
F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson

University of Washington

Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction
Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [11, 12, 13],
new routing protocols [11] and new network manage-
ment layers [3, 4, 20], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [20]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network
can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [22]. In many cases, the data center operator is

not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [10]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to
PortLand. Other work has shown that local repair is pos-
sible at the cost of significant added hardware relative to
a standard FatTree [9, 12, 13], so our work can be seen as
either improving the speed of repair in FatTree and other
multi-tree networks or in reducing the hardware cost of
fast repair in more general networks. A limitation of our
work is that we assume that we can change both the net-
work topology and the protocols used between network
switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel topology to make it
easier to do localized repair and rebalancing after failures.
This topology is applicable to the FatTree and other multi-
tree networks. We then redesign the routing protocols to
take advantage of the modified topology. To satisfy the
need for extremely fast failover, we use a local recov-
ery mechanism that reacts almost instantaneously at the
cost of additional latency and increased congestion. Some
failures are not short-term, so local rerouting eventually
triggers a slightly slower pushback mechanism that redi-
rects traffic flows before they reach the faulty components.

1

To address longer-term failures, a centralized scheduler
rearranges traffic on a much slower time scale in order
to create as close to a optimally rerouted configuration
as possible. We also introduce a failure detector that ben-
efits from (and contributes to) the speed of our failover
protocols while providing fine-grained information not
available to traditional failure detection methods.

We have implemented a Click-based prototype of F10
and its failure detector and have performed a simulation-
based evaluation, based on measurements of real-world
data center traffic from [5] and measurements of data
center network failures from [10]. Our results show that
our system dramatically improves packet loss relative to
PortLand with no added hardware cost. Our localized re-
routes do incur some path inflation and network state, but
these effects are small because of our novel topology.

2 Motivation
Our goal is to design a data center network architecture
that can gracefully and quickly recover after failures, with-
out any additional hardware. To motivate our approach,
we outline previous measurements of data center network
failures and then discuss the implications of these results
on the design of fault-tolerant data center networks.

2.1 Failures in Data Centers

A recent study by Gill et al. provides insight into the
characteristics of data center network failures [10]. The
authors found that a large majority of devices are failure-
free over the course of a year; commodity switches are
mostly reliable. Their data also shows, however, that there
are frequent short-term failures, that link failures are com-
mon and that the network responsiveness to failures is
limited. We emphasize a few results from their study:

• Many failures are short-term. Devices and links ex-
hibit a large number of short-term failures. In fact, the
authors observed that the most failure-prone devices have
a median time-to-failure of 8.6 minutes.
• Multiple failures are common. Devices often fail in

groups. 41% of link failure events affect multiple devices—
often, just a few (2–4) links, but in 10% of cases, they do
affect more than 4 devices. There are also often multiple
independent ongoing failures.
• Some failures have long downtimes. Though most

failures are short-term, failure durations exhibit a long tail.
Gill et al. attribute this to issues such as firmware bugs and
device unreliability. Hardware that fails often stays down
and contributes heavily to network-level unavailability.
• Network faults impact network efficiency. The data

centers studied by Gill et al. have 1:1 redundancy dedi-
cated to failure recovery, yet the network delivered only
about 90% of the traffic in the median failure case. Per-
formance is worse in the tail, with only 60% of traffic

delivered during 20% of failures. This suggests better
methods are needed for exploiting existing redundancy.

The authors assume a model where hardware is either
up or down and transitions between those two states, but
certain parts of their data—along with anecdotal evidence
of gray failures from industry—conforms to a stochastic
model of failures in which hardware loses a certain per-
centage of packets. There is thus an additional concern:

• Existing failure detection mechanisms are too
coarse-grained. Links are marked as down after losing
a certain number of heartbeats and marked as up after a
brief handshake. Within a short time frame, it is difficult
to distinguish between a complete failure, where no pack-
ets are getting through, and a situation where the link is
congested, and had gotten unlucky with the heartbeats.
Conversely, a flaky link that just happened to allow a
handshake would appear to be reliable.

2.2 Next-Generation Data Center Networks

Today’s data center networks are multi-level, multi-rooted
trees of switches. The leaves of the tree are Top-of-Rack
(ToR) switches that connect down to many machines in
a rack, and up to the network core which aggregates and
transfers traffic between racks. A modern data center
might have racks that contain 40 servers connected with
1 Gbps access links, and one or two 10 Gbps uplinks that
connect the ToR switch to the core, which contains a small
number of significantly more expensive switches with an
even faster interconnect. The primary challenges with
these networks are that they do not scale—port counts
and internal backplane bandwidth of core switches are
limited and expensive—and that they are dramatically
oversubscribed, with reported factors of 1:240 [11].

Recent proposals for the next generation of data center
networks [3, 11, 12] overcome these limitations. We focus
on a class of these networks based on the FatTree [3]
proposal and its subsequent extensions. Inspired by the
concept of a fat-tree [17], these FatTrees use a multi-
rooted, multi-stage tree structure identical to a folded
Clos network [15].1 Just like in a fat-tree, child subtrees
are stitched together at each level of the FatTree with
thicker and thicker edges until there remains a single
root tree, but unlike fat-trees, FatTrees can be built with
uniformly-sized switches and links.

The benefit of these networks is that they can be made

1Since there are a few key distinctions between their instantiations,
we clarify them here. We use fat-tree to denote the classical concept
where links increase in capacity as you travel up toward the root. We
use FatTree to denote the proposal of Al-Fares et al. [3], which uses
multiple rooted trees to approximate a fat-tree. A similar caveat applies
to the research literature’s use of the terminology for Clos networks,
which route messages along equal-length paths between distinct input
and output terminals; folded Clos networks, which make no distinctions
between terminals; and FatTrees, which allow short-circuiting of paths
between nodes in a folded Clos network subtree.

2

of cheaper, commodity switches and provide much more
path diversity within the network. PortLand takes advan-
tage of this path diversity by using ECMP, which ran-
domly places flows across physical paths. While ECMP
lets us take advantage of the increased bandwidth pro-
vided by multiple paths, placing a flow on a single physi-
cal path means that failures will disrupt entire flows. An
alternative is to upgrade the OS and let the end host use a
protocol like MPTCP; however, it is not always the case
that network operators have the ability to change end host
OSes. In this paper, we explore whether we can make
network failures lightweight from the perspective of the
end host so that data center operators can run any end
host system and not what is needed for the network.

To ease exposition, we will focus on a non-
oversubscribed FatTree, in which half of the ports are
used as downlinks to connect nodes within the same sub-
tree, and half used as uplinks to access other parts of the
tree. However, our system handles both oversubscribed
(which allocate more ports to downlinks and can scale
to more nodes or use few layers) and overprovisioned
(which allocate more ports to uplinks for reliability and
bisection bandwidth) variants, discussed further in Sec-
tion 8. The root nodes, which do not have uplink edges,
use all ports for downlinks. Figure 1a depicts a 3-level
FatTree built from 4-port switches.

Our goal is near-instantaneous recovery from failures
and load spikes with no added hardware. The original
design of Clos networks was more concerned with non-
blocking behavior than fault tolerance. Similarly, the pa-
pers introducing FatTrees and related proposals [3, 4, 20]
discuss basic failover mechanisms, but are principally
focused on achieving good bisection bandwidth with com-
modity switches [3], scalability, resilience to (but not
rapid recovery from) faults [20], and centralized load-
balancing [4]. These proposals are inherently limited in
their ability to recover quickly and thoroughly from faults.

Limited local rerouting: While modern data centers
have a variety of failover mechanisms, few are truly local.
Data centers that use a link-state protocol such as OSPF
require updates sent across the entire network before con-
vergence. PortLand uses a centralized topology manager.
VL2 [11] suggested detouring around a fault on the up-
ward path, but it does not reroute around failures on the
downward path because (as we explain below) there is
only one path from any given root to a leaf switch.

Failure information must propagate to many and dis-
tant nodes: This deficiency goes beyond the lack of a suit-
able protocol. Consider Figure 1a.2 No parent or grand-
parent of the failed node has any downlink path to the
affected subtree. This property follows from the fat-tree-

2For simplicity, we omit from several of our figures the doubled
subtrees generated by folding the root uplinks into downlinks.

style construction that there is only ever one downlink
path from the root of a subtree to any of its children.
Among the nodes whose routes could reach a failed node,
only those located lower in the tree than the failure have
a route that avoids the failure. In other words, no protocol
that informs only nodes in the top portion of the tree will
restore connectivity. In the case of a failure on the down-
ward portion of a path, any detour or pushback/broadcast
protocol will be forced to travel from the parent of the
failure all the way back to every node in the entire tree
lower than the failure.

Irregular tree structure because of long-term faults:
While data center operators aim to rapidly repair or re-
place failed equipment, as a practical matter, failures can
persist for long periods of time. This can leave the system
in a suboptimal state with poor load balancing. Multiple
failures make this problem even worse. In our view, it is
crucial that data center networks gracefully handle miss-
ing links and loss of symmetry. A negative example of this
is the simple application of ECMP, which spreads load
from a failed link to all remaining links at a local level,
but does not evenly shift load to the remaining paths.

3 Design Overview
Taking the above concerns into account, we create an en-
gineered network and routing protocol that can rapidly
restore network connectivity and performance. Our sys-
tem, F10, relies on the following ideas:

• Planned asymmetry: We propose a network topol-
ogy that introduces a limited amount of asymmetry to
achieve greater failure tolerance. The basic insight is that
next-generation topologies provide many desirable prop-
erties, but there are variants that provide the same basic
properties and are more resilient to failures.
• Cascaded failover mechanisms: Our system uses

different mechanisms at different time scales to achieve
short-term patching, medium-term fault avoidance, and
longer-term load balancing.
• Co-design of everything: Each of the components of

F10 (i.e., the topology, failover and load balancing pro-
tocols, and failure detector) are designed to enhance and
support each other. As part of this approach, we unify the
related problems of failure recovery and load balancing
and use a similar set of mechanisms for both.

We elaborate on these design points below.

AB FatTree: We introduce a novel topology, the AB Fat-
Tree. By skewing the symmetry of a traditional FatTree,
the AB FatTree allows for efficient local rerouting. The
benefits come at almost no cost. The network requires no
extra hardware, does not lose bisection bandwidth, and
has similar properties to standard FatTrees (e.g., unique
paths from a root to leaf, non-blocking behavior, etc.).

3

(a) (b)

Figure 1: Path alternatives in (a) a standard FatTree and (b) an AB FatTree. The X indicates a failure, and the hashed rectangles
represent switches that are affected by it when trying to send to its children. Bold borders indicate affected switches that have a path
around the failure. In the AB FatTree, more switches are affected, but more have alternatives, and they are closer to the failure.

Local rerouting: To satisfy the need for fast failover, we
use a local recovery mechanism that is able to reroute the
very next packet after failure detection. Because we fix
the topology, we can design a purely local mechanism that
is initiated and torn down at the affected switch and does
not cause any convergence issues or broader disruptions.

Pushback notification: The reroute uses extra hops then
the global optimum. Our system adds a slightly slower
pushback mechanism that removes the additional latency,
reducing the impact on congestion of local recovery.

Global re-optimization: On a much slower time scale, a
centralized scheduler rearranges traffic to optimally bal-
ance load, despite failures.

Failure Detector: The lightweight and local nature of
our failover protocols means that we can be more aggres-
sive in marking links and switches as down, improving
network performance. Our failure detector also provides
and uses finer-grained information about the exact loss
characteristics of the connection.

To accomplish the above, we assume a few things about
the hardware. On the most basic level, we assume that
we can modify the control plane of switches to execute
our protocols locally and that switches can do local neigh-
bor failure detection. We also assume the presence of a
fault-tolerant controller and ability to readdress destina-
tions with a location-based address, as in PortLand. For
flow scheduling, we assume switches support consistent
flow-based assignment for each source-destination pair.
Our system can also benefit from the ability of switches
to randomly place flows based on configured weights cal-
culated by the central controller; however, this weighted
placement is not essential for correct operation.

4 The AB FatTree
As we saw in Section 2.2, the standard FatTree design by
Al-Fares et al. [3] has a structural weakness that makes
it difficult to locally reroute around network failures. We
introduce a novel topology, the AB FatTree, that skews
the symmetry of a traditional FatTree to address this issue.

Notation Definition or Value

k # of ports per switch, e.g., 24
L+1 # of levels in the network, e.g., 3
p k/2: # of up/downlinks per switch
N 2pL+1: # of end hosts in the data center
b dlog2(p)e: # of bits per level in a node location
prefix(a, i) a� (ib): relevant prefix of location a at level i
same prefix(a,a′, i) (prefix(a, i)≡ prefix(a′, i)): whether a and a′

share a prefix at level i

Table 1: A key to the notation used in this paper.

The key weakness in the standard FatTree is that all
subtrees at level i are wired to the parents at level i+1 in
an identical fashion. A parent attempting to detour around
a failed child must use roundabout paths (with inflation
of at least four hops) because all paths from its p− 1
other children to the target subtree use the same failed
node. The AB FatTree solves this problem by defining
two types of subtrees (called type A and type B) that are
wired to their parents in two different ways. With this
simple change, a parent with a failed child in a type A
subtree can detour to that subtree in two hops through the
parents of a child in a type B subtree (and vice versa),
because those parents do not rely on the failed node.

We now make the design concrete. Let k be the number
of ports on each switch element, and L be the number of
levels; as in the standard FatTree we use p = k/2 ports
each for uplink and downlink at each switch, and can
connect a total of N = 2pL end hosts in a rearrangeably
non-blocking manner to the network. Table 1 contains a
summary of the notation we use in this paper.

Figure 2 shows the labeled structure of an AB FatTree
for k = 4 and L = 3, explained in the next few paragraphs.

Connectivity. For levels numbered 0 through L, each
level i < L contains 2pL switches arranged in 2pL−i

groups of pi switches.3 Each group at level i represents
a multi-rooted subtree of pi+1 end hosts with pi root
switches. The distinction between the standard version

3The top level (i = L) has one group of pL switches, using all ports
for downlinks.

4

1

0

2

0

0

0

1

0

10

0

0 1 2 3

0

1

0

0

00

1 0

000 000 010 010 100 100 110 110

000 001 010 011 100 101 110 111

000 000 000 000

Figure 2: A labeled AB FatTree in which the subtrees with
dotted blue lines are of type A and the subtrees with solid red
lines are of type B. The numbers to the right of the tree are the
level, the top number in each switch is the location, and the
bottom number is the index.

and an AB FatTree is in the method of connecting these
root switches to their parents.

Let j denote the index of a root node numbered 0
through pi−1 in level i. In a type A subtree, root j will
be connected to the p consecutive parents numbered jp
through (j+1)p−1. A standard FatTree contains only
type A subtrees, whereas in an AB FatTree only half
the subtrees are of type A. The remainder are of type B,
wherein children connect to parents with a stride of pi:
root j is connected to parents j, j+ pi, j+2pi, etc.

Addressing/Routing. A switch is uniquely identified by:

• level i – The level of the subtree of which it is a root.
• index j – The roots of a specific subtree are consecu-

tively numbered as described above.
• location – The location of a node is an Lb+1-bit num-

ber constructed such that all nodes in the same level i sub-
tree share a prefix of (L− i)b+1 bits that encodes the path
from the root group to the subtree, where b = dlog2 pe.
The location has the format: (b+ 1 bits for level L).(b
bits for level L−1). . .(b bits for level i+1), concatenated
with ib zero bits for levels i through 0.

In the absence of failures, routing occurs much like in
PortLand [20]—each packet is routed upwards until it is
able to travel back down, following longest-prefix match-
ing. By construction, each subtree owns a single location
address and the roots of a subtree can access one child in
each of its subsubtrees. When a packet’s destination lies
within the subtree rooted in the current node, it will be
routed downwards, otherwise it is forwarded upward.

Versus a standard FatTree. Revisiting Figure 1, we see
that this rewiring allows nodes in subtrees of a different
type to route around failures, in addition to nodes on
a lower level that already had alternate paths. While the
number of switches with affected paths increases, the total
number of failed paths stays the same, and therefore the
effects of the failure are distributed across more switches.
As a consequence, more nodes have alternate paths, and
there are alternatives closer to the failure.

(B, 2)(A, 0)

AA B

v y

w z

u

x✘

Figure 3: Illustration of the base cases of local rerouting with
a failure at v. In the upward direction, w avoids v by routing
to any other parent. Downward, u must find detours that avoid
the failure group (A,0). The bold green path shows Scheme 1
rerouting through a type B child x, and the dotted blue path
shows Scheme 2 rerouting through a child y of same type A.

5 Handling Failures
Our failover protocol consists of three stages that operate
on increasing timescales. (1) When a switch detects a
failure in one of its links, it immediately begins using
local rerouting to reroute the very next packet. (2) Since
local rerouting inflates paths as well as increases local
congestion, the switch initiates a pushback protocol that
causes upstream switches to redirect traffic to resume
using shortest paths. (3) Finally, to deal with long-term
failures that create a structural imbalance in the network,
a centralized rerouting protocol determines an efficient
global rearrangement of flows. In addition, the key to fast
failure recovery is rapid and accurate failure detection,
which is discussed at the end of this section.

5.1 Local Rerouting

Our first step after a failure is to quickly establish a new
working route using only local information. We explain
this using Figure 3, which shows a 3-level AB FatTree
with k = 6. We label nodes u, v, and w, where v has failed.

Note that local rerouting for upward links in any multi-
rooted tree is simple. A child (w) can route around a
failed parent (v), by simply redirecting affected flows to
any working parent. This restores connectivity without
increasing the number of hops or requiring control traffic.
In the unlikely event that all parents have failed, the child
drops the packet; an alternative route will soon be con-
figured by the pushback schemes discussed later unless
the node is a leaf node. Most data center services are de-
signed to tolerate rack-level failures. Alternatively, each
leaf node can be wired into multiple ToR switches.

The rest of this section discusses rerouting of traffic for
failed downward links. This case is significantly more
complex, because when a child (v) fails, its parents (e.g.,
u) lose the only working path to that subtree (identified
by prefix(v)) that follows standard routing policy. Instead,
we propose two local detouring schemes. The first mecha-
nism results in shorter detours, but p/2 failures located at

5

specific locations can cause it to fail. The second mecha-
nism succeeds in more cases, but will have longer paths.

Scheme 1: three-hop rerouting. In most cases, we can
route around a single failed child in an AB FatTree with
two additional hops (three hops in total, but one replacing
the link that would have been traversed anyway), without
any pre-computation or coordination.

Suppose, without loss of generality, that the failed child
(v) is located in a type A subtree. By construction, the
parent (u) has connections to p/2−1 children in type A
subtrees, and p/2 children in type B subtrees. Each of
these children has p−1 other parents (u’s siblings), which
all have a link into the affected subtree. By detouring
through one of its siblings, u can establish a path.

Not any sibling will work. With only local information,
u must assume that the entire switch v has failed, rather
than just the link 〈u,v〉. If so, none of the other parents of
v have a route to the affected subtree. We call this set of
v’s parents a failure group and identify it by a tuple (t, j)
consisting of v’s subtree type t and its index j, since each
parent is connected to the jth node in all type t subtrees.
In this example, we would denote the failure group of v
as (A,0). Figure 3 shows (A,0) and (B,2) failure groups.

All of u’s children in type A subtrees only have parents
in the (A,0) failure group, and thus cannot reach the target
prefix. Thus, in Scheme 1, u will simply pick a random
child, say x, in a type B subtree. By construction, x has
parents in all type A failure groups, and thus any parent of
x except u does not route through v. One of the alternate
paths from u to v’s subtree is shown by the bold, green
line in Figure 3. This does not exist in a standard FatTree.

Multiple failures can be handled in most cases. When
failures are located on different levels of the tree, Scheme
1 will always find a path. Multiple failures on the same
level can sometimes block Scheme 1. For the first hop,
u has p/2 links into type B subtrees; if none of these
links work (p/2+ 1 targeted failures) then u must use
Scheme 2. At the second hop, if x has no other working
parents (p targeted failures and a p/2 random choice)
then the scheme fails and packets will be dropped for
the brief period until the pushback mechanism (described
in Section 5.2) removes u from all such paths. At the
third hop, if the link from u′ into the affected subtree has
also failed (2 targeted failures and (p/2)(p−1) random
choice), u′ will invoke local rerouting recursively.

Scheme 2 – five-hop rerouting. We saw that in some
cases of at least p/2+1 failures, Scheme 1 will fail be-
cause u will have no working links to type B subtrees.
This situation trivially arises in the case of any single fail-
ure in a standard FatTree, so our work can also be seen as
showing how to do local rerouting in a standard FatTree.
Scheme 2 uses u’s type A children, but it must go two
levels down to find a working route to v, for a total of

four additional hops in the detour path. One such path is
illustrated in Figure 3 using the bold, dashed blue line. In
Scheme 2, u picks any type A child y 6= v in a different
type A subtree, y picks any of its children, and that child
proceeds to use normal routing to v’s prefix after ensuring
it routes through a parent (y’s sibling) not in a currently-
known failure group. This results in a five-hop path from
u to the target prefix. Scheme 2 can fail in the presence of
sufficiently many (at least p) targeted failures and unlucky
random choices. These unlikely cases will be resolved by
our pushback schemes, described next. With fewer than p
failures, local rerouting will always succeed.

5.2 Pushback Flow Redirection

The purpose of local rerouting is to find a quick way to
reestablish routing immediately after detecting a failure.
The detour paths it sets up are necessarily inflated, and the
schemes we use can sometimes fail although a working
path exists. We introduce pushback redirection to reestab-
lish direct routes and handle cases where local rerouting
fails, but where connectivity is still possible. Pushback
solves both of these issues by sending a failure notifica-
tion back along each affected path to the closest switch
that has a direct route that does not include the failure. The
AB FatTree enables notifications to occur closer to the
failure than in a regular FatTree. Reducing notifications
speeds recovery and minimizes network state.

Consider Figure 4, which shows an AB FatTree built
with 6-port switches. This figure shows pushback propaga-
tion in the network when the link 〈u,v〉 has failed. A total
of 14 pushback messages are sent (indicated by the bold
red lines), and state has to be installed at the 8 switches
marked with red circles. Note that in our pushback scheme
all messages indicate link failures, not node failures. If
the entire node v had failed, u’s two siblings would also
send pushback messages along the red dashed lines, for
a total of 32 additional messages and an additional 12
switches installing state. The main difference between
AB FatTrees and standard FatTrees is that AB FatTrees
can install state higher in the tree, and as a result, push-
back messages travel less far, meaning that the network
will find direct paths more quickly with less effort.
When to push back. There are three key scenarios in
which a switch u will push notifications to its neighbors
(we outline other uses for pushback in handling data cen-
ter congestion in Section 6):

• u cannot route to some prefix in its subtree, either
because of the failure of an immediate child v or upon
receiving a notification from v of a failure further down-
stream. Then u will multicast that it can no longer route
to the affected prefix to all of its neighbors excluding v.
• When all uplinks from u have failed, u will inform its

children that they should use other routes.

6

u

v

xw

Figure 4: Illustration of pushback when the link from u to v fails (marked by the red ’X’). Solid red lines are the paths along which
the notification travels, and the switches with red circles are the set of nodes that need to be notified of the failure. In the case of the
entire switch v failing, the dashed red lines show the paths along which associated notifications travel and state would be installed at
all the endpoints they touch.

• There may exist some external prefixes for which u is
unable to route traffic if all uplinks are failed or affected
by failures and the affected prefixes happen to overlap. u
will inform its children so they can reroute.

Implementation sketch. We do not have the space in this
paper to fully lay out the implementation details for our
pushback protocol. Instead, we present here the messages,
data structures, and basic mechanisms used by F10.

To handle the three pushback scenarios, laid out above,
we define two types of pushback messages. PBOnly mes-
sages indicate that the sender cannot route to the spe-
cific prefix indicated in the message. PBExcept messages
mean that the sender cannot reach any prefix except its
own subtree (or the subtree indicated in the message). To-
gether, PBOnly and PBExcept can represent any set of
routable prefixes. PBOnly messages are used in scenario
1 described above, PBExcept messages match scenario
2, and a combination of both is used in scenario 3.

Suppose a node n receives a PBOnly message telling it
that the edge 〈u,v〉 has failed. How does it know whether
it can route around the failure—in which case it installs
pushback state locally and does not forward the message—
or whether it needs to forward the notification on to its
neighbors? The intuition behind this is that if a node n can
connect to a root node that node u cannot (in the absence
of failures), then n has paths using this root that can reach
v’s subtree without going through the failed edge. Thus
when the edge 〈u,v〉 fails, n has an alternative path to v’s
prefix if and only if it is connected to such a root.

One simple way that n is guaranteed to be wired to a
root that u is not: when n is located at a lower level than
u, then at most one of its parents routes through u, and
an alternative path exists. In AB FatTrees, pushback state
can be sometimes be stored higher in the tree.

To implement a method by which n at a level above u
can know that it has an alternative root, we use a subtree

type stack that represents the types of the trees on the path
from a given switch to the roots of AB FatTree. When a
switch that receives a pushback notification has the same
type stack as the originator (or partial type stack, if the
recipient is higher in the tree), then the switch has no
alternative route and must forward the message on to its
neighbors. In Figure 4, u and w both have stacks {A},
while x has a type stack {B}. Since u and w have the same
type stack, when v fails neither u nor w can route around
it. x can reroute as long as it uses a parent it does not
share with u and w. Formally, a node in a subtree has a
path around a single failed edge precisely if (i) it is at a
lower level than the failure, or (ii) its subtree type stack
is different than the top of the type stack of the failure.

The above procedure describes how a switch u would
handle receiving a notification of a single edge failure.
More generally, its currently-installed pushback state tells
u what prefixes its uplink is unable to serve. Any new
failure (either via a failed link, or notification of a failure
from an uplink) can potentially imply a prefix to which
u can no longer route. If that is the case, u propagates a
notification to all its downlinks.

5.3 Epoch-based Rerouting

After pushback terminates, all traffic will be routed along
shortest paths (provided a route exists), but load may be
unbalanced. Traffic that would have traversed failed links
are shunted onto the remaining links. The third step is
then to repair load balancing by reassigning flows. This is
a global process that is somewhat more involved than the
previous two schemes, so while failures are immediately
reported to a centralized controller, the rebalancing of
load occurs periodically at discrete epochs.

We describe a centralized load balancing server in Sec-
tion 6.2; the same mechanism is used to rebalance flows
after failures. The mechanism for reporting traffic charac-
teristics and scheduling will be discussed subsequently.

7

Failures are communicated to the centralized controller
and taken into account in scheduling. Only shortest paths
are considered by the controller—local detours are in-
tended to be a temporary patch. Since all paths have the
same length, the controller assigns flows to minimize the
maximum traffic across any link. If there is no direct path
available, the flow will continue to take a locally rerouted
path if possible. Additionally, if a packet from a scheduled
flow encounters a failed link or node before the central-
ized controller is informed or reflects the change, it is
treated as non-scheduled from that point onwards. If it
remains stable, it will be rescheduled in the next epoch.

When a node recovers, the switch or link must prove
that it is stable by remaining up for an extended period of
time before the centralized scheduler will assign it traf-
fic. This minimizes lost packets due to repeated failures
of flaky devices. By putting recovery of hardware on a
somewhat slower time scale, we aggregate frequent and
correlated failures into a single event and only incur the
compulsory losses once. When the controller does decide
to reinstall the device, all neighbors are informed, and
they are responsible for tearing down local reroutes and
pushback blocks. Only when the neighboring switches
acknowledge reinstallation is complete does the central
controller use the new device for scheduled flows.

5.4 Failure Detection

Most current detection methods intentionally ensure that
devices do not react to failures too quickly [25]. In IP
routers, OSPF and IS-IS, by default, implement 330 mil-
lisecond heartbeats with 1 second dead intervals. Simi-
larly, layer 2 Ethernet switches will report failures only
after a waiting period on the order of multiple millisec-
onds. (This is called debouncing the interface.) Most of
these failure detection methods only declare a failure after
multiple, relatively slow heartbeats because the networks
they traditionally handle are not necessarily physically
connected and/or operate on shared media. In these set-
tings, congestion can cause false positives, and routing
algorithms are prone to instabilities during rapid changes.

To achieve near-instantaneous rerouting, we need to be
able to rapidly and accurately detect failures. In the case
of fail-stop behavior, we need a faster failure detector that
does not depend on multiple losses of relatively infrequent
heartbeats as mean time to recovery is bounded by the
time to detection, plus the time to compute and install any
changes into the routing table. In the case of stochastic
failures, we need a more accurate failure detector that
does not rely on the loss of a few designated packets.

F10 is able to achieve fast neighbor-to-neighbor fail-
ure detection because switches are directly connected
and routing loops are impossible by construction. Our
failure detection mechanism requires that switches con-
tinually send packets, even when idle. These packets test

the interface, data link, and to an extent, the forwarding
engine. F10’s failure detector takes advantage of the fact
that packets should be continually arriving, and allows
the network administrator to define two sets of values—
one for bit transitions to detect physical layer issues and
one for valid packets and forwarding logic to detect link-
and network-layer problems (higher-level failures require
higher-level, potentially end-to-end solutions):

• t, the time period over which to aggregate
• c, the required number of bit transitions/valid packets

per t for a working link to not be declared as down
• d, the number of bit transitions/valid packets per t

before a failed link is brought back up

These values allow for the customization of the thresh-
old for stochastic losses, as well as the amount of time
necessary before the link can be declared as down. There
are several factors that a operator can take into account
when choosing appropriate values for these variables:

• Probability distributions of failure and recovery times
• Desired false positive rate
• Application requirements for reactivity to failures

While there is a fundamental trade-off between stability
and reactivity (more aggressive c/t ratios necessitate a
higher aggregation period), t is ideally set to allow for
recovery before a transport-layer timeout. Note that these
values will not result in persistent flapping because we
use exponential backoff to handle fluctuations.

Our system eliminates the usual concerns with fast fail-
ure detection. Firstly, our failover protocols only deal with
one link at a time, meaning that a spurious failure will
not affect any other link, cascade failures, or create feed-
back loops. The only negative consequence of a spurious
failure is that the increased load from reroutes will cause
congestion. However, local rerouting is intended to be
short-term. Further, global load balancing is done based
on the measured end-to-end traffic matrix, ignoring the
temporary detour routes.

Secondly, local rerouting is initiated and can be re-
moved at the affected node. Instead of having an extended
period during which the network propagates status up-
dates until the system converges, our rerouting protocol
completes in the time it takes for a switch to update its
routing table. The choice of whether to send along the
link in question or to deflect to a new path is made at the
detecting switch, thus limiting the issue of convergence
of local rerouting to a single switch and guaranteeing that
the protocol converges before the next failure.

Note that continuous probing assumes certain proper-
ties of the link layer—particularly that it is full-duplex.
The type of Ethernet used in data centers are mostly
full-duplex between switches, and in fact, Cisco giga-
bit Ethernet switches and Ethernet standards starting from

8

v y

u

x

Figure 5: Example where the bold, red link between u and v be-
comes congested. If the congestion is in the downward direction,
at least x and y need to be notified of the congestion to allevi-
ate it. The colored, dashed lines indicate the four paths toward
which traffic will be shifted as a result of said notification.

10GbE do not even support half-duplex or CSMA/CD.
Furthermore, we argue that this functionality is practical
since modern Ethernet standards already call for continual
broadcasting of null symbols during idle periods.

6 Load Balancing
A closely related problem to failure recovery is that of
load balancing. Not only do failures increase load on
the rest of the system, they also have very similar char-
acteristics. Traffic in data centers, like failures, follows
a long-tailed distribution [5]. The majority of flows are
small and short-lived, but their longer-lived counterparts
can cause long-term congestion if not handled correctly.

Even in the case of a single loaded link, the two prob-
lems share much in common. Consider Figure 5, where a
single link connecting u and v is overloaded. v can detect
and instantly react if the load is in the (v,u) direction, but
if it is in the reverse direction, the closest nodes that can
respond to the issue are x and y. In the end, however, all
links in the network could potentially need to change in
order to restore global load balancing. We take the same
‘cascading’ approach to load as we do with failures and
introduce three mechanisms that mirror those above:

• A flow-placement mechanism that allows each switch
to locally place flows based on expected load.
• A version of our pushback mechanism that is able to

gracefully handle momentary spikes in traffic. For details,
we refer the interested reader to our tech report [19].
• The same epoch-based centralized scheduler that is

also used for failure recovery.

Because TCP dynamics make packet reordering unde-
sirable, we place traffic on a per-flow basis. At a high
level, the centralized scheduler preallocates a portion of
each link for long-term, stable flows. The remainder is
used for new and unstable flows—these are randomly
scheduled in the remaining capacity, but with pushback
to deal with short term congestion.

6.1 Weighted Random Load Balancing

Traffic that is too short-lived to benefit from our central-
ized scheduling algorithm needs to be handled locally and
immediately. For these types of flows, switches on the
upward path use random placement of short-term traffic
across all of the available shortest paths. Each flow is di-
rected along upward edges randomly, and in the case that
the centralized scheduler makes paths unequal in terms
of scheduled load, we use weighted ECMP that is based
on the residual capacity left after scheduling.

Note that new links have an initial residual capacity of
zero, and thus, new flows do not use the link so that the
centralized controller is able to ensure consistent weight-
ing. If all links have zero remaining capacity, a new flow is
placed across some non-failed link with equal probability.

In the example in Figure 5, random load balancing
attempts to avoid congesting the link in the first place by
distributing across all available links. After the congestion
occurs, v will place less weight on the congested link,
and even x and y will need to adjust their weights after
pushback load balancing completes.

When there are no failures and stable flows, just placing
flows randomly across all paths can achieve optimality.
However, spontaneous congestion and failures necessitate
other mechanisms in addition to random load balancing—
mechanisms like pushback and centralized scheduling.

6.2 Centralized scheduling

Longer-term, predictable flows can and should be sched-
uled centrally to ensure good placement to avoid persis-
tent congestion. For these longer flows, we use a similar
approach to MicroTE [6], which advocates centralized
scheduling of ToR-to-ToR pairs that remain predictable
for a sufficient timespan. The authors found from mea-
surement data that data center traffic is predictable. They
propose a system in which a server in each rack saves
traffic statistics and periodically sends to a centralized
controller a list of “predictable” flows that have instanta-
neous values within some delta of their average value.

In F10, these flows are scheduled with a greedy al-
gorithm that sorts the flows from largest to smallest and
places them in order on the paths with the least cost, where
the cost of a path is defined as ∑

1
R(e) over the edges e in

the path P, where R(e) is the remaining capacity of edge
e. The controller informs ToRs about scheduled flows,
and residual capacities are sent to each switch to use for
weighted ECMP. If a scheduled flow runs into a failure,
it becomes unscheduled at the point of failure, and gets
placed using weighted ECMP.

In general, optimal rearrangement is an NP-complete
problem for single-source unsplittable flows. We choose
the greedy algorithm for scalability reasons, but the exact
choice of algorithm is orthogonal to our work. Multipath

9

 0
 10
 20
 30
 40
 50
 60
 70

 0 5000 10000 15000 20000

C
on

ge
st

io
n

W
in

do
w

time (ms)

Without Failure
With Failure

Figure 6: TCP congestion window trace with and without failure.
In the case of the failure, a link went down at 15sec and F10
recovered before a timeout occurred.

flows are more flexible from a load balancing perspective,
but require end host changes to the TCP stack.

7 Prototype and Evaluation
7.1 Prototype

We built a Click-based implementation of F10 and tested
it on a small deployment in Emulab [24]. The prototype
runs either in user-mode or as a kernel module. The im-
plementation is a proof of concept and correctly performs
all of the routing and rerouting functionality of F10. It is
able to accept traffic from unmodified servers and route
them to their correct destinations.
Failure Characteristics. We instrumented a Linux kernel
to gather detailed TCP information, including accurate
information about congestion window size; we used this
instrumented kernel to test the effect of a failure on a
TCP stream. Tests were performed in Emulab, but since
bandwidth limitations in both the links and the Click
implementation are lower than in a real data center, we
lowered the packet size so that the transmission time and
the number of packets in flight are comparable to a real
deployment with 1 gigabit links. We used this testbed to
compare the evolution of a congestion window with and
without failure during a 25 second interval in Figure 6.
F10 is able to recover from the failure before a timeout
occurs and the performance hit is minimal.
Failure Detector. We have also implemented an approx-
imation of F10’s failure detector using Click in polling
mode. The detector would ideally be built in hardware,
but preliminary results indicate that we can approximate
the ideal detector with a Click-based implementation. Un-
fortunately, with Click, it is not possible to track bit tran-
sitions on the wire, and there is some amount of jitter
between successive schedulings of the network device
poller. Even so, our Pentium III testbed machine was able
to accurately detect failures after as little as 30µs—much
less than a single RTT in a data center. With this property,
we were able to fail based on the rate of valid packets.

At each output port, we placed a strict priority sched-
uler that pulls from the output queue if possible, or else
generates a test packet. The dummy packets are inter-
cepted and dropped by the downstream failure detector

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F
ov

er
 T

im
e

In
te

rv
al

s

Packets per Second

Testbed
Simulator

Figure 7: Comparison of throughput of the testbed and the sim-
ulator through ten failures and the same topology/offered load.

before being passed to the rest of the system. The detector
asserts a failure and notifies the rest of the system when
the arrival rate of either good or nonce packets drops
below the specified threshold.

7.2 Evaluation Environment

Simulator. We created an event-driven simulator to test
the efficacy of F10 with medium- to large-scale data
centers—resources limited the feasibility of such experi-
ments in our testbed setting. The simulation includes the
entire routing and load balancing protocol along with the
fast failure detection algorithm.

Our multicore, packet-level, event-driven simulator
comprises 4181 lines of Java. It implements both low-
level device behaviors and protocols. The Layer 2 Eth-
ernet switches use standard drop-tail queues and have
unbounded routing state; our evaluation shows that even
with many failures in the network, only a modest amount
of state needs to be installed. The simulator models 100 ns
latency across each link to cover switch and interface pro-
cessing as well as network propagation latencies. When
there is no traffic, each switch generates nonce messages
to its neighbors. The link is marked as failed if three
consecutive packets are not received correctly.

Our experiments are performed assuming 24-port
10GbE switches in a configuration that has 1,728 end
hosts, resulting in a standard or AB FatTree with three
layers. Except in Section 7.6, we use UDP traffic in our
experiments so that we can more precisely measure the im-
pact of the failure on load. This enables us to understand
how well the evaluated mechanisms improve network ca-
pacity. TCP will generally back off quickly, resulting in
lower delivered throughput than shown here.

We have compared the measurements generated by
both the testbed and simulator, for an identical topology
and offered load. Figure 7 is a CDF of throughput for a
single source-destination pair that experienced a sequence
of ten failures, which each went through all of the stages
of failover in F10. We found that, in all cases tested, the
simulator and testbed results matched each other closely.

Workload model. We derive our workload from mea-
surements of Microsoft data centers given by Benson
et al. [5]. We generate log-normal distributions for (1)

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 L
os

s

Time (ms)

Failure drops
Congestion drops

Figure 8: Aggregate losses due to lack of connectivity and con-
gestion in the case a single failure.

packet interarrival times, (2) flow ON-periods, and (3)
flow OFF-periods, parameterized to match the experimen-
tal data from the paper. In certain experiments (labeled
explicitly below), we scale the packet interarrival times
to adjust the load on the network.

Failure model. Failures are based on the study by Gill et
al. [10] that investigated failures in modern data centers.
We generated log-normal distributions for (1) the time be-
tween failures and (2) the time to repair for both switches
and individual links based on their experimental data.

Note that we do not consider leaf (ToR) switch fail-
ures, as these are well handled by cloud software. Fault
tolerance of rack failures is orthogonal to our work on the
robust interconnection between them.

7.3 Recovering from a Single Failure

Figure 8 shows a breakdown of the losses over time after
a single switch failure in F10 running a uniform all-pairs
workload at 50% (UDP) load. The y-axis in this graph
shows the loss rate normalized to the expected number of
packets traversing each switch.

When the failure occurs at 10ms, there is a burst of
packet drops due to failure. At around 11ms, the neighbors
of the failed switch detect the failure, and local rerouting
installs new working routes and eliminates failure drops.
Local rerouting reduces the capacity of the network, trig-
gering congestion. When the pushback scheme is initiated
later, it quickly and effectively optimizes paths, spreading
the extra load and eliminating the congestion loss.

7.4 Comparison with PortLand

F10 recovered from the single failure evaluated in the
prior section within 1 ms of the failure; this is more than
two orders of magnitude faster than possible with Port-
Land [20], the state of the art research proposal for fault
tolerance in data center networks, which reports minimum
failure response times of 65 ms. In addition, F10 was able
to recover load balancing in 35 ms, while PortLand does
not handle congestion losses at all. In this section, we
compare F10 against PortLand using the realistic, syn-
thetic traffic and failure models described in Section 7.2.

Figure 9 shows the congestion rate in each system. We
generated workload and failure events from a random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.002 0.004 0.006 0.008 0.01

C
D

F
ov

er
 T

im
e

In
te

rv
al

s

Normalized Congestion Loss

F10
PortLand

Figure 9: CDF of the congestion losses of both PortLand and
F10 under realistic traffic and failure conditions.

seed and fed the same trace into PortLand, which uses a
standard FatTree, and F10 with an AB FatTree and all our
techniques. We aggregated loss statistics over a 500µs
time interval, and report the distribution of congestion loss
over these intervals. The figure aggregates data points for
multiple runs that start from different initial conditions.

Overall, F10 has much less congestion than PortLand.
F10 sees negligible loss for 3/4 of time periods, whereas
PortLand nearly always has congestion. In total, Portland
has 7.6× the congestion loss of F10 for UDP traffic.

7.5 Local Rerouting and AB FatTrees

Note that both standard and AB FatTrees can perform
local rerouting, but the former is unable to exploit the
shorter detours of F10. Here, we evaluate the impact of
the novel structure of AB FatTrees during local reroutes.
We measured the path inflation of local reroutes using
varying numbers of switch failures (up to 15 concurrent
failures, implying up to 360 failed links) in standard vs
AB FatTrees (see Figure 10). We found that local reroutes
in AB FatTrees experience roughly half the path inflation
than in standard FatTrees, owing to F10’s ability to use
Scheme 1 rerouting in addition to Scheme 2. Even for
many concurrent failures, the vast majority—more than
99.9%—of reroutes use the minimum number of hops (2
for AB FatTrees). We also looked at random link failures
as opposed to switch failures, and obtained similar results
in terms of how the path dilation in F10 compares with
that of standard FatTrees.

7.6 Speeding up MapReduce

We conclude our evaluation by simulating the behavior of
a MapReduce job (with TCP flows) in our data center. We
used a MapReduce trace generated from a 3600-node pro-
duction data center [7], and considered the performance
of just the shuffle phase, where flows are initiated from
mappers to reducers, with mappers and reducers assigned
randomly to servers. We focus our study on only those
MapReduce computations that involved fewer than 200
mappers and reducers in total.

Figure 11 compares the performance of the shuffle op-
eration under the two architectures—F10 and PortLand—
and the failure model used thus far. Since the shuffle
operation completes only after all the constituent flows

11

10-6
10-5
10-4
10-3
10-2
10-1

1

 0 4 8 12 16 20

C
C

D
F

ov
er

 tr
ia

ls

Additional Hops

15 Failures
10 Failures
5 Failures
1 Failure

(a) A standard FatTree, which can only use local rerouting Scheme 2

10-6
10-5
10-4
10-3
10-2
10-1

1

 0 4 8 12 16 20

C
C

D
F

ov
er

 tr
ia

ls

Additional Hops

15 Failures
10 Failures
5 Failures
1 Failure

(b) An AB FatTree using both local rerouting schemes

Figure 10: Complementary CDF of the path dilation using local
rerouting for 1, 5, 10 and 15 simulated switch failures when
using our local rerouting schemes in standard and AB FatTrees.

are complete, it suffers from the well-known stragglers
problem. If any of the flows traverse a failed or rerouted
link, it suffers from suboptimal performance. We measure
the speedup of an individual job as the completion time
under PortLand divided by that of the job under F10.

Figure 11a shows the distribution of the speedup; we
find that F10 is faster than PortLand with a median
speedup of about 1.3×. Figure 11b, shows the distribution
of speedup vs job size, and we find that gains are larger
when more nodes participate and compete for bandwidth.
We conclude that F10 offers significant gains over Port-
Land, and this will improve in larger future data centers.

8 Extensions
8.1 Other Types of Multi-Tree Networks

So far, we have focused on a specific subset of multi-tree
networks—Clos networks where the number of uplinks
at any switch is equal to the number of downlinks. We
now show how the ideas presented in this paper can be
used in conjunction with other topologies. In particular,
we generalize our protocols for any type of folded Clos
network and also look at traditional data center topologies.
Oversubscribed and Overprovisioned Networks: Al-
lowing the number of uplinks and downlinks for a single
switch to differ allows for “vertical” asymmetry. Such
asymmetry can be useful if different layers use different
technologies (e.g., VL2’s Clos topology) or when traffic
patterns do not require full bisection bandwidth.

Fortunately, these networks require little to no change
in our algorithms. The placement of flows by the global
rebalancer is easily extended to this case. Pushback simi-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F
ov

er
 tr

ia
ls

Job completion time with PortLand/F10, i.e., Speedup

(a) Distribution of Speedup

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Sp
ee

du
p

us
in

g
F1

0

Number of MapReduce nodes (M+R)

(b) Speedup vs Job Size

Figure 11: An end-to-end evaluation using PortLand or F10 for
MapReduce jobs.

larly does not rely on the number of links; notifications
are broadcast to all uplinks and downlinks, and termi-
nation only depends on level and type stack. For ba-
sic routing, local rerouting and recursive pushback, a
few generalizations of functions must be made, and for
this we require configuration of the number of down-
links for switches at each level, Dlevel. All references
to p should be replaced by Dlevel and protocols should
be changed to take the nonuniformity into account (e.g.,
prefix(a, i) = a� (Σi

l=1(dlog(Dl)e))).
Traditional Data Center Networks: Next we look at
more traditional topologies like those described in [8].
These topologies have many extra links compared to a
Clos topology with an equal number of switches, but gain
fault-tolerance as a result. Although we focused on next-
generation data centers as they are more scalable and cost
effective, there is no reason that F10’s concepts cannot be
applied to traditional networks as well. These networks
have two main topological differences from Fat-Trees:

• Cross-links between switches in the same level
• Multiple links into a given subtree/pod (often all sub-

roots connect to all roots and vice versa)

While these links do not necessarily add to the capac-
ity of the network, they allow for shorter reroutes than
possible in F10. Even so, F10’s failure detection, near-
instantaneous failover and load balancing concepts can
increase performance and reactivity to failures and fault
tolerance in the case of multiple failures. Note that in the
case where all subroots connect to all roots and vice versa,
A and B subtrees have identical wirings just as in the low-
est level of normal FatTrees. Thus, any child can be used

12

for phase 1 of local rerouting and pushback terminates as
soon as it follows a downlink.

8.2 Beyond AB FatTrees

Our architecture introduces an extra type of subtree that
connects to a different set of roots and thus provides
additional path diversity. A natural question to ask is
whether we can get even more diversity with more types.

In the limit, we can create a p-type FatTree in which
all subtrees are connected to a slightly different set of
roots. This is accomplished by rotating the set of roots to
which a subtree connects—subroot j of the first subtree
connects to the jp through the (j+1)p−1 roots, subroot
j of the second subtree connects to roots jp+1 through
(j+1)p, and in the same manner, each additional subtree
incrementally shifts by one. This guarantees that every
sibling of a given node n has at least one alternative path.

At first glance, this seems to improve the potential
for efficient reroutes. However, more choices at the first
hop of local rerouting comes at the cost of fewer at the
second. While an AB FatTree provides p−1 alternatives
for the second hop of Scheme 1 given a single failure, a p
type FatTree will have an average of p/2−1, with some
nodes having more alternatives than others. Increasing the
number of types does not, in general, increase the chance
of finding a two-hop detour.

For pushback, more alternatives means that the notifi-
cations can stop earlier (in the case of a single failure in a
p-type FatTree, pushback can terminate after the message
traverses any downward link). However, traffic destined
for the failed path is split over a smaller number of al-
ternate paths, disproportionately increasing the load on
those paths. In sum, the tradeoffs are complex, and we
leave a fuller comparison for future work.

9 Related Work
The topic of fault tolerance in interconnection networks
has a long history [1, 9, 16]. Most previous work on this
topic, most notably [2], has added hardware in the form of
stages, switches and links to existing topologies to make
them more fault tolerant while keeping latency and non-
blocking characteristics constant. We instead allow for a
temporary increase in latency for paths affected by faults
in exchange for no increase in hardware cost.

In the context of today’s data centers, researchers have
recently proposed several alternative interconnects. Our
work directly builds on FatTrees [3] as they are used
in PortLand [20], although our ideas generalize to other
multi-rooted trees like VL2 [11] and beyond. We lever-
age many of the earlier mechanisms in our work. We
replace the interconnect with our novel AB FatTree net-
work and co-design local rerouting, pushback, and load
balancing mechanisms to exploit the topology. Hedera [4]
implements centralized load balancing on top of PortLand.

Hedera only schedules new flows, whereas we choose to
globally rearrange flows periodically.

DCell [13] and BCube [12] introduce structured net-
works that are not multi-rooted trees.The key difference
is that these topologies trade more hardware for their in-
creased robustness. DCell performs local rerouting after a
failure but is not loop free (unlike ours). Loop freedom is
important to enable fast failure detectors at the link layer
without compromising reliability.

Jellyfish [23] takes a different approach to datacenter
design—unstructured, random-wiring. It trades regular-
ity and rearangeable, non-blocking guarantees for better
average-case performance with less hardware. Our mech-
anisms might apply to their topology, though it would re-
quire precomputation of all detour paths, and it is unclear
how much path dilation would be needed on average.

Our failure recovery schemes leverage existing tech-
niques. Our local rerouting scheme uses tags and fail-
ure lists analogous to MPLS and Failure-Carrying Pack-
ets [14], respectively. MPLS supports a similar style of
immediate local detours (Fast Reroute) while waiting for
the failure to propagate upstream (Facility Backup) [21].
MPLS failover requires manual preconfiguration and
stored state, whereas our system has easy-to-compute
backup paths and stores state only when there is a failure.

DDC [18] has the same intuition that failover should
be done at the network layer. They make no assump-
tions about network topology, and so they cannot benefit
from preset local reroutes. In order to handle unstructured
networks, their approach reroutes for each destination
separately and does not result in paths that are as efficient
as the ones produced by our local rerouting scheme.

10 Conclusion
Scalable, cost-efficient and failure resilient data center net-
works are increasingly important for cloud-based services.
In this paper, we describe F10, a novel multi-tree topol-
ogy and routing algorithm to achieve near-instantaneous
restoration of connectivity and load balance after a switch
or link failure. Our approach operates entirely in the net-
work with no end host modifications, and experiments
show that routes can generally be reestablished with de-
tours of two additional hops and no global coordination,
even during multiple failures. We couple this fast rerout-
ing with complementary mechanisms to quickly reestab-
lish direct routes and global load balancing. Our evalu-
ation shows significant reduction in packet loss and im-
proved application-level performance.

Acknowledgments
We gratefully acknowledge our shepherd George Porter
for guiding us through the shepherding process. This re-
search was partially supported by the National Science
Foundation grants CNS-0963754 and CNS-1040663.

13

References
[1] G. B. Adams, III, D. P. Agrawal, and H. J. Seigel. A survey and

comparision of fault-tolerant multistage interconnection networks.
Computer, 20:14–27, June 1987.

[2] I. Adams, G.B. and H. Siegel. The extra stage cube: A fault-
tolerant interconnection network for supersystems. IEEE Trans.
Comput., C-31(5):443–454, May 1982.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. In SIGCOMM, 2008.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: dynamic flow scheduling for data center
networks. In NSDI, 2010.

[5] T. Benson, A. Akella, and D. A. Maltz. Network traffic character-
istics of data centers in the wild. In IMC, 2010.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine
grained traffic engineering for data centers. In CoNEXT, 2011.

[7] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica.
Managing data transfers in computer clusters with Orchestra. In
SIGCOMM, 2011.

[8] Cisco. Data center: Load balancing data center ser-
vices. https://learningnetwork.cisco.com/servlet/
JiveServlet/downloadBody/3438-102-1-9467/cdccont_
0900aecd800eb95a.pdf.

[9] C. C. Fan and J. Bruck. Tolerating multiple faults in multistage
interconnection networks with minimal extra stages. IEEE Trans.
Comput., 49:998–1004, September 2000.

[10] P. Gill, N. Jain, and N. Nagappan. Understanding network fail-
ures in data centers: Measurement, analysis, and implications. In
SIGCOMM, 2011.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable
and flexible data center network. In SIGCOMM, 2009.

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. BCube: a high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: a
scalable and fault-tolerant network structure for data centers. In
SIGCOMM, 2008.

[14] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving convergence-free routing
using failure-carrying packets. In SIGCOMM, 2007.

[15] F. T. Leighton. Introduction to Parallel Algorithms and Architec-
tures. Morgan Kaufmann Publishers, Inc., 1992.

[16] F. T. Leighton and B. M. Maggs. Fast algorithms for routing
around faults in multibutterflies and randomly-wired splitter net-
works. IEEE Trans. Comput., 41:578–587, 1992.

[17] C. E. Leiserson. Fat-trees: universal networks for hardware-
efficient supercomputing. IEEE Trans. Comput., 34:892–901,
October 1985.

[18] J. Liu, B. Yang, S. Shenker, and M. Shapira. Data-driven network
connectivity. In HotNets, 2011.

[19] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A
fault-tolerant engineered network. UW-CSE-12-09-05, 2012.

[20] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat. Port-
Land: a scalable fault-tolerant Layer 2 data center network fabric.
In SIGCOMM, 2009.

[21] P. Pan, G. Swallow, and A. Atlas. Fast reroute extensions to
RSVP-TE for LSP tunnels. Internet RFC 4090, 2005.

[22] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness
with multipath TCP. In SIGCOMM, 2011.

[23] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
networking data centers randomly. In NSDI, 2012.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An integrated exper-
imental environment for distributed systems and networks. In
OSDI, 2002.

[25] R. White. High availability in routing. http://www.cisco.
com/web/about/ac123/ac147/archived_issues/ipj_7-1/
high_availability_routing.html.

14

