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Abstract
We consider the following question: what consistency
model is appropriate for coordinating the actions of a
replicated set of SDN controllers? We first argue that
the conventional requirement of strong consistency, typ-
ically achieved through the use of Paxos or other con-
sensus algorithms, is conceptually unnecessary to han-
dle unplanned network updates. We present an alternate
approach, based on the weaker notion of eventual cor-
rectness, and describe the design of a simple coordina-
tion layer (SCL) that can seamlessly turn a set of single-
image SDN controllers (that obey certain properties) into
a distributed SDN system that achieves this goal (whereas
traditional consensus mechanisms do not). We then show
through analysis and simulation that our approach pro-
vides faster responses to network events. While our pri-
mary focus is on handling unplanned network updates, our
coordination layer also handles policy updates and other
situations where consistency is warranted. Thus, contrary
to the prevailing wisdom, we argue that distributed SDN
control planes need only be slightly more complicated
than single-image controllers.

1 Introduction
Software-Defined Networking (SDN) uses a “logically
centralized” controller to compute and instantiate for-
warding state at all switches and routers in a network.
However, behind the simple but ambiguous phrase “logi-
cally centralized” lies a great deal of practical complexity.
Typical SDN systems use multiple controllers to provide
availability in the case of controller failures.1 However,
ensuring that the behavior of replicated controllers
matches what is produced by a single controller requires
coordination to ensure consistency. Most distributed
SDN controller designs rely on consensus mechanisms
such as Paxos (used by ONIX [14]) and Raft (used by
ONOS [2]), and recent work (e.g., Ravana [10]) require
even stronger consistency guarantees.

But consistency is only a means to an end, not an end
in itself. Operators and users care that certain properties
or invariants are obeyed by the forwarding state installed

1In some scenarios multiple controllers are also needed to scale
controller capacity (e.g., by sharding the state between controllers), but
in this paper we focus on replication for reliability.

in switches, and are not directly concerned about consis-
tency among controllers. For example, they care whether
the forwarding state enforces the desired isolation be-
tween hosts (by installing appropriate ACLs), or enables
the desired connectivity between hosts (by installing
functioning paths), or establishes paths that traverse a
specified set of middleboxes; operators and users do not
care whether the controllers are in a consistent state when
installing these forwarding entries.

With this invariant-oriented criterion in mind, we
revisit the role of consistency in SDN controllers. We
analyze the consistency requirements for the two kinds of
state that reside in controllers — policy state and network
state2 — and argue that for network state consensus-
based mechanisms are both conceptually inappropriate
and practically ineffective. This raises two questions:
why should we care, and what in this argument is new?

Why should we care? Why not use the current consis-
tency mechanisms even if they are not perfectly suited to
the task at hand? The answer is three-fold.

First, consistency mechanisms are both algorithmi-
cally complex and hard to implement correctly. To note
a few examples, an early implementation of ONIX was
plagued by bugs in its consistency mechanisms; and
people continue to find both safety and liveness bugs
in Raft [6, 22]. Consistency mechanisms are among the
most complicated aspects of distributed controllers, and
should be avoided if not necessary.

Second, consistency mechanisms restrict the avail-
ability of systems. Typically consensus algorithms are
available only when a majority of participants are active
and connected. As a result consistency mechanisms pre-
vent distributed controllers from making progress under
severe failure scenarios, e.g., in cases where a partition is
only accessible by a minority of controllers. Consistency
and availability are fundamentally at odds during such
failures, and while the lack of availability may be neces-
sary for some policies, it seems unwise to pay this penalty
in cases where such consistency is not needed.

Third, consistency mechanisms impose extra latency
in responding to events. Typically, when a link fails, a

2As we clarify later, network state describes the current network
topology while policy state describes the properties or invariants
desired by the operator (such as shortest path routing, or access control
requirements, or middlebox insertions along paths).



switch sends a notification to the nearest controller, which
then uses a consensus protocol to ensure that a majority of
controllers are aware of the event and agree about when
it occurred, after which one or more controllers change
the network configuration. While the first step (switch
contacting a nearby controller) and last step (controllers
updating switch configuration) are inherent in the SDN
control paradigm, the intervening coordination step
introduces extra delay. While in some cases – e.g., when
controllers reside on a single rack – coordination delays
may be negligible, in other cases – e.g., when controllers
are spread across a WAN – coordination can significantly
delay response to failures and other events.

What is new here? Much work has gone into building
distributed SDN systems (notably ONIX, ONOS, ODL,
and Ravana),3 and, because they incorporate sophisti-
cated consistency mechanisms, such systems are signif-
icantly more complex than the single-image controllers
(such as NOX, POX, Beacon, Ryu, etc.) that ushered in the
SDN era.4 In contrast, our reconsideration of the consis-
tency requirements (or lack thereof) for SDN led us to de-
sign a simple coordination layer (SCL) that can transform
any single-image SDN controller design into a distributed
SDN system, as long as the controller obeys a small num-
ber of constraints.5 While our novelty lies mostly in how
we handle unplanned updates to network state, SCL is a
more general design that deals with a broader set of is-
sues: different kinds of network changes (planned and un-
planned), changes to policy state, and the consistency of
the data plane (the so-called consistent updates problem).
All of these are handled by the coordination layer, leaving
the controller completely unchanged. Thus, contrary to
the prevailing wisdom, we argue that distributed SDN sys-
tems need only be slightly more complicated than single-
image controllers. In fact, they can not only be simpler
than current distributed SDN designs, but have better per-
formance (responding to network events more quickly)
and higher availability (not requiring a majority of con-
trollers to be up at all times).

2 Background
In building SDN systems, one must consider consistency
of both the data and control planes. Consider the case
where a single controller computes new flow entries

3There are many other distributed SDN platforms, but most (such
as [19, 28]) are focused on sharding state in order to scale (rather
than replicating for availability), which is not our focus. Note that our
techniques can be applied to these sharded designs (i.e., by replicating
each shard for reliability).

4By the term “single-image” we mean a program that is written with
the assumption that it has unilateral control over the network, rather
than one explicitly written to run in replicated fashion where it must
coordinate with others.

5Note that our constraints make it more complex to deal with policies
such as reactive traffic engineering that require consistent computation
on continuously changing network state.

for all switches in the network in response to a policy
or network update. The controller sends messages to
each switch updating their forwarding entries, but these
updates are applied asynchronously. Thus, until the last
switch has received the update, packets might be handled
by a mixture of updated and non-updated switches, which
could lead to various forms of invariant violations (e.g.,
looping paths, missed middleboxes, or lack of isolation).
The challenge, then, is to implement these updates in a
way that no invariants are violated; this is often referred to
as the consistent updates problem and has been addressed
in several recent papers [11, 17, 20, 21, 25, 26].

There are three basic approaches to this problem.
The first approach carefully orders the switch updates
to ensure no invariant violations [17, 20]. The second
approach tags packets at ingress, and packets are pro-
cessed based on the new or old flow entries based on
this tag [11, 25, 26]. The third approach relies on closely
synchronized switch clocks, and has switches change
over to the new flow entries nearly-simultaneously [21].

Note that the consistent updates problem exists even
for a single controller and is not caused by the use of
replicated controllers (which is our focus); hence, we do
not introduce any new mechanisms for this problem, but
can leverage any of the existing approaches in our design.
In fact, we embed the tagging approach in our coordi-
nation layer, so that controllers need not be aware of the
consistent updates problem and can merely compute the
desired flow entries.

The problem of control plane consistency arises when
using replicated controllers. It seems natural to require
that the state in each controller – i.e., their view of the net-
work and policy – be consistent, since they must collabo-
ratively compute and install forwarding state in switches,
and inconsistency at the controller could result in errors
in forwarding entries. As a result existing distributed con-
trollers use consensus algorithms to ensure serializable
updates to controller state, even in the presence of failures.
Typically these controllers are assumed to be determin-
istic – i.e., their behavior depends only on the state at a
controller – and as a result consistency mechanisms are
not required for the output. Serializability requires coor-
dination, and is typically implemented through the use of
consensus algorithms such as Paxos and Raft. Commonly
these algorithms elect a leader from the set of available
controllers, and the leader is responsible for deciding the
order in which events occur. Events are also replicated to
a quorum (typically a majority) of controllers before any
controller responds to an event. Replication to a quorum
ensures serializability even in cases where the leader
fails, this is because electing a new leader requires use of
a quorum that intersect with all previous quorums [7].

More recent work, e.g., Ravana [10], has looked at
requiring even stronger consistency guarantees. Ravana



tries to ensure exactly-once semantics when processing
network events. This stronger consistency requirement
comes at the cost of worse availability, as exactly-once
semantics require that the system be unavailable (i.e.,
unresponsive) in the presence of failures [15].

While the existing distributed controller literature
varies in mechanisms (e.g., Paxos, Raft, ZAB, etc.) and
goals (from serializability to exactly-once semantics)
there seems to be universal agreement on what we
call the consensus assumption; that is the belief that
consensus is the weakest form of coordination necessary
to achieve correctness when using replicated controllers,
i.e., controllers must ensure serializability or stronger
consistency for correctness. The consensus assumption
follows naturally from the concept of a “logically cen-
tralized controller” as serializability is required to ensure
that the behavior of a collection of replicated controllers
is identical to that of a single controller.

However, we do not accept the consensus assumption,
and now argue that eventual correctness – which applies
after controllers have taken action – not consensus is
the most salient requirement for distributed controllers.
Eventual correctness is merely the property that in any
connected component of the network which contains one
or more controller, all controllers eventually converge
to the correct view of the network, i.e., in the absence of
network updates all controllers will eventually have the
correct view of the network (i.e., its topology and config-
uration) and policy, and that the forwarding rules installed
within this connected component will all be computed
relative to this converged network view and policy. This
seems like a weaker property than serializability, but
cannot be achieved by consensus based controllers which
require that a quorum of controllers be reachable.

So why are consensus-based algorithms used so
widely? Traditional systems (such as data stores) that use
consensus algorithms are “closed world”, in that the truth
resides within the system and no update can be considered
complete until a quorum of the nodes have received the
update; otherwise, if some nodes fail the system might
lose all memory of that update. Thus, no actions should
be taken on an update until consensus is reached and the
update firmly committed. While policy state is closed-
world, in that the truth resides in the system, network state
is “open-world” in that the ground truth resides in the
network itself, not in the controllers, i.e., if the controllers
think a link is up, but the link is actually down, then the
truth lies in the functioning of the link, not the state in
the controller. One can always reconstruct network state
by querying the network. Thus, one need not worry about
the controllers “forgetting” about network updates, as the
network can always remind them. This removes the need
for consensus before action, and the need for timeliness
would suggest acting without this additional delay.

To see this, it is useful to distinguish between agree-
ment (do the controllers agree with each other about the
network state?) and awareness (is at least one controller
aware of the current network state?). If networks were
a closed-world system, then one should not update the
dataplane until the controllers are in agreement, leading
to the consensus assumption. However, since networks
are an open-world system, updates can and should start
as soon as any controller is aware, without waiting for
agreement. Waiting for agreement is unnecessary (since
network state can always be recovered) and undesirable
(since it increases response time, reduces availability, and
adds complexity).

Therefore, SDN controllers should not unnecessarily
delay updates while waiting for consensus. However, we
should ensure that the network is eventually correct, i.e.,
controllers should eventually agree on the current network
and policy state, and the installed forwarding rules should
correctly enforce policies relative to this state. The rest of
this paper is devoted to describing a design that uses a sim-
ple coordination layer lying underneath any single-image
controller (that obeys certain constraints) to achieve rapid
and robust responses to network events, while guarantee-
ing eventual correctness. Our design also includes mech-
anisms for dataplane consistency and policy consistency.

3 Definitions and Categories
3.1 Network Model

We consider networks consisting of switches and hosts
connected by full-duplex links, and controlled by a set of
replicated controllers which are responsible for configur-
ing and updating the forwarding behavior of all switches.
As is standard for SDNs, we assume that switches notify
controllers about network events, e.g., link failures, when
they occur. Current switches can send these notifications
by using either a separate control network (out-of-band
control) or using the same networks as the one being
controlled (in-band control). In the rest of this paper we
assume the use of an in-band control network, and use this
to build robust channels that guarantee that the controller
can communicate with all switches within its partition,
i.e., if a controller can communicate with some switch A,
then it can also communicate with any switch B that can
forward packets to A. We describe our implementation of
robust channels in §6.1. We also assume that the control
channel is fair – i.e., a control message sent infinitely
often is delivered to its destination infinitely often – this
is a standard assumption for distributed systems.

We consider a failure model where any controller,
switch, link or host can fail, and possibly recover after
an arbitrary delay. Failed network component stop
functioning, and no component exhibits Byzantine
behavior. We further assume that when alive controllers
and switches are responsive – i.e., they act on all received



messages in bounded time – this is true for existing
switches and controllers, which have finite queues. We
also assume that all active links are full-duplex, i.e., a
link either allows bidirectional communication or no
communication. Certain switch failures can result in
asymmetric link failures – i.e., result in cases where
communication is only possible in one direction – this can
be detected through the use of Bidirection Forwarding
Detection (BFD) [12, 13] at which point the entire link
can be marked as having failed. BFD is implemented by
most switches, and this functionality is readily available
in networks today. Finally we assume that the failure of a
switch or controller triggers a network update – either by
a neighboring switch or by an operator, the mechanism
used by operators is described in Appendix B.

We define dataplane configuration to be the set of
forwarding entries installed at all functioning switches
in the network; and network state as the undirected graph
formed by the functioning switches, hosts, controllers
and links in a network. Each edge in the network state is
annotated with relevant metadata about link properties –
e.g., link bandwidth, latency, etc. The network configu-
ration represents the current network state and dataplane
configuration. A network policy is a predicate over the
network configuration: a policy holds if and only if the
predicate is true given the current network configuration.
Network operators configure the network by specifying
a set of network policies that should hold, and providing
mechanisms to restore policies when they are violated.

Given these definitions, we define a network as being
correct if and only if it implements all network policies
specified by the operator. A network is rendered incorrect
if a policy predicate is no longer satisfied as a result of
one or more network events, which are changes either to
network state or network policy. Controllers respond to
such events by modifying the dataplane configuration in
order to restore correctness.

Controllers can use a dataplane consistency mech-
anism to ensure dataplane consistency during updates.
The controllers also use a control plane consistency
mechanism to ensure that after a network event con-
trollers eventually agree on the network configuration and
that the data plane configuration converges to a correct
configuration, i.e., one that is appropriate to the current
network state and policy.

Consistency mechanisms can be evaluated based
on how they ensure correctness following a network
event. Their design is thus intimately tied to the nature
of policies implemented by a network and the types of
events encountered, which we now discuss.

3.2 Policy Classes

Operators can specify liveness policies and safety policies
for the network. Liveness policies are those that must

hold in steady state, but can be violated for short periods
of time while the network responds to network events.
This is consistent with the definition of liveness com-
monly used in distributed systems [16]. Sample liveness
properties include:

1. Connectivity: requiring that the data plane configu-
ration is such that packets from a source are delivered to
the appropriate destination.

2. Shortest Path Routing: requiring that all delivered
packets follow the shortest path in the network.

3. Traffic Engineering: requiring that for a given traffic
matrix, routes in the network are such that the maximum
link utilization is below some target.

Note that all of these examples require some notion of
global network state, e.g., one cannot evaluate whether
a path is shortest unless one knows the entire network
topology. Note that such policies are inherently liveness
properties – as discussed below, one cannot ensure that
they always hold given the reliance on global state.

A safety policy must always hold, regardless of any
sequence of network events. Following standard impos-
sibility results in distributed systems [23], a policy is
enforceable as a safety policy in SDN if and only if it can
be expressed as a condition on a path – i.e., a path either
obeys or violates the safety condition, regardless of what
other paths are available. Safety properties include:

1. Waypointing: requiring that all packets sent between
a given source and destination traverse some middlebox
in a network.

2. Isolation: requiring that some class of packets is
never received by an end host (such as those sent from
another host, or with a given port number).

In contrast to liveness properties that require visibility
over the entire network, these properties can be enforced
using information carried by each packet using mecha-
nisms borrowed from the consistent updates literature.
Therefore, we extend the tagging approach from the con-
sistent updates literature to implement safety policies in
SCL. Our extension, and proofs showing that this is both
necessary and sufficient, are presented in Appendix A.

3.3 Network Events

Next we consider the nature of network events, focusing
on two broad categories:

1. Unplanned network events: These include events
such as link failures and switch failures. Since these events
are unplanned, and their effects are observable by users
of the network, it is imperative that the network respond
quickly to restore whatever liveness properties were vio-
lated by these topology events. Dealing with these events
is the main focus of our work, and we address this in §5.

2. Policy Changes: Policy state changes slowly (i.e.,
at human time scales, not packet time scales), and perfect
policy availability is not required, as one can temporarily



block policy updates without loss of network availability
since the network would continue operating using the
previous policy. Because time is not of the essence, we
use two-phase commit when dealing with policy changes,
which allows us to ensure that the policy state at all
controllers is always consistent. We present mechanisms
and analysis for such events in Appendix B.

Obviously not all events fall into these two categories,
but they are broader than they first appear. Planned net-
work events (e.g., taking a link or switch down for mainte-
nance, restoring a link or switch to service, changing link
metadata) should be considered policy changes, in that
these events are infrequent and do not have severe time
constraints, so taking the time to achieve consistency be-
fore implementing them is appropriate. Load-dependent
policy changes (such as load balancing or traffic engi-
neering) can be dealt with in several ways: (i) as a policy
change, done periodically at a time scale that is long
compared to convergence time for all distributed consis-
tency mechanisms (e.g., every five minutes); or (ii) using
dataplane mechanism (as in MATE [3]) where the control
plane merely computes several paths and the dataplane
mechanism responds to load changes in real time without
consulting the control plane. We provide a more detailed
discussion of traffic engineering in Appendix B.2.

3.4 The Focus of Our Work

In this paper, we focus on how one can design an SDN
control plane to handle unplanned network events so
that liveness properties can be more quickly restored.
However, for completeness, we also present (but claim
no novelty for) mechanisms that deal with policy changes
and safety properties. In the next section, we present our
design of SCL, followed by an analysis (in Section 5)
of how it deals with liveness properties. In Section 6 we
describe SCL’s implementation, and in Section 7 present
results from both our implementation and simulations
on SCL’s performance. We delay until the appendices
discussion of how SCL deals with safety properties.

4 SCL Design
SCL acts as a coordination layer for single-image con-
trollers (e.g., Pox, Ryu, etc.). Single image controllers
are designed to act as the sole controller in a network,
which greatly simplifies their design, but also means that
they cannot survive any failures, which is unacceptable in
production settings. SCL allows a single image controller
to be replicated on multiple physical controllers thereby
forming a distributed SDN control plane. We require that
controllers and applications used with SCL meet some
requirements (§4.1) but require no other modifications.

4.1 Requirements

We impose four requirements on controllers and
applications that can be used with SCL:

(a) Deterministic: We require that controller applica-
tions be deterministic with respect to network state.
A similar requirement also applies to RSM-based
distributed controllers (e.g., ONOS, Onix).

(b) Idempotent Behavior: We require that the com-
mands controllers send switches in response to any
events are idempotent, which is straightforward
to achieve when managing forwarding state. This
requirement matches the model for most OpenFlow
switches.

(c) Triggered Recomputation: We require that on re-
ceiving an event, the controller recomputes network
state based on a log containing the sequence of
network events observed thus far. This requires that
the controller itself not retain state and incrementally
update it, but instead use the log to regenerate the
state of the network. This allows for later arriving
events to be inserted earlier in the log without needing
to rewrite internal controller state.

(d) Proactive Applications: We require that controller
applications compute forwarding entries based on
their picture of the network state. We do not allow
reactive controller applications which respond to
individual packet-ins (such as might be used if one
were implementing a NAT on a controller).

In addition to the requirements imposed on controller
applications, SCL also requires that all control messages
– including messages used by switches to notify con-
trollers, messages used by controllers to update switches,
and messages used for consistency between controllers –
be sent over robust communication channels. We define
a robust communication channel as one which ensures
connectivity as long as the network is not partitioned –
i.e., a valid forwarding path is always available between
any two nodes not separated by a a network partition.

4.2 General Approach

We build on existing single-image controllers that recom-
pute dataplane configuration from a log of events each
time recomputation is triggered (as necessitated by the
triggered recomputation requirement above). To achieve
eventual correctness, SCL must ensure – assuming no
further updates or events – that in any network partition
containing a controller eventually (i) every controller
has the same log of events, and (ii) this log accurately
represents the current network state (within the partition).
In traditional distributed controllers, these requirements
are achieved by assuming that a quorum of controllers
(generally defined to be more than one-half of all con-
trollers) can communicate with each other (i.e., they are
both functioning correctly and within the same partition),
and using a consensus algorithm to commit events
to a quorum before they are processed. SCL ensures
these requirements – without the restriction on having a
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Figure 1: Components in SCL.

controller quorum – through the use of two mechanisms:

Gossip: All live controllers in SCL periodically exchange
their current event logs. This ensures that eventually the
controllers agree on the log of events. However, because
of our failure model, this gossip cannot by itself guarantee
that logs reflect the current network state.

Periodic Probing: Even though switches send controllers
notifications when network events (e.g., link failures)
occur, a series of controller failures and recovery (or
even a set of dropped packets on links) can result in
situations where no live controller is aware of a network
event. Therefore, in SCL all live controllers periodically
send probe messages to switches; switches respond to
these probe messages with their set of working links and
their flow tables. While this response is not enough to
recover all lost network events (e.g., if a link fails and
then recovers before a probe is sent then we will never
learn of the link failure), this probing mechanism ensures
eventual awareness of the current network state and
dataplane configuration.

Since we assume robust channels, controllers in the
same partition will eventually receive gossip messages
from each other, and will eventually learn of all network
events within the same partition. We do not assume
control channels are lossless, and our mechanisms are
designed to work even when messages are lost due
to failures, congestion or other causes. Existing SDN
controllers rely on TCP to deal with losses.

Note that we explicitly design our protocols to ensure
that controllers never disagree on policy, as we specify in
greater detail in Appendix B. Thus, we do not need to use
gossip and probe mechanisms for policy state.

4.3 Components

Figure 1 shows the basic architecture of SCL. We now
describe each of the components in SCL, starting from
the data plane.

SDN Switches: We assume the use of standard SDN
switches, which can receive messages from controllers
and update their forwarding state accordingly. We
make no specific assumptions about the nature of these
messages, other than assuming they are idempotent.

Furthermore, we require no additional hardware or
software support beyond the ability to run a small proxy
on each switch, and support for BFD for failure detection.
As discussed previously, BFD and other failure detec-
tion mechanisms are widely implemented by existing
switches. Many existing SDN switches (e.g., Pica-8) also
support replacing the OpenFlow agent (which translates
control messages to ASIC configuration) with other ap-
plications such as the switch-agent. In case where this is
not available, the proxy can be implemented on a general
purpose server attached to each switch’s control port.

SCL switch-agent: The switch-agent acts as a proxy
between the control plane and switch’s control inter-
face. The switch-agent is responsible for implementing
SCL’s robust control plane channels, for responding
to periodic probe messages, and for forwarding any
switch notifications (e.g., link failures or recovery) to
all live controllers in SCL. The switch-agent, with few
exceptions, immediately delivers any flow table update
messages to the switch, and is therefore not responsible
for providing any ordering or consistency semantics.

SCL controller-proxy: The controller-proxy imple-
ments SCL’s consistency mechanisms for both the
control and data plane. To implement control plane
consistency, the controller-proxy (a) receives all network
events (sent by the switch-agent), (b) periodically ex-
changes gossip messages with other controllers; and (c)
sends periodic probes to gain awareness of the dataplane
state. It uses these messages to construct a consistently or-
dered log of network events. Such a consistently ordered
log can be computed using several mechanisms, e.g.,
using accurate timestamps attached by switch-agents. We
describe our mechanism—which relies on switch IDs and
local event counters—in §6.2. The controller-proxy also
keeps track of the network’s dataplane configuration, and
uses periodic-probe messages to discover changes. The
controller-proxy triggers recomputation at its controller
whenever it observes a change in the log or dataplane
configuration. This results in the controller producing a
new dataplane configuration, and the controller-proxy
is responsible for installing this configuration in the
dataplane. SCL implements data plane consistency by
allowing the controller-proxy to transform this computed
dataplane configuration before generating switch update
messages as explained in Appendix A.

Controller: As we have already discussed, SCL uses
standard single image controllers which must meet the
four requirements in §4.1.

These are the basic mechanisms (gossip, probes) and
components (switches, agents, proxies, and controllers)
in SCL. Next we discuss how they are used to restore
liveness policies in response to unplanned topology
updates. We later generalize these mechanisms to allow



handling of other kinds of events later in Appendix B.

5 Liveness Policies in SCL
We discuss how SCL restores liveness policies in the
event of unplanned topology updates. We begin by
presenting SCL’s mechanisms for handling such events,
and then analyze their correctness.

5.1 Mechanism

Switches in SCL notify their switch-agent of any network
events, and switch-agents forward this notification to all
controller-proxies in the network (using the control plane
channel discussed in §6). Updates proceed as follows
once these notifications are sent:
• On receiving a notification, each controller-proxy

updates its event log. If the event log is modified6,
the proxy triggers a recomputation for its controller.
• The controller updates its network state, and com-

putes a new dataplane configuration based on this
updated state. It then sends a set of messages to
install the new dataplane configuration which are
received by the controller-proxy.
• The controller-proxy modifies these messages ap-

propriately so safety policies are upheld (Appendix
A) and then sends these messages to the appropriate
switch switch-agents.
• Upon receiving an update message, each switch’s

switch-agent immediately (with few exceptions dis-
cussed in Appendix B) updates the switch flow table,
thus installing the new dataplane configuration.

Therefore, each controller in SCL responds to un-
planned topology changes without coordinating with
other controllers; all the coordination happens in the
coordination layer, which merely ensures that each
controller sees the same log of events. We next show how
SCL achieves correctness with these mechanisms.

5.2 Analysis

Our mechanism needs to achieve eventual correctness,
i.e., after a network event and in the absence of any
further events, there must be a point in time after which
all policies hold forever. This condition is commonly
referred to as convergence in the networking literature,
which requires a quiescencent period (i.e., one with
no network events) for convergence. Note that during
quiescent periods, no new controllers are added because
adding a controller requires either a network event (when
a partition is repaired) or a policy change (when a new
controller is inserted into the network), both of which
violate the assumption of quiescence. We observe that
eventual correctness is satisfied once the following
properties hold during the quiescent period:

6Since controller-proxies update logs in response to both notifica-
tions from switch-agents and gossip from other controllers, a controller-
proxy may be aware of an event before the notification is delivered.

i. The control plane has reached awareness – i.e., at
least one controller is aware of the current network
configuration.

ii. The controllers have reached agreement – i.e., they
agree on network and policy state.

iii. The dataplane configuration is correct – i.e., the flow
entries are computed with the correct network and
policy state.

To see this consider these conditions in order. Because
controllers periodically probe all switches, no functioning
controller can remain ignorant of the current network
state forever. Recall that we assume that switches are re-
sponsive (while functioning, if they are probed infinitely
often they respond infinitely often) and the control
channel is fair (if a message is sent infinitely often, it is
delivered infinitely often), so an infinite series of probes
should produce an infinite series of responses. Once this
controller is aware of the current network state, it cannot
ever become unaware (that is, it never forgets the state it
knows, and there are no further events that might change
this state during a quiscent period). Thus, once condition 1
holds, it will continue to hold during the quiescent period.

Because controllers gossip with each other, and also
continue to probe network state, they will eventually
reach agreement (once they have gossiped, and no further
events arrive, they agree with each other). Once the
controllers are in agreement with each other, and with
the true network state, they will never again disagree in
the quiescent period. Thus, once conditions 1 and 2 hold,
they will continue to hold during the quiescent period.

Similarly, once the controllers agree with each other
and reality, the forwarding entries they compute will even-
tually be inserted into the network – when a controller
probes a switch, any inconsistency between the switch’s
forwarding entry and the controllers entry will result in an
attempt to install corrected entries. And once forwarding
entries agree with those computed based on the true
network state, they will stay in agreement throughout
the quiescent period. Thus, once conditions 1, 2, and
3 hold, they will continue to hold during the quiescent
period. This leads to the conclusion that once the network
becomes quiescent it will eventually become correct, with
all controllers aware of the current network state, and all
switches having forwarding entries that reflect that state.

We now illustrate the difference between SCL’s
mechanisms and consensus based mechanisms through
the use of an example. For ease of exposition we consider
a small network with 2 controllers (quorum size is 2) and
2 switches, however our arguments are easily extended
to larger networks. For both cases we consider the control
plane’s handling of a single link failure. We assume that
the network had converged prior to the link failure.

First, we consider SCL’s handling of such an event, and
show a plausible timeline for how this event is handled in
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Figure 2: Response to an unplanned topology event
in SCL.
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Figure 3: Response to an unplanned topology event
when using consensus based controllers.
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Figure 4: Response to one unplanned topology
event in the presence of controller failure.
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Figure 6: AS1221: CDF of time taken for routes to
converge after single link failure.
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Figure 7: AS1239: Time taken for routes to
converge after single link failure.

Figure 2. At time t0 a network event occurs which renders
the network incorrect (some liveness properties are vio-
lated) and the control plane unaware. At time t1 Controller
1 receives a notification about the event, this makes the
control plane aware of the event, but the control plane is no
longer in agreement, since Controller 2 is unaware. Con-
troller 1 immediately computes updates, which are sent
to the switch. Next at time t3 both switches have received
the updated configuration, rendering the network correct.
Finally, at time t4, Controller 2 receives notification of
this event, rendering the control plane in agreement. The
network is thus converged at t4. Note, since SCL does not
use consensus, this is not the only timeline possible in this
case. For example, another (valid) timeline would have
the controllers reaching agreement before the dataplane
has reached correctness. Finally, we also note that even
in cases where a notification is lost, gossip would ensure
that the network will reach agreement in this case.

Next, we show how such an event is handled in a
consensus based controller framework in Figure 3.
Without loss of generality, we assume that Controller 1 is
the leader in this case. Similar to above, the control plane
becomes aware at time t1. Next, at time t2, Controller
2 becomes aware of the event through the consensus
mechanism, the controllers therefore reach agreement.
Once agreement has been reached Controller 1 computes
updates, and the network is rendered correct at time t4.
Consensus mechanisms require that any configuration
changes occur after agreement, hence this is the only
plausible timeline in this case. Finally, observe that
when consensus mechanisms are used the dataplane
configuration is updated once (at t3 and t4), while SCL
issues two sets of updates, one from each controller. This

is a necessary consequence of our design.
Finally, we consider a case where a controller, e.g.,

Controller 1, fails while the event is being handled. Be-
cause we assumed that our network had 2 controllers, con-
sensus algorithms cannot make progress in this case. We
therefore focus on SCL’s response, and show a timeline
in Figure 4. In this case the control plane is temporarily
aware of the network event at time t1, but becomes un-
aware when Controller 1 fails at time tf . However, since
switches notify all live controllers, Controller 2 eventually
receives the notification at time t4, rendering the control
plane aware and in agreement. At this time Controller 2
can generate updates for both Switch 1 and 2 rendering the
network correct. Note, that even in cases where the Con-
troller 2’s notification is lost (e.g., due to message losses),
it would eventually be aware due to periodic probing.

6 Implementation
Our implementation of SCL uses Pox [18], a single-
image controller. To simplify development of control
applications, we changed the discovery and topology
modules in POX so they would use the log provided by the
controller-proxy in SCL. We also implemented a switch-
agent that works in conjunction with OpenVSwitch [24],
a popular software switch. In this section we present a
few implementation details about how we implement
robust channels (§6.1); how we ensure log consistency
across controller-proxies (§6.2); and a few optimizations
that we found important for our implementation (§6.3).

6.1 Robust Channel

Most existing SDN implementations require the use of
a separate control network (referred to as out-of-band



control). In contrast, our implementation of SCL reuses
the same network for both control and data packets. The
use of such an in-band control network is essential for
implementing robust channels required by SCL (where
we assume the control channel functions between any
two connected nodes). In our design, the switch-agent is
responsible for implementing control channels. It does
so by first checking if it has previously seen a received
message, and flooding (i.e., broadcasting) the control
message if it has not. Flooding the message means that
each message goes through all available paths in the
network, ensuring that in the absence of congestion all
control messages are guaranteed to be delivered to all
nodes in the same network partition. This meets our
requirements for robust channels from §4.2. We show in
the evaluation that this broadcast-based robust channel
consumes a small percentage (< 1Mbps) of the network
bandwidth. Furthermore, since SCL’s correctness does
not depend on reliable delivery of control plane mes-
sages, we also limit the amount of bandwidth allocated
for control messages (by prioritizing them) and rely on
switches to drop any traffic in excess of this limit, so that
even under extreme circumstances the control traffic is
limited to a small fraction of the total bandwidth.

6.2 Ordering Log Messages

Ensuring that controllers reach agreement requires the
use of a mechanism to ensure that event ordering at each
controller is eventually the same (§5). In our analysis
we assumed the use of some ordering function that used
metadata added by switch-agents to network events to
produce a total order of events that all controllers would
agree on. Here we describe that mechanism in greater
detail. Switch agents in SCL augment network events
with a local (i.e., per switch-agent) sequence number.
This sequence number allows us to ensure that event
ordering in controller logs always corresponds to the
causal order at each switch; we call this property local
causality. Switch agent failures might result in this
sequence number being reset, we therefore append an
epoch count (which is updated when a switch boots) to
the sequence number, and ensure that sequence numbers
from the same switch-agent are monotically increasing
despite failures. We assume the epoch is stored in stable
storage and updated each time a switch boots. We also
assume that each switch is assigned an ID, and that switch
IDs impose a total order on all switches. IDs can be
assigned based on MAC addresses, or other mechanisms.

Our algorithm for ensuring consistent ordering de-
pends on the fact that gossip messages include the
position of each event in the sender’s log. Our algorithm
then is simple: when notified of an event by the data plane
(this might be due to a direct event notification or because
of periodic probing), each controller-proxy inserts the

event at the end of the log. If such an insertion violates
local causality, SCL swaps events until local causality
is restored, e.g., if a controller is notified of an event e
from a switch s with sequence number 5, but the log
already contains another event e′ from the same switch
with sequence number 6, then these events are swapped
so that e occupies the log position previously occupied
by e′ and e′ appears at the end of the log. It is simple to
see that the number of swaps needed is bounded. When
a controller-proxy receives a gossip message, it checks to
see if its position for event disagrees with the position for
the sender of the gossip message. If there is a disagree-
ment, we swap messages to ensure that the message sent
by a switch with a lower ID appears first. Again it is easy
to see that the number of swaps required is bounded by
the number of positions on which the logs disagree.

Assuming that the network being controlled goes
through periods of change (where a finite number of new
network events occur) followed by periods of quiescence
(where no new network events occur), and that quiescent
periods are long enough to reach agreement, then the only
events reordered are those which occur within a single pe-
riod of change. Since we assumed that only a finite num-
ber of new events occur within a period of change, there’s
only a finite number of event swaps that need to be carried
out to ensure that the log ordering is the same across all
controllers. Furthermore, any event that is not in its final
position must be swapped during a round of gossip. This
is because otherwise all controllers must agree on the
message’s position, and hence it will never subsequently
be changed. This implies that all controllers must agree
upon log ordering within a finite number of gossip rounds.
Note our assumption about quiescent periods is required
by all routing algorithms, and is not unique to SCL.

6.3 Optimizations

Our implementation also incorporates three optimizations
to reduce bandwidth usage. Our optimizations generally
aim to reduce the size of messages, but occasionally lead
to an increase in the number of messages.

First, we observe that each switch’s response to
periodic probes includes a copy of its flow tables along
with link state information. Switch flow table sizes can
range from several 1000-100K flow entries, and in a naive
implementation these messages would rapidly consume
most of the bandwidth available for control channels.
However, in the absence of controller failures (i.e., in the
common case) it is unlikely that a controller’s version
of the switch’s flow table differs from reality. Therefore,
when sending a periodic probe request to a switch s, the
controller’s controller-proxy includes the hash of their
view of s’s flow tables in the request. The switch-agents
sends a flow table as a part of their response if and only
if this hash differs from the hash for the actual flow table.
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Figure 8: Fat Tree: CDF of time taken for the
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after a single link failure.
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Figure 9: AS1221: CDF of time taken for the
network (switches and controllers) to fully agree
after a single link failure.
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Figure 10: AS1239: CDF of time taken for the
network (switches and controllers) to fully agree
after a single link failure.

This dramatically reduces the size of probe responses in
the common case.

Second, we require that controller-proxies converge on
a single network event log. However, here again sending
the entire log in each Gossip message is impractical. To
address this we use a log truncation algorithm, whereby
switch-agents no longer include log entries about which
all active controllers agree. This works as follows: (a)
controller-proxies always include new or modified log
entries (since a previous Gossip round, i.e., the last time
all controllers exchanged gossip messages and agreed on
log ordering) in gossip message; (b) any time a controller-
proxy finds that all active controllers agree on a log entry
it marks that entry as committed and stops including it
in the log; and (c) controller-proxies can periodically
send messages requesting uncommitted log entries from
other controllers. The final mechanism (requesting logs)
is required when recovering from partitions.

Log truncation is also necessary to ensure that the
controller-proxy does not use more than a small amount
of data. The mechanism described above suffices to
determine when all active controllers are aware of a log
message. controller-proxies periodically save committed
log messages to stable storage allowing them to free up
memory. New controllers might require these committed
messages, in which case they can be fetched from stable
storage. Committed messages can also be permanently
removed when controller applications no longer require
them, however this requires awarness of application se-
mantics and is left to future work. Finally, since log com-
paction is not essential for correctness we restrict com-
paction to periods when the all controllers in a network are
in the same partition, i.e., all controllers can communicate
with each other – this greatly simplifies our design.

Finally, similar to other SDN controllers, SCL does not
rewrite switch flow tables and instead uses incremental
flow updates to modify the tables. Each controller-proxy
maintains a view of the current network configuration,
and uses this information to only send updates when rules
need to change. Note, in certain failure scenarios, e.g.,
when a controller fails and another simultaneously recov-
ers, this might incur increased time for achieving correct-
ness, however our correctness guarantees still hold.

As we show later in §7 these optimizations are enough
to ensure that we use no more than 1Mbps of bandwidth
for control messages in a variety of networks.

7 Evaluation
As mentioned earlier, the standard approach to replicating
SDN controllers is to use consensus algorithms like Paxos
and Raft to achieve consistency among replicas. The
design we have put forward here eschews such consensus
mechanisms and instead uses mostly-unmodified single-
image controllers and a simple coordination layer. Our
approach has two clear advantages:

Simplicity: Consistency mechanisms are complicated,
and are often the source of bugs in controller designs.
Our approach is quite simple, both conceptually and
algorithmically, leading to a more robust overall
design whose properties are easy to understand.

Eventual Correctness: This seems like the most basic
requirement one could have for distributed con-
trollers, and is easily achieved in our design, yet
consensus mechanisms violate it in the presence of
partitions.

Given these advantages, one might ask why might
one choose current consensus-based approaches over
the one we have presented here? We investigate three
possible reasons: response times, impact of controller
disagreement, and bandwidth overhead. Our analysis
uses the network model presented in §7.1, which allows
us to quantitatively reason about response times. We then
use simulations to gain a deeper understanding of how
the design operates. We use simulation rather than our
implementation because we we can more closely control
the environment and monitor the results.

Finally, in §7.4 we use CloudLab [1] to compare con-
vergence times for SCL and ONOS [2] when responding
to link failures in a datacenter topology. Our results
demonstrate that the effects observed in simulation also
hold for our implementation.

7.1 Response to Network Events

The primary metric by which SDN controller designs
should be evaluated is the extent to which they achieve



 0

 0.2

 0.4

 0.6

 0.8

 1

 96  96.5  97  97.5  98  98.5  99  99.5  100

C
D

F

Availability (% Reachable Pairs)

SCL
Consensus

Figure 11: Fat Tree: CDF of availability showing
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are reachable based on routing rules.
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Figure 12: AS 1221: CDF of availability showing
percentage of physically connected host pairs that
are reachable based on routing rules.
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Figure 13: AS1239: CDF of availability showing
percentage of physically connected host pairs that
are reachable based on routing rules.

Topology Switches Links Diameter ND CD

AS1221 83 236 0.63 s 0.77 s 0.72 s
AS1239 361 1584 0.54 s 0.67 s 0.54 s
Fat Tree 320 3072 2.52 ms 3.78 ms 1.336 ms

Table 1: Properties of the topologies for which we run evaluation.

the desired properties or invariants. For example, if
we ignore the presence of partitions (where consensus
mechanisms will always perform poorly), then we can
ask how quickly a design responds to network events. We
can express these delays using the notation that: lat(x,y)
is the network latency between points x and y; network
nodes c are controllers and network nodes s are switches;
and CD is the delay from waiting for the consensus
algorithm to converge.

For SCL, the total response delay for an event detected
by switch s is given by the sum of: (a) the time it takes for
the event notification to reach a controller (lat(s, c) for
some c) and (b) the time for controller updates to reach
all affected switches s′ (lat(c,s′)). Thus, we can express
the worst case delay, which we call ND, as:

ND = max
s

max
s′

min
c

[lat(s,c)+lat(c,s′)]

which represents the longest it can take for a switch s′ to
hear about an event at switch s, maximized over all s,s′.

When consensus-based approaches are used we must
add the consensus time CD to ND (and in fact ND
is an underestimate of the delay, because the delay is
[lat(s,c) + lat(c,s′)] for a given c that is the leader, not
the controller that minimizes the sum).7

At this simple conceptual level, three things become
apparent: (i) typically SCL will respond faster than
consensus-based systems because they both incur delay
ND and only consensus-based systems incur CD,
(ii) as the number of controllers increases, the relative
performance gap between SCL and consensus-based
approaches will increase (CD typically increases with
more participants, whileNDwill decrease), and (iii) SCL
has better availability (SCL only requires one controller
to be up, while consensus-based designs require at least
half to be up).

7But if the consensus protocol is used for leader election, then ND
is actually an underestimate of the worst-case delay, as there is no
minimization over c.

We further explore the first of these conclusions
using simulations. In our simulations we compare SCL
to an idealized consensus algorithm where reaching
consensus requires that a majority of controllers receive
and acknowledge a message, and these messages and
acknowledgments do not experience any queuing delay.
We therefore set CD to be the median round-trip time
between controllers. We run our simulation on three
topologies: two AS topologies (AS 1221 and 1239) as
measured by the RocketFuel project [27], and a datacen-
ter topology (a 16-ary fat-tree). We list sizes and other
properties for these topologies in Table 1. Our control
application computes and installs shortest path routes.

Single link failure We first measure time taken by the
network to converge back to shortest path routes after
a link failure. Note that here we are not measuring how
long it takes for all controllers and switches to have a
consistent view of the world (we return to that later), just
when are shortest routes installed after a failure. For each
topology, we measured the convergence time by failing
random links and plot CDFs in Figure 5, 6, 7. These
results show that SCL clearly restores routes faster than
even an idealized Paxos approach, and typically faster
than the worst-case bound ND (which would require the
failure to be pessimally placed to achieve).

But one can also ask how long it takes to actually
achieve full agreement, where one might think consensus-
based algorithms would fare better. By full agreement we
mean: (a) the dataplane has converged so that packets are
routed along the shortest path, (b) all controllers have re-
ceived notification for the link failure event and (c) ev-
ery controller’s logical configuration corresponds with the
physical configuration installed in the data plane. For each
topology, we measured convergence time by failing ran-
dom links and plot CDFs in Figure 8, 9, 10. Thus, even
when measuring when the network reaches full agree-
ment, SCL significantly outperforms idealized Paxos.
Note that what consensus-based algorithms give you is
knowing when the controllers agree with each other, but it
does not optimize how quickly they reach agreement.

Continuous link failure and recovery To explore
more general failure scenarios, we simulate five hours
with an ongoing process of random link failure and
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Figure 14: AS 1221: CDF of path inflation
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Figure 15: AS1239: CDF of path inflation.

recovery. The time between link failures in the network
(MTBF) is 30 seconds, and each link’s mean-time-to-
recovery (MTTR) is 15 seconds; these numbers represent
an extremely aggressive failure scenario. We look at two
metrics: connectivity and stretch.

For connectivity, we plot the percentage of available8

host pairs in Figures 11,12, 13. SCL and Paxos offer
comparable availability in this case, but largely because
the overall connectivity is so high. Note, that in Figure 13,
the use of consensus does better than SCL– this is because
in this particular simulation we saw instances of rapid link
failure and recovery, and damping (i.e., delaying) control
plane responses paradoxically improves connectivity
here. This has been observed in other context e.g., BGP.

Even when hosts are connected, the paths between
them might be suboptimal. To investigate this we plotted
the stretch of all connected host-pairs (comparing the
shortest path to the current path given by routing), as
shown in Figures 14, 15. We did not observe any stretch in
the datacenter topology, this can be explained by the large
number of equal cost redundant paths in these topologies.
As one can see, SCL significantly outperforms ideal
Paxos in terms of path stretch in the other two topologies.
In the case of AS1239, we can see that while SCL’s rapid
response and lack of damping affect availability slightly,
the paths chosen by SCL are qualitatively better.

8By which we mean host pairs that are physically connected and can
communicate using the current physical configuration

Traffic Type Fat Tree AS 1221 AS1239
Overall 63.428Kbps 205.828 Kbps 70.2 Kbps
Gossip 46.592 Kbps 3.2 Kbps 28.6 Kbps
Link Probing 16.329 Kbps 3.88 Kbps 36.4 Kbps
Routing Table Probing 0.0Kbps 248.4 Kbps 4.8Kbps

Table 2: Control Bandwidth usage for different topologies

7.2 Impact of Controller Disagreement

While the previous convergence results clearly indicate
that SCL responds faster than consensus-based algo-
rithms, one might still worry that in SCL the controllers
may be giving switches conflicting information. We first
observe that such an update race can happen only under
rare conditions: controllers in SCL only update physical
configuration in response to learning about new network
events. If a single link event occurs, each controller would
proactively contact the switch only after receiving this
event and would install consistent configuration. A race is
therefore only observable when two network events occur
so close together in time so that different controllers
observe them in different order, which requires that the
time difference between these network events is smaller
than the diameter of the network. But even in this case,
as soon as all controllers have heard about each event,
they will install consistent information. So the only time
inconsistent information may be installed is during the
normal convergence process for each event, and during
such periods we would not have expected all switches to
have the same configuration.

Thus, the impact of controller disagreement is min-
imal. However, we can more generally ask how often
do controllers have an incorrect view of the network. In
Figures 16, 17, 18 we show, that under the continuous
failure/recover scenario described above, the CDF of how
many links are incorrectly seen by at least one controller
(where we periodically sample both the actual state of the
physical network and the network state as seen by each
controller). As we can see, typically there are very few
disagreements between controllers and the physical state,
and that SCL outperforms ideal Paxos in this regard. We
also found that event logs between controllers agreed
99.4% of the time.

7.3 Bandwidth Usage

SCL uses broadcast for all control plane communication.
This has several advantages: it avoids the need for boot-
strapping (i.e., running a routing algorithm on the control
plane, which then allows the controllers to manage the
data plane), is extremely robust to failures, and provides
automatic alignment between data plane and control
plane connectivity. This last one is particularly important,
because otherwise one would have to handle special
cases such as where controllers within a given data plane
partition might not be able to talk to each other. Such
cases would unavoidably complicate the controller logic,



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
D

F

Link Differences b/w Controllers Network

SCL
Consensus
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tree.
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Figure 18: AS1239: CDF of number of times
network state disagreed with any controller’s
network state.

System First Update Correct
Median Min Max Median Min Max

SCL 117.5ms 91ms 164ms 268.5ms 201ms 322ms
ONOS 159.5ms 153ms 203ms 276.5ms 164ms 526ms

Table 3: Time taken before a controller begins reacting to a network event (First
Update) and before the network converges (Correct).

and make eventual correctness harder to achieve.
However, one might think that this requires too much

bandwidth to be practical. Here we consider this question
by running a simulation where the mean time between link
failures (MTBF) is 10 minutes, and the mean time for each
link to recover is 5 minutes. The control traffic depends
on the control plane parameters, and here we set SCL’s
gossip timer at 1 second and network state query period at
20 seconds. Table 2 shows the control plane’s bandwidth
consumption for the topologies we tested. On average we
find that SCL uses a modest amount of bandwidth. We also
looked at instantaneous bandwidth usage (which we mea-
sured in 0.5 second buckets) and found that most of the
time peak bandwidth usage is low: for the fat tree topol-
ogy 99.9% of the time bandwidth is under 1Mbps, for
AS1221 98% of the time bandwidth is under 1Mbps, and
for AS1239 97% of the time bandwidth is under 1Mbps.

One might ask how the bandwidth used on a given link
scales with increasing network size. Note that the domi-
nant cause of bandwidth usage is from responses to link
and routing table probing messages. The number of these
messages grows as the number of switches (not the num-
ber of controllers), and even if we increase the number
of switches three orders of magnitude (resulting in a net-
work with about 100K switches, which is larger than any
network we are aware of) the worst of our bandwidth num-
bers would be on the order of 200Mbps, which is using
only 2% of the links if we assume 10Gbps links. Further-
more, the failure rate is extremely high; we would expect
in a more realistic network setting that SCL could scale to
even large networks with minimal bandwidth overhead.

7.4 Response Time of the SCL Implementation

The primary metric by which we compare our imple-
mentation to existing distributed controller frameworks
is response time. We begin by showing the improvements
achieved by our implementation of SCL when compared
to a traditional distributed controller in a datacenter net-

work. We ran this evaluation on CloudLab [1], where the
dataplane network consisted of 20 switches connected in
a fat tree topology (using 48 links). Each of the dataplane
switches ran OpenVSwitch (version 2.5.0). In the control
plane we used three replicated controllers. To fit into
the CloudLab environment we modified SCL to use
an out-of-band control channel: each controller-proxy
established a TCP connection with all switch-agents and
forwarded any network events received from the switch
on all of these connections. For comparison we used
ONOS (version 1.6.0). Both controllers were configured
to compute shortest path routes.

In our experiments we measured the time taken for
paths to converge to their correct value after a single link
failure in the network. We measured both the time before
a controller reacts to the network event (First Update
in the table) and before all rule updates are installed
(Correct). We repeated this test 10 times and report times
in milliseconds elapsed since link failures (Table 3). We
find that SCL consistently responds to network events
before ONOS; this is in line with the fact that ONOS
must first communicate with at least one other controller
before installing rules. In our experiments, we found
that this could induce a latency of up to 76ms before the
controller issues its first updates. In the median case, SCL
also achieved correctness before ONOS, however the gap
is smaller in this case. Note, however, the latencies in
this setup are very small, so we expected to find a small
performance gap.

8 Conclusion
Common wisdom holds that replicated state machines
and consensus are key to implementing distributed SDN
controllers. SCL shows that SDN controllers eschewing
consensus are both achievable and desirable.
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A Safety Policies in SCL
Next we look at how SCL ensures that safety policies
always hold. From our definitions, safety policies must
never be violated, even in the presence of an arbitrary
sequence of network events. Unlike liveness policies, we
cannot rely on the control plane to enforce these policies.
We therefore turn to data plane mechanisms for enforcing
these policies.

As noted earlier, safety policies cannot have any de-
pendence on what other paths are available in the network
(disallowing policies affecting optimality, e.g., shortest
path routing) or on what other traffic is in the network
(disallowing policies which ensure traffic isolation). The
safety policies listed in §3.2 meet this requirement: way-
pointing requires that all chosen paths include the way-
point, while isolation limits the set of endpoints that valid
paths can have. Next, we present our mechanism for en-
forcing safety policies, and then provide an analysis show-
ing that this mechanism is both necessary and sufficient.

A.1 Mechanism

Safety policies in SCL constrain the set of valid paths
in the network. We assume the control applications only
generate paths that adhere to these constraints. Such
policies can therefore be implemented by using dataplane
consistency mechanisms to ensure that packets only
follow paths generated by a control application.

Our mechanisms for doing this extends existing work
on consistent updates [4, 25]. However in contrast to
these works (which implicitly focus on planned updates),
our focus is explicitly restricted to unplanned topology
updates. The primary aim of this mechanism is to ensure
that each packet follows exactly one controller generated
path. Similar to prior work, we accomplish this by
associating a label with each path, and tagging packets on
ingress with the label for a given path. Packets are then
routed according to this label, ensuring that they follow a
single path. Packets can be tagged by changing the VLAN
tag, adding an MPLS label, or using other packet fields.

In SCL, the controller-proxy is responsible for ensur-
ing that packets follow a single path. Our mechanism for
doing this is based on the following observation: since we
assume controllers are deterministic, the path (for a single
packet) is determined entirely by the current network
state and policy. The controller-proxy therefore uses a
hash of the network state and policy as a policy label
(Π). When a controller sends its controller-proxy a flow
table update, the controller-proxy modifies each match
predicate in the update. The match predicates are updated
so that a packet matches the new predicate if and only if
the packet is tagged with Π and if it would have matched
the old predicate (i.e., given a match-action rule r with
match m, the controller-proxy produces a rule r′ which
will only match packets which are tagged with Π and

A

B

E

C

F

GD

Figure 19: Example where waypointing is violated when using inconsistent paths.

matchm). The controller-proxy also augments the update
to add rules which would tag packets on ingress with an
appropriate tag. The controller-proxy then sends these
rules to the appropriate switch (and its switch-agent).
Once these rules are installed, packets are forwarded
along exactly one path from ingress to egress, and are
dropped when this is not possible.

Since the labels used by SCL are based on the network
state and policy, controllers in agreement will use the
same label, and in steady state all controllers will install
exactly one set of rules. However, during periods of
disagreement, several sets of rules might be installed in
the network. While these do not result in a correctness
violation, they can result in resource exhaustion (as flow
table space is consumed). Garbage collection of rules is
a concern for all consistent update mechanisms, and we
find that we can apply any of the existing solutions [11]
to our approach. Finally, we observe that this mechanism
need not be used for paths which do not enforce a safety
policy. We therefore allow the controller to mark rules
as not being safety critical, and we do not modify the
match field for such rules, reducing overhead. We do
not require that single-image controllers mark packets as
such, this mechanism merely provides an opportunity for
optimization when control applications are SCL aware.

A.2 Analysis

Next we show that this mechanism is both necessary and
sufficient for ensuring that safety policies hold. Since we
assume that controllers compute paths that enforce safety
policies, ensuring that packets are only forwarded along
a computed path is sufficient to ensure that safety policies
are upheld. We show necessity by means of a counterex-
ample. We show that a packet that starts out following
one policy compliant path, but switches over partway to
another policy compliant path can violate a safety policy.
Consider the network in Figure 19, where all packets from
A to G need to be waypointed through the shaded gray
nodeE. In this case, both the solid-red path and the dashed
purple path individually meet this requirement. However,
the paths intersect at bothD andE. Consider a case where
routing is done solely on packet headers (so we do not
consider input ports, labels, etc.). In this case a packet can
follow the path A—B—D—C—G, which is a combina-
tion of two policy compliant paths, but is not itself policy
compliant. Therefore, it is necessary that packets follow



a single path to ensure safety policies are held. Therefore
our mechanism is both necessary and sufficient.

A.3 Causal Dependencies

Safety policies in reactive networks might require that
causal dependencies be enforced between paths. For
example, reactive controllers can be used to implement
stateful firewalls, where the first packet triggers the
addition of flow rules that allow forwarding of subse-
quent packets belonging to the connection. Ensuring
correcntess in this case requires ensuring that all packets
in the connection (after the first) are handled by rules
that are causally after the rules handling the first packet.
Our mechanism above does not guarantee such causality
(since we do not assume any ordering on the labels, or on
the order in which different controllers become aware of
network paths). We have not found any policies that can be
implemented in proactive controllers (which we assume)
that require handling causal dependencies, and hence
we do not implement any mechanisms to deal with this
problem. We sketch out a mechanism here using which
SCL can be extended to deal with causal dependencies.

For this extension we require that each controller-
proxy maintain a vector clock tracking updates it has
received from each switch, and include this vector clock
in each update sent to a switch-agent. We also require
that each switch-agent remember the vector clock for
the last accepted update. Causality can now be enforced
by having each switch-agent reject any updates which
happen-before the last accepted update, i.e., on receiving
an update the switch-agent compares the update’s vector
clock vu with the vector-clock for the last accepted
update va, and rejects any updates where vu � va. The
challenge here is that the happens-before relation for
vector clocks is a partial order, and in fact vu and va
may be incomparable using the happens-before relation.
There are two options in this case: (a) the switch-agent
could accept incomparable updates, and this can result in
causality violations in some cases; or (b) the switch-agent
can reject the incomparable update. The latter is safe (i.e.,
causality is never violated), however it can render the
network unavailable in the presence of partitions since
controllers might never learn about events known only to
other controllers across a partition.

B Policy Changes in SCL
All the mechanisms presented thus far rely on the assump-
tion that controllers in the network agree about policy.
The policy coordinator uses 2-phase commit [5] (2PC) to
ensure that this holds. In SCL, network operators initiate
policy changes by sending updates to the policy coordi-
nator. The policy coordinator is configured with the set
of active controllers, and is connected to each controller
in this set through a reliable channel (e.g., established

using TCP). On receiving such an update, the policy
coordinator uses 2PC to update the controllers as follows:

1. The policy coordinator informs each controller that
a policy update has been initiated, and sends each
controller the new policy.

2. On receiving the new policy, each controller sends
an acknowledgment to the policy coordinator.
Controllers also start start queuing network events
(i.e., do not respond to them) and do not respond to
them until further messages are received.

3. Upon receiving an acknowledgement from all
controllers, the policy coordinator sends a message
to all controllers informing them that they should
switch to the new policy.

4. On receiving the switch message, each controller
starts using the new policy, and starts processing
queued network events according to this policy.

5. If the policy coordinator does not receive acknowl-
edgments from all controllers, it sends an abort
message to all controllers. Controllers receiving
an abort message stop queuing network events
and process both queued events and new events
according to the old policy.

Two phase commit is not live, and in the presence of
failures, the system cannot make progress. For example,
in the event of controller failure, new policies cannot
be installed and any controller which has received a
policy update message will stop responding to network
events until it receives the switch message. However,
we assume that policy changes are rare and performed
during periods when an administrator is actively mon-
itoring the system (and can thus respond to failures).
We therefore assume that either the policy coordinator
does not fail during a policy update or can be restored
when it does fail, and that before starting a policy update
network administrators ensure that all controllers are
functioning and reachable. Furthermore, to ensure that
controllers are not stalled from responding to network
events forever, SCL controllers gossip about commit and
abort messages from the 2PC process. Controllers can
commit or abort policy updates upon receiving these
messages from other controllers. This allows us to reduce
our window of vulnerability to the case where either (a)
the policy coordinator fails without sending any commits
or aborts, or (b) a controller is partitioned from the policy
coordinator and all other controllers in the system.

The first problem can be addressed by implementing
fault tolerance for the policy coordinator by implement-
ing it as a replicated state machine. This comes at the cost
of additional complexity, and is orthogonal to our work.

The second problem, which results from a partition
preventing the policy coordinator from communicating
with a controller, cannot safely be solved without repair-
ing the partition. This is not unique to SCL, and is true for



all distributed SDN controllers. However, in some cases,
restoring connectivity between the policy coordinator and
all controllers might not be feasible. In this case network
operators can change the set of active controllers known to
the policy agent. However it is essential that we ensure that
controllers which are not in the active set cannot update
dataplane configuration, since otherwise our convergence
guarantees do not hold. Therefore, each SCL agent is
configured with a set of blacklisted controllers, and drops
any updates received from a controller in the blacklisted
set. We assume that this blacklist can be updated through
an out of band mechanism, and that operators blacklist
any controller before removing them from the set of active
controllers. Re-enabling a blacklisted controller is done in
reverse, first it is added to the set of active controllers, this
triggers the 2PC mechanism and ensures that all active
controllers are aware of the current configuration, the
operator then removes the controller from the blacklist.

Finally, note that SCL imposes stricter consistency
requirements in responding to policy changes when
compared to systems like ONOS and Onyx, which store
policy using a replicated state machine; this is a trade-off
introduced due to the lack of consistency assumed when
handling network events. This is similar to recent work
on consensus algorithms [7] which allow trade-offs in the
number of nodes required during commits vs the number
of nodes required during leader election.

B.1 Planned Topology Changes

Planned topology changes differ from unplanned ones in
that operators are aware of these changes ahead of time
and can mitigate their effects, e.g., by draining traffic
fron links that are about to be taken offline. We treat such
changes as policy changes, i.e., we require that operators
change their policy to exclude such a link from being used
(or include a previously excluded link), and implement
them as above.

B.2 Load-Dependent Update

Load-dependent updates, which include policies like
traffic engineering, are assumed by SCL to be relatively
infrequent, occurring once every few minutes. This is
the frequency of traffic engineering reported in networks
such as B4 [8], which aggressively run traffic engineering.
In this paper we focus exclusively on traffic engineering,
but note that other load-dependent updates could be
implemented similarly.

We assume that traffic engineering is implemented by
choosing between multiple policy-compliant paths based
on a traffic matrix, which measures demand between pairs
of hosts in a network. Traffic engineering in SCL can be
implemented through any of three mechanisms, each of
which allows operators to choose a different point in the
trade-off space: (a) one can use techniques like TeXCP [9]

and MATE [3] which perform traffic engineering entirely
in the data plane; or (b) operators can update traffic
matrices using the policy update mechanisms.

Dataplane techniques including TeXCP can be imple-
mented in SCL unmodified. In this case, control plane
applications must produce and install multiple paths be-
tween hosts, and provide mechanisms for a switch or mid-
dlebox to choose between these paths. This is compatible
will all the mechanisms we have presented thus far; the
only additional requirement imposed by SCL is that the
field used to tag paths for traffic engineering be different
from the field used by SCL for ensuring dataplane consis-
tency. These techniques however rely on local information
to chose paths, and might not be sufficient in some cases.

When treated as policy changes, each traffic matrix
is submitted to a policy coordinator which uses 2PC to
commit the parameters to the controller. In this case, we
allow each update process to use a different coordinator,
thus providing a trivial mechanism for handling failures
in policy coordinators. However, similar to the policy up-
date case, this mechanism does not allow load-dependent
updates in the presence of network partitions.
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