
1

Peer to Peer Systems

Arvind Krishnamurthy
Fall 2003

Peer to Peer Systems

n Typically each member stores/provides access to content
n Has quickly grown in popularity
n Goals:

n Fast search and retrieval
n Scalability

n Avoid centralization
n Limit amount of state on each node
n Limit number of messages in the system

n Traditional networking systems with similar goals:
n Routing, DNS

2

Outline

n Unstructured systems:
n Centralized Napster-like design
n Decentralized Gnutella-like design
n Decentralized system with routing tables (Freenet)

n Structured systems:
n Distributed hash tables: Chord, CAN, Tapestry
n Other distributed data structures: Skip Graphs

Centralized Napster

n Simple centralized scheme à motivated by ability to
control

n How to find a file:
n On startup, client contacts central server and reports list of files
n Query the index system à return a machine that stores the

required file
n Ideally this is the closest/least-loaded machine

n Fetch the file directly from peer

n Advantages:
n Simple
n Easy to implement sophisticated search engines on top of the index

system

n Disadvantages:
n Robustness, scalability
n Easy to sue!

3

Decentralized system: Gnutella

n How to find a file: send request to all neighbors
n Neighbors recursively forward the requests
n Eventually find a node that has the file

N4Publisher@
Client

N6

N9

N7
N8

N3

N2N1

Key=“title”
Value=MP3 data…

Lookup(“title”)

Decentralized flooding

n Advantages:
n Totally decentralized, highly robust

n Disadvantages:
n Not scalable; the entire network can be swamped with request (to

alleviate this problem, each request has a TTL)
n Especially hard on slow clients

n At some point broadcast traffic on Gnutella exceeded 56kbps –
what happened?

n Modem users were effectively cut off!

4

Decentralized flooding: Gnutella

n Basic message header
n Unique ID, TTL, Hops

n Message types
n On startup, client contacts any servent (server + client) in network

n Servent interconnection used to forward control (queries, hits,
etc)

n Ping – probes network for other servents
n Pong – response to ping, contains IP addr, # of files, etc.
n Query – search criteria + speed requirement of servent
n QueryHit – successful response to Query, contains addr + port to

transfer from, speed of servent, etc.

n Ping, Queries are flooded

n QueryHit, Pong: reverse path of previous message

Routing Based Lookups

n Example system: Freenet
n Files are stored according to associated key

n Core idea: try to cluster information about similar keys

n Messages
n Random 64bit ID used for loop detection

n Each node maintains the list of query IDs that have traversed it
à help to avoid looping messages

n TTL
n TTL is decremented each time the query message is forwarded

n Addition goals to file location:
n Provide publisher anonymity, security

5

Routing Tables

n ID: file identifier
n Next_hop: another node that

stores the file id

n Forwarding of query for file id:
n If file id is stored locally, then stop

n Forward data back to upstream
requestor

n Requestor adds file to cache and
entry into routing table

n If not, search for the “closest” id in the
table and forward request

n If data is not found, report failure
n Requestor then tries next closest

match in routing table

id next_hop file

…
…

Routing: Freenet Example

Note: doesn’t show file caching on the reverse path

4 n1 f4
12 n2 f12
5 n3

9 n3 f9

3 n1 f3
14 n4 f14
5 n3

14 n5 f14
13 n2 f13
3 n6

n1 n2

n3

n4

4 n1 f4
10 n5 f10
8 n6

n5

query(10)

1

2

3

4

4’

5

6

Freenet discussion

n Is this approach scalable?
n What happens after the system runs for a while?
n How do routing tables change?

