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Abstract

Recent advances have enabled “oracle” classifiers that
can classify across many classes and input distributions
with high accuracy without retraining. However, these
classifiers are relatively heavyweight, so that applying
them to classify video is costly. We show that day-to-day
video exhibits highly skewed class distributions over the
short term, and that these distributions can be classified
by much simpler models. We formulate the problem
of detecting the short-term skews online and exploiting
models based on it as a new sequential decision making
problem dubbed the Online Bandit Problem, and present
a new algorithm to solve it. When applied to recogniz-
ing faces in TV shows and movies, we realize end-to-
end classification speedups of 2.4-7.8×/2.6-11.2× (on
GPU/CPU) relative to a state-of-the-art convolutional
neural network, at competitive accuracy.

1. Introduction

Consider recognizing entities such as objects, people,
scenes and activities in every frame of video footage of
day-to-day life. Such footage may come, for instance,
from the media, wearable cameras, movies, or surveil-
lance cameras. In principle, these entities could be
drawn from thousands of classes: many of us encounter
hundreds to thousands of distinct people, objects, scenes
and activities through our life. Over short intervals
such as minutes, however, we tend to encounter a very
small subset of classes of entities. For instance, a wear-
able camera may see the same set of objects from our
desk at work for an hour, a movie may focus only on
cooking-related activities through a five-minute kitchen
sequence, and media footage of an event may focus on
only those celebrities participating in the event. In this
paper, we characterize and exploit such short-term class
skew to significantly reduce the latency of classifying
video using Convolutional Neural Networks (CNNs).

Since the seminal work of Viola and Jones [23] on face
detection, one of the best-known techniques to speed

up classification has been to structure the classifier as a
cascade (or tree [27]) of simple classifiers such that “easy”
examples lead to early exits and are therefore classified
faster. Cascaded classifiers require that training and
test data are strongly (and identically) biased toward a
small number of easy to detect classes. In the (binary)
face detection task, for example, the class “not a face” is
both (i) by far more common than “face”, and (ii) often
quite easy to classify via a small number of comparisons
of inexpensive Haar-style features. In fact, traditional
cascades are most applicable in detection tasks [4], where
the background is both much more common and easier
to classify than the foreground.

Distinct from the (two-class) detection setting in
traditional cascading, recent advances in convolutional
neural networks (CNNs) [15,21,30] have opened up the
possibility of using a single, pre-trained “oracle” classifier
to recognize thousands of classes such as people, objects
and scenes. When training such oracle classifiers, such
as GoogLeNet [21] of VGGFace [15]), a small number
of classes do not usually dominate the training set: for
broad applicability, the classifier is trained assuming
that all classes are more or less equally likely. Even if
such a skew toward such small classes existed, there is
no a priori reason that these dominant classes are fast
to classify. It may seem therefore that cascading is not
a promising optimization for improving the speed of
entity recognition in video via CNNs.

We demonstrate, however, that for many recognition
tasks, day-to-day video often exhibits significant short-
term skews in class distribution. We present measure-
ments on a diverse set of videos that show, for instance,
that in over 90% of 1-minute windows, at least 90% of
objects interacted with by humans belong to a set of
25 or fewer objects. The underlying ImageNet-based
recognizer, on the other hand, can recognize up to 1000
objects. We show that similar skews hold for faces and
scenes in videos.

Even if such skew exists, to our knowledge, it has
not been shown that distributions skewed toward small
sets of classes can be classified accurately by simpler



CNNs than uniformly distributed ones. We therefore
also demonstrate that when class distribution is highly
skewed, “specialized” CNNs trained to classify inputs
from this distribution can be much more compact than
the oracle classifier. For instance, we present a CNN
that executes 200× fewer FLOPs than the state-of-the
art VGGFace [15] model, but has comparable accuracy
when over 50% of faces come from the same 10 or fewer
people. We present similar order-of-magnitude faster
specialized CNNs for object and scene recognition.

Given the ability to produce fast, accurate versions of
CNNs specialized for particular test-time skews, we seek
to estimate the (possibly non-stationary) skew at test-
time, produce a specialized model if appropriate, exploit
the model as long as the skew lasts, detect when the
skew disappears and then revert to the oracle model. As
with standard “bandit”-style sequential decision-making
problems, the challenge is in balancing exploration (i.e.,
using the expensive oracle to estimate the skew) with
exploitation (i.e., using a model specialized to the cur-
rent best available estimate of the skew). We formalize
this problem as the Oracle Bandit Problem and propose
a new exploration/exploitation-based algorithm we dub
Windowed ε-Greedy (WEG) to address it.

Using a combination of synthetic data and real-world
videos, we empirically validate the WEG algorithm. In
particular, we show that WEG can reduce the end-to-
end classification overhead of face recognition on TV
episodes and movies by 2.4-7.8× relative to unspecial-
ized classification using the VGGFace classifier on a
GPU (2.6-11.2× on a CPU). We show via synthetic
data that similar gains are to be had on object and
scene recognition as well. We provide a detailed analysis
of WEG’s functioning, including an accounting of how
much its key features contribute. To our knowledge
our system is the first to use test-time sequential class
skews in video to produce faster classifiers.

2. Related work

There is a long line of work on cost-sensitive classifi-
cation, the epitome of which is perhaps the cascaded
classification work of Viola and Jones [23]. The essence
of this line of work [26, 28] is to treat classification as a
sequential process that may exit early if it is confident
in its inference, typically by learning sequences that
have low cost in expectation over training data. Recent
work [14] has even proposed cascading CNNs as we
do. All these techniques assume that testing data is
i.i.d. (i.e., not sequential), that all training happens
before any testing, and rely on skews in training data to
capture cost structure. As such, they are not equipped
to exploit short-term class skews in test data.

Traditional sequential models such as probabilis-

tic models [3, 16, 25] and Recurrent Neural Networks
(RNNs) [5,11] are aimed at classifying instances that are
not independent of each other. Given labeled sequences
as training data, these techniques learn more accurate
classifiers than those that treat sequence elements as
independent. However, to our knowledge, none of these
approaches produces classifiers that yield less expensive
classification in response to favorable inputs, as we do.

Similar to adaptive cascading, online learning meth-
ods [9, 12, 22] customize models at test time. For train-
ing, they use labeled data from a sequential stream that
typically contains both labeled and unlabeled data. As
with adaptive cascading, the test-time cost of incremen-
tally training the model in these systems needs to be
low. A fundamental difference in our work is that we
make no assumption that our input stream is partly
labeled. Instead, we assume the availability of a large,
resource-hungry model that we seek to “compress” into
a resource-light cascade stage.

Estimating distributions in sequential data and ex-
ploiting it is the focus of the multi-armed bandit (MAB)
community [1, 13]. The Oracle Bandit Problem (OBP)
we define differs from the classic MAB setting in that
in MAB the set of arms over which exploration and
exploitation happen are the same, whereas in OBP only
the oracle “arm” allows exploration whereas specialized
models allow exploitation. Capturing the connection
between these arms is the heart of the OBP formulation.
Our Windowed ε-Greedy algorithm is strongly informed
by the use of windows in [6] to handle non-stationarities
and the well-known [20] ε-greedy scheme to balance
exploration and exploitation.

Finally, much recent work has focused on reducing
the resource consumption of (convolutional) neural net-
works [2, 7, 8, 17]. These techniques are oblivious to
test-time data skew and are complementary to special-
ization. We expect that even more pared-down versions
of these optimized models will provide good accuracy
when specialized at test-time.

3. Class skew in day-to-day video

Specialization depends on skew (or bias) in the temporal
distribution of classes presented to the classifier. In this
section, we analyze the skew in videos of day-to-day life
culled from YouTube. We assembled a set of 30 videos
of length 3 minutes to 20 minutes from five classes of
daily activities: socializing, home repair, biking around
urban areas, cooking, and home tours. We expect this
kind of footage to come from a variety of sources such as
movies, amateur productions of the kind that dominate
YouTube and wearable videos.

We sample one in three frames uniformly from these
videos and apply state-of-the-art face (derived from
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Figure 1: Temporal skew of classes in day-to-day video.

[15]), scene [30] and object recognizers [18] to every
sampled frame. Note that these “oracle” recognizers
can recognize up to 2622 faces, 205 scenes and 1000
objects respectively. For face recognition, we record the
top-scoring label for each face detected, and for the oth-
ers, we record only the top-scoring class on each frame.
For object recognition in particular, this substantially
undercounts objects in the scene; our count (and spe-
cialization) applies to applications that identify some
distinctive subset of objects (e.g., all objects “handled”
by a person). We seek to compare these numbers to the
number of distinct recognized faces, scenes and objects
that dominate “epochs” of τ = 10 seconds, 1 minute
and 3 minutes.

Figure 1 shows the results for object recognition and
scene recognition. We partition the sequence of frames
into segments of length τ and show one plot per segment
length. Each line in the plot corresponds to percentage
skew s ∈ {60, 70, 80, 90}. Each line in the plots shows
the cumulative distribution representing the fraction
of all segments where n labels comprised more than
s percent of all labels in the segment. For instance,
for 10-second segments (Figure 1(a)), typically roughly
100 frames, 5 objects comprised 90% of all objects in
a segment 60% of the time (cyan line), whereas they
comprise 60% of objects 90% of the time (dark blue).

In practice, detecting skews and training models to
exploit them within 10 seconds is often challenging. As
figures (b) and (c) show, the skew is less pronounced
albeit still very significant for longer segments. For
instance, in 90% of 3-minute segments, the top 15 ob-
jects comprise 90% of objects seen. The trend is similar
with faces and scenes, with the skew significantly more
pronounced, as is apparent from comparing figures (b)

Task Model Acc.(%) FLOPs CPU lat.(ms) GPU lat.(ms)

Object
(1000
classes)

[21] 68.9 3.17G 779.3 11.0
O1 48.9 0.82G 218.2 (×3.6) 4.4 (×2.5)
O2 47.0 0.43G 109.1 (×7.1) 2.8 (×3.9)

Scene
(205)

[29] 58.1 30.9G 2570 28.8
S1 48.9 0.55G 152.2 (×16.9) 3.36 (×8.6)
S2 40.8 0.43G 141.5 (×18.2) 2.44 (×11.8)

Face
(2622)

[15] 95.8 30.9G 2576 28.8
F1 84.8 0.60G 90.1 (×28.6) 2.48 (×11.6)
F2 80.9 0.13G 40.4 (×63.7) 1.93 (×14.9)

Table 1: Oracle classifiers versus compact classifiers in
top-1 accuracy, number of FLOPs, and execution time.
Execution time is feedforward time of a single image
without batching on Caffe [10], a Linux server with a
24-core Intel Xeon E5-2620 and an NVIDIA K20c GPU.

and (d); e.g. the cyan line in (d) dominates that in (b).
We expect that if we ran a hand-detector and only rec-
ognized objects in the hand (analogously to recognizing
detected faces), the skew would be much sharper.

Specialized models must exploit skews such as these
to deliver appreciable speedups over the oracle. Typ-
ically, they should be generated in much less than a
minute, handle varying amounts of skew gracefully, and
deliver substantial speedups when inputs belong to sub-
sets of 20 classes or fewer out of a possible several
hundred in the oracle.

4. Specializing Models

In order to exploit skews in the input, we cascade the
expensive but comprehensive oracle model with a (hope-
fully much) less expensive “compact” model. This cas-
caded classifier is designed so that if its input belongs
to the frequent classes in the incoming distribution it
will return early with the classification result of com-
pact model, else it will invoke the oracle model. Thus
if the skew dictates that n frequent classes, or dom-
inant classes, comprise percentage p of the input, or
skew, model execution will cost the overhead of just
executing compact model roughly p% of the time, and
the overhead of executing compact model and oracle
sequentially the rest of the time. When p is large, the
lower cost compact model will be incurred with high
probability.

To be more concrete, we use state of the art convolu-
tional neural networks (CNNs) for oracles. In particular,
we use the GoogLeNet [21] as our oracle model, for ob-
ject recognition; the VGG Net 16-layer version for scene
recognition [30]; and the VGGFace network [15] for face
recognition. The compact models are also CNNs. For
these, we use architectures derived from the correspond-
ing oracles by systematically (but manually) removing
layers, decreasing kernel sizes, increasing kernel strides,
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Figure 2: (a) When compact model O1 is trained by
various skews and cascaded with the oracle, accuracy
of the cascaded classifier tested by various skews for 10
dominant classes; (b) accuracy of O1 trained by 60%
skew and tested by various skews for different number of
dominant classes. The dashed line shows the accuracy
of GoogLeNet as a baseline. All experiments repeated
5x with randomly selected dominant sets.

and reducing the size of fully-connected layers. The
end results are architectures (O[1|2] for objects, S[1|2]
for scenes and F[1|2] for faces) that use noticeably less
resources (Table 1), but also yield significantly lower av-
erage accuracy when trained and validated on unskewed
data, i.e., the same training and validation sets for ora-
cle models. For instance, O1 requires roughly 4× fewer
FLOPs to execute than VGGFace, but achieves roughly
70% of its accuracy.

However, in our approach, we train these compact
models to classify skewed distributions observed during
execution, denoted by specialized classifier, and their
performance on skewed distributions is the critical mea-
sure. In particular, to generate a specialized model,
we create a new training dataset with the data from
the n dominant classes of the original data, and a ran-
domly chosen subset from the remaining classes with
label “other” such that the dominant classes comprise
p percent of the new data set. We train the compact
architecture with this new dataset.

Figure 2 shows how compact models trained on
skewed data and cascaded with their oracles perform
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Figure 3: Accuracy of scene classifiers trained by 70%
fixed skew and 10 dominant classes and face classifiers
trained by 50% fixed skew and 10 dominant classes.
Dashed lines show the accuracy of the oracle classifier
for scene and face recognition task.

on validation data of different skews. Figure 2(a) ana-
lyzes the case where n = 10, for various combinations of
training and validation skews for model O1. Recall from
Table 1 that O1 delivers only 70% of its accuracy on
unskewed inputs. However, when training and testing
is on skewed inputs, the numbers are much more favor-
able. When O1 is trained on p=90% skewed data with
n=10 dominant classes, it delivers over 84% accuracy
on average (the left-most dark-blue bar). This is signif-
icantly higher than the oracle’s average of 68.9% (top-1
accuracy), denoted by the horizontal black line. We
also observed from Figure 2(a) that when O1 is trained
on 60% skewed data, the cascaded classifier maintains
high accuracy across a wide range of testing skews from
90% to 50%. Therefore, in what follows, we use 60%
skew as fixed training skew to specialize object compact
models in the rest of paper (similarly 70% fixed skew
for scene and 50% for face). Figure 2(b) shows that,
where n is varied for O1, the cascaded classifier degrades
very gracefully with n. Finally, Figure 3, which reports
similar measurements on compact models S[1|2] and
F[1|2] shows that these trends carry over to scene and
face recognition.

Finally, we note that since skews are only evident
at test-time, specialized models must be trained ex-
tremely fast (ideally a few seconds at most). We use
two techniques to accomplish this. First, before we
begin processing any inputs, we train all model archi-
tectures on the full, unskewed datasets of their oracles.
At test time, when the skew n, p and the identity of
dominant classes is available, we only retrain the top
(fully connected and softmax) layers of the compact
model. The lower layers, being “feature calculation”
layers do not need to change with skew. Second, as a
pre-processing step, we run all inputs in the training
dataset through the lower feature-calculation layers, so



that when re-training the top layers at test time, we can
avoid doing so. This combination of techniques allows
us to re-train the specialized model in roughly 4s for F1
and F2 and 14s for O1/O2, many orders of magnitude
faster than fully re-training these models.

5. Sequential Model Specialization

5.1. The Oracle Bandit Problem (OBP)

Let x1, x2, . . . , xi, . . . ∈ X = Rn be a stream of images
to be classified. Let y1, y2, . . . , yi, . . . ∈ Y = [1, . . . , k]
be the corresponding classification results. Let π : I+ →
I+ be a partition over the stream. Associate the dis-
tribution Tj with partition j, so that each pair (xi, yi)
is sampled from Tπ(i). Intuitively, π partitions, or seg-
ments, . . . , xi, . . . into a sequence of “epochs”, where ele-
ments from each epoch j are drawn independently from
the corresponding stationary distribution Tj . Thus, for
the overall series, samples are drawn from an abruptly-
changing, piece-wise stationary distribution. At test
time, neither results yi nor partitions π are known.

Let h∗ : X → Y be a classifier, designated the “oracle”
classifier, trained on distribution T ∗. Intuitively T ∗ is
a mixture of all distributions comprising the oracle’s
input stream: T ∗ =

∑
j Tj . Let R∗ be the cost (e.g.,

number cycles), assumed invariant across X, needed to
execute h∗ on any x ∈ X. At test time, on each input
xi, we can always consult h∗ at cost R∗ to get a label
yi with some (high) accuracy a∗.

Letm1, . . . ,mM bemodel architectures, such as those
of O1, O2, S1, S2, F1 and F2 in Table 1. Suppose each
architecture mk is trained offline on T ∗ to obtain a
“template” classifier hk. We assume that re-targeting
template hk to a new size-j set of dominant classes has
a flat cost R0.

Finally, for each set of dominant classes D, the cor-
responding specialized classifier hD is trained by re-
targeting some template hk, using a dataset that draws
half its examples from classes in D and the rest (with
a single label “other”) from Y − D. Let the cost of
executing hd be Rhd . Chaining hD with h∗ gives a
cascaded classifier ĥD(x) , if y = hD(x) ∈ D, return
y, otherwise return h∗(x). Note that executing ĥD will
either cost Rhd (in the case that the condition is true),
or Rhd + R∗ in the case that it is false. Given that
Rhd � R∗, developing and using specialized classifiers
hD can thus reduce costs significantly. Since xi is drawn
from some distribution T , each classifier ĥD also has
cost that belongs to a corresponding distribution, which
we write as RT ĥD (xi).

Now consider a policy (or algorithm) P that, for each
incoming image xi belonging to stationary distribution
Tπ(i) as above, selects a classifier ĥ

(i)
D (for some set choice

Algorithm 1 Windowed ε-Greedy (WEG)
1: j, S0 ← 1, []

. Note: τr, τa, τFP and ε below are hyper-parameters.
Window Initialization Phase

2: Repeat wmin times
3: yt ← h∗(xt)
4: Sj ← Sj ⊕ [yt] . Append new sample
5: if ||DomClasses(Sj−1),DomClasses(Sj)|| ≤ τr then

. dominant classes match sufficiently, old epoch continues
6: Sj ← Sj−1 ⊕ Sj
7: w ← |Sj | and go to Line 8

Template Selection Phase
8: D ← DomClasses(last w elements in Sj)
9: Estimate acc. aĥD of ĥD; use p∗ derived from Sj (Equation 1)

10: if aĥD ≥ a
∗ + τa then

11: train specialized classifier hD on dominant classes D
12: go to Line 16 . Exploit cascaded classifier ĥD
13: yt ← h∗(xt) . Else, continue exploring with oracle
14: Sj ← Sj ⊕ [yt]
15: go to Line 8

Specialized Classification Phase
16: nc, n

∗, S ← 0, 0, Sj
17: yt, c← ĥD(xt) . exploit; c = 0|1 if|if-not cascaded to oracle
18: n∗ ← (c or rand() ≥ ε) ? n∗ : n∗ + (h∗(xt) 6= yt)

19: nc ← nc + c . Increment if ĥD did not use oracle
20: Estimate acc. aĥD of ĥD; use p∗ derived from Sj (Equation 1)

21: if aĥD
< a∗ + τa or n∗

nc·ε > τFP then
. Exit specialized classification

22: j ← j + 1 . Potentially start new epoch j
23: go to Line 2 . Go back to check if distribution has changed
24: else
25: S ← S ⊕ [yt]; go to Line 17

of D), and applies it to xi. The classifier selected could
also include the oracle. The expected total cost of this
policy, Rp = | ∪i {ĥ(i)D }|R0 + ΣiExi∼Tπ(i)

(R
Tπ(i)ĥ

(i)
D

(xi)).
We seek a minimal-cost policy: P ∗ = arg minP RP that
maintains average accuracy within a threshold τa of
oracle accuracy a∗.

5.2. The Windowed ε-Greedy (WEG) Algorithm

A close look at the policy cost above provides some
useful intuition on what good policies should do. First,
given the high fixed cost R0 of re-targeting models as
opposed to just running them, re-targeting should be
infrequent. We expect re-targeting to occur roughly
once an epoch. Second, the cost of running the cascade
is much lower than that of running the oracle if the input
xi is in the dominant class set D and higher otherwise.
It is important therefore to identify promptly when a
dominant set D exists, produce a specialized model hD
that does not lose too much accuracy, and revert back
to the oracle model when the underlying distribution
changes and D is no longer dominant. We provide
a heuristic exploration-exploitation based algorithm
(Algorithm 1) based on these intuitions.

The algorithm runs in three phases.

1. Window Initialization [lines 2 - 7] identifies the



dominant classes of the current epoch. To do so, we
run the oracle on a fixed number wmin (= 30 in our
implementation) of examples. The DomClasses
helper identifies the dominant classes in the window
as those that appear at least twice in the window.
If the dominant classes are each within τr (= 2)
of those of the previous epoch, we conclude the
previous epoch is continuing and fold information
collected on it into that for the current epoch Sj .

2. Template Selection [lines 8 - 15] Given a candi-
date set of dominant classes D, we estimate (Equa-
tion 1 below details precisely how) the accuracy
of the cascaded classifier ĥD for various template
classifiers hi when specialized to D and their cur-
rent empirical probability skew p∗ derived from
measured data Sj . Estimating these costs instead
of explicitly training the corresponding specialized
classifiers hD is significantly cheaper. If the esti-
mate is within a threshold τa (= 0.05 for object and
scene recognition, and -0.05 for face recognition
since the accuracy of oracle is higher) of the oracle,
we produce the specialized model and go to the
specialized classification phase. If not, we continue
running the oracle on inputs and collecting more
information on the incoming class skew.

3. Specialized Classification [lines 16 - 17] The
specialized classification phase simply applies the
current cascaded model ĥD to inputs (Line 17) until
it determines that the distribution it was trained on
(as represented by D) does not adequately match
the actual current distribution. This determination
is non-trivial because in the specialization phase,
we wish to avoid consulting the oracle in order to
reduce costs. However, the oracle is (assumed to
be) the only unbiased source of samples from the
actual current distribution.
We therefore run the oracle in addition to the cas-
caded model with probability ε (= 0.01), as per
the standard ε-greedy policy for multi-arm bandits.
Given the resulting empirical estimate p∗ of skew,
we can again estimate the accuracy of the current
cascade ĥD as per Equation 1. If the estimated
accuracy of the cascade is too low, or if the classifi-
cation results of ĥD cascade are different from the
oracle too often (we use a threshold τFP = 0.5), we
assume that the underlying distribution may have
shifted and return to the Window Initialization
phase.

Finally, we focus on estimating the expected accuracy
of the cascaded classifier given the current skew p of its
inputs (i.e., the fraction of its inputs that belong to the

dominant class set). The accuracy of cascaded classifier
ĥD can be estimated by:

aĥD = p · ain + p · ein→out · a∗ + (1− p) · aout · a∗ (1)

where ain is the accuracy of specialized classifier hD on
n dominant classes, ein→out is the fraction of dominant
inputs that hD classifies as non-dominant ones, and
aout is the fraction of non-dominant inputs that hD
classifies as non-dominant (note that these inputs will
be cascaded to the oracle). We have observed previously
(Section 4) that these parameters ain, ein→out, aout of
specialized classifier hD are mainly affected only by
the size of the dominant class D, not the identity of
elements in it. Thus, we pre-compute these parameters
for a fixed set of values of n (averaging over 10 samples
of D for each n), and use linear interpolation for other
ns at test time.

6. Evaluation
We implemented the WEG algorithm with a classifica-
tion runtime based on Caffe [10]. The system can be fed
with videos to produce classification results by recogniz-
ing frames. Our goal was to measure both how well the
large specialized model speedups of Table 1 translated
to speedups in diverse settings and on long, real videos.
Further we wished to characterize the extent to which
elements of our design contributed to these speedups.

6.1. Synthetic experiments

First, we evaluate our system with synthetically gen-
erate data in order to study diverse settings. For this
experiment, we generate a time-series of images picked
from standard large validation sets of CNNs we use.
Each test set comprises of one or two segments where a
segment is defined by the number of dominant classes,
the skew, and the duration in minutes. For each seg-
ment, we assume that images appear at a fixed interval
(1/6 seconds) and that each image is picked from the
testing set based on the skew of the segment. For an
example of a segment with 5 dominant classes and 90%
skew, we pre-select 5 classes as dominant classes and
pick an image with 90% probability from the dominant
classes and an image with 10% probability from the
other classes at each time of image arrival over 5 min-
utes duration. Images in a class are picked in a uniform
random way. We also generate traces with two consecu-
tive segments with different configurations to study the
effect of moving from one context to the other.

Table 2 shows the average top-1 accuracies and per-
image processing latencies using GPU for the recog-
nition tasks with and without the specializer enabled.
The results are averaged over 5 iterations for each ex-
periment. The specializer was configured to use the



Object Scene Face
Segments disabled enabled disabled enabled Segments disabled enabled

acc(%) lat(ms) acc(%) lat(ms) acc(%) lat(ms) acc(%) lat(ms) acc(%) lat(ms) acc(%) lat(ms )

(n=5,p=.8) 69.5 11.6 77.0 6.0 57.6 28.9 65.2 12.0 (n=5,p=.8) 95.2 28.7 95.1 9.2
(n=10,p=.8) 66.7 11.7 72.5 7.4 57.2 28.9 57.8 18.6 (n=5,p=.9) 97.0 28.6 96.2 6.7
(n=10,p=.9) 71.8 11.6 78.0 5.9 59.1 28.8 63.5 15.4 (n=10,p=.9) 95.4 28.5 94.3 11.0
(n=15,p=.9) 68.7 11.6 68.9 9.1 57.8 28.8 57.2 22.6

(random) 68.1 12.1 68.1 11.5 59.1 28.9 59.1 28.8 (random) 95.9 28.5 95.9 28.5

(n=10,p=.9) 67.9 11.8 70.2 9.1 57.0 28.8 56.0 22.6 (n=5,p=.9) 96.2 28.5 96.2 17.6+(random) +(random)

(n=15,p=.9) 70.6 11.6 73.9 7.8 61.1 28.7 63.0 17.1 (n=10,p=.9) 95.8 28.5 95.2 10.4+(n=5,p=.8) +(n=10,p=.8)

Table 2: Average accuracy and GPU latency of recognition over segments. For the segment column, each parenthesis
indicates a segment of 5 minutes with the number of dominant classes and the skew.

video length oracle WEG special cascade trans. dom. window
(min) acc(%) CPU lat GPU lat acc(%) CPU lat GPU lat rate(%) rate(%) special size size

Friends 24 93.2 2576 28.97 93.5 538(×4.8) 7.0(×4.1) 88.0 7.5 51 2.8 41.8
Good Will Hunting 14 97.6 2576 28.84 95.1 231(×11.2) 3.7(×7.8) 95.9 3.4 4 3.5 37.5

Ellen Show 11 98.6 2576 29.26 94.6 325(×7.9) 4.7(×6.2) 93.7 4.8 19 1.7 47.4
The Departed 9 93.9 2576 29.18 93.5 508(×5.1) 6.9(×4.2) 92.0 10.3 9 2.4 40.0

Ocean’s Eleven / Twelve 6 97.9 2576 28.97 96.0 1009(×2.6) 12.3(×2.4) 80.1 18.0 23 2.0 52.2

Table 3: Accuracy and average processing latency per frame on videos with oracle vs. WEG (latencies are shown in
ms). For additional insight, the last 5 columns show key statistics from WEG usage.

compact classifiers O2 for objects, S2 for scenes, and
F2 for face recognition from Table 1.

The following points are worth noting. (i) (Row
1 and it’s sub-rows) WEG is able to detect and ex-
ploit skews over 5-minute intervals and get significant
speedups over the oracle while preserving accuracy. For
the single segment cases, the GPU latency speedup
per-image was 1.3× to 2.0×, 1.3× to 2.4×, and 2.6× to
4.3×, for object, scene, and face, respectively. However,
due to WEG’s overhead these numbers are noticeably
lower than the raw speedups of specialized models (Ta-
ble 1). When the number of dominant classes increase,
the specializer latency increases because it alternates
between exploration and exploitation to recognizes more
dominant classes. The latency also increases when the
skew of dominant classes decreases because specializer
cascades more times to oracle model when using the
cascaded classifier. (ii) (Row 2) WEG is quite stable
in handling random inputs, essentially resorting to the
oracle so that accuracy and latency are unchanged. (iii)
(Rows 3 and 4) WEG is able to detect abrupt input dis-
tribution changes as the accuracy remains comparable
to oracle accuracy, but with significant speedups when
the distribution is skewed (Row 4).

To further understand the limit of the WEG algo-
rithm, we studied how frequently class distributions can
change before our technique stops showing benefit. We
evaluated face recognition with synthetic traces, chang-
ing the distribution every 10/20/30 sec. The WEG
algorithm then yields speedups of 0.95/1.19/1.48× with

roughly unchanged accuracy. For face recognition there-
fore, WEG stops gaining benefit for distributions that
lasts less than 20 secs.

6.2. Video experiments

We now turn to evaluating WEG on real videos. How-
ever, we were unable to find a suitable existing dataset
to show off specialization. We need several minutes or
more of video that contains small subsets of (the oracle
model’s) classes that may change over time. In videos of
real-world activity, this happens naturally; in popular
benchmarks, not so much. For example, the videos in
YouTube Faces [24] are short (average 6 sec, max 200
sec) and typically only contain one person. Similarly,
clips in UCF-101 [19] have mean length of 7.2 sec (max
71 sec) and focus on classifying actions for which no
oracle model exists. Finally, the sports 1M dataset [11]
assigns labels per video instead of per frame.

As a consequence, we hand-labeled video clips from
three movies, one TV show, and an interview and man-
ually labeled the faces in the videos 1. The names of
video clips with lengths are listed in Table 3. Note that
we used the entire videos for Friends and Ellen Show,
while we used a video chunk for the movies. For these
experiments, we used F2 as the compact classifier.

Table 3 shows the average accuracies and average
latencies for processing a frame for 5 videos. We gener-
ated these by first extracting all faces from the videos

1The dataset is released at http://syslab.cs.washington.
edu/research/neurosys.

http://syslab.cs.washington.edu/research/neurosys
http://syslab.cs.washington.edu/research/neurosys


to disk using the Viola Jones detector. We then ran
WEG on these faces and measured the total execution
time. Dividing by the number of faces gave the aver-
age numbers shown here. The most important point is
that even on real-world videos, WEG is able to achieve
very significant speedups over the oracle, ranging from
2.6×-11.2× (CPU) and 2.4×-7.8× (GPU).

To understand the speedup, we summarize the statis-
tics of WEG execution in Table 3. “Special rate” indi-
cates the percentage of time that specializer exploits
cascaded classifier to reduce the latency, while “cascade
rate” reveals the percentage of time that a cascaded
classifier cascades to the oracle classifier, thus hurting
performance. Higher special rate and lower cascade
rate yield more speedup. The cascade rate of “Ocean’s
Eleven” is significantly higher than that of other videos.
We investigated this and found that the specialized com-
pact CNN repeatedly made mistakes on one person in
the video, which led to a high cascade rate. “Trans. spe-
cial” counts the number of times WEG needed to switch
between specialized and unspecialized classification to
handle the distribution changes and insufficient explo-
ration. The average dominant classes sizes (“dom. size”)
show that the real videos are skewed to fewer dominant
classes than the configurations used in the synthetic
experiments. This explains why our system achieved
higher speedup on real videos than on synthetic data.
Overall, the statistics show that the dataset exercise
WEG features such as skew estimation, cascading and
specialization.

To understand better the utility of WEG’s features,
we performed an ablation study: (a) We disable the
adaptive window exploration (Line 5-7 in Algorithm 1),
and use a fixed window size of 30 and 60. (b) We use the
skew of dominant classes in the input distribution as the
training skew for specializing compact CNNs instead
of using the fixed (50%) training skew suggested in
Section 4. (c) We apply a simple (but natural) criterion
to exit from the specialized classification phase: WEG
now exits when the current skew is lower than the skew
when it entered into specialized classification phase
instead of using the estimated accuracy as soft indicator.

Figure 4 shows the comparison between these vari-
ants and WEG algorithm in accuracy and CPU / GPU
speedups when recognizing faces on Friends video. In
the figure we show the absolute differences in accuracy
and relative differences in CPU / GPU speedup. (a)
Fixed window size (30 and 60) variants achieve similar
accuracy but lower speedup. As table 3 (“window size”
column) shows, the adaptively estimated size for the
window is between 30 and 60. In general, too small
a window fails to capture the full dominant classes,
yielding specializers that exit prematurely. Too large a
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Figure 4: Change in accuracy (absolute difference) and
speedup (relative) when individual features are disabled.

window requires more work by the oracle to fill up the
window. (b) Using variable rather than fixed skew for
training achieves more speedup, but suffers from 30%
loss in accuracy. This is because the training skew is
usually very high. As discussed in Section 4, training
on highly skewed data produces models vulnerable to
false positives in “other” classes. (c) The simple exit
variant achieves almost comparable accuracy while the
latency is more than 50% higher than our system. It
demonstrates the value of our accuracy estimate in mod-
eling the accuracy of cascaded classifiers and to prevent
premature exit from the specialized classification phase.
In summary, the key design elements of WEG each have
a role in producing fast and accurate results.

7. Conclusion

We characterize class skew in day-to-day video and show
that the distribution of classes is often strongly skewed
toward a small number of classes that may vary over the
life of the video. We further show that skewed distri-
butions are well classified by much simpler (and faster)
convolutional neural networks than the large “oracle”
models necessary for classifying uniform distributions
over many classes. This suggests the possibility of de-
tecting skews at runtime and exploiting them using dy-
namically trained models. We formulate this sequential
model selection problem as the Oracle Bandit Problem
and provide a heuristic exploration/exploitation based
algorithm, Windowed ε-Greedy (WEG). Our solution
speeds up face recognition on TV episodes and movies
by 2.4-7.8× on a GPU (2.6-11.2× on a CPU) with lit-
tle loss in accuracy relative to a modern convolutional
neural network.
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