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Abstract
We propose a radical re-architecture of the traditional operating
system storage stack to move the kernel off the data path.
Leveraging virtualized I/O hardware for disk and flash storage,
most read and write I/O operations go directly to application
code. The kernel dynamically allocates extents, manages the
virtual to physical binding, and performs name translation. The
benefit is to dramatically reduce the CPU overhead of storage
operations while improving application flexibility.

1 Introduction
Modern data center application workloads are frequently
characterized by many small, low-latency storage operations.
Examples include both web and big data applications, where
web servers, file servers, databases, persistent lock managers,
and key-value stores need to interact on short timescales to
execute each user request under tight time constraints.

Hardware designers have responded with both PCIe-
attached flash storage and cached storage arrays to provide
very low latency yet high throughput local storage architec-
tures. For example, RAID controllers, such as the Intel RS3
family [13], contain gigabytes of battery-backed DRAM as
a cache with end-to-end access latencies as low as 25 µs
and bandwidth of up to 12 Gb/s. RAID cache controllers,
such as the Intel RCS25ZB family [14], provide up to
1TB of NAND-flash-backed cache memory with similar
access latencies and bandwidths. PCIe-attached flash storage
adapters, such as the Fusion-IO ioDrive2, report hardware
access latencies as low as 15 µs [10].

In this paper, we propose a corresponding revolution in
the operating system stack to take maximum advantage of
these opportunities. Otherwise, as we detail in Section 2,
the operating system is at risk of becoming the critical
performance bottleneck. Even as I/O performance improves
at a staggering rate, CPU frequencies have effectively stalled.
Inefficiencies in the operating system storage stack which
could be safely ignored up to now, are becoming predominant.

Previous work has relied on limited-use APIs and compro-
mised semantics to improve performance. For example, the
Linux sendfile system call [17] allows data to be copied
directly from the disk buffer into the network buffer, without
traversing the application. In the Redis persistent key-value
store, flushes to stable storage are delayed to amortize storage
subsystem overheads [6].

We step back to ask: how should we architect the operating
system for maximal storage I/O performance? We take the
radical step of moving the operating system kernel completely

“off the data path”. (This contrasts with Linux sendfile, which
moves the application off the data path.) Rather, the kernel
establishes the binding between applications and their storage;
applications then access the storage directly without kernel
involvement.

A key enabler is recent hardware I/O virtualization technol-
ogy, such as single-root I/O virtualization (SR-IOV) [16]. The
traditional slow data path to storage is made even worse by
the widespread deployment of virtual machines, since both the
hypervisor and the guest operating systems must be traversed
on every operation. SR-IOV and the IOMMU make it possible
to bypass the hypervisor to deliver I/O events directly to the
guest operating system. SR-IOV-capable PCIe storage adapter
cards (“physical functions”) are able to dynamically create
virtual copies (“virtual functions”) of themselves on the PCIe
interconnect. Each virtual function resembles a PCIe storage
adapter that can be directly mapped into virtual machines
and programmed as if it was a regular physical device, with
a normal device driver and an unchanged OS I/O stack.

We can extend this model to enable applications, and not just
operating systems, to directly manage their storage. This by-
passes both the host and guest operating system layers. Appli-
cations have direct user-level access to storage adapter virtual
functions, allowing most reads and writes to bypass the OS ker-
nel. The operating system kernel manages the mapping of vir-
tual storage extents to physical disk blocks, the allocation and
deallocation of extents, data protection, and name translation.

This approach combines low overhead with greatly
improved flexibility for applications to customize storage
management to their own needs. Speedups can be gained
by eliminating generic kernel code for multiplexing, security,
copying, and unnecessary features that are not used by a
particular application. For example, a key-value store can
implement a persistent hashtable for storing key-value pairs
directly, without having to rely on a hierarchical inode space
to locate corresponding disk blocks. Cache management and
pre-fetching can be more efficient, as the application has a
better idea of its workload than a generic OS kernel storage
stack. The inflexibility of existing kernel storage stacks has
been lamented many times in the past [24].

A key feature of our approach is that the user naming
and protection model is unchanged. Today’s file systems
inappropriately bind naming and implementation together.
A disk partition formatted for NTFS uses that file format
for every file in that subtree, whether or not that is the most
appropriate. The result is to force file system designers into
the most general-purpose designs imaginable.
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Figure 1: Overhead in µs of various Linux filesystem
implementations, when conducting small, persistent writes.

Our approach instead is to associate each application
with the directories and files it manages, as if they were
dynamically mounted network file systems. This way, an
application is free to organize its files, and its directories,
however it chooses. Other applications can still read those files
by indirecting through the kernel, which hands the directory
or read request to the appropriate application.

To present the case for a user-level storage architecture, we
make the following contributions: We introduce an ideal set
of hardware features for the efficient realization of user-level
storage architectures (Section 3). Building upon these features,
we present the initial design of an OS storage architecture
that enables the construction of user-level storage stacks
(Section 4). We then present a number of application use
cases for such user-level storage stacks (Section 5).

This storage proposal forms part of our larger Arrakis
project that sets out to build a high-performance server
operating system by bypassing the OS kernel for I/O
operations in the common case [20]. Our experience shows
that we can expect other I/O stacks, such as that of the network,
to achieve comparable latency and throughput benefits [21].

2 Inefficiencies in Storage Stacks
To illustrate the overhead of today’s OS storage stacks
when conducting small writes with persistence requirements,
we conduct an experiment, where we execute small write
operations immediately followed by an fsync1 system call in
a tight loop of 10,000 iterations and measure each operation’s
execution latency. For this experiment, the file system is stored
on a RAM disk, so the measured latencies represent purely
CPU overhead. The experiment was conducted on a 6-core
2.2GHz Sandy Bridge system with an Intel RS3DC040 RAID
storage controller, running Linux 3.8.

Figure 1 shows the kernel storage stack overheads for differ-
ently sized writes under various filesystems. A write followed
by fsync of 1KB via the second extended (ext2) filesystem has
a total latency of 6 µs. More advanced filesystems incorporate
functionality like journaling to avoid metadata corruption on
system crashes, but this functionality comes at a cost: the same

1We also tried fdatasync, with negligible difference in latency.

write via the ext3 and ext4 filesystems has a latency of up to 29
µs. For the modern btrfs, average latency is as high as 76 µs.

Historically, these latency figures might not raise concern,
being dwarfed by the 5-10 ms latency of each disk seek. How-
ever, modern storage systems can offer lower latency: consider
both the near-ubiquity of caching RAID controllers and fast per-
sistent storage devices based on emerging non-volatile memory
technologies. In this environment, OS storage stack overhead
becomes a major factor. Compared to the available latencies
of down to 15 µs offered by the storage hardware, OS storage
stack overheads are high, between 40% and 2x for the extended
filesystems, depending on journal use, and up to 5x for btrfs.

These overheads are in part due to general purpose kernel
code accumulating bloat in order to accomodate a wide variety
of application needs. Despite this generality, applications
often layer their own storage techniques on top of the features
already offered by filesystems. The resulting duplication of
functionality leads to even higher latency. For example, the
Redis key-value store can ensure consistency by writing a
journal of operations to durable storage via the filesystem. In
many cases, the filesystem conducts its own journaling, too.

Finally, traditional operating systems conflate the concepts
of file and block naming and their layout. For example, virtual
file system (VFS) APIs are almost always hierarchical in
today’s OSes. Filesystem implementations and applications
are forced to follow this API. However, hierarchical naming
might not always fit the storage requirements. For example,
key-value stores typically locate data via a hashtable, instead of
traversing a hierarchical namespace. Similarly, email servers
locate mail by header or body text, not by mailbox name or
identifier. Supporting a hierarchical namespace comes at addi-
tional cost, both in terms of additional levels of indirection [24]
and lock contention on common directories [4].

3 Hardware Model
An efficient implementation of a user-level storage stack
requires hardware support. We are aiming our design at
an idealized storage hardware architecture that captures the
functionality required to implement in hardware the data plane
operations of a traditional kernel-level storage stack. Much of
this functionality is available in existing hardware controllers
with virtualization support. However, certain aspects of our
model are not yet available. Thus, our proposal aims to provide
guidance for future storage hardware architecture designs.

In our model, storage controllers can be virtualized. Each
controller exposes multiple virtual storage interface controllers
(VSICs) to the operating system. Each VSIC provides indepen-
dent storage command interfaces which are multiplexed by the
hardware. For example, each VSIC has at least one command
queue (e.g., of SCSI or ATA command format) that can be
managed directly within user-space without kernel mediation,
including separate interrupts for each queue to signal
command completion. In addition, it would be beneficial to be
able to specify a bandwidth allocation for each VSIC to limit
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an application’s I/O bandwidth, but this is not required. The
IOMMU performs address translation and protection of DMA
commands executed on behalf of the user-space application.

We assume that storage devices will continue to be
accessible via a request-based DMA protocol, although some
proposals for NVRAM technology have called for it to be
directly incorporated into the memory interconnect. We
anticipate that DMA-based protocols will remain available,
given the need to provide compatibility with existing devices,
as well as to provide an asynchronous interface to devices
with higher latency than DRAM.

In addition to independent virtual command interfaces,
storage controllers need to provide an interface via their
physical function to create and delete virtual storage areas
(VSAs), map them to extents of physical drives, and associate
them with VSICs. It might be sufficient if each VSIC supports
only one VSA, but in some cases support for multiple different
VSAs can have benefits. For example, parallel writes to differ-
ent storage devices, such as multiple flash chips, may improve
performance. Multiple VSAs can also be useful to applications
for organizational purposes. Allowing application-level control
over parallel writes can improve performance further due to
the application’s intricate knowledge of the workload.

Today’s storage controllers have most of the technology
needed to provide the interface we describe. For example,
RAID adapters have a translation layer that is able to provide
virtual disks out of physical disk stripes and SSDs use a
flash translation layer for wear-leveling. Furthermore, storage
host-bus adapters (HBAs) have supported SR-IOV technology
for virtualization [18, 19], which allows them to expose
multiple VSICs. Only the required protection mechanism is
missing. We anticipate VSAs to be allocated in large chunks
(tens of megabytes to gigabytes) and thus hardware translation
layers can be coarse-grained.

4 OS Model
To allow applications unmediated access to VSICs, we divide
the OS storage stack into a control and a data plane. Under
normal operation, applications interact directly with the
hardware using the data plane interface. The control plane
interface, which is mediated by the kernel, is used to set up
VSICs and VSAs.

4.1 Control Plane Interface

The control plane interface is used to create and delete VSICs,
associate them with applications, create, modify, and delete
virtual storage areas (VSAs), establish a mapping between
VSAs and physical drive extents, and to setup bandwidth
limits for VSICs.

Creation and deletion of VSICs can simply be accomplished
by corresponding API calls from the applications in question.
The newly created VSIC is associated with the requesting.
The creation of multiple VSICs per application can be useful
if the application makes use of multiple protection domains.

As long as physical storage space is available, the interface
should allow creating new VSAs and extending existing ones.
Deleting an existing VSA is always possible and shrinking it as
long as its size is larger than zero. Shrink and delete operations
permanently delete the data contained in the VSA. This can be
done asynchronously by the control plane upon deletion/shrink.
Extending and shrinking might be done in increments of a fixed
size, whichever is most efficient given the hardware, and the
(de-)allocation of physical storage blocks is also carried out by
the control plane. As we envision VSAs to be modified at an
infrequent pace and by large amounts, the overhead of these op-
erations does not significantly affect application performance.

VSAs are protected by a security capability reference
that is granted upon VSA creation and that needs to be
held by the application wishing access to an existing VSA.
The capability is the sole reference to an existing VSA
and is stored in a capability storage area in the control
plane. The control plane is responsible for remembering an
association between a VSA and an application and to grant the
corresponding capability back to that application. A traditional
kernel-mediated filesystem can be used to store application
binaries, capabilities, and their association, and they can be
named like regular files. Capabilities may be passed to other
applications, so they may access the corresponding VSA.
Concurrent access is handled at application-level.

For each VSA, the control plane maintains a mapping
of virtual storage blocks to physical ones and programs the
hardware accordingly. As long as the storage hardware allows
mappings to be made at a block granularity, a regular physical
memory allocation algorithm can be used, without having to
worry about fragmentation. Maintaining head locality for hard
disks is outside of the scope of our work.

4.2 Data Plane Interface

At the lowest level, the data plane API is the hardware
interface of the VSIC: command queues and interrupts. To
make programming of the storage hardware more convenient,
we also provide an abstract API in an application library.
On top of this, the familiar POSIX calls can be provided for
backwards compatibility.

The abstract API shall provide a set of commands to
asynchronously read and write at any offset and of arbitrary
size (subject to block granularity if more efficient) in a VSA
via a specified command queue in the associated VSIC. To
do so, the caller provides an array of virtual memory ranges
(address and size) in RAM to be read/written, the VSA
identifier, queue number, and matching array of ranges (offset
and size) within the VSA. The API implementation makes
sure to enqueue the corresponding commands to the VSIC,
coalescing and reordering commands only if this makes sense
to the underlying media. I/O completion events are reported
via a callback registered by another API call.

Interaction with the storage hardware is designed for
maximizing performance from the perspective of both latency
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and throughput. This design results in a storage stack that
decouples hardware from software as much as possible using
command queues as a buffer, maximizing throughput and
achieving low latency by delivering interrupts from hardware
directly to user programs via hardware virtualization.

5 Use Cases
A number of applications can benefit from a user-level storage
architecture. We survey three of them in this section and, for
each, describe effective new storage techniques that become
possible using the control and data plane APIs proposed in
the previous section.

5.1 File Server

File servers, such as the NFS daemon, are typically run within
the kernel for performance reasons. Running file servers
at user-level, however, has security and flexibility benefits.
We describe how a flexible, secure, high-performance NFS
service can be built using our storage architecture, by taking
advantage of control over file layout, application-controlled
caching, and fast remote procedure calls (RPCs).

Many NFS workloads are dominated by file metadata opera-
tions. We can store metadata in its external data representation
(XDR) and (taking advantage of our application-level access
to the network) pre-compile remote procedure call responses
for the underlying network transport (e.g., Ethernet). This
allows the server to fulfill metadata requests with a single read
and send operation. Finally, the low write latencies provided
by direct VSIC access allow us to persist the server-side reply
cache after each operation for improved consistency in the
face of network and server errors (cf. §2.10.6.5 in [23]).

Protection for each user connection can be achieved by
storing each user’s data in a separate VSA and forking the
server for protection of each active VSA. Having full control
over the underlying file system and its buffer cache, we can
deploy a specialized file layout such as WAFL [12] to provide
performance and recoverability within each VSA. We can
also easily support client cache control hints, e.g. via the
IO_ADVISE operation proposed in NFSv4.2 [11]. In addition,
a user-level NFS server can keep per-client file access records
and prefetch based on this information. Implementing these
techniques is difficult at best with a layered architecture, where
the file system and buffer cache are managed by the OS kernel.

5.2 Mail Relay

Mail relays typically organize and store mail in individual
files in a single directory. However, due to this conflation of
naming and storage, concurrent file metadata operations are
protected by a directory lock in many standard file systems,
which stifles scalability in multicore systems [4]. In addition,
blocks of larger files are typically referenced indirectly,
meaning that storing all mail in a single file would require
additional read operations.

Using our architecture, we can develop a scalable, persistent
mail queue. Leveraging techniques from scalable memory

allocators [22], we can pre-allocate queue entries of different
sizes (e.g., 1KB, 4KB, 16KB) in a contiguous VSA region
for small mail (e.g., without attachments), which can be filled
directly upon mail arrival. Each worker thread can be assigned
its own set of queue entries without requiring synchronization.
Large mail can be stored in extents and referenced by offset
and size from queue entries.

5.3 Persistent Key-Value Store

Using our storage architecture, we can develop a truly
persistent key-value store that logs each operation to persistent
storage with low latency, while keeping an in-memory cache.
Upon a write operation, a corresponding log entry can refer
directly to the payload from the network. The remaining write
latency can be masked by concurrently updating the memory-
resident cache and preparing the acknowledgement, while
waiting for the asynchronous I/O completion event upon which
the acknowledgement is sent out on the network. Furthermore,
log entries can be formatted in a way that matches the block
size and alignment of the storage medium and multi-block
entries can be written out in order, to keep consistency.

In contrast, current server operating systems do not support
asynchronous writes to stable storage. For example, the Linux
kernel is free to cache write buffers in RAM until an fsync
system call is invoked. fsync blocks the caller and all further
calls regarding the same file descriptor until all cached buffers
are flushed to disk. Masking this time requires complex
multi-threaded application designs. Other kernel-mediated
asynchronous I/O approaches still require a round-trip through
the kernel to deliver I/O events, including a copy between user
and kernel buffers for I/O data [8].

Finally, the kernel amortizes blocks when flushing and
might write half-records when they do not match the storage
medium’s block size, or might write records out of order. This
complicates consistency if the system crashes while a write
is in progress.

6 Related Work
There has long been a tension between applications that desire
customization for performance and file systems that want to
cater to the widest range range of applications. This tension
has led to the development of operating system interfaces
like fadvise that give the application greater control
over the file system, or sendfile that speed up common
interactions between the application and the operating system.
As storage technologies become faster relative to CPU speeds,
this tension will only increase. For example, recent work like
Bankshot [3] proposes bypassing the kernel to eliminate cache
hit overheads to NVRAM.

We are not the first to observe that many applications would
benefit from a customized storage stack. Library operating sys-
tems, like Exokernel [9], Nemesis [1] and SPIN [2], supported
user-level I/O to provide flexibility and better performance for
applications. Unlike these systems, our approach utilizes virtu-
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alization hardware to safely give applications direct access to
the raw storage interface. Closest to our vision is a proposal to
set up a virtual I/O path per file, rather than per application as
in our proposal, so its benefits are restricted to large files [25].

Similarly, recent work has focused on reducing the over-
heads imposed by traditional filesystems and block device
drivers to persistent memory (PM). DFS [15] and PMFS [7]
are filesystems designed for these devices. DFS relies on the
flash storage layer for functionality traditionally implemented
in the OS, such as block allocation. PMFS exploits the byte-
addressability of PM, avoiding the block layer. Both DFS and
PMFS are implemented as kernel-level filesystems, exposing
POSIX interfaces. They focus on optimizing filesystem and
device driver design for specific technologies, while we investi-
gate how to allow applications fast, customized device access.

Moneta-D [5] is a hardware and software platform for
fast, user-level I/O that bypasses the kernel by introducing
a per-process storage interface called a virtual channel.
Permissions are cached in hardware and checked on every
access. Moneta-D differs from our proposal in its treatment
of file system metadata, which Moneta-D centrally manages
within the kernel by using a traditional file system. In contrast,
our proposal decouples naming from storage management
and thus allows applications to fully bypass the kernel through
per-process management of all aspects of the storage system,
including metadata and access control.

Aerie [26] proposes an architecture in which multiple
processes communicate with a trusted user-space filesystem
service to modify file metadata and perform lock operations,
while directly accessing the hardware for reads and data-only
writes. Our proposal provides more flexibility than Aerie,
since storage solutions can integrate metadata tightly with
applications rather than provide it in a trusted shared service,
allowing for further optimizations, such as early allocation
of metadata that can be integrated with application-level data
structures, without having to RPC to a shared service.

7 Conclusion
We argue that next generation high-throughput, low-latency
data center storage architectures will require a new approach to
operating system kernel design. Instead of mediating all stor-
age I/O through the kernel, we propose to separate file system
naming from file system implementation. Applications dynam-
ically allocate virtual storage extents; a runtime library in each
application implements directory and file system operations
for that application, with direct access to the storage hardware.
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