π) equals:

n Value in tree node labeled “π” if it is a leaf
n majority{resolve(π’) : π’ is a child of π}

Building Tree: top-down phase

n Assume that nodes 0, 1, and 2 are legitimate; they
contribute value 5

n Assume that node 3 is byzantine

λ

0 1 2 3

0:1 0:2 0:3 1:0 1:2 1:3 2:0 2:1 2:3 3:0 3:1 3:2

5

5 5 5 1

5 5 3 5 5 2 5 5 4 6 7 8

Resolving nodes

n Resolve a leaf node: return the value of the node
n Resolve an internal node: return the majority value of children
n Decision by processor: resolve the root

λ

0 1 2 3

0:1 0:2 0:3 1:0 1:2 1:3 2:0 2:1 2:3 3:0 3:1 3:2

5

5 5 5 -

5 5 3 5 5 2 5 5 4 6 7 8

5

Proof of algorithm

n Resolve Lemma: Non-faulty processor pi’s resolved value
for node π= π’ j equals what pj has stored for π’.

n Proof: By induction on the height of π.

Basis: π is a leaf.
1) Then pi stores in node π what pj sends it for π’ in the last round.
2) For leaves, the resolved value is the tree value.

Proof (contd.)

Induction: π is not a leaf.
By tree definition, π has at least n – f children
Since n > 3f, π has majority of non-faulty children

Let “π k” be a child of π such that pk is non-faulty

Since pj is non-faulty, pj correctly reports to pk that it has some
value v in node π’; thus pk stores v in node π = “π’ j”

By induction, pj’s resolved value for “π k” equals the value v that
pk has in its tree node π

So all of π’s non-faulty children resolve to v in pj’s tree, and thus π
resolves to v in pj’s tree

Proof (contd.)

Non-faulty Pj Non-faulty Pk Non-faulty Pi

π’
v/-

π’: j
v/-

π’: j
-/v

π’:j:k
-/v-/v -/v

Resolves to
v by induction
hypothesis

Majority of
children are
non-faulty

π’

Proof of Validity

n Suppose all inputs are “v”
n Non-faulty processor pi decides on resolve(λ), which is the majority

among resolve(j) (for all j from 0 to n-1)
n The previous lemma implies that for each non-faulty pj

n resolve(j) for pi = value stored at the root of pj‘s tree
n Value stored at the root is pj’s input = v

n Thus pi decides v

Proof of Agreement

n Show that all non-faulty processors resolve to the same
value for their tree roots

n A node is common if all non-faulty processors resolve to the
same value for it. (We will need to show that the root is
common.)

n Strategy:
n Show that every node with a certain property is common

n Show that the root has the property

n Lemma: If every π-to-leaf path has a common node, then π
is common.

n Proof by Induction:
Basis: π is a leaf. Then every π-to-leaf path consists solely of π, and

since the path is assumed to contain a common node, that node is π

Lemma (contd.)

n Induction Step:
n π is not a leaf. Suppose in contradiction π is not common.
n Then every child π’ of π has the property that every π’-to-leaf path

has a common node
n Since the height of π’ is smaller than the height of π, the inductive

hypothesis implies that π’ is common
n Therefore, all non-faulty processors compute the same resolved

value for π, and thus π is common

6

Prove that root has the property

n Show that every root-to-leaf path has a common node:
n There are f+2 nodes on a root-to-leaf path
n The label of each non-root node on a root-to-leaf path ends in a

distinct processor index (the processor from which the value is to
be received)

n At least one of these indices is that of a non-faulty processor
n “Resolve Lemma” implies that the node whose label ends with a

non-faulty processor is a common node

Polynomial Algorithm for Byzantine
Agreement

n Can reduce the message size with a simple algorithm that
increases the number of processors to n > 4f and number
of rounds to 2(f + 1)

n Phase King Algorithm: Uses f + 1 phases, each taking two
rounds
Code for pi

pref = my input

First round of phase k:
send pref to all
receive prefs of others
let “maj” be the value that occurs > n/2 times among all prefs (0 if
none)
let “mult” be the number of times “maj” occurs

Algorithm (contd.)

Second round of phase k:
if my_proc == k then send “maj” // I am the phase king
receive tie-breaker from pk

if mult > n/2 + f
then pref = maj
else pref = tie-breaker

if k == f+1 then decide pref

Proof of Phase King Algorithm

n Lemma: If all non-faulty processors prefer v at start of
phase k, then all do at end of phase k.

n Proof:
n Each non-faulty processor receives at least n – f preferences

(including its own) for v in the first round of phase k
n Since n > 4 f:

n/2 > 2f
(n – n/2) > f + f
n – f > n/2 + f.

n Thus the processors still prefer v.

n Validity: follows from above lemma
n All non-faulty processors start with the same value

Proof (contd.)

n Lemma: If the king of phase k is non-faulty, then all non-
faulty processors have the same preference at the end of
phase k.

n Proof:
n Consider two non-faulty processors pi and pj

n Case 1: pi and pj both use pk’s tie-breaker. Since pk is non-faulty,
they agree

n Case 2: pi uses its majority value and pj uses the king’s tie-breaker
n pi’s majority value is v
n pi receives more than n/2 + f preferences for v
n pk receives more than n/2 preferences for v
n pk’s tie-breaker is v

Proof (contd.)

n Case 3: pi and pj both use their own majority values
n pi’s majority value is v
n pi receives more than n/2 + f preferences for v
n pj receives more than n/2 preferences for v
n pj’s majority value is also v

n Since there are f + 1 phases, at least one has a non-faulty
king

n At the end of that phase, all non-faulty processors have the
same preference

n From that phase onward, the non-faulty preferences stay
the same

n Thus the decisions are the same.

7

Fischer-Lynch-Patterson (1985)

n No completely asynchronous consensus protocol can
tolerate even a single unannounced process death

Assumptions

n Fail-stop failure:
n Impossibility result holds for byzantine failure

n Reliable message system:
n messages are delivered correctly and exactly once

n Asynchronous:
n No assumptions regarding the relative speeds of processes or the

delay time in delivering a message
n No synchronized clock

n Algorithms based on time-out can not be used
n No ability to detect the death of a process

The weak consensus problem

n Initial state: 0 or 1 (input register)
n Decision state:

n Non-faulty process decides on a value in {0, 1}
n Stores the value in a write-once output register

n Requirement:
n All non-faulty processes that make a decision must choose the

same value.
n For proof: assume that some processes eventually make a decision

(weaker requirement)

n Trivial solution is ruled out
n Cannot choose 0 arbitrarily

n Processes modeled by deterministic state machines

Notation

n A configuration consists of
n All internal state of each process, the contents of message buffer

n Message system (think of the undelivered messages stored
in a bag)
n send(p, m)
n receive(p) è returns some message to be received by “p” or an

empty message

n A step is a transition of one configuration C to another e(C),
including 2 phases:
n First, receive(p) to get a message m
n Based on p’s internal state and m, p enters a new internal state and

sends finite messages to other

n e = (p, m) is called an event and said e can be applied to C

Schedule, run, reachable and accessible

n A schedule from C
n a finite or infinite sequence ó of events that can be applied, in turn,

starting from C
n The associated sequence of steps is called a run
n ó (C) denotes the resulting configuration and is said to be reachable

from C

n An accessible configuration C
n If C is reachable from some initial configuration

Lemma 1

n Suppose that from some configuration C, the schedules ó 1
and ó 2 lead to configuration C1 and C2 respectively.
n If the sets of processes taking steps in ó 1 and ó 2 respectively, are

disjoint:
n Then ó 2 can be applied to C1 and ó 1 can be applied to C2, and both

lead to the same configuration.

8

Definitions

n A process is non-faulty
n If it takes infinitely many steps

n A configuration C has decision value v if some process p is
in a decision state with output register containing v.

n Deciding run
n Some process reaches a decision state

n Admissible run
n At most one process is faulty and all messages sent to non-faulty

processes are eventually received

Bivalent, 0-valent/1-valent

n Let C be a configuration, V the set of decision values of
configurations reachable from C
n C is bivalent if |V| = 2.
n C is univalent if |V| = 1.

n 0-valent or 1-valent according to the corresponding
decision value.

Correctness

n A consensus protocol P is totally correct in spite of one
fault:
n No trivial solutions (there are some configurations that lead to

result 0 and some that lead to result 1)

n No accessible configuration has more than one decision value

n Every admissible run is a deciding run

Theorem 1

n No consensus protocol is totally correct in spite of one fault.

n Proof strategy:
n There must be some initial configuration that is bivalent

n Consider some event e = (p, m) that is applicable to a bivalent
configuration, C

n Consider the set of configurations reachable from C w/o
applying e (let this set be Σ)

n Apply e to each one of these configurations to get the set D
n Show that D contains a bivalent configuration

n Construct an infinite sequence of stages where each stage starts
with a bivalent configuration and ends with a bivalent configuration

Lemma 2

n P has a bivalent initial configuration (Proof by contradiction)
n Consider configuration C1 = { 0, 0, 0, …, 0 }

n Every processor starts with input value 0
n C1 is 0-valent

n Consider configuration C2 = { 1, 1, 1, …, 1 }
n C2 is 1-valent

n Transform C1 to C2 with at most one processor changing its input
value
n There must be two configurations C3 and C4:

n C3 is 0-valent, C4 is 1-valent
n Some processor p changed its value from 0 to 1

n Consider some admissible deciding run from C3 involving no p-events.
n Let σ be associated schedule.
n Apply σ to C4. Clearly, resulting state should be 0.
n Implies contradiction.

Lemma 3

n Let C be a bivalent configuration of P.
n Let e = (p, m) be an event that is applicable to C.

n Let Σ be the set of configurations reachable from C without
applying e, and let D = e(Σ) ={e(E) | E ∈ Σ }.

n Then, D contains a bivalent configuration.

9

Graphical Representation

C

C1 C2

C4

C3

C5

C6

{ 0, 1 }
C7

C8

C9
C10

C11

{ 0, 1 }

Proof

n There must be two states such that:
C ∼ E0 and C ∼ E1
where E0 is 0-valent and E1 is 1-valent

n Consider E0:
n If E0 belongs to Σ, then e(E0) = F0 belongs to D

n If E0 does not belong to Σ, then there is a F0:
n Such that F0 belongs to D

n F0 ∼ E0
n In either case, there is a F0 ∈ D and F0 is 0-valent

n Similarly there exists a F1 which is 1-valent and F1 ∈ D
n D contains 0-valent and 1-valent configurations

Two Cases

C

C1 C2

C4

C3

C5

C6

{ 0, 1 }
C7

C8

C9
C10

C11

C11

C12

{ 0 }

{ 1 }

Proof (contd.)

n There exists two adjacent states G0 and G1 in Σ, such that e(G0) is 0-
valent and e(G1) is 1-valent

C

C1 C2

C4

C3

C5

C6

{ 0, 1 }
C7

C8

C9
C10

C11

{0}

{0}
{0}

{1}

Proof (contd.)

n Assume that the event that transforms G0 to G1 is e’ = (p’, m’) and let
p’ != p

n Recall that p is the processor with the delayed message (and the
delayed event e)

n e’ is applicable to D0 and transforms D0 to D1 (commutativity lemma)
n What does this imply?

G0

G1

D0

D1

e’ = (p’ m’)

e

e

e’
{ 0 } { 1 }

Proof (contd.)

n If p’ is same as p: consider some configuration A that is reachable from
G0 that involves no events to p, and is deciding. Let ó be the schedule.

G0

G1

D0

D1

e’

e
e

A

ó

10

Proof (contd.)

G0

G1

D0

D1

e’

e
e

A

ó

E0
E1

ó

óe’

e

e

Proof Wrapup

n Goal is to construct an infinite sequence of events:
n No processor fails

n Each processor executes an infinite steps
n All messages sent to a processor is delivered in finite time

n Every configuration in the sequence is bivalent

n Previous theorem states that:
n Start with a bivalent configuration

n Delay some message
n Can always find some other bivalent configuration that is reached

by delivering the message

Construction of infinite run

P0 P1 P2 P3

m0 m1 m2 m3 m4 m5 m6 m7

P0 P1 P2 P3

m0 m11 m12 m9 m10 m6

P0 P1 P2 P3

m11 m12 m9 m10 m6 m13

Construction of infinite run (contd.)

n Block a message for the next processor, construct another possible
bivalent configuration

n Construction can go on for ever:
n No faults (infinite steps for each processor, messages delivered in finite

time)
n Always goes from one bivalent configuration to another bivalent

configuration

P0 P1 P2 P3

m11 m12 m9 m10 m6 m13

Paxos Consensus

n Assume that a collection of processes that “can” propose
values, choose a value
n Only a value that has been proposed may be chosen
n Only a single value is chosen

n Three classes of agents: proposers, acceptors, and learners
n A single process may act as more than one agent

n Model:
n Asynchronous messages
n Agents operate at arbitrary speed, may fail by starting, and may

restart. (If agents fail and restart, assume that there is non-volatile
storage.)

n Guarantee safety and not liveness

Simple solutions

n Have a single acceptor agent
n Proposers send a proposal to the acceptor:

n Acceptor chooses the first proposed value
n Rejects all subsequent values
n Failure of acceptor means no further progress

n Let’s use multiple acceptor agents
n Proposer sends a value to a large enough set of acceptors

n What is large enough?
n Some majority of acceptors, which implies that only one value

will be chosen
n Because any two majorities will have at least one common

acceptor

11

Some Other Ground Rules

n There might be just one proposer
n Number of proposers is unknown

n No liveness requirements:
n If a proposal does not succeed, you can always restart a new

proposal

n The three important actions in the system are:
n Proposing a value
n Accepting a value
n Choosing a value (if a majority of acceptors accept a value)

Solutions that don’t work

n There could be just one proposed value
n An acceptor should accept the first value

P1

A1

A2

A3

P2

A4

A5

A6

3

3

3

4
4
4

Refinements

n Allow an acceptor to accept multiple proposals
n Which implies that multiple proposals could be chosen

P1: Have to make all of the chosen proposals be the same value!
n Trivially satisfies the condition that only a single value is chosen
n Requires coordination between proposers and acceptors

n Let proposals be ordered
n One possibility: each proposal is a 2-tuple [proposal-number,

processor-number]

n Ensure the following property:
P2: If a proposal with value v is chosen, then every higher-numbered

proposal that is chosen has the value v
P2 ==> P1

More refinements

n Consider the following property:
P3: If a proposal with value v is chosen, then every higher-numbered

proposal that is accepted has the value v

P3 ==> P2 ==> P1

n Consider an even stronger property:
P4: If a proposal with value v is chosen, then every higher-numbered

proposal that is proposed by any processor has value v

P4 ==> P3 ==> P2 ==> P1

One more refinement

P5: For a proposal numbered n with value v:
n It is issued only if there is a set S consisting of a majority of

acceptors such that either:
n No acceptor in S has accepted any proposal numbered less than

n, or
n v is the value of the highest-numbered proposal among all

proposals numbered less than n accepted by the acceptors in S

One can satisfy P4 by maintaining the invariant P5

How does one enforce P5?

(1) A proposer chooses a new proposal version number n , and
sends a prepare request (“prepare”, n) to a majority of acceptors:

(a) Can I make a proposal with number n ?

(b) if yes, do you suggest some value for my proposal?

Phase 1: prepare request

12

(2) If an acceptor receives a prepare request
(“prepare”, n) with n greater than that of any
prepare request it has already responded, sends
out (“ack”, n, n’, v’) or (“ack”, n, ⊥ , ⊥)

(a) responds to the request with a promise not to accept
any more proposals numbered less than n.

(b) suggest the value v of the highest-number proposal
that it has accepted if any, otherwise ⊥

Phase 1 (receive prepare request)

(3) If the proposer receives the requested responses from a
majority of the acceptors, then it can issue a propose request
(“propose”, n , v) with number n and value v:

(a) n is the number that appears in the prepare request.

(b) v is the value of the highest-numbered proposal among the
responses

(4) If the acceptor receives a request (“propose”, n , v), it accepts
the proposal unless it has already responded to a prepare
request having a number greater than n.

Phase 2: accept request

In Well-Behaved Runs

P1 A1

A2

An

.

.

.

(“accept”,1 ,v1)

L1

L2

Lk

.

.

.

P1 A1

A2

An

.

.

.

(“prepare”,1)

(“ack”,1, ⊥, ⊥)

decide v1

(“propose”,1 ,v1)

Example

P1

A1

A2

A3

A4

A5

A6

Prepare, Prop #: 2

Example

P1

A1

A2

A3

A4

A5

A6

Ack, 2, ⊥, ⊥

Example

A1

A2

A3

A4

A5

A6

P2

Prepare, Prop #: 1

13

Example

P3

A1

A2

A3

A4

A5

A6 Prepare, Prop #: 3

P3

A1

A2

A3

A4

A5

A6 Ack, 3, ⊥, ⊥

Example

P1

A1

A2

A3

A4

A5

A6

Propose, Prop #: 2, Val: 99

L1

A1

A2

A3

A4

A5

A6

Accept, Prop #: 2, Val: 99

L2

L3

Example

P3

A1

A2

A3

A4

A5

A6 Propose, Prop #: 3, Val: 42

L1

L2

L3

Accept, Prop #: 3, Val: 42

P4

Prepare, Prop #: 4

Example

A1

A2

A3

P4

A4

A5

A6Ack, 4, ⊥, ⊥

Ack, 4, ⊥, ⊥

Ack, 4, 3, 42

Ack, 4, 3, 42

A1

A2

A3

P4

A4

A5

A6Propose, 4, 42

Example

P5

Prepare, Prop #: 5

A1

A2

A3

P4

A4

A5

A6

Propose, 4, 42

P5

Ack, 5, 2, 99

Ack, 5, 2, 99

Ack, 5, 3, 42

Ack, 5, 3, 42

Example

A1

A2

A3

A4

A5

A6

P5

Propose 5, 42 L1

L2

L3
Accept, 5, 42

14

Paxos: other issues

n A proposer can make multiple proposals
n It can abandon a proposal in the middle of the protocol at any time
n Probably a good idea to abandon a proposal if some processor has

begun trying to issue a higher-numbered one

n If an acceptor ignores a prepare or accept request because
it has already received a prepare request with a higher
number:
n It should probably inform the proposer who should then abandon

its proposal

n Persistent storage:
n Each acceptor needs to remember the highest numbered proposal it

has accepted and the highest numbered prepare request that it has
acked.

Progress

n Easy to construct a scenario in which two proposers each
keep issuing a sequence of proposals with increasing
numbers
n P completes phase 1 for a proposal numbered n1
n Q completes phase 1 for a proposal numbered n2 > n1
n P’s accept requests in phase 2 are ignored by some of the

processors
n P begins a new proposal with a proposal number n3 > n2
n And so on…

Announcements

n Class lecture notes updated

n Upcoming topics:
n Secure routing (avoiding denial of service attacks)
n Overlay/sensor networks

n Project checkpoint due

