MultiNyx: A Multi-Level Abstraction Framework for
Systematic Analysis of Hypervisors

Pedro Fonseca
University of Washington
pfonseca@cs.washington.edu

ABSTRACT

MuLTINYX is a new framework designed to systematically analyze
modern virtual machine monitors (VMMs), which rely on complex
processor extensions to enhance their efficiency. To achieve better
scalability, MULTINYX introduces selective, multi-level symbolic
execution: it analyzes most instructions at a high semantic level, and
leverages an executable specification (e.g., the Bochs CPU emulator)
to analyze complex instructions at a low semantic level. MULTINYx
seamlessly transitions between these different semantic levels of
analysis by converting their state.

Our experiments demonstrate that MULTINYX is practical and
effective at analyzing VMMs. By applying MULTINYX to KVM, we
automatically generated 206,628 test cases. We found that many
of these test cases revealed inconsistent results that could have
security implications. In particular, 98 test cases revealed different
results across KVM configurations running on the Intel architecture,
and 641 produced different results across architectures (Intel and
AMD). We reported some of these inconsistencies to the KVM
developers, one of which already has been patched.

ACM Reference Format:

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy. 2018. MultiNyx: A
Multi-Level Abstraction Framework for Systematic Analysis of Hypervi-
sors . In EuroSys ’18: Thirteenth EuroSys Conference 2018, April 23-26, 2018,
Porto, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3190508.3190529

1 INTRODUCTION

As the popularity and reliance on virtualization increased, both
Intel and AMD introduced the VMX [26] and SVM [2] x86 ISA ex-
tensions!, respectively, which are now nearly ubiquitous in recent
processor models. These extensions dramatically reduce the perfor-
mance overheads of virtualization, explaining their fast adoption.
The complexity of virtualization extensions poses additional
challenges to VMM developers for several reasons [5, 11, 21]. First,
extension instructions have particularly complex semantics, and
their documentation can be ambiguous and often is difficult to
understand [5, 36]. Second, the virtualization extensions change

1VMX and SVM are also known by their commercial names, VT-x and AMD-V,
respectively.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroSys ’18, April 23-26, 2018, Porto, Portugal

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5584-1/18/04.

https://doi.org/10.1145/3190508.3190529

X1 Wang
University of Washington
xi@cs.washington.edu

Arvind Krishnamurthy
University of Washington
arvind@cs.washington.edu

the semantics of many (possibly all) other instructions by intro-
ducing additional execution modes (e.g., VMX root and non-root
modes), which affects even basic mechanisms such as memory ac-
cesses and control flow. Finally, each extension has several variants;
for instance, only a subset of Intel CPUs with VMX support ad-
vanced virtualization features, such as “unrestricted guest” mode,
EPT tables, and shadowing VMCS. This requires VMM developers
to consider many different combinations of available features and
to implement fallback mechanisms if a given feature is not sup-
ported by the host CPU. In practice, these extensions introduce
many complex changes to an already complex architecture.

VMMs must provide essential security guarantees, such as isola-
tion between virtual machines; failing to do so can compromise user
security, specially in a multi-tenant data center. Unfortunately, due
to the complexity of virtualization extensions and the inherent chal-
lenges in virtualizing a complex architecture, significant numbers
of bugs are regularly found in VMMs, many of which have critical
security implications. For instance, based on our survey of the CVE
repository [20], 17 security advisories were issued between 2015
and 2017 alone regarding KVM, a mature and widely used VMM.
Despite the prevalence of virtualization and its present-day impor-
tance, the testing of modern virtualization systems has received
insufficient attention.

Today’s main approach to testing VMMs relies on manually writ-
ten test cases, which is burdensome for developers and generally
of limited scope [16]. As an alternative, several fuzzing techniques
have been proposed [33, 34]. Although both types of approaches are
useful, having more systematic analysis techniques is particularly
important for testing hypervisors because of the myriad of corner
cases, arising from both the intricate hardware specification and
the implementation complexity itself.

We propose a framework, MULTINYX, that lets VMM developers
systematically test and analyze virtual machine monitors. The key
contribution of MULTINYX is a novel symbolic execution approach
that models automatically the semantics of complex instructions.
MurTINYX achieves this by selectively using an executable specifi-
cation to augment its knowledge of the x86 semantics. While other
work has focused on testing virtual devices, this work focuses on
the components that virtualize the CPU and memory — perhaps the
most critical and complex components to virtualize in architectures
such as x86.

We demonstrate how our approach can be used in a scalable
manner to automatically infer the specification of virtualization
extensions and thus create test cases that explore corner cases.
This multi-level testing approach, combined with other techniques
that MULTINYX implements, allows it to leverage generic, off-the-
shelf, symbolic execution engines typically meant for user-level
code. MULTINYX relies on such symbolic engines to analyze instead

https://doi.org/10.1145/3190508.3190529
https://doi.org/10.1145/3190508.3190529
https://doi.org/10.1145/3190508.3190529

EuroSys '18, April 23-26, 2018, Porto, Portugal

system-level code that has significantly more complex semantics.
Unlike other techniques, the MULTINYX approach systematically
creates test cases that consider both the specification of the hard-
ware extensions and the actual implementation of a virtual machine
monitor.

Using MULTINYX to test KVM, we found that many of the 206,628
generated test cases exposed inconsistencies in the KVM output,
when executed across different execution environments — 98 test
cases revealed different results across KVM configurations on Intel
and 641 produced different results across architectures. Several test
cases showed defects in input validation, segmentation virtualiza-
tion, and protection mechanisms that are serious and can impact
the user security. We reported some of the inconsistencies to the
KVM developers, who have already patched one of the bugs [29].

In our current implementation, MULTINYX relies on Bochs to ap-
proximate the actual hardware specification. Our experience shows
that Bochs is sufficiently accurate to ensure that testing is effective.
Nevertheless, MULTINYX is modular and can easily accept other
executable specifications since it implements a generic instrumenta-
tion framework that required only 30 lines of Bochs-specific source
code. In §8, we discuss different strategies to further improve the
effectiveness of MULTINYX that depend on the availability of even
more accurate specifications.

This work makes the following contributions:

e Multi-level analysis: a technique that leverages executable
specifications to (1) automatically model the semantics of
complex processor instructions and (2) apply generic sym-
bolic execution engines to system-level code

o A methodology to create scaled down VMM unit tests that
are particularly amenable to systematic analysis

o An algorithm to generate test cases that explore and analyze
corner cases of VMM implementations

e The design of MULTINYX, a framework for analyzing and
testing hardware-accelerated VMMs

2 MOTIVATION

The KVM hypervisor is widely used by cloud providers [14, 25,
35, 41]. It virtualizes the CPU and MMU using VMX and SVM ex-
tensions, and works in tandem with applications, such as QEMU,
that drive it and virtualize devices (e.g., disks and network cards).
KVM consists of three kernel modules: kvm. ko, kvm_intel.ko and
kvm_amd . ko, with approximately 60 KLOCs. The first module con-
tains architecture-independent functions (e.g., communication with
applications through ioctl); the other two contain architecture-
specific code that interacts with the processor extensions. While
this paper focuses on KVM and VMX, the MurTINYx design is
applicable to similar VMMs and processor extensions.

This section discusses the challenge to build correct VMMs by
presenting concrete examples of virtualization bugs and discusses
related work.

2.1 Virtualization Bugs

CVE-2017-2583 [19] describes a security bug previously found in
KVM and eventually fixed in Linux version 4.9.5 that had serious
implications for users. Triggered by a seemingly inoffensive MOV
instruction, this bug could either crash the VM or cause a VM

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy

privilege escalation (i.e., an application could escalate from ring 3
to ring 0). Interestingly, the bug impaired both the Intel and AMD
architectures but in different ways: KVM could no longer reenter
the VM on Intel, while it could reenter the VM with wrong register
values (namely the CPL priority level) on AMD.

To trigger this bug, a series of conditions need to be satisfied.
First, the MOV instruction has to be emulated by KVM (as opposed
to executed directly by the CPU), which happens only in certain
circumstances (§3). Second, the MOV instruction specifically has to
attempt to load the NULL segment into the stack segment register.
Third, the CPU has to execute the instruction in long mode and
in ring 3 (CS.CPL=3). Fourth, our tests found that other privilege-
related registers and segment descriptor fields have to be set to
specific values (SS.RPL=3 and SS.DPL=3). The striking aspect about
this bug, which also applies to many other VMM bugs, is the com-
plexity of the conditions that simultaneously need to be satisfied
to trigger it. As a result, given the vast input space, such bugs are
unlikely to be discovered by random testing techniques.

This bug was caused by KVM developers misunderstanding the
conditions under which a VM entry (§3) would fail. VM entries
can fail because processor extensions conduct an extensive series
of checks on the VM state when the VMM tries to switch to VM
code. As such, the processor semantics caused an execution path
unknown to the KVM developers. In the Intel case, the VM entry
checks are described throughout a dense chapter of 26-pages in the
architecture manual. Furthermore, according to KVM developers,
the Intel documentation at that time described these checks incor-
rectly [17]. However, even had the documentation been correct, it
is easy to understand how developers could have misunderstood
it or simply failed to reason correctly about such conditions given
the complex checks.

Another example of a serious bug previously found in KVM
was caused by the incorrect handling of a specially crafted unde-
fined instruction (CVE-2016-8630 [18]). The problem was caused
by incorrect logic in the KVM instruction decoding mechanism
that emulates the subset of instructions that the processor cannot
virtualize: a defect in the x86_decode_insn() function let code
running in the VM trigger an illegal access by KVM, crashing the
VMM. To trigger this bug, the illegal instruction had to additionally
contain a specific ModR/M byte value, and, importantly, KVM had
to be configured to use shadow paging (i.e., EPT disabled).

These and other examples demonstrate the complexity of the
execution paths of modern VMMs. In fact, while trying to under-
stand a recent KVM patch that implemented a new feature in two
execution paths, we asked the developer who wrote the patch about
the conditions under which one of two paths was executed; sur-
prisingly the developer himself did not know how or even whether
that code path was executable: ‘T don’t know if any of [the emula-
tion functions] can call em_cpuid in practice, but since the code was
already there it was easy to add the CPUID faulting logic there as
well” [4].

The root cause of this challenge is that inspection of the KVM
source code is not by itself sufficient to understand the execution
paths. The complex semantics (and implications) of the hardware
extensions must be fully understood to reason about the paths of
the VMM implementation. Unfortunately, the extension semantics,

MultiNyx: A Multi-Level Abstraction Framework for
Systematic Analysis of Hypervisors

described in over 200 pages of dense and possibly incomplete docu-
mentation, are far from accessible even to experienced developers.

2.2 Related Work

We now describe related research on VMM testing, generic symbolic
execution techniques, and VMM verification.

VMM Testing. Manual tests [16], albeit laborious, are in practice
the standard approach to test VMMs. Thus, developers commonly
overlook important test cases that would otherwise reveal critical
bugs [3, 18, 19, 33, 34].

Martignoni et al. proposed automated techniques that rely on
fuzzing [33, 34] and differential testing, an approach that still re-
quires some developer effort to generate domain-specific templates.
These encouraging proposals demonstrate that fuzzing can find
bugs in VMMs. However, they are non-systematic because fuzzing
fundamentally relies on randomly generated test cases. Given the
massive input space for tests in this domain — which includes hun-
dreds of general, control and model-specific registers as well as the
RAM state — and the complex inter-relationships between different
parts of the input, it is unlikely that non-systematic techniques
would be “lucky” enough to generate tests that trigger hard-to-find
corner cases.

In general, systematic testing can be achieved using symbolic
execution techniques. These techniques enable systematic testing
through formal analysis of program constraints and generation of
test cases based on these constraints. The applications and ben-
efits of symbolic execution have been extensively demonstrated
both by academics [9, 13, 28] and industry [23]; however, there is
limited work on applying symbolic execution to test virtualization
infrastructures.

PokeEMU [32] is one exception. It applies symbolic execution
to an executable specification, systematically generating CPU test
cases. Thus, PokeEMU generates tests for the different instructions
of the CPU, and runs (lifts) those tests cases on a VMM (i.e., on a
virtual CPU). Given our problem domain, this approach has two
important limitations. First, their testing target is a JIT-based VMM,
not a hardware-accelerated VMM, and having generated only 32-bit
tests (guests), it even precludes testing emulated virtualization in-
structions. Second, this approach generates test cases by exclusively
analyzing the specification, without analyzing the implementation
under test (i.e., black-box testing). As a consequence, bugs that
arise from corner-cases of the VMM implementation will not be
uncovered by this approach. In contrast, MULTINYX generates test
cases that explore corner-cases that arise from the complex inter-
actions between the VMM implementation and the virtualization
extensions (i.e., white-box testing).

To control and analyze the machine state, PokeEMU authors also
ran their concrete tests on KVM (with VMX). However, ironically,
KVM served as an oracle to identify the ground truth for their
tests because this environment was considered to be “the closest
approximation of the real hardware” [32]. In contrast, the testing
target for our work is precisely this approximation — the hardware-
accelerated VMM, which has been found to have serious bugs [3, 8,
24].

Amit et al. [3] recently identified several VMM bugs by applying
to KVM the closely guarded test cases that Intel uses to test their

EuroSys *18, April 23-26, 2018, Porto, Portugal

physical CPUs. However, these test cases suffer from a limitation
similar to that of PokeEMU’s: they were not created by analyzing the
actual VMM implementation under test or its complex interactions
with the processor extension.

In practice, none of the previous VMM testing methodologies
automatically generate test cases by simultaneously analyzing both
the specification and the implementation. Furthermore, to our best
knowledge, MULTINYX is the first automated and systematic tool
that generates tests specifically for testing hardware-accelerated
VMMs.2

Generic Symbolic Execution. Since the idea of symbolic execu-
tion was initially proposed decades ago [28], a myriad of generic
symbolic execution engines have been developed to address the
real-world challenges of applying this powerful idea. Initial sym-
bolic execution engines (e.g., KLEE [12], FuzzBALL [32]) analyzed
code at the level of intermediate representations, which have rel-
atively simple semantics, to mitigate scalability issues. However,
several systems have recently leveraged symbolic execution tech-
niques to directly analyze generic x86 code [13, 23, 38]. Despite
these advances, few systems have been proposed to symbolically an-
alyze system-level x86 code. Moreover, even fewer have found bugs
directly involving complex semantics of system-level instructions.

S2E [13] consists of a VM-based symbolic execution framework
implemented on QEMU that can analyze arbitrary x86 code. Un-
fortunately, despite having some support for SVM, QEMU is a
low-fidelity emulator [32] designed to run VMs fast, not neces-
sarily realistically. Thus, it is unlikely that conducting KVM tests
in S2E would exhibit the same behavior as in real hardware. In-
stead, our work leverages a generic symbolic execution engine for
application-level x86 code, Triton [38], and proposes a methodology
to automatically augment its semantics using a high-fidelity exe-
cutable specification (Bochs) [32]. Furthermore, our work addresses
other real-world challenges in applying symbolic execution to test
hardware-assisted VMMs.

VMM Verification. Previous work has applied verification tech-
niques to hypervisors in an attempt to provide formal guarantees
of correctness [30, 39, 40]. This is a promising direction, although
its success has been limited to the verification of a subset of a hy-
pervisor due to a lack of formal hardware specifications and the
hardware complexity [1, 15].

3 INTEL VMX VIRTUALIZATION EXTENSION

Intel VMX extension conceptually duplicates the x86 processor state
by proposing a new operating mode, the root mode. VMM code
runs under root mode, whereas VM code runs under the non-root
mode. The root and non-root modes are specifically intended for
virtualization and are orthogonal to traditional execution modes
(long, protected and real modes) and to privilege levels (i.e., rings).
In particular, VM code can run, in non-root mode, in any execution
mode and with any privilege regardless of the VMM.

In root mode, 11 new instructions are made available for VMMs
to interact with the processor extension [26]. In addition, one in-
struction (VMCALL) in non-root mode lets the VM perform hypercalls

2Google reportedly has used a fuzzer to test KVM [24], but we were unable to find
documentation regarding its design details.

EuroSys 18, April 23-26, 2018, Porto, Portugal

(i.e., invoke the VMM). In addition to adding instructions, VMX in-
troduced the concept of Virtual Machine Control Structure (VMCS),
a key virtualization structure in RAM that is accessed by the VMM
through the new instructions.

The VMCS consists of an extensive array of memory-mapped
registers (fields) that serve many purposes (Table 1). For instance,
the VMCS stores the VM register state when the VM is suspended
(i.e., the VMM code is executing in root mode). It is also the place
holder for the VMM register state when the VM is running. Further,
the VMCS stores control information about the VMX settings; this
includes options to control the VM exit conditions and options to
enable and disable different virtualization features. Despite being
mapped to memory, according to the Intel specification, the VMCS
is mostly an opaque structure that, except for its first eight bytes,
must be read and written by executing the VMREAD and VMWRITE
instructions.

Under VMX, a VMM generally performs the following: (1) de-
tects the CPU capabilities based on the CPUID instruction and the
model specific (MSR) registers, (2) activates VMX (VMXON), (3) loads
a VMCS, (4) initializes the VMCS through a series of invocations
of VMWRITE/VMREAD, depending on the model/capabilities of the
host CPU and the desired virtualization settings, (5) sets up the
MMU related-components using shadow paging or EPT tables, (6)
attempts to perform a VM entry with VMLAUNCH, (7) identifies the
VMLAUNCH return reason, typically a VM exit (the alternative is a
failed VM entry, generally a sign of a software bug), (8) if VMLAUNCH
returned because of a VM exit, based on the specific exit reason,
the VMM independently addresses the condition (e.g., emulates
an instruction or addresses page faults) or otherwise returns to
user-mode (e.g., to serve an IO request), and (9) repeats the virtual-
ization cycle by going to step 5 to reenter the VM using instead the
VMRESUME instruction.

The current version of the architecture manual specifies 64 dif-
ferent codes for “basic VM exit reasons”. Most exit codes refer to
VM attempts to execute instructions that the VMM must intercept
and emulate because VMX does not support its virtualization. For
instance, VMX has only very limited support for nested virtualiza-
tion; as a result, the VMM has to emulate the VMX instructions
executed by the VM to allow nested virtualization [6]. The CPUID
instruction and accesses to the CRx, GDTR, LDTR and MSR registers
are other system instructions often emulated.

Another important reason for emulation is the need to support
IO. In x86, IO can be performed using the IN/OUT port instructions
or memory-mapped IO (MMIO). Regardless of the mechanisms used,
the VMM must handle IO operations because VMX virtualizes the
CPU and memory but not devices; this task is often left for applica-
tions like QEMU unless there are performance considerations (e.g.,
KVM virtualizes a few interrupt controllers).

When a VM exit occurs, because VMX provides limited assistance
in decoding instructions (e.g., exit reason or faulting addresses), the
VMM must fetch the instruction, decode it and fetch its operands, in
addition to emulating it. This is another challenging task for VMMs
given the complex instruction encodings of x86, characteristic of
CISC architectures. Furthermore, to emulate some instructions and
events (e.g., interrupts and exceptions), the VMM must perform
VM introspection, analyzing the VM state and understanding the
x86 semantics in detail, especially, page table structures, interrupt

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy

descriptors, segment descriptors, and the many execution modes
(long 64-bit, long compatibility, protected, real and vm86 mode). In
practice, several VM exits can occur while virtualizing a single VM
instruction because of conditions the VMM needs to address (e.g.,
multiple memory accesses that require intervention of the VMM).

#Fields Description

63 Guest-state fields

23 Host-state fields
54 Control fields
15 VM-exit information fields

Table 1: Main classes of fields in the Virtual Machine Control Structure
(VMCS) of the Intel VMX extension [26].

4 OVERVIEW OF MULTINYX

MuULTINYX consists of two main components. The first component
automatically generates new test cases for a given VMM implemen-
tation. It relies on running an initial (manually written) test case
on an executable specification and, in the process, collecting an
execution trace. Subsequently, this trace is symbolically analyzed
to produce new test cases that will explore different paths of the
VMM implementation or executable specification. The generated
test cases are then themselves executed on the executable specifica-
tion, and their respective traces symbolically analyzed. This cycle is
repeated until a sufficient number of test cases has been generated.
The second MULTINYX component runs the test cases in different
execution environments, cross-checking their results. This process
lets users analyze the results in real-world execution settings to
determine whether the test results match the expected outcome or,
otherwise, suggest a defect in the VMM implementation.

5 MULTINYX DESIGN

The following sections describe our approach to making VMMs
amenable to systematic analysis, as well as the two MULTINYX
components for test generation and cross-checking.

5.1 Deconstructing VMMs for Testing

An important observation that both components of MULTINYX rely
on is that it is possible to reduce the VMM exploration and analysis
to small units of execution. In fact, virtualizing a single instruction
for a given (virtual) CPU state is feasible and sufficient for good
coverage of the VMM behavior because the state it operates on can
be set externally.

The typical approach used both by manual tests and fuzzing
techniques is to boot the VM and have the machine execute a long
series of instructions, from within the VM, to initialize itself and
reach a particular target VM state. From then on, these approaches
trigger the execution, of a set of VM target instructions. MULTINYX
follows a different approach, it directly provides the target VM
state when initializing the VMM, by setting it externally with VMM-
specific functions, and then instructs the VMM to run a single target
instruction.

Both VMX and KVM implementation allow a VM to start in
an arbitrary state (within the architecture constraints). The VMX

MultiNyx: A Multi-Level Abstraction Framework for
Systematic Analysis of Hypervisors

Test generation

EuroSys *18, April 23-26, 2018, Porto, Portugal

Multi-level recording

=
I_ _VI_/IM_drlve_r =1 High-level trace
VMM
Low-level trace
re T ===
L , . High-level !
,_instrumentation ! High-level trace
------ -
Executable
specification Low-level trace
...... .
[Low—IeveI_ 1 High-level trace
______ -

Multi-level analysis

\ Cross-checking

“Deployment and !
analysis !
Exploration 1 VMM driver
algorithms ' | [—h | . | === ===
VMM
Basic x86
semantics
° a 3
SMT solver g = 173

Figure 1: MULTINYX architecture. Generation of new test cases relies on the recording and analysis components. The multi-level recording component receives
a concrete test case and produces an execution trace. The multi-level analysis component subsequently produces several concrete test cases by symbolically
analyzing the trace from the recording component. The generated tests are fed into the analysis component, iterating the process thus generating more tests,

or executed under different VMM configurations to check the test results.

extension enables VMMs to set the initial VM state when initializing
the VMCS guest VM fields (Table 1) - in fact, this in an important
feature when migrating VMs from another physical machine. KVM
allows the user-mode application driving it, through the Linux
ioctl system call, to externally set the initial VM register values;
in KVM, this task is performed by invoking the API functions
KVM_SET_REGS and KVM_SET_SREGS. Likewise, the KVM driver can
set the initial VM RAM to contain the desired in-memory structures
(e.g., instructions, memory operand values, page tables, interrupt
and segment descriptors) using KVM_SET_USER_MEMORY_REGION.
Single stepping through the instructions is configured by executing
the KVM call KVYM_SET_GUEST_DEBUG.

Both the exploration and analysis components rely on a custom
MurTINYX VMM driver. This driver instructs the VMM to initialize
the VM with a given starting state (VM registers and VM memory)
in single-stepping mode. Furthermore, the VMM driver collects the
final VM state after the target instruction is executed.

5.2 Test Generation Component

The generation component generates new test cases that trigger
execution paths of interest for the cross-checking component. At
a high-level, it achieves this by executing the VMM with a given
concrete input (using the VMM driver) and recording a trace of
the combined execution of the VMM and VM. Next, the combined
trace is provided to an application-level symbolic execution engine,
that generates and solves path constraints to produces new inputs
based on the exploration strategy.

5.2.1 Multi-level Trace Recording. The mechanism to generate
the trace is critical because the symbolic execution engine used
by MuLTINYX, like most, is not aware of the system-level code
semantics. In particular, the engine knows nothing about interrupts,
page tables, execution modes or processor extensions. Thus, it does
not know how to symbolically execute a complex instruction like
VMLAUNCH. In fact, even the full system semantics of a seemingly
simple instruction like MOV or RET are very complex: it takes nearly

1 page of the Intel manual to describe the (incomplete) pseudo-
code of MOV, and more than 7 pages to describe the RET instruction.
The manual’s current version makes no attempt to describe the
pseudo-code of the VMX instructions.

MuLTINYX collects a trace of the VMM implementation, high-
level trace, containing the sequence of addresses of the executed
VMM instructions. Additionally, the trace also includes the memory
accesses (address, size, value and R/W type) to allow the inference
of the initial memory state (and aid debugging). When complex
system-level instructions are executed, namely VMLAUNCH/VMRESUME
and the VM instructions that run in non-root mode, MULTINYX col-
lects instead a trace of the executable specification, a low-level trace,
as opposed to a direct trace of the VMM/VM instructions. Similarly,
the low-level trace also includes the memory accesses to allow the
inference of initial memory state. This tracing process produces a
combined trace with several segments of different semantic levels
of abstraction (high-level and low-level).

Collecting an executable specification trace is equivalent to col-
lecting a trace of the executed pseudo-code associated with each
instruction, as described in the architecture manual. However, the
executable specification is more amenable to automatic analysis and
is expected to be significantly more exhaustive. §8.4 discusses the
limitations associated with an incomplete or incorrect executable
specification, and §6.1 explains the mechanism our implementation
uses to collect both types of traces.

5.2.2 Multi-level Trace Analysis. The two types of traces col-
lected in a single execution operate at different semantic levels
and thus on different representations of the VMM/VM state. Fur-
thermore, the executable specification contains state that does not
have a representation at the implementation level. For instance, the
pseudo-code in Intel’s manual has the concept of the machine’s EIP
register but it also has its own “EIP register”; the latter consists of
the pseudo-code line number. An executable specification instead
has an actual EIP register that is distinct from the higher-level EIP
register value (represented in the executable specification memory).

EuroSys 18, April 23-26, 2018, Porto, Portugal

High-level trace Low-level trace

<Setup pages>
<Load VMCS ptr.>

VMWRITE...
VMWRITE...
VMWRITE...
VMLAUNCH <Check VM entry is valid>
\ <Save VMM regs + load VM regs>
<Enter non-root mode>
Time <VM instruction> <Fetch + decode instruction>
[<Fetch operands>
<Update VM regs and memory>

<Check exit reason>

<Fetch + decode instruction?>
<Emulate instruction?>

<Exit VMM or re-enter VM?>

Figure 2: Trace example with three segments.

For both levels, two state components are particularly important:
(1) the memory contents and (2) the processor registers values. For
each trace segment and regardless of the type of trace, MULTINYX
ensures that the memory state is collected by simply recording the
memory accesses, as discussed earlier. When analyzing the trace,
MuLTINYX first makes a pass on the trace to find the values first read
for all memory locations that segment accesses, thereby creating a
minimal representation of the initial memory snapshot. To preserve
the register values, MULTINYX records the register values observed
at the beginning of the segment, for each segment of the trace.

The concrete data recorded is sufficient to concretely analyze
the execution. However, MULTINYX requires additional information
because it analyzes the execution symbolically to determine the con-
ditions (inputs) that can lead to other execution paths. In particular,
MurTINYX requires the annotation of the VMM variables that cor-
respond to the execution test input; these consist of the initial VM
register values and the initial VM RAM contents (§5.1). Throughout
the analysis of the trace instructions, MULTINYX constructs the
symbolic expressions, thus creating a symbolic representation of
the VMM state.

MurTINYx takes special care during trace segment transitions
to preserve the symbolic state. In particular, it transfers the high-
level symbolic state into symbolic state that matches the low-level
representation or vice-versa, depending on the trace transition
(Figure 3). To transfer the symbolic state associated with memory,
MurTINYX records the mapping of state between the two levels
during the recording phase and then applies the mapping to transfer
the symbolic state during the symbolic analysis phase.

All the memory of the high-level trace is represented in a buffer
of the executable specification. Because this buffer represents the
physical (RAM) memory of the machine it is indexed by physical
addresses, as opposed to linear addresses used in the high-level
trace. Therefore, the mapping function needs to perform two tasks:
(1) convert the linear memory addresses of the high-level trace into
physical addresses and (2) convert the physical addresses into the
corresponding addresses of the executable specification, typically

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy

High-level m m
representation - Sy
\ \[1
7 ,/' b
Low-level 5 L e
. w N
representation o

Figure 3: State mapping between high-level and low-level representation.
The low-level representation includes all the state of the high-level repre-
sentation and additional state that is specific to the low-level representation.

VM RAM
VMM driver m<~ vmCs
e Page tables
P
High-level .
9 ! , VMM | _H B
representation S el —_—

Low-level P

. EE N Executable specification
representation

64-bit linear address space

Figure 4: Memory layout of the systems analyzed. MULTINYX ensures
that the VMM, the VMM driver, and the executable specification use non-
overlapping areas in the 64-bit address space.

by adding the starting address of the RAM buffer. In practice, the
VMCS, the VMM page tables (or EPT), and the VM RAM are the most
important memory structures to transfer between the two analysis
levels because they depend on the input and can affect the VMX
mode operation. We note that the exact memory state mapping
function is specific to the particular executable specification used,
but our experience shows that it was easy and required writing
only a few lines of code (§6).

The current implementation of MULTINYX leverages the fact that
memory addresses of kernel-mode code (VMM) and user-mode code
(executable specification) do not overlap (Figure 4). Our implemen-
tation also ensures that the VMM driver allocates the VM RAM at
addresses that differ from those used by the executable specification
so that they also do not overlap. The fact that the addresses of both
levels do not overlap lets MULTINYX symbolically execute the two
types of traces without interfering with each others’ address space
and without having to modify the internals of the symbolic engine.
This non-overlapping property allows MULTINYX to transfer the
symbolic state by simply copying, on each transition, the associated
symbolic expressions between addresses in accordance with the
mapping.

To transfer the register values, MULTINYX exploits the semantics
of the processor extensions to avoid unnecessarily transferring
the symbolic values of registers. According to the semantics of
VMLAUNCH and VMRESUME, except for the general purpose registers,
the VMM register values are discarded when performing a VM
entry (and replaced with the guest register values contained in the
VMCS) and are reloaded after a VM exit (either from the VMCS host
area or from the VMM stack). Therefore, MULTINYX only transfers
symbolically the values of those registers that persist across VM

MultiNyx: A Multi-Level Abstraction Framework for
Systematic Analysis of Hypervisors

entries and VM exits because the others are implicitly transferred
through memory.

In addition to RAM contents and processor register values, a few
other types of state exist in a machine, such as IO devices state.
Based on our analysis of KVM, the MSR registers were the only
other type of state relevant. KVM uses these registers to detect the
virtualization-related capabilities of the host machine. MULTINYX
handles these registers by recording them and simply replaying
them during analysis because their values do not depend on the
symbolic inputs and can thus remain concrete.

5.2.3 Exploration Algorithm. The analysis of the multi-level
trace enables MULTINYX to generate new inputs that correspond
to execution paths or data paths that differ from those of the given
trace. The extensible MULTINYX design permits the deployment
of different exploration algorithm plugins. We wrote two plugins,
implementing a coverage-based and a data-path-based exploration
algorithm, to demonstrate how the MULTINYX framework can sys-
tematically analyze VMMs to generate new test cases.

The coverage-based algorithmrelies on prior work approaches [23]
that construct path constraints as the trace is analyzed. Throughout
the trace analysis, the constraint of each conditional branch is de-
termined and appended to the constraint of the path prefix already
analyzed. In addition, for each conditional branch the conjunction
of the negated branch condition (i.e., the branch not taken) with
the path prefix constraint is sent to the solver, generating a new
input that forks on this branch.

The data-path-based algorithm relies on the observation that the
values of certain variables are particularly important in the VM-
M/VM problem domain. Notably, the CPL (current privilege level)
field, a sub-field of the code segment (CS) register, is particularly
important. The CPL determines the ring privilege level of the run-
ning VM code so a correct VMM has the critical task of ensuring
that the VM code can only modify the level, specially reduce it, in
accordance with the architecture semantics to prevent privilege
escalation attacks. For each trace, the data-path-based algorithm cre-
ates a formula that checks whether the same execution path could
lead to a final CPL value that is different from both the observed
initial and final trace CPL. Solving this formula allows MULTINYx
to find VMM inputs, e.g., VM RAM contents, that cause the VMM
to set the CPL value without appropriate checks.

5.3 Cross-checking Component

The cross-checking component analyzes a given VM test by com-
paring its results when running under different scenarios. This is
important because MULTINYX does not assume that the executable
specification used by the test generation component is correct.
In fact, hardware itself significantly varies due to differences in
features and specific virtualization extension supported. The cross-
checking component therefore conducts a differential analysis on
a given test by running the VMM with the same input but under
different real-world environments, thereby aiding the user in an-
alyzing the MULTINYX results. This approach lets users conduct
tests by exploring different types of dimensions for the differential
analysis: (1) different target VMM versions, (2) different configura-
tions of a given VMM, (3) different hardware architectures, and (4)
bare-metal virtualization vs. nested virtualization.

EuroSys *18, April 23-26, 2018, Porto, Portugal

Comparing different target VMM versions lets users assess whether
changes to a given VMM introduced bugs or otherwise correctly
changed the VMM semantic, for instance, by adding a new fea-
ture. Similarly, comparing different configurations or hardware
versions enables users to understand whether the behaviors across
different configurations or hardware are consistent. Finally, the
nested/bare-metal dimension enables MULTINYX to test two sys-
tems simultaneously - it analyzes the behavior of the VMM when
itself runs inside a VM (possibly virtualized by a different VMM
implementation).

6 IMPLEMENTATION

The MuLTINYX implementation includes components that we wrote
(Table 2) in addition to different off-the-shelf components, as de-
tailed in the following sections.

Component Language LOCs
KVM driver C 2,400
KVM annotations C 1,400
Low-level trace recording C++ 600
High-level trace recording C++ 1,300

Multi-level analysis C++/Python 3,100
Cross-checking and diagnosis Bash/Python 4,400

Table 2: Components of the MULTINYX implementation, their language and
the approximate number of lines of source code.

6.1 Multi-level Traces

MUuLTINYX currently uses Bochs [37] as the executable specification
and records the high-level trace using a Bochs instrumentation
library that we wrote. To implement MULTINYX, we made only a
few minor Bochs-specific modifications (approximately 30 lines
of source code). Thus, our design makes it easy for MULTINYX to
accept other executable specifications. In particular, we modified the
Bochs instrumentation API to provide additional information, such
as the values read on logical memory accesses, the VMREAD/VMWRITE
operations, and the VM entry and VM exit. We also added the
ability to suppress interrupts on the machine when running the
VMM to ensure that we could record minimal traces. Further, we
implemented the multi-level state mapping function using existing
Bochs functions, namely, the function to convert machine logical
to physical addresses and the function that maps machine physical
addresses to Bochs (linear) addresses (i.e., the buffer used by Bochs
to emulate the machine RAM).

The low-level trace is recorded by leveraging the Pin binary
instrumentation framework [31] and is completely independent
of the executable specification. We wrote a pintool (i.e., a Pin in-
strumentation module) that records the instruction and memory
trace of Bochs itself while it executes VMM/VM instructions: the
VMLAUNCH/VMRESUME, the VM instruction, and the corresponding
VM exit. Our Bochs instrumentation library spawns the pintool
when the first VM entry is detected. After launch, the MULTINYx
pintool adds instrumentation that is triggered when the Bochs VM
entry and VM exit functions are invoked, and enables the instru-
mentation of all instructions executed by Bochs. During runtime,

EuroSys 18, April 23-26, 2018, Porto, Portugal

the pintool instrumentation detects when the VM exit function is
invoked and removes the instrumentation of Bochs instructions to
reduce the instrumentation overhead; however, it keeps the VM
entry/exit instrumentation to reactivate the instruction instrumen-
tation when recording the next trace.

We implemented a hypercall mechanism in the Bochs instrumen-
tation library that allows VMM code to communicate with Bochs
and append annotations to the trace. The hypercall is triggered
when a NOP instruction is executed with specific register values.
MurTINYX uses this hypercall to annotate symbolic inputs and as
a flexible debugging aid.

6.2 KVM Driver and KVM Annotations

The KVM driver we built for MULTINYX receives a RAM image file
and a file with initial register values. When an execution starts, the
driver pins the VM RAM buffer to memory to avoid page faults.
In addition, MULTINYX lets users generate the initial VM RAM by
automatically creating basic page tables and segment descriptors
and by assembling instructions from given assembly code. This
enables users to provide the first input to MULTINYX so that it can
generate and analyze additional inputs.

Our MuLTINYX implementation annotates symbolic inputs in
the KVM code. In particular, we annotate the VM register values
and the VM RAM. Most of the code added to KVM consists of an
optional mechanism, implemented with debugf's, that extracts the
host and guest register values for every VM entry and VM exit. This
mechanism makes possible the differential analysis of intermediate
register values providing additional diagnosis information to users.

The KVM driver and the KVM annotations are the only KVM-
specific code that is required to employ MULTINYX. The use of a test
driver is a requirement for any dynamic testing technique and only
tens of lines of annotations are required to annotate the KVM input.
As such, we expect that employing MULTINYX on other VMMs will
involve minimal developer effort.

6.3 Multi-level Analysis

MuLTINYX performs the multi-level analysis by leveraging: (1) Tri-
ton [38], a symbolic execution framework aware of only the basic
x86 instruction semantics, and (2) Z3 [22], a state-of-the-art SMT
solver supported by the symbolic execution framework. While
parsing the multi-level trace, MULTINYX uses Triton to create the
symbolic expressions and send them to Z3 according to the explo-
ration algorithm we implemented. We changed the framework to
cache and efficiently measure the size of constraints, and use the Z3
stack function. We implemented part of the exploration algorithms
in C++ to reduce overheads associated with Python bindings; we
implemented the less performance-critical parts in Python.

The VMWRITE and VMREAD instructions (VMX instructions) are an-
alyzed by MULTINYx without resorting to a low-level trace because
they have relatively simple semantics. To execute these instructions
symbolically during the trace analysis, MULTINYX converts them
into equivalent MOV instructions that write/read into and from the
appropriate locations in the VMCS. Because the internal structure
of VMCS is opaque (i.e., not documented by Intel), we inspected the
Bochs source code to adopt the same structure that the executable
specification implements for the VMCS; furthermore, our Bochs

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy

instrumentation library stores the values read from the VMCS and
the offsets/size of the accesses. Taken together, this approach sim-
plifies instruction simulation and ensures that VMWRITE and VMREAD
simulations are consistent with the low-level trace used for com-
plex instructions like VMLAUNCH. In addition to the MOV instruction,
simulating these instructions also requires setting the return value
and, in some cases, padding registers. This approach represents
another possibility for augmenting the semantics of symbolic exe-
cution frameworks that is simple for low-complexity instructions
and, in such cases, has the advantage of adding fewer instructions
to the trace than resorting to a low-level trace of the executable
specification.

Our implementation incorporates two mechanisms to improve
scalability, which is a challenge specially for the symbolic analysis
of x86 instructions. First, we selectively add branch constraints to
the path constraint if their size falls below a certain threshold. This
could affect soundness by generating inputs that do not generate
new execution paths, a relatively benign effect that still ensures the
approach is significantly more systematic than fuzzing. However,
in general, the constraints that are not included are related to in-
ternal VMM memory allocations and are not expected to affect the
analysis. Second, our algorithm assigns higher priority to branches
that fork to addresses previously unexplored by MurTINYX. This
heuristic lets MULTINYX focus on generating inputs that explore
undiscovered paths in the VM/VMM.

6.4 Cross-checking

We implemented the cross-checking component in Python and
Bash. MULTINYx relies on this component to send inputs to dif-
ferent execution environments (bare-metal, nested virtualization),
different VMM configurations or even different implementations.
It then collects the intermediate and final output of each test. Sub-
sequently, MULTINYX analyzes the results, comparing the output
across the different executions, and presents them to the user. We
also implemented a tool for the user to query the results, searching
for specific mismatches in the different configurations (§7.2).

6.5 Optimizations and Parallelization

MurTiNYx includes several important optimizations to make it
scale. First, since Bochs is already slow compared to a bare-metal
machine, we implemented optimizations in the MULTINYX pintool
that reduce the instrumentation overhead by leveraging the “trace
version” feature [27] and by switching between two instrumented
versions of Bochs during runtime — one that records traces, for
the few instructions that require it and another that executes in
the common case at near-native (Bochs) speed, without producing
traces. This optimization improved the recording throughput by up
to 40x compared to our previous implementation.

Second, we implemented several Triton modifications that im-
prove the efficiency when handling large constraints and others that
encode instructions with fewer constraints. For instance, compilers
generally emit optimized instructions — such as XOR EAX, EAX — that
simply clear the register (and update flags). MULTINYX optimizes
these cases by clearing the value of the register and updating the
flags, as opposed to duplicating the size of the register constraint
and expecting the SMT solver to subsequently optimize it.

MultiNyx: A Multi-Level Abstraction Framework for
Systematic Analysis of Hypervisors

In addition to these optimizations, we parallelize the two com-
ponents of test generation, i.e., recording and symbolic analysis.
Each component spawns parallel tasks that simultaneously process
different test cases. In addition, our experiments also distribute the
symbolic analysis tasks across several machines (§7.1).

7 EVALUATION

To understand the effectiveness of MULTINYX, we automatically
generated more than 206,628 tests and applied them to a mature
and stable version of KVM (Linux 4.12.5). This section reports on
our experience and discusses the results attained.

7.1 Test Generation

We initialized MULTINYX with a single manually written test case
for a previously patched bug (the MOV bug discussed in §2.1). There is
no strict requirement for the initial test case, but using an initial test
case that causes a deep execution of the VMM, such as a valid MOV,
helps to find with fewer iterations other test cases that cause deep
executions. From this test, MULTINYX produced a trace that was
subsequently analyzed symbolically. In turn, the symbolic analysis
generated more test cases. By continuously repeating this process,
MuLTINYX produced a total of 41,162 traces, of which 26,487 were
symbolically analyzed, resulting in the generation of 206,628 test
cases. The traces and generated test cases consisted of 2.3 TB of
uncompressed data.

Our test cases specified the starting VM register values and the
starting VM RAM contents. For our experiments we executed as
symbolic inputs most of the general (e.g., RAX), control (e.g., CRO,
EFLAGS), and segment (e.g., CS) registers and all of the VM RAM
memory (64KB). In practice, however, most traces accessed only
a small subset of the VM RAM because each test only executes a
single VM instruction, since our driver configures KVM to single
step. The observed memory accesses typically consist of the instruc-
tion fetch, segment descriptors load, page table entries accesses
and possibly instruction-dependent accesses. Thus, as an optimiza-
tion, MULTINYX only marks as symbolic input the RAM memory
locations accessed in a given trace.

By solving the constraints (§5), MULTINYX finds new sets of
values for the symbolic inputs that will cause the execution of al-
ternative VMM execution paths. Each set of input values constitute
a new test case. Because we annotate the VM RAM and the VM
control registers as symbolic inputs, the generated test cases auto-
matically explore, namely, different VM execution modes (e.g., real
mode, protected mode), instructions and in-memory CPU structures
(e.g., page tables and segment descriptors).

In our experiments, the concrete execution of a test case, under
Bochs toke on average 8 seconds, while the symbolic execution
of a trace toke 12 minutes. Because of the different computational
demand of the two MULTINYX components, we configured our
testing infrastructure to run 4 parallel instances of Bochs on a
single machine and to distribute the symbolic analysis across 5
machines, running up to 12 parallel tasks on each.

The concrete execution component ran on a desktop system with
a 12-core Intel Xeon E5-1650 @ 3.50GHz CPU and 16GB of RAM.
The symbolic execution component ran on 5 servers, each with two

EuroSys *18, April 23-26, 2018, Porto, Portugal

12-core Intel Xeon E5-2680 @ 2.50GHz CPUs and 64 GB RAM. In
this setting, generating all tests toke less than 3 days.

7.2 Test Results

After generating the test cases, we applied them to KVM on bare-
metal machines under different configurations. We ran the experi-
ments on two machines that had different virtualization extensions:
(1) an AMD machine with an AMD Ryzen 7 1700 CPU (AMD), and
(2) an Intel machine with an Intel Core i7-7700 CPU. Furthermore,
we ran tests on the Intel machine with two different KVM config-
urations: (2a) the default configuration, which has EPT support
enabled and nested virtualization disabled (Intel) and (2b) with EPT
disabled and nested virtualization enabled (Intel w/o EPT).

Test results surprisingly showed a wide disparity in the behavior
of KVM. Table 3 shows the number of tests that produced each of
the different KVM exit values® when executing them on the three
configurations. KVM returns to user-mode when it stops executing
a VM because user-mode intervention is required — the exit code
describes the reason for the KVM exit. For instance, KVM needs to
exit because of IO operations performed by the VM (IO), triple faults
or other VM operations that cause the VM to shutdown (shutdown),
illegal state of the VM that prevents a VM entry (entry fail) or
completed VM instruction execution when VMX is configured to
single step (debug).

All the inconsistencies revealed in Table 3 are problems that
should not happen in a robust VMM. Even hanging situations, for
instance, can expose systems to denial of service attacks potentially
seriously affecting users. In addition, the fact that the VMM behaves
inconsistently across configurations could mask problems to devel-
opers that rely on KVM to build not just QEMU-like hypervisors
but also other forms of sandbox mechanisms.

Config Hang Entry fail Shutdown I0 Debug
AMD 13,050 6,899 125,836 88,763 48,803
Intel w/ EPT 30 69,199 90,908 50,880 38,622
Intel w/o EPT 5,786 20,635 90,388 90,044 67,740

Table 3: Total number of tests based on their observed KVM exit value for
each execution configuration. Tests can either hang or cause KVM to exit
with a return reason (VM entry failure, VM shutdown, IO handling required,
or debug). Some tests cause more than one KVM exit (e.g. several IO exits),
despite executing a single VM instruction.

Even more concerning, we observed that many test cases pro-
duced the same KVM exit value but distinct final VM states (register
values or memory contents) depending on the configuration. One
reason for this is that the KVM interface does not guarantee that
setting certain initial values for registers will be accepted; thus, part
of the input may be ignored and inconsistently so across configu-
rations. Accordingly, our test driver additionally read the register
values (effective VMM input) that were accepted by KVM before
initiating the execution of the VM. This information allowed us to
identify the test cases that executed with the same effective VMM

3Note that a KVM exit is distinct from a VM/VMX exit. The former refers to a transition
between kernel-mode to user-mode while the latter refers to a transition between
VMX non-root mode (VM) to VMX root mode (VMM).

EuroSys 18, April 23-26, 2018, Porto, Portugal

input but did not produce the same final VM state, i.e., cases likely
to constitute serious bugs because they lead to silent failures (i.e.,
hard-to-detect, semantic bugs).

Table 4 and Table 5 shows the count of test cases in which KVM
reported the successful execution of the tested instruction and
matching effective VMM input but mismatching final VM states.
These are the test cases that cause silent KVM failures and are
particularly hard to detect without resorting to differential testing.

Across the Intel configurations (with vs. without EPT enabled),
MuLrTINYX identified 98 mismatching test cases and, even worse,
641 across architectures (Intel vs. AMD). Additionally, Table 4 and
Table 5 present the count of mismatching tests based on the VM
state subset that did not match. For instance, 48 and 69 tests cause
the instruction pointer (EIP register) to differ across the two cross-
checking dimensions. Many of these test cases likely have the same
or related underlying causes. However, a more detailed analysis
and the fact that different test cases cause different parts of the
state to mismatch suggests that they reveal several distinct bugs.

To simplify the analysis of these results we built a tool that allows
users to query the results, searching for different aspects of the
tests, such as specific mismatching registers. Our tool automatically
identifies the differences and displays them side-by-side.

Component Architecture EPT
RFLAGS 68 66
RIP 69 48
General purpose reg. 81 37
Segment reg. 628 19
Total 641 98

Table 4: Count of tests generated by MULTINYX that reported a mismatch
in the different components of the final VM state. A single test can reveal
several mismatching components of the state.

Architecture EPT
Sel Base Limit Attr Sel Base Limit Attr

Segment reg.

CS 57 57 0 0 0 1 0 3
DS 0 0 16 356 1 1 9 6
ES 0 0 0 0 1 1 3 3
SS 5 5 0 621 0 0 2 0

Table 5: Count of tests generated by MULTINYx that reported a mismatch
in the final VM segment register state. The segment register state includes
the segment selector, base address, limit, and attributes. A single test can
reveal several mismatching components of the segment registers state.

A closer inspection of the mismatching tests revealed that many
of them (19 and 628) were related to segmentation and could affect
the virtualized protection mechanisms. For instance, we reported
to KVM developers the results of a test case that causes a PUSH ES
instruction to change the stack pointer by 4 bytes under Intel but by
2 bytes under the Intel configuration without EPT support enabled.
Accordingly, the test case causes the memory of the VM to be mod-
ified at different offsets. To trigger this problem, the VM had to be
configured in real mode and specific bits of the segment registers

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy

had to be enabled, in particular the CS.DB bit, which specifies the
operations size, had to be enabled. Another test case found that
instructions, such as OR AX, ESP, ignored the top-most 16-bits of the
ESP register depending on whether EPT was enabled. We reported
the bug to the developers who confirmed the results and concluded
that these two situations were caused by the same underlying prob-
lem - a misunderstanding of the VM mode of operation whereby
KVM ignores part of the segment registers. Since then, KVM devel-
opers have applied a combined patch to fix these problems.

Another test case generated by MULTINYX affects the segment
protection mechanism of the AMD version of KVM. This test case
revealed that the CPL/DPL fields, which contain the privilege of
execution (i.e., the ring level) and are part of the CS and SS segment
registers, when initialized by a test case to 3 (user-mode) would be
cleared to 0 (kernel-mode) during the test. This situation suggests
that the bug could enable privilege escalation by code running in
the VM and is currently still under investigation.

All the problems we reported were successfully reproduced by
KVM developers. Further, we expect developers to be able to re-
produce all the test case results from Table 3, Table 4 and Table 5
because they were obtained by running bare-metal KVM (i.e., with-
out Bochs), and the MULTINYX test driver is relatively small and
has itself been well tested.

Our experience applying MULTINYX to KVM revealed disparate
behaviors, especially when handling errors (e.g., entry failures) or
unusual situations that are exposed to the application driving it.
In large part, this results from the complexity of the virtualization
extensions and by the lack of checks conducted by the KVM imple-
mentation that would otherwise provide a uniform and consistent
interface across the various KVM configurations. Unfortunately,
the current software and hardware design invites application devel-
opers to make assumptions about the VMM that hold only under
certain configurations and thus can lead to bugs. Furthermore, the
disparity of behaviors has the unfortunate side-effect of making
the testing result analysis more challenging and hence costlier.

7.3 MuLTINYX Coverage

To better assess the effectiveness of MULTINYX in generating tests
that cover well both the KVM implementation and the VMX spec-
ification, we computed the instruction coverage based on a 25k
sample of traces from our experiments (Table 6). To ensure that our
traces are manageably sized, specially with respect to the low-level
traces, our instrumentation and testing infrastructure is selective
and collects traces of only a subset of all instructions executed in
the test (§6.1). Given this, the full coverage of tests is expected to
be higher than the reported values.

In our experiments, we disabled address space randomization
of the host machine running Bochs to ensure that instruction ad-
dresses were constant across tests (e.g., when running parallel ver-
sions of Bochs). For similar reasons, we also stored the load address
of the KVM kernel modules, which are dynamic and relocatable,
to allow the identification of the trace instructions that were effec-
tively executed. The kernel binaries and Bochs were compiled with
the default optimizations, but we enabled debugging symbols to
simplify the manual inspection of traces.

MultiNyx: A Multi-Level Abstraction Framework for
Systematic Analysis of Hypervisors

Component Fuzzing MurTiNYx Diff
High-level

kvm.ko 10,299 13,750 +34%

kvm_intel.ko 2,109 2,288 +8%
Low-level

Specification (bochs) 11,908 49,957 +319%

Table 6: Absolute and relative instruction coverage of the fuzzing and
MULTINYX tests. The absolute numbers report the count of unique instruc-
tions executed under instrumentation in a random sample of 25k traces.

Table 6 compares the instruction coverage of MULTINYX to that
of a fuzzing testing strategy that uses the same KVM test driver. We
implemented a simple fuzzing algorithm that starts from a given
test case and randomly flips bits of memory and register values
with a given probability. The starting VMM input for the fuzzing
strategy was the same as that used to bootstrap MULTINYX (§7.2).
The fuzzing algorithm served as a baseline for the evaluation of
our coverage, since there are no fuzzing tools publicly available for
HW-accelerated hypervisors, and could be improved as others have
done in different testing contexts. §8 discusses how to combine
MuLrTiNyx with fuzzing strategies to address its limitations and
further improve the testing effectiveness.

As expected, the comparison of coverage results showed that
tests produced by MULTINYx had a higher coverage than fuzzing
tests, with regard to both the KVM implementation (kvm.ko and
kvm_intel.ko modules) and the specification (Bochs). The differ-
ence in coverage was particularly prominent regarding the speci-
fication - our results reflect a 319% increase — which is expected
given that randomly generated tests are very unlikely to pass the
KVM-implemented checks on the VM state (despite having insuffi-
cient checks, as discussed in §7.2). Thus, fuzzing tests are unlikely
to even reach the point where KVM tries to enter the VM (e.g.,
VMX non-root mode), when the testing infrastructure activates
the low-level trace recording. It is worth noting that even small
increases in coverage can be very meaningful because bugs often
hide in the few lines of code that are rarely executed.

8 DISCUSSION

8.1 Multi-level vs. Single-level Analysis

MuLrTINYX adopts a multi-level analysis approach to test VMMs.
Alternatively, we could have chosen a single semantic level analy-
sis, either entirely low-level or entirely high-level. A single-level
analysis would have serious drawbacks, depending on the level of
abstraction considered, as described next.

An entirely low-level analysis would have limited scalability be-
cause it would dramatically increase trace sizes. This would make
the recording and storing of traces significantly more expensive.
More importantly, it would prevent symbolic analysis from scaling
since it is memory and compute intensive, and, beyond a certain
point, SMT solvers cannot solve constraint formulas. In our ex-
periments, approximately half of the traces were high-level (VMM
instructions), while the other half were low-level (specification).
For deep paths, each level could have more than 100k instructions.
This shows that recording just two instructions at the low-level
(a VM-entry instruction and a single-stepped VM instruction) can

EuroSys *18, April 23-26, 2018, Porto, Portugal

expand trace size by up to 50,000 times, although in this case the
instructions are particularly complex. If applied to the entire test
case, this expansion would prevent standard analysis techniques
from scaling.

On the other hand, an entirely high-level analysis would be
impossible without somehow adding the semantics of the virtual-
ization extensions. Manually encoding these complex semantics
in a symbolic engine would be tedious and error prone. Our work
shows that it is practical and effective to use the multi-level analysis
approach to automatically model extension semantics.

8.2 Testing Single vs. Multiple Instructions

The current implementation of MULTINYX tests single VM instruc-
tions by configuring the VMM to single step once, for each test
case. In practice, it would be trivial to test groups of instructions by
single stepping several instructions sequentially but this approach
would make traces larger. Thus, it could hinder the scalability of
symbolic analysis. Conducting tests with groups of instructions,
on the other hand, could have the benefit of enabling MULTINYX
to test VM instructions on states that might not be possible to set
externally using existing VMM-specific functions.

8.3 Concurrency

The test cases generated by MULTINYx configure the VM with a
single virtual CPU. Hence these test cases do not test the correctness
of the VMM with regard to concurrency, which is mainly exercised
when virtual machines are configured with multiple virtual CPUs.
In such situations, multiple CPUs can execute instructions that
cause concurrent VM exits and consequently concurrent VMM
code execution. Systematically testing VMM:s for concurrency bugs
is future work that may benefit from existing symbolic execution
techniques for multi-threaded software [7, 10].

8.4 Specification Accuracy

The design of MULTINYX requires an executable specification, and
our implementation leverages Bochs for this purpose. In practice,
however, Bochs is not a completely accurate hardware specification.
In fact, during our experiments recording traces from automatically
generated tests cases, we found at least two test cases that caused
Bochs to “panic” because of an assertion violation.

One approach to address the limitations of Bochs is to simply
use more accurate executable specifications. Intel, for instance,
reportedly has an exact architectural simulator that is used in inter-
nal testing procedures [3]. Replacing Bochs with such a simulator
would further increase the effectiveness of MULTINYX by exploring
additional corner cases of the VMM implementation.

If more accurate executable specifications are unavailable, an-
other approach to mitigate the impact of Boch’s inaccuracies is
to complement MULTINYX with fuzzing strategies. This could be
achieved using MULTINYX to produce an initial corpus of test cases
that have high, but not full, coverage and subsequently fuzzing
these test cases hoping to further increase their coverage.

8.5 Processor Extensions

As Baumann recently observed, hardware manufacturers have been
introducing at a fast-pace unusually complex hardware features

EuroSys 18, April 23-26, 2018, Porto, Portugal

with processor extensions [5]. Often, such features provide ad-
vanced software functions that were traditionally left for other
software layers to implement. The virtualization extensions that
we address in this work are notable examples of this trend. As fu-
ture work, we consider exploring the applicability of the general
approach we propose in this work to other advanced processor
features (e.g., SGX and IO virtualization).

9

CONCLUSION

This work presents the design of MULTINYX and our experience
applying it to KVM. MULTINYX records an execution trace of the
VMM implementation and selectively switches to recording a low-
level trace of the specification when executing complex processor
instructions. We show that this approach lets MULTINYX model
the semantics of virtualization extensions and, by applying sym-
bolic execution, effectively produces test cases that explore corner
cases of both the implementation and specification. We applied
MuLTINYx to KVM across different execution configurations and
found numerous output discrepancies.

REFERENCES

(1]

[2

=

&

[10]

[11]

[12

[13

[14

(15

[16]

Eyad Alkassar, Mark A. Hillebrand, Wolfgang Paul, and Elena Petrova. 2010.
Automated Verification of a Small Hypervisor. In Verified Software: Theories, Tools,
Experiments. Springer Berlin Heidelberg, Berlin, Heidelberg, 40-54.

AMD. 2017. AMDG64 Architecture Programmer’s Manual Volume 3: General
Purpose and System Instructions. https://support.amd.com/TechDocs/24593.pdf.
(December 2017). Accessed: 2018-03-06.

Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran Shlomo. 2015.
Virtual CPU Validation. In Proceedings of the 25th Symposium on Operating Systems
Principles. Monterey, CA, 311-327. https://doi.org/10.1145/2815400.2815420
Anonymous. 2017. Personal Communication. (June 2017).

Andrew Baumann. 2017. Hardware Is the New Software. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems (HotOS). Whistler, Canada.
Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. 2010. The
Turtles Project: Design and Implementation of Nested Virtualization. In Proceed-
ings of the 9th Symposium on Operating Systems Design and Implementation (OSDI).
Vancouver, Canada, 423-436.

Tom Bergan, Dan Grossman, and Luis Ceze. 2014. Symbolic Execution of Multi-
threaded Programs from Arbitrary Program Contexts. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages
& Applications. Portland, OR, 491-506. https://doi.org/10.1145/2660193.2660200
Paolo Bonzini. 2014. The Security State of KVM. https://lwn.net/Articles/619332/.
(November 2014). Accessed: 2017-09-22.

Stefan Bucur, Johannes Kinder, and George Candea. 2014. Prototyping Symbolic
Execution Engines for Interpreted Languages. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Salt Lake City, UT, 239-254.

Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
Symbolic Execution for Automated Real-world Software Testing. In Proceedings
of the Sixth Conference on Computer Systems. Salzburg, Austria, 183-198. https:
//doi.org/10.1145/1966445.1966463

Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and Software
Support for Virtualization. Synthesis Lectures on Computer Architecture, Vol. 12.
Morgan & Claypool Publishers. 1-206 pages.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI). San Diego, CA, 209-224.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-vivo Multi-path Analysis of Software Systems. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Newport Beach, CA, 265-278.
CloudSigma. 2017. Simple Cloud Hosting. https://www.cloudsigma.com/features/.
(2017). Accessed: 2017-09-22.

Ernie Cohen, Wolfgang Paul, and Sabine Schmaltz. 2013. Theory of Multi-core
Hypervisor Verification. Springer Berlin Heidelberg, Berlin, Heidelberg, 1-27.
KVM contributors. 2017. KVM Unit Tests. https://www.linux-kvm.org/page/
KVM-unit-tests. (2017). Accessed: 2017-07-26.

(17]

[18

=
o)

[20]

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

(31

(32

[33

[34

[35

[36

[37

'@
&

[39

[40]

[41

Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy

KVM contributors. 2017. KVM: x86: Fix Emulation of "MOV
SS, Null Selector". https://github.com/torvalds/linux/commit/
33ab91103b3415e12457¢3104f0e4517ce12d0f3. (January 2017). Accessed:
2017-07-26.

The MITRE Corporation. 2016. CVE-2016-8630. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-8630. (October 2016). Accessed: 2017-07-26.
The MITRE Corporation. 2016. CVE-2017-2683. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-2583. (December 2016). Accessed: 2017-07-26.
The MITRE Corporation. 2017. Common Vulnerabilities and Exposures. https:
//cve.mitre.org/. (2017). Accessed: 2017-07-26.

Victor Costan and Srinivas Devadas. 2017. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086. (February 2017). http://eprint.iacr.org/2016/086.
Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Budapest, Hungary, 337-340.

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated White-
box Fuzz Testing. In Proceedings of the 15th Annual Network and Distributed
System Security Symposium. San Diego, CA.

Google. 2017. 7 Ways We Harden Our KVM Hypervisor at
Google Cloud. https://cloudplatform.googleblog.com/2017/01/
7-ways-we-harden-our-KVM-hypervisor-at- Google- Cloud- security-in-plaintext.
html. (2017). Accessed: 2017-09-22.

Google. 2017. Google Compute Engine FAQ. https://cloud.google.com/compute/
docs/faq. (2017). Accessed: 2017-09-22.

Intel. 2017. Intel 64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. https://software.intel.
com/sites/default/files/managed/39/c5/325462- sdm-vol- 1- 2abcd-3abed.pdf. (De-
cember 2017). Accessed: 2018-03-06.

Intel. 2017. Trace Version APIs. https://software.intel.com/sites/landingpage/
pintool/docs/81205/Pin/html/group_ TRACE__VERSION__APLhtml. (February
2017). Accessed: 2017-10-26.

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385-394. https://doi.org/10.1145/360248.360252

Greg Kroah-Hartman. 2018. Linux Kernel 4.4.115 Changelog. https://cdn.kernel.
org/pub/linux/kernel/v4.x/ChangeLog-4.4.115. (February 2018). Accessed: 2018-
02-23.

Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft Hyper-V
Hypervisor with VCC. Springer Berlin Heidelberg, Berlin, Heidelberg, 806-809.
Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Chicago, IL, 190-200.

Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song, and
Petros Maniatis. 2012. Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emulators.
In Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems. London, UK. https://doi.org/
10.1145/2150976.2151012

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2010. Testing System Virtual Machines. In Proceedings of the 19th International
Symposium on Software Testing and Analysis. Trento, Italy, 171-182. https:
//doi.org/10.1145/1831708.1831730

Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.
2009. Testing CPU Emulators. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis. Chicago, IL, 261-272. https://doi.
org/10.1145/1572272.1572303

MivoCloud. 2017. KVM Cloud Hosting in Europe. https://www.mivocloud.com/.
(2017). Accessed: 2017-09-22.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:
x86-TSO (Extended Version). Technical Report UCAM-CL-TR-745. University of
Cambridge, Computer Laboratory.

The Bochs Project. 2017. bochs: Bochs IA-32 Emulator Project. http://bochs.
sourceforge.net/. (2017). Accessed: 2017-07-30.

Florent Saudel and Jonathan Salwan. 2015. Triton: A Dynamic Symbolic Execution
Framework. In Symposium sur la sécurité des technologies de I'information et des
communications, SSTIC, France, Rennes, June 3-5 2015. SSTIC, 31-54.

Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James Newsome, and
Anupam Datta. 2013. Design, Implementation and Verification of an eXtensible
and Modular Hypervisor Framework. In Proceedings of the 34th IEEE Symposium
on Security and Privacy. San Francisco, CA.

Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam Datta.
2016. tiberSpark: Enforcing Verifiable Object Abstractions for Automated Com-
positional Security Analysis of a Hypervisor. In Proceedings of the 25th Usenix
Security Symposium. Austin, TX, 87-104.

vServer Center. 2017. KVM Hosting | KVM Cloud Servers. https://www.
vservercenter.com/kvm-hosting.html. (2017). Accessed: 2017-09-22.

https://support.amd.com/TechDocs/24593.pdf
https://doi.org/10.1145/2815400.2815420
https://doi.org/10.1145/2660193.2660200
https://lwn.net/Articles/619332/
https://doi.org/10.1145/1966445.1966463
https://doi.org/10.1145/1966445.1966463
https://www.cloudsigma.com/features/
https://www.linux-kvm.org/page/KVM-unit-tests
https://www.linux-kvm.org/page/KVM-unit-tests
https://github.com/torvalds/linux/commit/33ab91103b3415e12457e3104f0e4517ce12d0f3
https://github.com/torvalds/linux/commit/33ab91103b3415e12457e3104f0e4517ce12d0f3
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8630
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8630
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2583
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2583
https://cve.mitre.org/
https://cve.mitre.org/
http://eprint.iacr.org/2016/086
https://cloudplatform.googleblog.com/2017/01/7-ways-we-harden-our-KVM-hypervisor-at-Google-Cloud-security-in-plaintext.html
https://cloudplatform.googleblog.com/2017/01/7-ways-we-harden-our-KVM-hypervisor-at-Google-Cloud-security-in-plaintext.html
https://cloudplatform.googleblog.com/2017/01/7-ways-we-harden-our-KVM-hypervisor-at-Google-Cloud-security-in-plaintext.html
https://cloud.google.com/compute/docs/faq
https://cloud.google.com/compute/docs/faq
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__TRACE__VERSION__API.html
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__TRACE__VERSION__API.html
https://doi.org/10.1145/360248.360252
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.115
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.115
https://doi.org/10.1145/2150976.2151012
https://doi.org/10.1145/2150976.2151012
https://doi.org/10.1145/1831708.1831730
https://doi.org/10.1145/1831708.1831730
https://doi.org/10.1145/1572272.1572303
https://doi.org/10.1145/1572272.1572303
https://www.mivocloud.com/
http://bochs.sourceforge.net/
http://bochs.sourceforge.net/
https://www.vservercenter.com/kvm-hosting.html
https://www.vservercenter.com/kvm-hosting.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 Virtualization Bugs
	2.2 Related Work

	3 Intel VMX Virtualization Extension
	4 Overview of MultiNyx
	5 MultiNyx Design
	5.1 Deconstructing VMMs for Testing
	5.2 Test Generation Component
	5.3 Cross-checking Component

	6 Implementation
	6.1 Multi-level Traces
	6.2 KVM Driver and KVM Annotations
	6.3 Multi-level Analysis
	6.4 Cross-checking
	6.5 Optimizations and Parallelization

	7 Evaluation
	7.1 Test Generation
	7.2 Test Results
	7.3 MultiNyx Coverage

	8 Discussion
	8.1 Multi-level vs. Single-level Analysis
	8.2 Testing Single vs. Multiple Instructions
	8.3 Concurrency
	8.4 Specification Accuracy
	8.5 Processor Extensions

	9 Conclusion
	References

