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Abstract

There is an increasing demand for locality-preserving
distribution of complex data structures in peer-to-peer
systems. Current systems either do not preserve object
locality or suffer from imbalances in data distribution,
routing state, and/or query processing costs. In this po-
sition paper, we take a systematic approach that enables
the deployment of searchable tree structures in p2p envi-
ronments. We achieve distributed tree traversal with ef-
ficient routing distance and routing state. We show how
to implement several p2p applications using distributed
tree structures.

1 Introduction

In recent years, a group of Distributed Hash Table-based
(DHT-based) peer-to-peer infrastructures, exemplified
by Chord, Pastry, Tapestry, CAN,etc. [16, 15, 20, 13],
have received extensive attention. Such systems provide
many attractive properties, including scalability, fault
tolerance and network proximity. A number of appli-
cations have been built using DHTs, like distributed file
systems and application level multicast. However, the
original DHT schemes only provide searching in hashed
key space, which is not sufficient to support applications
with complex data structure and semantics [12, 8]. To
support such applications, some specific schemes have
been proposed to enhance DHTs. For example, Space
Filling Curves [1], Prefix Hash Tree [14],etc., are used
to support range queries, but these approaches are spe-
cific to their target problems. For many applications,
it is not clear how to distribute existing data structures
without destroying the intrinsic locality critical to per-
formance. In this paper, we propose a general paradigm
for distributing and searching tree data structures in peer-
to-peer environments while preserving data locality.
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1.1 Locality-Sensitive Applications

We target data-intensive applications that can benefit
from locality-preserving distributions in one of two man-
ners. On one hand, many of our target applications re-
quire support for queries that are more complex than ex-
act lookups in a flat name space. For such applications,
the data is typically organized in hierarchical search trees
that enable them to perform similarity queries and up-
dates. On the other hand, for some of our target appli-
cations, locality-preserving data organization is a criti-
cal performance issue. These applications often exhibit
strong correlation among data accesses. For example,
file system users frequently access a small set of files
and directories. The logical structure of a tree hierarchy
is a good representation of the access locality in such
applications. Centralized systems often benefit from ac-
cess locality when the data structure is laid out appro-
priately on secondary storage. In a distributed peer-to-
peer system, the high communication costs, which can
be thought of as being analogous to the storage access la-
tency and throughput limits of centralized systems, make
locality-preserving distributions essential. These issues
lead to the following question: can we implement these
hierarchical tree data structures in peer-to-peer comput-
ing platforms while preserving the inherrent locality?

1.2 Challenges to Peer-to-Peer Systems

Besides common requirements like scalable peer state
and efficient routing, a peer-to-peer searchable tree faces
several other problems:

• Tree lookups: In some trees, the search key is given
as a tree path. In more general cases, the path or
ID of the destination node(s) is not known a pri-
ori, but discovered through top-down tree lookup
for a data key. With high network communication
costs, efficient lookup demands high locality in the
mapping of nearby tree nodes and minimal rout-
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ing steps when the nodes are apart. Some systems
use DHTs to distribute individual tree nodes, pos-
sibly by hashing each node to a unique key. To
search such trees, a DHT lookup is needed for every
tree edge starting from the root, resulting in lookup
costs that could be as high asO(log2(n)) [4] or
O(log log(n) · log(n)) [14] for structures with bal-
anced depth. This process can be even more ineffi-
cient if the tree has long branches. Besides, the root
tends to become a bottleneck and a single point of
failure.

• Skewed data and load balancing: DHTs depend on
hashing to ensure uniform distribution of data among
participating processors. However, hashing destroys
data locality and is therefore not suitable in our ap-
plication settings. Using unhashed data keys suffers
from skewed data distribution. Some systems, such
as [17], use sampling techniques to achieve asymp-
totic load balance. However, in case of dynamic load
changes, reactive load balancing schemes are more
desirable [11, 6].

• Tree maintenance: Most practical tree structures
are dynamic, as they are subject to online insertion,
deletion and structural changes. While the mainte-
nance is easy in centralized settings, it can affect
many nodes in a distributed tree. For example, a dis-
tributed B-tree [10] replicates internal nodes to im-
prove search efficiency. This optimization however
requires the system to perform tree updates in a con-
sistent manner, thereby requiring complex protocols
for maintaining tree consistency.

In this paper, we propose a distributed tree scheme
called Brushwood. We solve the problems of how to
partition a tree while preserving locality and load bal-
ance and how to search the partitioned tree efficiently in
peer-to-peer systems.

2 Design of Brushwood

Our solution is based on a linearization of the tree. The
upper half of Figure 1 (a) illustrates a file system tree.
The directories are drawn as circles. Edges labeled with
names represent directory entries. We linearize the tree
nodes by pre-order traversal and then partition them into
eight segments as shown by the dotted vertical bars. This
partitioning method preserves locality since the low level
subtrees are not split. The partitions are assigned to eight
processorsA - H, shown as the rectangles below the
tree. We use the word “processor” to denote peer-to-peer
nodes, in order to avoid confusion with tree nodes. Each
processor is identified by its left boundary, which is the
left-most tree node in the partition. The path name inside

B
/bin/X11

C
/home

F
/usr

G
/usr/src

D

/home/b

E
/home/c

H
/usr/X11/

A

/

bin

vi X11 a b bin src X11

www

home usr

c

d

ls

B E HDC

bin

/

home

c X11

usr

a bX11

(b)

GC HF

/

bin

usr

src

home X11

(c)

Figure 1:Partitioning and Distribution of a File Tree.

a processor box shows the left boundary of that partition.
To ensure system scalability, we limit the knowledge

of individual processors about the tree and other peers.
Each processor only knowslog N peers and their parti-
tion boundaries in anN -processor system. A tree lookup
can be done withinlog N steps regardless of the shape of
the tree. We extend Skip Graphs/Nets [3, 9] to achieve
such an efficient lookup.

Conceptually, a processor in a Skip Graph maintains
log N levels of peer pointers, pointing to exponentially
farther peers in the linear ordering ofN processors. The
arrows under processor boxes in Figure 1 depict the three
levels of peer pointers between the processors. Proces-
sors construct their local partial view of the tree from
the boundaries of their peers. Figure 1 (b), (c) show the
partial view ofC andH, respectively.

Now we show how to perform object location in a dis-
tributed tree by illustrating the lookup of file /bin/X11/X
from processorH. H uses its partial view to find the
the peer that is farthest in the same direction as the target
(given the pre-order linearization of tree nodes) without
passing over the target. In this example,H determines
that the target is to the left of peerC, which has a bound-
ary of /home, and it forwards the request toC. C in turn
uses its partial tree view, and determines that the peer
that is closest to the target is peerB with a left bound-
ary of /bin/X11. So it forwards the request toB. Tree
lookup is therefore performed starting from any proces-
sor by “jumping” among the processors with each hop
reducing the distance to the target, instead of traversing
a tree path from the root to the target. The number of
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hops is therefore logarithmic in the number of proces-
sors, regardless of tree depth.

Generally, an application tree provides two pieces of
information to enable the distributed lookup toward a tar-
get key:

• A label ledge on each tree edge. There is a total
order among the labels on edges out of a node, for
example, the dictionary order for the entry names.

• A comparison function fnode in each tree node.
This function compares a target key to the label of
an edge of this node, telling whether it matches this
edge, or falls to the left/right of it.

A node identifies its partition by a sequence of
〈fnode, ledge〉 values from the root to its left boundary
node. We define this sequence as theTree ID. This ID
is sent to peers so that a partial tree view can be con-
structed. The nature of the target key,fnode, and ledge

values are specific to the application. For example, in
a file system tree, target keys are directory paths, each
ledge is a string, andfnode is simply string comparison.
In more general trees, the target might not be specified
explicitly by a tree path. For example, in a high dimen-
sional index tree (see Section 3.1.1), each tree node cor-
responds to a region of space, the target key is simply a
point coordinate or a range, andfnode encapsulates infor-
mation regarding asplit plane that can be used to decide
which branch to follow.

For certain operations, such as a range query in high
dimensional space (Section 3.1.2), the target objects are
located by a generalization of the above process. The
querying node may find that the target range is relevant
to more than one branch, and it would therefore forward
the request to multiple peers simultaneously, resulting in
a “multicast” query.

Maintaining the partitioned tree in the above scheme
is quite simple. Insertion and deletion of a branch only
affects the processor whose boundaries enclose the target
branch. For instance, insertion of /home/b1 affects only
processorD.

Several optimizations are possible in Brushwood dis-
tributed tree. We provides data redundancy by allow-
ing neighboring processors to maintain overlapping par-
titions. Besides added availability, it also improves local-
ity, because the partitions now cover larger subtrees. The
P-Table mechanism from Skip Nets provides proximity-
aware routing similar to Pastry. It can be further en-
hanced by proximity-aware load balancing (Section 2.2).

2.1 Choice of Routing Substrate

Our tree routing depends on a linear ordering of parti-
tions. In this sense, any linear space DHT routing facil-

ity can be used. We choose Skip Graphs for two reasons.
First of all, Skip Graphs do not impose constraints on
the nature and structure of keys. It can work with com-
plex keys, like the variable-length Tree IDs, as long as
there is a total ordering. Second, even if one can en-
code tree nodes into key values, such unhashed and of-
ten skewed keys can cause routing imbalance in some
DHTs, as they use key values to decide peering relation.
Skip Graphs do not suffer from this problem because its
peering is decided by purely random membership vec-
tors, even though the keys are unhashed.
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Figure 2:Imbalance under Skewed Key Distribution

We simulated Chord and Skip Graphs with a skewed
key distribution to show the imbalance in routing. Fig-
ure 2 (a) depicts the maximal processor degrees of Chord
and Skip Graphs with 1K∼32K processors. The proces-
sor keys are derived from a normal distribution with stan-
dard deviation0.125 in the range[0, 1]. With such un-
hashed keys, Chord processors falling into the sparsely
populated regions will manage larger portions of the
keyspace, and are therefore likely to have a large num-
ber of in-bound peers. Furthermore, the imbalance in
peer distribution also leads to imbalance in routing costs.
We route 1000 messages between random pairs of nodes.
Figure 2 (b) shows the imbalance as the ratio of maximal
routing load to mean load.

2.2 Load Balancing

Balancing the assignment of tree nodes to processors is
an important issue, because the distribution of items in
the tree could be skewed and might also change with
time. We propose a dynamic load balancing scheme that
augments previous work [11, 6, 2].

Each processor maintains load information about the
nodes in its partial tree. The load in an internal node
is the aggregated load on all processors managing por-
tions of this node. The root node therefore is associated
with the global average load. Each processor periodi-
cally gets load information from its peers and does its
aggregation from the bottom up the partial tree. Load in-
formation therefore propagates through the entire system
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via a combination of local aggregation steps and peer-to-
peer exchanges. This process can be proved to converge
afterO(log N) steps.

There are two types of load balance operations, both
taking advantage of the load information in the partial
tree. When a processor joins, it navigates the tree to find
a processor with high load, and partitions its data set. If
a processor sustains significantly higher load than global
average, it may navigate the tree to find an underloaded
processor. This processor is forced to quit its current po-
sition and rejoin to take over half of the load from the
overloaded processor. We favor a physically nearby pro-
cessor in the above navigation, so that the data items may
retain network proximity after the partition.

3 Applications

3.1 Multi-Dimensional Indexing

The first application we build with Brushwood is a high
dimensional index supporting complex queries. The
data set being indexed are points in a D-dimensional
Cartesian space. The typical queries are not exact point
matches, but are searches for points falling in a certain
range, or close to a given point. Such data sets are fre-
quently found in multimedia databases, geographic in-
formation systems, data mining, decision support, pat-
tern recognition, and even text document retrieval.

3.1.1 Partitioning K-D Tree
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Figure 3:Partitioning of Search Space

SkipIndex [19], our peer-to-peer high dimensional in-
dex, distributes a K-D tree [5] with Brushwood. K-D
tree is a widely used index tree for high dimensional
data. It hierarchically partitions the search space and
data set into smaller and smaller regions. Each internal
node specifies a partition dimension and a split position,
and splits its region into two children. The data points
are stored in leaf nodes. Figure 3 (a) illustrates partition-
ing of a 2-D search space to six processors, (b) shows
the corresponding K-D tree and the skip graph routing
tables.

Insertion and query operations in SkipIndex navigate
the distributed tree to reach appropriate leaf nodes. The
target is specified by a high-dimension point (inser-
tion) or range (range query). To enable Brushwood tree
lookup, SkipIndex defines the following elements:

• ledge is 0 or 1, denoting left or right child.

• fnode compares the target point or range to the split-
ting plane of the node. For a point, it only returns
one matching child branch. For a range, it may re-
turn both branches.

As we described before, the tree ID of a processor is
given by the tree path from the root to the left bound-
ary node of its partition. For each internal node along
the path, it includes a tuple of〈dimsplit , pos split , 0/1 〉,
specifying the dimension and position of the split plane
and the branch taken. A processor builds its routing state
as a partial K-D tree containing the tree IDs of peers and
itself.

When a processor joins, it locates a heavily loaded
node (Section 2.2) and partitions its search space. A key
benefit provided by Brushwood is the flexible choice of
the split plane. We partition the most distinguishing di-
mension, so that the points in the two partitions are less
similar, and the partitions are less likely to be involved
together in a query. We split along the median of the
items to balance the load.

Insertion and lookup of a point is straight-forward. At
each hop, the processor navigates its partial tree by com-
paring the point to the split planes in tree nodes from
root down, and it forwards the request to a peer that is
maintaining a region that is closest to the target point.

3.1.2 Complex Queries

Range query in SkipIndex exploits another type of tree
lookup. Now the target is a range in high dimensional
space. While navigating the partial view, at each tree
node, the target range is tested for intersection with the
regions corresponding to its children. Each intersecting
branch is further traversed until the traversal reaches the
leaves of the partial tree. If the leaf is a remote region, a
request is routed to the peer to search within the region.
Otherwise, a local search is performed to find matching
points.

Nearest neighbor search returnsk points having the
smallest Euclidean distances to a query point. While
range query performs a parallel lookup of the K-D tree,
our nearest neighbor search algorithm performs a se-
quence of lookups, gradually refining the results. At
each lookup step, a search request is routed to a proces-
sor managing a search region close to the query point.
Such regions are searched in the order of expanding dis-
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Figure 4:Routing and load balance comparisons.

tances from the query point. We can perform an exact
search where we exhaust all processors that may contain
a closer point. We also provide an approximate search
that significantly reduces the search cost with control-
lable accuracy.
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Figure 5:Nearest Neighbor Search Cost.

We evaluated SkipIndex with a 20-dimension image
feature vector data set. This data set is highly skewed.
We compare with pSearch [17] which uses unhashed
CAN to index high dimensional vectors. Compared to
CAN, SkipIndex allows more flexible partition of search
space. Brushwood routing is also more stable in face
of skewed data distribution. In Figure 4 (a), Brushwood
routing in SkipIndex shows routing distances unaffected
by data dimension, while CAN/pSearch suffers when
dimension is low. Figure 4 (b) compares the maximal
number of peers. Brushwood/SkipIndex routing exhibits
more stable routing state, which confirms the analysis
in Section 2.1. Under skewed data distribution, SkipIn-
dex enjoys better load balance as shown in Figure 4 (c).
Figure 5 compares the nearest neighbor search cost mea-
sured by the average number of nodes visited for 1000
queries. SkipIndex achieves lower exact search cost with
balanced query load (Figure 4 (d)), thanks to the flexibil-
ity in space partitioning. Approximation further reduces
the cost significantly.

3.2 Distributed File Service

Now we go back to the example in Section 2 to review
the potential for implementing a partitioned file service
using Brushwood. It is well known that disk locality is
critical to file system performance. In a distributed file
service, locality of a file and its directory also impacts
performance, since the lookup of objects costs network
communication. By keeping related objects on the same
processor, one can reduce the lookup overhead.

Availability is another reason to consider distribution
locality. Accessing a large set of processors for a given
task is more vulnerable to failures than accessing a few,
if the redundancy level is the same.

We analyze an NFS trace from Harvard University [7]
to confirm the above observations. The trace was col-
lected on EECS department server running research
workload. We use a week-long period of October 22
to 28, 2001. There are a total of 29 million requests
involving 540K file handles. We reconstructed the file
system tree from the trace. The tree is split into 1000
partitions using the load balancing process described in
Section 2.2.

To measure the access locality, we identify the user
“sessions” in the trace activities. A session is defined
as a series of operations sent by the same user with
intervals less than 5 minutes. The maximal length of
a session is limited to 1 hour. There are a total of
6470 sessions in the period, with an average duration of
701.8 seconds. The user activity shows strong locality
within a session. Table 1 gives the number of unique
blocks/files/directories/partitions accessed during an av-
erage session. Tree partition appears to be the best gran-
ularity to exploit locality.

To evaluate availability, we replay the trace with Pois-
son failures. We set the mean-time-to-failure as 10
hours, and the mean-time-to-repair as 5 minutes to sim-
ulate a dynamic peer-to-peer environment. The file sys-
tem is distributed to 1000 processors with four different
schemes: hashing by block ID, hashing by file ID, hash-
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ing by directory ID, and tree partitioning. We randomly
place two copies of each block/file/directory/partition on
the processors. Only if both replicas fail, a request fails.
The second row of Table 1 shows the number of ses-
sions experiencing request failures under different distri-
bution schemes. When data locality improves, a client
depends on less number of servers to perform the same
task. Therefore, better locality reduces the chance of en-
countering server failures.

Distribution scheme Block File Directory Partition
Number of unique objects
accessed per session 1594.14 117.28 21.26 6.01

Number of sessions
seeing request failures 236 153 53 21

Table 1: Trace Analysis Results

4 Related Work

As far as we know, our work is the first general scheme to
efficiently distribute, maintain, and traverse search trees
in peer-to-peer systems. Previous efforts on distributed
search trees, like replicated B-tree [10], focus on paral-
lelizing the operations and do not exploit the symmet-
ric node capability of peer-to-peer systems. DHTs like
CAN, Chord, Pastry and Tapestry achieve scalability and
resilience by building self-organizing overlays to locate
resources in peer-to-peer systems. But since these sys-
tems use hashing to achieve load-balance, they are not
suitable for maintaining complex data structures. Sev-
eral schemes [17, 6] use unhashed DHTs for complex
queries in flat key space, but it is not clear how to build
a general search tree.

Our dynamic load balancing scheme is inspired by
previous work [11, 6]. However, instead of using random
sampling, our scheme uses peer-wise gossiping to aggre-
gate load information in the distributed tree, which di-
rects reactive load adjustment operations. Similar aggre-
gation schemes are used in previous systems like [18].

Multi-dimensional queries in peer-to-peer systems
have been addressed in a few other systems. We had
discussed pSearch earlier. Mercury [6] provides range
query by indexing the data set along each individual at-
tributes. It uses random sampling to ensure efficient rout-
ing (O(log2 N) hops) under skewed data distribution.
However, the per-attribute index makes Mercury inap-
propriate for nearest neighbor query which involves all
dimensions.

5 Conclusions

In this paper, we propose a general scheme to efficiently
distribute and navigate tree data structures in peer-to-
peer systems. The approach is shown to be effective in

several locality-sensitive applications. We believe that
more applications will benefit from this system for main-
taining complex data structures in peer-to-peer environ-
ments.
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