
1

© 2003 IBM Corporation

IBM Systems Group

Yale | Oct 2003

Transaction Manager Concepts

Dr. Nick Bowen,
VP UNIX and xSeries SW Development
October 17, 2003

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Agenda

§ Database Concepts
§ Transaction Manager Overview
§ Logging, REDO and UNDO
§ Two Phase Commit
§ Distributed Transaction Processing

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Application /
Tx 1

Application /
Tx 2

Application /
Tx N

…..

LOGGER Lock Mgr Buffer Manager

Transaction Manager

index Supply Database

Part # part name quantity

index Customer Database

Name=Bob Balance=21

File manager File manager

LOG

Database System

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

ACID

Individual transactions do not bump into one anotherIsolation

Forcing all log records of committed transactions to durable memory
Redoing any recently committed work at restart

Durability

Aborting any transactions that fail to pass R.M. consistency tests
“Once done, it is done”

Consistency

“All or nothing”
undo aborted
redo committed
coordinate with distributed
“A correct transformation of the source”

Atomicity

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

DB101

§ Application: DBM – eCommerce
Supply DB (inventory) – decrement

Billing - create bill

Shipping - create order for factory for ship

§ Failure reasons (3)
Normally just overhead – it all works

Programming style error, e.g. abort changes

System crashes, credit card authorized failure, DB crashes

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

DO-UNDO-REDO Protocol

§ Programming style for resource managers
§ Structure each operation (“DO”) so it can be

undone or redone
§ Any operation should perform

The actual operation (“DO”)

A log record

An “UNDO” program

A “REDO” program

2

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

DO-UNDO-REDO Protocol

OLD
State

DO

NEW State

Log Record

OLD
State

UNDO

NEW State

Log Record

NEW
State

REDO

OLD State

Log Record

DO: Normal
Operations

UNDO:
Back out
changes

REDO:
Ensure
changes

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

LOG
Begin_Tx=“123” UNDO/REDO

Widget | OLD=22, NEW=21
REDO/UNDO
Quantity | OLD=21, NEW=30

Commit
Tx=“123”

Begin()
- Decrement widget

(22->21)
- Increment Bob’s Balance

(21->30)
Commit()

Part #=22 Part Name=Widget Quantity=22

Supply DB Block X

Name=Bob Balance=21

Name=Fred Balance=10

Customer DB Block Y

… Q=21 Bob B=30

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

[x] [y]

[z] [w]

Tx-1 Tx-2

page -2

Database Disk Blocks

Tx-1
Start

Tx-1
[x]

Tx-2
[z]

Tx-3
[w]

Tx-1
Commit

Buffer manager
replaces page -2

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Log is a critical component

§ Very asynchronous – lots of I/O must occur concurrently
§ Allows regular I/O to be asynchronous or deferred
§ Buffer manager

Memory

Numerous changes

Logs can be the bridge
between these

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Logs (continued)

§ Log force at every Tx
would be a serial
bottleneck

§ If lots of Tx’s are
concurrently committing
(approximately) a log
force can handle lots of
Tx’s

§ WADS concept

buffer

tx1 tx2 tx3 lots of transactions

Physical log files

(often duplexed)

buffer

buffer

buffer

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Data Flow in a System Restart

Log

Manager

Log Records

Log Records

Transaction
Manager

1. Find checkpoint
2. Read log forward
3. REDO each

operation

At END:
1. UNDO un-commit

transactions

REDO (Log Requests)
Resource

Manager

UNDO (Log Records)

3

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Normal (no failure) execution of an application interacting
with a resource manager

Begin_work()

Application

Commit_work()

Resource
Manager

Normal
functions

Lock
Manager

Log
Manager

Transaction
Manager

Write_commit()
Log record and

a force log

Commit phase 1?
YES/NO

Commit phase 2?
ACK

Work request

Work request

Lock requests

Join_work

Log Records

TRID

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

The Heart of the Issue: Force Log of Prepare & Commit

Begin_work()

Application

Commit_work()

Resource
Manager
Normal

functions

Lock
Manager

Log
Manager

Transaction
Manager

Write_commit()
Log record and

a force log

Commit phase 1?
YES/NO

Commit phase 2?
ACK

Work request

Work request

Lock requests

Join_work

Log Records

TRID

LOG
Begin_Tx=“123” UNDO/REDO

Widget | OLD=22, NEW=21
REDO/UNDO
Quantity | OLD=21, NEW=30

Commit
Tx=“123”

Answer YES to Phase 1:

“prepared to Commit OR Abort”

Which means forcing out all REDO & UNDO records.

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Two Phase Commit

§ We have shown two phase for one system, one
RM
§ Can be extended:

Multiple RM's on a single system

Multiple RM's on distributed systems

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Two phase commit: Making computations atomic

§ Tx Manager asks RM’s to commit
Can be multiple ones

Can be on different systems

§ Each Vote YES or NO
Vote YES means “Prepared to commit or Abort”

§ Tx Manager proceeds to commit if all YES
Forces “End Phase 1” log record

This is the “atomic instance”

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

For example…

§ Application wants to commit Tx TRID=555
1. Application must begin a Tx

2. RM’s must tell Tx Manager they want to join a transaction.

3. Major Stages:

Once all RM’s “ACK” commit, write a
completion record

Complete

Tx tells RM’s about decisionCommitPhase 2

Tx mgr logs a commit record (if all yes) to
durable storage. This is a precise commit
point, when the bits hit the disk.

Decide

Ask each RM to vote: YES/NOPreparePhase 1

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Restart Processing

§ Transaction manager – finds all

Begin_work with no commit record => Transactions to
abort

Begin_work with commit => RM’s must be told with no
complete about Tx’s

Begin_work + commit + complete => Ignore
§ RM Restart

Must find work either process an abort (UNDO) or ensure
everything is done (REDO)

4

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Why is this complicated?

Begin

RM1

RM2

Tx
Manager

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

…between two products

Application

DB2

MQ Series

Tx
Manager

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

…between distributed systems

DB2
Tx

Manager

Application
DB2

Tx
Manager

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Distributed Transactions

§ Root Tx’s manager – where application performs
original begin_work

Application

Communication
RMA

RMA

Tx Manager A

CRMB RMB

Tx Manager B

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Can get complicated…

A B C A

B

C

A
B C

D

E

A coordinates

B, D, E participate

with A

B coordinates for C

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Distributed Two Phase

§ Prepare now has a time-out
§ Commit record has names of distributed RM’s who need to know about phase

2 commit
§ “In doubt” of CRM – voted YES, but does not know. Must poll upstream Tx Mgr
§ Presumed abort protocol (optimization: coordinator is queried on Tx that is not

active, prepared, or committed, then assume aborted)
presumption that no record found == abort
participant sends ACK only when the completion state is durable

coordinator only sends records the completion log when all commit messages have
been acknowledged

Commit – tell RM’s & outgoing session
Complete - same

O2

Decide – all local RM’s vote YES & outgoing sessions vote YESCommit!!!

Local prepare – call local RM’s
Distributed prepare – send prepares on each outgoing session

O1

5

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

• Log Force delays response time
• Not good for contention (lock held time goes up)
• Required to make protocol work

• Any failure

Prepare
Active

Prepared

Committing

Committed

Transaction
State

Active

Prepared

Committing

Committed

Transaction
State

“Yes”

Commit

“ACK”

Coordinator Participant

Local Prepare
Write prepare
record in Log
(force)

Local Commit Work
•Write completion
record in Log
(Lazy)
•ACK when durable

Write completion
record in LOG
(Lazy)

Write commit
record in Log
(force)

IBM Systems Group

Transaction Manager Concepts | Bowen © 2003 IBM Corporation

Putting it All Together

§ Basic transaction & database concepts
§ Normal commit processing
§ Importance of the LOG
§ Two Phase Commit
§ Extending for Distributed Processing
§ Further Reading “Transaction Processing: Concepts and

Techniques,” Jim Gray and Andreas Reuter.
Chapter 10 “Transaction Manager Concepts” pages 529-582

Note - - 1000 other pages!!!!

