

- Channels are assumed to be reliable (do not corrupt
messages and deliver them exactly once)
- A straightforward way to implement B-multicast is to use a reliable one-to-one send operation:
- B-multicast(g,m): for each process ping, send (p,m).
- receive(m): B-deliver(m) at p .
- A basic multicast primitive guarantees a correct process will eventually deliver the message, as long as the multicaster (sender) does not crash. (sender) does not crash.

Group Communication

- Unicast messages: from a single source to a single destination
- Multicast messages: from a single source to multiple destinations (designated as a group)
- Issues:
- Fault tolerance: two kinds of faults in distributed systems
- "Crash faults" (also known as fail-stop or benign faults): process fails and simply stops operating
- "Byzantine faults": process fails and acts in an arbitrary manner (or malicious agent is trying to bring down the system)
- Ordering:
- Achieve some kind of consistency in how messages of different multicasts are delivered to the processes

Reliable Multicast

- Desired properties:
- Integrity: A correct (i.e., non-faulty) process p delivers a message m at most once.
- Validity: If a correct process multicasts message m, then it will eventually deliver m. (Local liveness)
- Agreement: If a correct process delivers message m, then all the other correct processes in group(m) will eventually deliver m .
" Property of "all or nothing."
- Validity and agreement together ensure overall liveness
- Question: how do you build reliable multicast using basic multicast?

Consensus

- Consensus: N Processes agree on a value.
- For example, synchronized action (go / abort)
- Consensus may have to be reached in the presence of failure.
- Process failure - process crash (fail-stop failure), arbitrary failure.
- Communication failure - lost or corrupted messages.
- In a consensus algorithm:
- All P_{i} start in an "undecided" state.
- Each P_{i} proposes a value v_{i} from a set D and communicates it to some or all other processes.
- A consensus is reached if all non-failed processes agree on the

Each non-failed P_{i} sets its decision variable to d and changes its state to "decided."

Implementing Total Ordering

- Each process, q keeps:
- $\quad \mathrm{A}_{\mathrm{g}}$ the largest agreed
sequence number it has seen
- Pa_{g} its own largest proposed sequence number

1. Process p B-multicasts $<\mathrm{m}$, i> to g, where i is a unique identifier for m.
2. Each process q replies to the sender p with a proposal for the message's agreed the message's agreed
Pa $\quad=\operatorname{Max}\left(\mathrm{Aq}^{\mathrm{Pq}}\right)$

- $\mathrm{Pa}_{\mathrm{g}}:=\operatorname{Max}\left(\mathrm{Aq}_{\mathrm{g}}, \mathrm{Pa}_{\mathrm{g}}\right)+1$.
places it in its hold-back
queue

3. p collects all the proposed
sequence numbers and selects
the largest as the next agreed
sequence number, a
It B-multicasts $<i, a>$ to g. order hold-back queue.

Consensus Requirements

- Termination:
- Eventually each correct process sets its decision value.
- Agreement:
- The decision value is the same for all correct processes, i.e., if p_{i} and p_{i} are correct and have entered the decided state, then $d_{i}=d_{j}$
- Integrity
- If all correct processes P_{i} 's propose the same value, d, then any correct process in the decided state has decision value $=\mathrm{d}$.
- Rich problem space:
- Synchronous vs. asynchronous systems
- Fail-stop vs. byzantine failures
- Process vs. message failures

Byzantine Generals Problem

- 3 or more generals need to agree to attack or to retreat.
- Problem
- The commander issues the order
- One or more of the generals (including the commander) could be a traitor who'll give wrong information.
- Each general sends his/her information to all others (assuming reliable communication)
- Once each general has collected all values, it determines the right value (attack or retreat).
- The requirements are termination, agreement, and integrity.

Problem Equivalence

- Interactive consistency (IC) can be solved if there is a solution for Byzantine Generals (BG) problem:
- Just run BG "n" times
- Consensus (C) can be solved if there is a solution for IC:
- Run IC to produce a vector of values at each process
- Then apply the majority function on the vector
- Resulting value is the consensus value
" If no majority, choose a "bottom" value
- BG is solvable if there is a solution to C :
- Commander sends its proposed value to itself and each of the other generals
- All processes run C with the values received
- Resulting consensus value is the value required by BG

Consensus in a synchronous system

- For a system with at most f processes crashing, the algorithm proceeds in $f+1$ rounds, using basic multicast.
- Values ${ }_{i}$: the set of proposed values known to P_{i} at the beginning of round r.
- Initially Values ${ }^{0}=\{ \}$; Values ${ }_{i}=\left\{\mathrm{v}_{\mathrm{i}}\right.$,

```
for round = 1 to f+1 do
    B-multicast (Values }\mp@subsup{r}{i}{}-\quad\mathrm{ Valuesr-1}\mp@subsup{1}{i}{}\mathrm{ )
    Values }\mp@subsup{}{}{r+1}\mp@subsup{}{\mathrm{ i }}{*}\leftarrow\mathrm{ Values }\mp@subsup{}{\mathrm{ ;}}{
    for each }\mp@subsup{V}{j}{}\mathrm{ received
        Values 'r+1 i}=\mathrm{ Values }\mp@subsup{}{}{r+1}\mp@subsup{}{\textrm{i}}{~}\cup\mp@subsup{V}{j}{
    end
end
d
```


Proof of correctness

- Proof by contradiction.
- Assume that two processes differ in their final set of values
- Assume that p_{i} possesses a value v that p_{i} does not possess.
\rightarrow A third process $\left(p_{k}\right)$ sent v to p_{i} and crashed before sending v to p
\rightarrow Any process sending v in the previous round must have crashed; otherwise, both p_{k} and p_{i} should have received v.
\rightarrow Proceeding in this way, we infer at least one crash in each of the preceding rounds.
\rightarrow But we have assumed at most f crashes can occur and there are $\mathrm{f}+1$ rounds \rightarrow contradiction

Solution

- To solve the Byzantine generals problem in a synchronous system, we require. $\mathrm{N}>=3 \mathrm{f}+1$
- Consider $\mathrm{N}=4, \mathrm{f}=1$
- In the first round, the commander sends a value to each of the other generals
- In the second round, each of the other generals sends the value it received to its peers.
- The correct generals need only apply a simple majority function on the set of values received

Byzantine Generals in a synchronous system

- A faulty process may send any message with any value at any time; or it may omit to send any message.
- In the case of arbitrary failure, no solution exists if $\mathrm{N}<=3 \mathrm{f}$.

pi (Commander'

Exponential Tree Algorithm

- Each processor fills in the tree nodes with values as the rounds go by
- Initially, store your input in the root (level 0)
- Round 1: send level 0 of your tree (the root); store value received from p_{j} in node j (level 1)
- Round 2: send level 1 of your tree; store value received from p_{j} for node k in node " $k: j$ " (level 2)
- This is the "value that p_{j} told me that p_{k} told p_{j} "
- Continue for $f+1$ rounds

Proof of algorithm

- Resolve Lemma: Non-faulty processor pi's resolved value for node $\pi=\pi^{\prime} j$ equals what p_{j} has stored for π^{\prime}.
- Proof: By induction on the height of π.

Basis: π is a leaf.

1) Then p_{i} stores in node π what $p_{i j}$ sends it for π^{\prime} in the last round
2) For leaves, the resolved value is the tree value.

Proof (contd.)

induction: π is not a leaf.
By tree definition, π has at least $n-f$ children
Since $n>3 f$, π has majority of non-faulty children
Let " $\pi \mathrm{k}$ " be a child of π such that p_{k} is non-faulty

Since p_{j} is non-faulty, p_{j} correctly reports to p_{k} that it has some value v in node π^{\prime}; thus p_{k} stores v in node $\pi=" ~ \pi{ }^{\prime} j$ "

By induction, p_{j} 's resolved value for " πk " equals the value v that p_{k} has in its tree node π

So all of π 's non-faulty children resolve to v in p_{j} 's tree, and thus π resolves to v in p_{j} 's tree

Proof of Agreement

- Show that all non-faulty processors resolve to the same value for their tree roots
- A node is common if all non-faulty processors resolve to the same value for it. (We will need to show that the root is common.)
- Strategy:
- Show that every node with a certain property is common
- Show that the root has the property
- Lemma: If every π-to-leaf path has a common node, then π is common.
- Proof by Induction:

Basis: π is a leaf. Then every π-to-leaf path consists solely of π, and since the path is assumed to contain a common node, that node is π

Lemma (contd.)

- Induction Step:
- π is not a leaf. Suppose in contradiction π is not common.
- Then every child π^{\prime} of π has the property that every π^{\prime}-to-leaf path has a common node
- Since the height of π^{\prime} is smaller than the height of π, the inductive hypothesis implies that π^{\prime} is common
- Therefore, all non-faulty processors compute the same resolved value for π, and thus π is common

Prove that root has the property

- Show that every root-to-leaf path has a common node
- There are $\mathrm{f}+2$ nodes on a root-to-leaf path
- The label of each non-root node on a root-to-leaf path ends in a distinct processor index (the processor from which the value is to be received)
- At least one of these indices is that of a non-faulty processor
- "Resolve Lemma" implies that the node whose label ends with a non-faulty processor is a common node

Polynomial Algorithm for Byzantıne
Agreement

- Can reduce the message size with a simple algorithm that increases the number of processors to $n>4 f$ and number of rounds to $2(f+1$)
- Phase King Algorithm: Uses $f+1$ phases, each taking two rounds
Code for p .

pref = my input

First round of phase k :
send pref to all
receive prefs of others
let "maj" be the value that occurs $>\mathrm{n} / 2$ times among all prefs (0 if none)
let "mult" be the number of times "maj" occurs

Algorithm (contd.)

Second round of phase k :
if my_proc $==\mathrm{k}$ then send "maj" // I am the phase king receive tie-breaker from p_{k} if mult $>\mathrm{n} / 2+\mathrm{f}$
then pref $=$ maj
else pref = tie-breaker
if $\mathrm{k}==\mathrm{f}+1$ then decide pref

Proof (contd.)

- Lemma: If the king of phase k is non-faulty, then all nonfaulty processors have the same preference at the end of phase k.
. Proof:
Consider two non-faulty processors p_{i} and p_{j}
- Case 1: p_{i} and p_{i} both use p_{k} 's tie-breaker. Since p_{k} is non-faulty they agree
- Case 2: p_{i} uses its majority value and p_{j} uses the king's tie-breaker p_{i} 's majority value is v
- p_{i} receives more than $n / 2+f$ preferences for v
- p_{k} receives more than $n / 2$ preferences for v
p_{k} 's tie-breaker is v

Proof (contd.)

- Case 3: p_{i} and p_{j} both use their own majority values - $p_{i}^{\prime} s$ majority value is v
- p_{i} receives more than $n / 2+f$ preferences for v
- p_{j} receives more than $n / 2$ preferences for v
- p_{j} 's majority value is also v
- Since there are $f+1$ phases, at least one has a non-faulty king
- At the end of that phase, all non-faulty processors have the same preference
- From that phase onward, the non-faulty preferences stay the same
- Thus the decisions are the same.

Fischer-Lynch-Patterson (1985)

- No completely asynchronous consensus protocol can tolerate even a single unannounced process death

Assumptions

- Fail-stop failure:
- Impossibility result holds for byzantine failure
- Reliable message system:
- messages are delivered correctly and exactly once
- Asynchronous:
- No assumptions regarding the relative speeds of processes or the delay time in delivering a message
- No synchronized clock
- Algorithms based on time-out can not be used
- No ability to detect the death of a process

The weak consensus problem

- Initial state: 0 or 1 (input register)
- Decision state:
- Non-faulty process decides on a value in $\{0,1\}$
- Stores the value in a write-once output register
- Requirement:
- All non-faulty processes that make a decision must choose the same value.
- For proof: assume that some processes eventually make a decision (weaker requirement)
- Trivial solution is ruled out
- Cannot choose 0 arbitrarily
- Processes modeled by deterministic state machines

Notation

- A configuration consists of
- All internal state of each process, the contents of message buffer
- Message system (think of the undelivered messages stored in a bag)
- $\operatorname{send}(\mathrm{p}, \mathrm{m})$
- receive $(\mathrm{p}) \rightarrow$ returns some message to be received by " p " or an empty message
- A step is a transition of one configuration C to another $e(C)$, including 2 phases:
- First, receive(p) to get a message m
- Based on p's internal state and m, p enters a new internal state and sends finite messages to other
- $e=(p, m)$ is called an event and said e can be applied to C

Schedule, run, reachable and accessible

- A schedule from C
- a finite or infinite sequence of events that can be applied, in turn, starting from C
- The associated sequence of steps is called a run
- (C) denotes the resulting configuration and is said to be reachable from C
- An accessible configuration C
- If C is reachable from some initial configuration

Lemma 1

- Suppose that from some configuration C, the schedules 1 and ${ }_{2}$ lead to configuration C_{1} and C_{2} respectively.
- If the sets of processes taking steps in 1_{1} and ${ }_{2}$ respectively, are disjoint:
- Then ${ }_{2}$ can be applied to C_{1} and ${ }_{1}$ can be applied to C_{2}, and both lead to the same configuration.

Definitions

- A process is non-faulty
- If it takes infinitely many steps
- A configuration C has decision value v if some process p is in a decision state with output register containing v .
- Deciding run
- Some process reaches a decision state
- Admissible run
- At most one process is faulty and all messages sent to non-faulty processes are eventually received

Bivalent, 0-valent/1-valent

- Let C be a configuration, V the set of decision values of configurations reachable from C
- C is bivalent if $|\mathrm{V}|=2$.
- C is univalent if $|\mathrm{V}|=1$.
- 0 -valent or 1 -valent according to the corresponding decision value.

Correctness

- A consensus protocol P is totally correct in spite of one fault:
- No trivial solutions (there are some configurations that lead to result 0 and some that lead to result 1)
- No accessible configuration has more than one decision value
- Every admissible run is a deciding run

Theorem 1

- No consensus protocol is totally correct in spite of one fault.
- Proof strategy:
- There must be some initial configuration that is bivalent
- Consider some event $\mathrm{e}=(\mathrm{p}, \mathrm{m})$ that is applicable to a bivalent configuration, C
- Consider the set of configurations reachable from C w/o applying e (let this set be Σ)
- Apply e to each one of these configurations to get the set D
- Show that D contains a bivalent configuration
- Construct an infinite sequence of stages where each stage starts with a bivalent configuration and ends with a bivalent configuration

Lemma 2

- P has a bivalent initial configuration (Proof by contradiction)
- Consider configuration $\mathrm{C} 1=\{0,0,0, \ldots, 0\}$
- Every processor starts with input value 0
- Cl is 0 -valent
- Consider configuration $\mathrm{C} 2=\{1,1,1, \ldots, 1\}$
- C2 is 1 -valent
- Transform C1 to C2 with at most one processor changing its input value
- There must be two configurations C3 and C4
- C3 is 0 -valent, C4 is 1 -valent
- Some processor p changed its value from 0 to 1
- Consider some admissible deciding run from C3 involving no p-events.

Let σ be associated schedule.
Apply σ to C4. Clearly, resulting state should be 0 .

- Implies contradiction.

Lemma 3

- Let C be a bivalent configuration of P.
- Let $\mathrm{e}=(\mathrm{p}, \mathrm{m})$ be an event that is applicable to C .
- Let Σ be the set of configurations reachable from C without applying e , and let $\mathrm{D}=\mathrm{e}(\Sigma)=\{\mathrm{e}(\mathrm{E}) \mid \mathrm{E} \in \Sigma\}$.
- Then, D contains a bivalent configuration.

Proof (contd.)

- Assume that the event that transforms G 0 to G 1 is $\mathrm{e}^{\prime}=\left(\mathrm{p}^{\prime}, \mathrm{m}^{\prime}\right)$ and let $\mathrm{p}^{\prime}!=\mathrm{p}$
- Recall that p is the processor with the delayed message (and the delayed event e)
- e^{\prime} is applicable to D0 and transforms D0 to D1 (commutativity lemma)
- What does this imply?

Paxos Consensus

- Assume that a collection of processes that "can" propose values, choose a value
- Only a value that has been proposed may be chosen
- Only a single value is chosen
- Three classes of agents: proposers, acceptors, and learners
- A single process may act as more than one agent
- Model:
- Asynchronous messages
- Agents operate at arbitrary speed, may fail by starting, and may restart. (If agents fail and restart, assume that there is non-volatile storage.)
- Guarantee safety and not liveness

Proof Wrapup

- Goal is to construct an infinite sequence of events:
- No processor fails
- Each processor executes an infinite steps
- All messages sent to a processor is delivered in finite time
- Every configuration in the sequence is bivalent
- Previous theorem states that:
- Start with a bivalent configuration
- Delay some message
- Can always find some other bivalent configuration that is reached by delivering the message

- Block a message for the next processor, construct another possible bivalent configuration
- Construction can go on for ever:
- No faults (infinite steps for each processor, messages delivered in finite time)
- Always goes from one bivalent configuration to another bivalent configuration

Simple solutions

- Have a single acceptor agent
- Proposers send a proposal to the acceptor:
- Acceptor chooses the first proposed value
- Rejects all subsequent values
- Failure of acceptor means no further progress
- Let's use multiple acceptor agents
- Proposer sends a value to a large enough set of acceptors
- What is large enough?
- Some majority of acceptors, which implies that only one value will be chosen
- Because any two majorities will have at least one common acceptor

Some Other Ground Rules

- There might be just one proposer
- Number of proposers is unknown
- No liveness requirements:
- If a proposal does not succeed, you can always restart a new proposal
- The three important actions in the system are:
- Proposing a value
- Accepting a value
- Choosing a value (if a majority of acceptors accept a value)

Refinements

- Allow an acceptor to accept multiple proposals - Which implies that multiple proposals could be chosen P1: Have to make all of the chosen proposals be the same value!
- Consider the following property:
- Trivially satisfies the condition that only a single value is chosen
- Requires coordination between proposers and acceptors
- Let proposals be ordered
- One possibility: each proposal is a 2-tuple [proposal-number, processor-number]
- Ensure the following property:

P 2 : If a proposal with value v is chosen, then every higher-numbered proposal that is chosen has the value v
P2 ==> P1

More refinements

P3: If a proposal with value v is chosen, then every higher-numbered proposal that is accepted has the value v
$P 3==>P 2==>P 1$

- Consider an even stronger property:

P4: If a proposal with value v is chosen, then every higher-numbered proposal that is proposed by any processor has value v
$P 4==>P 3==>P 2==>P 1$

One more refinement

P5: For a proposal numbered n with value v :

- It is issued only if there is a set S consisting of a majority of acceptors such that either:
- No acceptor in S has accepted any proposal numbered less than n , or
v is the value of the highest-numbered proposal among all proposals numbered less than n accepted by the acceptors in S

One can satisfy P4 by maintaining the invariant P5

How does one enforce P5?

Phase 1: prepare request

(1) A proposer chooses a new proposal version number n, and sends a prepare request ("prepare", n) to a majority of acceptors:
(a) Can I make a proposal with number n ?
(b) if yes, do you suggest some value for my proposal?

Phase 1 (receive prepare request)
(2) If an acceptor receives a prepare request ("prepare", n) with n greater than that of any prepare request it has already responded, sends out ("ack", n, n^{\prime}, v ') or ("ack", n, \perp, \perp)
(a) responds to the request with a promise not to accept any more proposals numbered less than n .
(b) suggest the value v of the highest-number proposal that it has accepted if any, otherwise \perp

Phase 2: accept request
(3) If the proposer receives the requested responses from a majority of the acceptors, then it can issue a propose request ("propose", n, v) with number n and value v :
(a) n is the number that appears in the prepare request.
(b) v is the value of the highest-numbered proposal among the responses
(4) If the acceptor receives a request ("propose", n, v), it accepts the proposal unless it has already responded to a prepare request having a number greater than n.

Paxos: other issues

- A proposer can make multiple proposals
- It can abandon a proposal in the middle of the protocol at any time
- Probably a good idea to abandon a proposal if some processor has begun trying to issue a higher-numbered one
- If an acceptor ignores a prepare or accept request because it has already received a prepare request with a higher number:
- It should probably inform the proposer who should then abandon its proposal
- Persistent storage:
- Each acceptor needs to remember the highest numbered proposal it has accepted and the highest numbered prepare request that it has acked.

Progress

- Easy to construct a scenario in which two proposers each keep issuing a sequence of proposals with increasing numbers
- P completes phase 1 for a proposal numbered n 1
- Q completes phase 1 for a proposal numbered $\mathrm{n} 2>\mathrm{n} 1$
- P's accept requests in phase 2 are ignored by some of the processors
- P begins a new proposal with a proposal number $n 3>n 2$
- And so on..

Announcements

- Class lecture notes updated
- Upcoming topics
- Secure routing (avoiding denial of service attacks)
- Overlay/sensor networks
- Project checkpoint due

