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Abstract— Knowing the positions of the nodes in a network is
essential to many next generation pervasive and sensor network
functionalities. Although many network localization systems have
recently been proposed and evaluated, there has been no system-
atic study of partially localizable networks, i.e., networks in which
there exist nodes whose positions cannot be uniquely determined.
There is no existing study which correctly identifies precisely
which nodes in a network are uniquely localizable and which are
not. This absence of a sufficient uniqueness condition permits
the computation of erroneous positions that may in turn lead
applications to produce flawed results. In this paper, in addition
to demonstrating the relevance of networks that may not be fully
localizable, we design the first framework for two dimensional
network localization with an efficient component to correctly
determine which nodes are localizable and which are not.
Implementing this system, we conduct comprehensive evaluations
of network localizability, providing guidelines for both network
design and deployment. Furthermore, we study an integration
of traditional geographic routing with geographic routing over
virtual coordinates in the partially localizable network setting.
We show that this novel cross-layer integration yields good
performance, and argue that such optimizations will be likely
be necessary to ensure acceptable application performance in
partially localizable networks.

I. INTRODUCTION

Knowing the correct positions of network nodes is essential
to many functionalities in next-generation pervasive and sen-
sor networks. For example, realizing the vision of pervasive
computing (e.g., [12], [41]) requires that the locations of the
devices and the users be known (e.g., [17], [38]); to efficiently
route traffic to a geographic location (e.g., [21], [44]), the
nodes need to know their locations; to cover a region, the
sensors use their positions to determine the quality of coverage
(e.g., [24]); to guide a user across a field [23], the guiding
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sensors need to know their positions; in order to detect events
and track targets, the tracking sensors need to know their
positions to pinpoint the movement of the targets and to
implement efficient state transfer (e.g., [45]).

Given the importance of knowing the positions of the
network nodes, much research effort has been invested into
network localization, which refers to the process of determin-
ing these positions. Two straightforward methods to achieve
localization are manual configuration and the Global Posi-
tioning System (GPS) [18]. However, neither methods scales
well and both suffer from inherent physical limitations. For
example, GPS receivers are costly both in terms of hardware
and power requirements. More importantly, since GPS requires
line-of-sight between the receiver and the GPS satellites, it
may not work well indoors, underground, or in the presence of
obstructions such as dense vegetation, buildings, or mountains
blocking the direct view to these satellites.

The limitations of manual configuration and GPS have mo-
tivated the search for alternative ad-hoc methods, with a large
number of localization systems having recently been proposed
and evaluated (e.g., [2], [3], [5], [6], [7], [8], [9], [11], [13],
[14], [17], [20], [26], [27], [28], [31], [33], [35], [39], [40],
[42]). The predominant type of approach, called fine-grained
localization, involves nodes measuring the distances between
themselves and their neighbors, with only some nodes called
“beacons” having to be informed of their position through
GPS or manual configuration. While some of the previous
schemes are cleverly engineered, it has remained an open
challenge in the field to determine precisely which nodes are
uniquely localizable. For example, one prominent scheme has
proposed that each node with three node-disjoint paths to three
distinct beacons is uniquely localizable. We will see later that
this is not a sufficient condition. Furthermore, most of the
previous localization schemes determine node positions using
optimization techniques and simply assign coordinates to non-
localizable nodes corresponding to a local minimum1. When
there are multiple configurations satisfying a given instance

1Most previous approaches observe that increasing node density reduces
errors. However, errors due to ambiguity are obscured by the customary
network-aggregate error measures.



of the localization problem, the returned configuration may
not be the one that corresponds to reality. If an erroneous
configuration is used by an application, for instance event
detection, then incorrect or misleading conclusions may be
drawn. In [10], Eren et al. proposed the construction of a
grounded graph whose properties can be used to check the
unique localizability of a network. However, their condition
decides whether the entire network, including all of its nodes,
can be uniquely localized. As we will show later, for realistic
networks in many environments, it is unlikely that all of the
nodes can be uniquely localized. Thus, such a collective test is
likely to fail, unless the network is highly dense and regular.
Furthermore, many applications can function properly as long
as a sufficient number of nodes are uniquely localized, so it is
not imperative that every single node be uniquely localizable.

Motivated by above observations, in this paper we propose
the concept of the partially localizable network (PLN). These
are networks in which not all nodes can be uniquely localized.
We believe that partially localizable networks are likely to be
the most prevalent networks in practice.

The first major challenge in studying PLNs is to identify
the uniquely localizable nodes. In this paper, we present a
sufficient graph-theoretic condition for a node to be uniquely
localizable. Applying the condition, we identify localizable
nodes by efficiently partitioning the network into components
which are redundantly rigid and triconnected. Coordinates
for the nodes in these components can then be uniquely
determined subject to error due to noise in the distance
measurements. We note that in simulations under realistic
conditions, nodes determined to be uniquely localizable by
our tests are only very rarely rendered ambiguous by errors in
edge length measurements as described in [25].

Since our algorithm identifies localizable nodes efficiently,
we are also able to use it to thoroughly explore appropriate
network parameters in order to achieve a desired localization-
dependent application goal. For the first time, it is possible
to observe exactly how many nodes one can expect to be
localizable in medium density and sparsely connected random
networks. Using our tool, we are also able to guide the
deployment of networks by adding nodes systematically to the
network so as to increase the proportion of localizable nodes.
As applications progress and adapt to operation in PLNs, our
tool will undoubtedly find uses in more sophisticated planning
and analysis tasks.

The second major challenge in studying PLNs is to
determine how to best make use of nodes that cannot be
uniquely localized. One possibility is for applications to
simply ignore such nodes as if they do not exist, but this is
clearly a worst-case option. The application setting in which
we study this issue is geographic routing over PLNs. We
propose an integration of geographic routing without location
information and standard geographic routing. We show that
by using virtual localization techniques for the non-localizable
nodes, one can achieve a higher routing success rate between
localized nodes than by ignoring non-localizable nodes.

The contributions of this paper can be summarized as
follows.

• We propose the novel PLN paradigm. We develop effi-
cient algorithms to ascertain which nodes can be uniquely
localized and which cannot.

• Implementing our system, we conduct comprehensive
experimental evaluations of network localizability, and
describe implications on both network design and on the
use of novel network deployment algorithms.

• We argue that a cross-layer approach involving feedback
between the localization layer and the application layer
should be adopted in PLNs. As an example of this,
we study an integration of geographic routing without
location information and standard geographic routing. We
show that this cross-layer integration improves network
performance.

The rest of this paper is organized as follows. In Section II,
we formulate the unique localizability problem, derive con-
ditions for a node to be uniquely localizable, and present
our algorithm to identify the nodes that can be localized. In
Section III, we apply the algorithm to explore the parameter
space of the localization problem. In Section IV, we present
our algorithms for geographic routing in PLNs. We discuss
related work in Section V. Our conclusions and future work
are described in Section VI.

II. IDENTIFYING LOCALIZABLE NODES IN PARTIALLY

LOCALIZABLE NETWORKS

In this section, we describe how to identify uniquely local-
izable nodes in a partially localizable network. We call this
problem the node-localizability problem. However, before we
study this problem, we first review previous results on how
to check whether a complete network is localizable, i.e., all
nodes in the network are uniquely localizable. We refer to
this problem as the network-localizability problem. Readers
who are familiar with [10] can skip to Section II-C. Note that
unless otherwise stated, we work in two dimensions.

A. Problem Formulation of the Network-Localizability Prob-
lem

In the network-localizability-problem formulation, we have
a network in real d-dimensional space {d = 2 or 3} consisting
of a set of m > 0 nodes labeled 1 through m which represent
“beacons” together with n − m > 0 additional nodes labeled
m+1 through n which represent sensors. Each node is located
at a fixed position in R

d and has associated with it a specific
set of “neighboring” nodes.

Let G = {V,E} be the network with vertex set V =
{1, 2, . . . , n} and edge set E defined so that (i, j) is one of
the graph’s edges precisely in the case that nodes i and j
are neighbors. The network localization problem with exact
distance information is to determine the locations pi of all
network nodes in R

d given the graph of the network G,
the positions of the beacons pj , j ∈ {1, 2, . . . ,m} in R

d,
and the distance li,j between each neighbor pair (i, j) ∈ E.
The network-localizability problem is to determine if there



is exactly one set of vectors {pm+1, . . . pn} in R
d which

is consistent with the given data G, {p1, p2, . . . , pm}, and
l : E → R. If there is exactly one set, we say that the network
is localizable.

We can see that the network-localizability problem is closely
related with the Euclidean graph realization problem in which
coordinates are assigned to vertices of a weighted graph such
that the distance between coordinates assigned to nodes joined
by an edge is equal to the weight of the edge. Clearly, if the
graph G of a network is uniquely realizable, the network is
localizable up to global rotations, translations, and reflections.

However, this connection to Euclidean graph realization
is still incomplete. The network-localizability problem is not
equivalent to the unique realizability of G, but of a graph
with a slightly larger edge set that includes edges from every
beacon to every other. We call this augmented graph the
grounded graph of the network. In the graph abstraction, an
edge represents a distance constraint between its endpoints.
Since the distance between each pair of beacons is known,
edges must exist between all pairs of beacons. This observation
is crucial in order to capture all available constraints in the
network. If the grounded graph of the network is uniquely
realizable, then the network is uniquely localizable up to
rotations, translations, and reflections. In two dimensions,
three non-collinear beacons are necessary to resolve the global
orientation of the network to a single possibility.

B. A Sufficient and Necessary Condition for Network Local-
izability

Now that we have defined the network-localizability prob-
lem and its grounded graph abstraction, we can proceed to
describe the precise conditions for unique localizability.

We must first state that the following is a generic characteri-
zation of unique realizability, i.e., one that holds for almost all
configurations of network nodes. What this means is that for
all network configurations other than a set of configurations
containing certain degeneracies among node positions, unique
localizability is a graph-theoretic property of the network
connectivity and independent of the positions of the nodes.
Given this fact, randomization aids in the classification of
networks as uniquely realizable. For any reasonable probabil-
ity distribution on node positions, degenerate configurations
have zero probability of appearing, and one can be justified
in assuming the network nodes to be in general position. It is
worth noting however, that in the presence of errors in edge
length measurements, configurations indistinguishable from
degenerate may very well occur. We begin with descriptions
of the three ways in which a graph can fail to have a unique
realization.

1) Not rigid
A realization of a graph may be subject to deformations that
allow the coordinates assigned to vertices to vary continuously
while simultaneously satisfying all of the edge constraints.
This non-uniqueness can either be continuous or discontin-
uous. A graph is flexible if it admits a continuous deformation

other than global rotation, translation, and reflection; other-
wise, it is called rigid. Flexible graphs have an infinite number
of realizations. Fig. 1 shows a flexible network. The figure
also provides a counter example to the claim that if a node
has three node-disjoint paths to three distinct beacons, it is
uniquely localizable.

a

Fig. 1. An example flexible graph. It also shows that although node a has
three node-disjoint paths to the three beacons on the right (the implicit edges
among the beacons are not drawn), the position of node a is not unique. For
example, imagine dragging node a to the left.

Flexibility arises due to unconstrained degrees of freedom
in the graph structure. One can see that in two dimensions,
a graph of n nodes has at most 2n degrees of freedom.
Each edge constraint eliminates at most a single degree of
freedom, but there are 3 degrees of freedom corresponding to
the rotation and translations of a rigid body that cannot be
eliminated by any number of edges. One would guess then
that at least 2n− 3 edges are necessary for rigidity in a graph
of n vertices. However, having the requisite total number of
edges is not sufficient for rigidity, as the edges could all be
crammed between only a few vertices, leaving the rest under-
constrained. The intuition then, is that 2n− 3 well-distributed
edges are needed. More precisely, in graphs with 2n−3 edges,
no subset of n′ nodes may have more than its fair share of
2n′ − 3 edges between its nodes. If a subgraph has more than
2n′ − 3 edges, some of them are redundant. Non-redundant
edges are called independent. Each independent edge elimi-
nates a degree of freedom in the structure, so the presence
of 2n − 3 independent edges is sufficient for rigidity. This
intuition turns out to be correct in two-dimensions, resulting
in the well-known Laman condition [22]. Unfortunately, this
argument does not hold in three dimensions and no graph-
theoretic characterization of rigidity for dimensions greater
than 2 is yet known.

Theorem 1: (Laman) The edges of a graph G = (V,E) are
independent in two dimensions iff no subgraph G′ = (V ′, E′)
has more than 2n′ − 3 edges, where n′ = |V ′|.

Corollary 1: A graph having n vertices and 2n − 3 edges
is rigid in two dimensions iff no subgraph (V ′, E′) has more
than 2n′ − 3 edges, where n′ = |V ′|.

2) Not d + 1-connected
Rigid graphs are still susceptible to discontinuous non-
uniqueness. Specifically, they may be subject to fold ambigu-
ities in which a set of nodes have two possible configurations
corresponding to a “reflection” across a set of mirror nodes
as shown in Fig. 2. This type of ambiguity is not possible in
d + 1-vertex-connected graphs.



Fig. 2. An example showing two realizations due to reflection.

3) Not redundantly rigid
A d+1-vertex-connected rigid graph may still be subject to a
flex ambiguity. Fig. 3 shows a triconnected rigid graph which
becomes flexible upon removal of an edge. More specifically,
after the removal of an edge, a subgraph can swing into a
different configuration in which the removed edge constraint
is satisfied and then reinserted. This type of ambiguity is
eliminated by redundant rigidity, the property that a graph
remains rigid upon removal of any single edge.

b

a

b
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Fig. 3. An example from [15] showing a rigid triconnected graph with two
realizations. If edge (a, a′) is removed, triangle a′b′c′ swings along a path
until the distance (a, a′) is the same as it originally was.

Summarizing the conditions for eliminating ambiguities in
graph realization, we have the following:

Theorem 2: A graph G with n ≥ 4 vertices is uniquely
realizable in two dimensions iff it is redundantly rigid and
triconnected.

Hendrickson [15] proved the necessity of triconnectedness
and redundant rigidity for unique graph realizability, and it was
recently shown by Berg and Jordan [4] that it these conditions
also sufficient.

Recalling that three non-collinear beacons are necessary for
unique network localizability to absolute positions, we have
the following result:

Theorem 3: ([10]) Let N be a network in R
2 containing at

least three non-collinear beacons. Let the grounded network
graph G be the graph whose vertices correspond to the
network nodes and whose edges include all neighbor pairs
and all beacon pairs in N. The network is localizable in
two dimensions if and only if G is redundantly rigid and
triconnected.

C. Identifying Uniquely Localizable Nodes

The results in the preceding subsection for network localiz-
ability can be extended to the node-localizability problem. To
determine if a node is uniquely localizable, we first have the
following necessary condition:

Lemma 1: If a node is uniquely localizable, it must have
three node-disjoint paths to three distinct beacons.

Proof: Suppose the underlying (grounded) graph is G =
(V,E). Suppose that there are three beacon nodes and v is a
localizable node.

Let a node w located at the centroid of the three beacon
nodes be adjoined to G. Furthermore, suppose that w is a
degree 3 vertex with edges joining w to each of the three
beacon nodes. Call the new graph G′. Then clearly w is a
localizable node of the graph G′.

Now consider the nodes v and w, and let r be the maximum
number of nonintersecting paths that will join them. Since w
has degree 3, r ≤ 3. If r = 3, there is one nonintersecting path
from v to w passing through each beacon node. If in each of
these paths the edge joining w to the beacon node is deleted,
there results three nonintersecting paths joining v to each of
the three beacon nodes.

So suppose, in order to derive a contradiction to the result
we are trying to prove, that r < 3. Then G′ cannot be
triconnected. So there exists a separating vertex pair x and y
such that G′ = H1∪H2 with the vertex set of the intersection
of the two subgraphs H1 and H2 given by V (H1 ∩ H2) =
{x, y} and with H1 and H2 possessing three or more vertices
each (including x and y).

We can argue that the three beacon nodes and w can be
taken to lie in one of the subgraphs, without loss of generality
H1. For suppose this is not the case. Then of the four nodes,
at least one must lie in H1 and not in H2, and one must lie
in H2 but not in H1. As a consequence, these last two nodes
cannot be adjacent. But since the three beacon nodes and w
form a complete graph, these last two nodes are necessarily
adjacent, which is a contradiction.

The vertex v may lie in H1, or in H2 and not in H1. We
analyze these two possibilities.

Under the second possibility, a reflection argument (reflect-
ing about the line joining x and y) can be applied to conclude
that v is not localizable, which is a contradiction.

If v ∈ H1 and there is a path in H2 from x to y, then
we replace G′ by H1 augmented with a new edge (x, y) and
repeat the process that decomposed G′ as H1 ∪ H2. If v ∈
H1 and there is no path in H2 from x to y, we replace G′

simply by H1 and repeat the process. In either case, denote the
replacement of G′ as H ′

1. Within H ′

1, the maximum number
of nonintersecting paths that will join v to w must be less than
3, else there would be a contradicion of the property that in
G′, there are less than three nonintersecting paths between v
and w. Hence H ′

1 is not triconnected. This argument can be
repeated, until we arrive at a graph L which is not triconnected,
a decomposition of L as L = L1 and L2 given by V (L1 ∩
L2) = {xL, yL} such that the beacon nodes and w lie in L1,
while v lies in L2 but not in L1. That such a graph must
eventually be found follows from the fact that at each step in
the process, the number of vertices in the subgraph containing
the three beacon nodes and w decreases, while it is clearly
bounded below.

At this point a reflection argument can be applied to
conclude that v is not localizable, which is a contradiction.



Lemma 1 notwithstanding, Fig. 1 shows that the existence
of three-node disjoint paths is not the only necessary condition
for node localizability. Intuition tells us that the node should
also belong to some “rigid” structure. In addition, Fig. 3
provides an example suggesting that a uniquely localizable
node should belong to a subgraph that is even “stronger”
than rigid. However, whether it is necessary that uniquely
localizable nodes belong to some redundantly rigid subgraph
is an open problem at this time.

A sufficient condition which follows from Theorem 3 re-
quires that a uniquely localizable node belong to a redundantly
rigid subgraph that is triconnected and contains three beacons.
We call this condition the RRT-3Beacon condition, shortened
here to RRT-3B. This condition allows us to identify uniquely
localizable nodes one component at a time, instead of one node
at a time. Before we discuss how to identify RRT components,
we comment that since the RRT-3B condition is a sufficient
condition, it may identify only a subset of all of the uniquely
localizable nodes, as illustrated by Fig. 4. A necessary and
sufficient condition for generic node localizability is not yet
known.

c

a

b

Fig. 4. An example showing that the RRT-3B condition fails to identify
node a as uniquely localizable. The three nodes on the boundary are beacon
nodes. Node a is uniquely localizable despite the fact that the graph is not
triconnected.

To identify the RRT components, we first extract all tri-
connected subgraphs. There are multiple ways to test for the
triconnectivity of a subgraph. We do this in the simplest
possible way; for each vertex in a subgraph, we remove it,
test the reduced component for biconnectivity, and replace the
vertex. If the subgraph remains biconnected after removal of
each of its vertices, then the subgraph is triconnected. We then
use the Pebble Game [19] to discover and tag redundantly rigid
subgraphs.

1) Identifying redundantly rigid subgraphs using the Pebble
Game: Recalling Laman’s condition for rigidity in the plane,
we see that as stated it suggests a very poor algorithm for test-
ing graph rigidity involving counting the number of edges of
all exponentially many subgraphs. There are several alternative
formulations of Laman’s condition that yield polynomial time
algorithms. The Pebble Game uses the following formulation
that results in a particularly intuitive algorithm.

Theorem 4: For a graph G = (V,E) with n vertices, the
following are equivalent:

• The edges of G are independent in two dimensions.
• For each edge (a, b) in G, the graph formed by adding

three additional edges (a, b) has no n′ vertex subgraph
with more than 2n′ edges.

This formulation leads to an algorithm in which a set of
independent edges is grown by adding one edge at a time. A
new edge is added if it is determined to be independent of
the existing set. If 2n−3 independent edges are found, where
n is the number of vertices in the graph, then the graph is
rigid. We will see that the structure of the problem allows us
to efficiently check new edges for independence.

To elaborate, assume we have a set of independent edges
Ê ⊂ E. Recall that the independence of edges in a graph
can be conceptualized as a property of “well-distributedness”.
As such, to determine if another edge e ∈ E is independent
of Ê, we see by the alternative Laman condition that e is
independent of Ê if and only if there is no subgraph with too
many edges (i.e., n′ vertices and > 2n′ edges) after any edge
in Ê ∪ e is “quadrupled” (three additional copies added). It
turns out that only the candidate edge e needs to be quadrupled
(see [19] for proof), meaning that the complexity of testing a
graph for rigidity amounts to O(n) times the complexity of
checking a graph for the well-distributedness of its edges.

In order to test a graph for the well-distributedness of its
edges, we use the following “pebble game”. Every node is
given two pebbles which it must keep, each of which can be
used to “cover” an edge incident upon it. We would like to
assign pebbles to edges so that all the edges in the graph are
covered. Such an assignment is called a pebble covering. The
existence of a pebble covering is equivalent to there being no
n′ node subgraph with more than 2n′ induced edges. Stepping
back for a moment, we see that edge e is independent of Ê if
and only if there exists a pebble covering once e is quadrupled.

We will now discuss how to find a pebble covering. Assume
inductively that we have a set of edges already covered by
pebbles and we want to add a new edge. We first look at the
node endpoints of the new edge. If either of them has a free
pebble, it can be used to cover the new edge, and we are done.
If neither of them has a free pebble, then both of their pebbles
are being used to cover existing edges. If the node at the other
end of one of these existing edges has a free pebble, then we
can use that pebble to cover the existing edge, freeing up a
pebble to cover the new edge. The general procedure is to
search along a directed version of the underlying graph with
edges directed away from their pebble-covered end until a free
pebble is found, use that free pebble to cover the last edge,
and perform a series of swaps reversing the direction of all
the edges along the successful search path until a pebble is
freed up at an endpoint of the new edge.

In order to test a graph for rigidity, at most n(n − 1)/2
edges will be tested for independence. Each independence test
involves 4 pebble searches, each of which requires O(n) time,
for a total of O(n·|E|) time, where |E| is the number of edges
in the graph. For a network with edges only between nodes
located close to each other, the number of edges will be o(n).
Therefore, the running time of the Pebble Game on sensor
networks is o(n2).

The Pebble Game is attractive for its intuitive appeal as
well as for its efficiency. Each pebble can be interpreted to
represent a degree of freedom of the node it belongs to. We



have seen that there cannot be more than 2n− 3 independent
edges between n nodes. Therefore, at all times, there will
be at least 3 free pebbles in the assignment, representing the
three degrees of freedom of any rigid body in two dimensions.
Because of this, three copies of an edge will be always
be successfully covered. If the fourth copy is not pebble
coverable, then the current set of independent edges already
consists of 2n′ − 3 edges connecting n′ nodes, and we have
identified a fully constrained portion of the network. Because
of this, redundantly rigid regions of the graph are identified
as the edges and nodes traversed by failed pebble searches. In
this way, the Pebble Game is an efficient tool to identify the
redundantly rigid regions of a graph.

2) An algorithm to identify RRT components: In order to
discover all of the RRT components of the network, it is
not enough to simply intersect the triconnected components
with the redundantly rigid components, as this intersection
will not necessarily possess both properties. We employ a
recursive decomposition in which the algorithm for tricon-
nected component discovery alternates with the Pebble Game
for redundantly rigid component discovery. Our algorithm is
outlined in Fig. 5.

1 FindRRTComponents(Graph G)
2 if not triconnected then
3 recurse on each triconnected component
4 else if not redundantly rigid then
5 recurse on each redundantly rigid component
6 else return “graph G is an RRT”

Fig. 5. A recursive algorithm to identify RRT components.

III. PARTIALLY LOCALIZABLE NETWORKS:
EXPERIMENTAL INVESTIGATIONS

The algorithm developed in the preceding section allows us
to investigate at least three questions that could not heretofore
be addressed: 1) in what deployment scenarios will non-
localizable nodes comprise a significant proportion of the
network, 2) how does the presence of non-localizable nodes
affect the performance of typical location-dependent network
functionalities, and 3) how might one deploy networks so as
to optimize for localizability. In this section, we motivate and
address these three questions.

A. Percentage of Localizable Nodes

We first evaluate the incidence of non-localizable nodes in
typical scenarios. We generate random placements of nodes in
a region according to two distributions: uniform and Gaussian.
Uniform node placement is commonly used in simulations,
even though Gaussian is likely to more accurately model
practical random node deployments2 (e.g., nodes scattered
from aircraft). We assume that two nodes can measure their
separation distance if they lie within a given radius of one

2With the caveat that the arbitrarily large deviations from the mean allowed
by the Gaussian distribution are unrealistic.

another. Imperfections in this unit disk model will merely
serve to reduce connectivity, and hence localizability, so this
study explores the best case scenario for localizability in ad-
hoc networks.

The percentage of nodes found to be localizable by the RRT-
3B condition as we increase the number of nodes placed in a
fixed region is shown in Fig. 6. Throughout these experiments,
all results are obtained by creating 20 instances of 100-node
networks with the desired parameters and calculating the mean
and 95% confidence interval for the relevant quantity. Node
density is expressed as the expected node degree given the
number of nodes uniformly placed in the field and the sensing
radius of each node, neglecting boundary effects.

As expected, the percentage of localizable nodes increases
with density. Nevertheless, even at expected node degree as
high as 15, the percentage of non-localizable nodes remains
significant. As the Gaussian distribution tends to produce
networks with high connectivity in a central region and a
sparsely connected periphery, average degree is not a very
good characterization of these networks. Nevertheless, due
to these properties of the distribution, at low expected node
degree, more nodes are localizable under the Gaussian than
the uniform distribution, whereas for higher expected degree,
more nodes are localizable under the uniform distribution.

To observe how the presence of beacons affects the lo-
calizability of network nodes, we produced Fig. 7. For three
different densities, we vary the number of beacons and observe
how the number of localizable nodes changes. We can observe
that the addition of beacons exhibits diminishing rewards in
terms of the number of localizable nodes. By adding beacons
past the point at which 10% of the nodes are beacons, the
number of nodes rendered localizable per beacon is less than
one. Since beacons are likely to be relatively expensive, such
an approach is unlikely to be viable.

We also generated regular networks using a fixed-density
concentric ring deployment with beacons at the periphery as
in [32]. This deployment is by design isotropic, yet we still
find that the number of localizable nodes varies as in Fig. 6,
so we do not show the results here.
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Fig. 6. Percent localizable nodes vs. density. Results shown are for 100-node
randomly deployed networks including 10 beacons.
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Fig. 7. Percent localizable nodes vs. number of beacons.

In random deployments in realistic environments, networks
are likely not to be isotropic. Distance measurements may
be impaired by obstacles, degrading node localizability. We
observe the effects of obstacles on the percentage of nodes that
cannot be localized in the College campus environment shown
in Fig. 8 and plot our results in Fig. 9. In this experiment, an
edge exists between two nodes only if the straight line between
them does not pass through any obstacles. We observe that the
presence of obstacles renders a substantial percentage of nodes
unlocalizable. In addition, the proportion of localizable nodes
in such an urban environment is more unpredictable than in
open ones, as evidenced by the much wider range of the 95%
confidence intervals.

Overall, we observe that for virtually all practical node
densities, randomly deployed networks are only partially lo-
calizable. Thus, in order to realize the potential of random
ad-hoc networks, it is essential to more fully explore the PLN
paradigm.

Fig. 8. Obstacle map used for all evaluations involving obstacles. Map is of
Yale University’s Cross Campus plaza.

B. Coverage of PLNs

The percentage of localizable nodes, while an important
quantity, is hard to associate directly with application perfor-
mance. The impacts of partial localizability on networks can
be better evaluated by considering specific network metrics
relevant to some of the envisioned applications that require
knowledge of node positions. Towards this end, we evaluate
the behavior of network coverage metrics in partially localiz-
able networks.
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Fig. 9. Percent localizable nodes vs. density using obstacle map shown in
Fig. 8. Results shown are for 5 beacon networks. We decided against using
rank control in order to show extreme variance of confidence intervals in
obstacle map domains.

We define four metrics to evaluate coverage performance.
Each of these metrics has its own merits depending on the
specifics of the considered application.

• Spatial coverage: the likelihood that a position chosen
uniformly at random is within sensing range of a node.
This metric expresses the chance an event in the region
of interest will be observed by some node.

• Closest coverage: for a point, the distance between it
and its nearest sensor node. For a network, this metric is
defined as the mean value of closest coverage over points
chosen uniformly at random in the area of interest. This
metric reflects the most closely one can expect an event
in the field to be observed.

• Worst-case coverage: the largest distance between a point
in the network domain and a sensor node. This metric
expresses how poorly an event can possibly be observed
in the field.

• Aggregate coverage: a measure of the aggregate sensing
“quality” of points in the field. Suppose a node at distance
d from an event achieves a sensing quality of 1/d2 and
that sensing quality from multiple nodes is additive. The
aggregate coverage of that event is defined as the distance
away from the event at which a single sensor would need
to lie in order to achieve by itself the same sensing quality
as the network. The aggregate coverage of the network is
the expectation of aggregate coverage taken over points
in the field chosen uniformly at random.

Note that these metrics could be generalized into multiple
node measures that would be relevant to applications requiring
events to be detected by multiple sensors. For instance, spatial
coverage could be varied to read: the likelihood that a position
chosen uniformly at random is within the sensing range of p
sensors (where p is some fixed integer).

Fig. 10 shows the single sensor coverage achieved by all
nodes, regardless of their localizability, and the coverage
achieved by localizable nodes only. We make a distinction
between localizable and non-localizable coverage because the
value of sensed data may depend heavily on the ability



 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2  4  6  8  10  12  14  16  18  20

sp
at

ia
l c

ov
er

ag
e

expected average degree

localizable nodes
all nodes

(a) Spatial

 0

 50

 100

 150

 200

 250

 300

 2  4  6  8  10  12  14  16  18  20

cl
os

es
t c

ov
er

ag
e

expected average degree

localizable nodes
all nodes

(b) Closest

 100

 200

 300

 400

 500

 600

 700

 800

 2  4  6  8  10  12  14  16  18  20

w
or

st
 c

as
e 

co
ve

ra
ge

expected average degree

localizable nodes
all nodes

(c) Worst-case

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 2  4  6  8  10  12  14  16  18  20

ag
gr

eg
at

e 
co

ve
ra

ge

expected average degree

localizable nodes
all nodes

(d) Aggregate

Fig. 10. Coverage performance of 100 uniformly distributed nodes in a 1000 by 1000 field.

to associate it with a physical position. Detection by non-
localizable nodes may still be of use, but it is important
nevertheless to make this distinction. We observe that for a
wide range of network density, coverage by all nodes and
coverage by localizable nodes have very different values under
all four coverage metrics. More specifically, all-node coverage
does not exhibit much improvement over the evaluated den-
sity range, while localizable-node coverage requires a much
higher density to achieve performance comparable to all-node
metrics. By making a simple conversion from node degree to
sensing range, it can be seen in part b) of Fig. 10 that for node
degree all the way up to 6 neighbors on average, the expected
closest coverage of an event in the field is greater than the
sensing range. This means that even at moderate density, a
randomly placed event will not be sensed by a localizable node
in the average case. Looking at parts a) and c), we can see
that even at the average node degree of 10 at which localizable
spatial coverage is equal to all-node spatial coverage, sizeable
gaps often occur in the localized coverage, as evidenced by
the high values in part c) of localizable worst-case coverage
as compared with all-node worst-case coverage. The coverage
results for Gaussian distributions of nodes are similar to these
shown for the uniform case.

These results are further evidence that the performance of
many envisioned sensing applications is likely to be dramati-
cally affected by the localizability properties of the network.

C. Beacon Placement through Smart Deployment

In this section, we will discuss practical and novel methods
of smart deployment made possible by our localizability
algorithm. We have seen that non-localizability of network
nodes significantly impacts some of the network metrics
relevant to typical location-dependent applications. The meth-
ods evaluated in this section seek to mitigate such effects
by yielding networks with fewer non-localizable nodes than
random deployment.

We first apply our localizability tool to guide the deploy-
ment of beacons. In this section, we use a network deployment
model in which beacons can be placed approximately at a
targeted location. As an example, this could be achieved in
practice by firing a specially outfitted beacon node towards a
target from a mortar launcher, or by using mobile beacons. We
are motivated by the consideration that the relative expense
of beacon nodes will likely make deterministic placement
worthwhile.
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Fig. 11. Statistics regarding RRTs in 100-node networks with no beacons.
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Fig. 12. The distribution of the number of RRTs in 100-node networks with
no beacons. The addition of beacons shifts the curve slightly down and to the
left.

At its core, smart deployment uses our tools to partition the
graph into its RRT components. Each of these components
would be localizable if it were to contain three beacons.
Guided by this observation, we seek to place three beacons
in RRT components so that the maximum number of non-
localizable nodes will be rendered localizable. Of course,
before there are beacons in the network, it is impossible
to determine precise target points for beacon deployment.
Therefore, we initially try to randomly place beacons into
RRTs before then placing additional beacons deterministically.
Note that this approach may be too conservative in that there
may be non-RRT components that could be rendered RRT
by the addition of three beacons at appropriate positions. As
we have no way of identifying these situations, we adopt the
conservative approach.

Shown in Fig. 11 is the distribution of the size of the
largest and second largest RRT components versus average



node degree. In Fig. 12 is shown the distribution of the number
of RRTs. We can see from these figures that above average
node degree 10, the network consists usually of one large
RRT and only one or two other small RRTs. At these density
levels, random beacon placement yields very good localiz-
ability performance. At lower densities, the potential exists
for some improvement over random deployment. However,
through simulation of a best-case oracle scheme, we found
that this potential gain is rather small except at very low
density (only greater than 20% for average node degree below
5). Because of this, we study smart beacon deployment on
non-isotropic networks of Gaussian distributed clusters with
uniformly distributed cluster centers. This type of network may
be a good model for potentially important network deployment
scenarios.

Our smart deployment algorithm randomly deploys m
beacons, where m is the number of RRTs in the network.
Next, it places additional beacons deterministically near placed
beacons connected to an RRT until the entire connected RRT
is made localizable. The results of smart deployment shown
in Fig. 13 are compared against uniform random deployment
which inserts all beacons uniformly at random. We see that
even our simple scheme results in large performance gains for
anisotropic networks by virtue of it being aware of the number
and size of the RRT clusters.
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Fig. 13. Percent localizable nodes vs. number of beacons inserted. In this
figure, m beacons were initially placed at random, where m is the number of
RRTs in the network. Subsequently, up to 2m additional beacons are placed
by the two algorithms.

D. Event-Based Network Training

The other smart deployment paradigm we introduce in
this section we call event-based training. This is a novel
approach consists of placing events in the network field to
which network nodes can measure their distance. For instance,
if the network nodes use time difference of arrival ranging, the
events could be simultaneous ultrasound and RF bursts pro-
duced by inexpensive disposable devices designed specifically
for this configuration purpose. When an event is detected by
network nodes, it is treated as if it were a node for purposes
of localization. Time-synchronization will be necessary for
this scheme, and a deployment of training events could also
follow a staggered pattern between potentially interfering sites.
Using this technique, it is possible to greatly increase the

effective network density available to the localization layer for
a one-time computation of positions, and then reaping the cost
benefits of a sparser network for extended operation. It is of
course possible that the event-based distance mesasurements
may be less accurate than inter-node measurements, but for
simplicity we do not go into the details in this paper. However,
we introduce a novel formulation of joint source and network
localization that arises from this issue in the Appendix.

We evaluate the feasibility and potential benefit of event-
based training by considering two simple algorithms. The first
is a uniform dispersal of events over the network field. As
expected, this dispersal is equivalent to an increase in density
of the network and results in an increase in the number of
localizable nodes consistent with Fig. 11. We investigate here
whether it is possible to do better than this by deploying events
with some control. We assume that positions for the localizable
nodes in the network are computed before event deployment.
We introduce a random jitter between the targeted position
and actual deployment position of each event. This simulates
realistic deployment uncertainty, as well as small errors in the
computed positions of localizable nodes.

Through evaluation of various techniques, we found that
a hybrid approach which switches between two methods
depending on the density level performs best. In each method,
each potential event deployment position is repeatedly chosen
uniformly at random until it satisfies a certain condition. At
low average node degree, (less than 5.8), the condition is that
the event position must be within range of at least one beacon
and at most 3 localizable nodes exclusive of beacons. At high
densities, we ensure that the distance between the target and
the centroid of the set of positions of localizable nodes within
range of the target is at least half the sensing radius.

The rationale for these approaches can be understood by
referring to Fig. 12. At densities below the peak in the number
of RRTs, the network may contain a few small RRTs, but is
not quite dense enough to allow widespread localization. By
adding events close to beacons, density is locally increased in
those regions of the network that have the potential to become
immediately localizable by virtue of the presence of beacons.

This approach does not work in the denser networks, as the
problem becomes less one of connecting beacons to clusters
of unlocalizable nodes on the verge of becoming part of
an RRT, but rather one of connecting outlying unlocalizable
nodes in local voids to the few large RRTs in the network. In
dense networks, requiring events to be within range of only 3
localizable nodes places them uselessly in obscure corners of
the network away from the large RRTs. Because of this, we
instead place events so that they are not too close to localizable
nodes, but still likely to be within range of the large RRTs, so
that they can bridge the gaps to isolated nodes.

We observe in Fig. 15 that the hybrid method compares
favorably with uniform deployment for all densities other than
those corresponding to the peak in the number of RRTs. At
this point, networks consist of a few medium-sized RRTs and
many small RRTs. It has proven difficult to exploit structure
in order to outperform uniform deployment for such networks.



All the methods evaluated had very unpredictable performance
on this regime. While these event-based training methods
do not yield different asymptotic behavior from the random
deployment of additional nodes, we can see in Fig. 16 that the
performance gains are quite robust. This is especially true for
sparser networks, which are likely to be important in any large-
scale random network deployment, as locally sparse regions
will surely arise as problem regions in such deployments.
Performance along the orthogonal axis of number of training
events is plotted in Fig. 14.
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Fig. 14. Event-based training on a 100 node network with 10 beacons and
an average node degree of 3.1. The trends are similar for higher densities.
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Fig. 15. Event-based training on a 100 node 10 beacons network deploying
30 training events. 100 samples were taken for each data point.

IV. GEOGRAPHIC ROUTING IN PARTIALLY LOCALIZABLE

NETWORKS

We have now established the likelihood that a signifi-
cant proportion of nodes in realistic networks will be non-
localizable, especially under deployments that do not explicitly
seek to optimize for localizability. Furthermore, we have seen
that this can have a significant impact on network performance
as measured by various coverage metrics. Now we show
how an important location-dependent application, namely geo-
graphic routing, is affected by the presence of non-localizable
nodes.

In this section, we evaluate the performance of geographic
routing on PLNs and propose methods to improve routing
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Fig. 16. Percent increase in the number of localizable nodes using hybrid
training as compared with uniform training. We switch event deployment
conditions at an average node degree of 5.8.

performance in such scenarios. Note that our main objective
is to illustrate the relevance of the PLN paradigm and thus we
use simplistic models.

A. Problem Formulation

We consider a geographic-routing application in which a
network of sensor nodes is deployed in a field. The nodes
perform localization, but as we have seen, some nodes can
determine their positions while others cannot. Users may issue
queries to the network specific to a destination position. For
example, a user may want to query the temperature reading
at the sensor which is at (or closest to) a given position, and
will need nodes to route messages across the network to a
particular physical location.

B. Solution Technique

Our solution technique for determining node positions is a
three step process. First we determine the RRT components
using the decomposition algorithm in Fig. 5. Second, upon
those RRTs that contain at least three beacons, we use a
standard localization method, MDS, to localize the nodes
contained therein. We use the MDS-MAP implementation
of MDS presented in [36]. Third, we compute estimates
for the positions of the remaining nodes, using a position
averaging technique presented in [29], wherein each of the
non-localizable nodes computes a virtual position for itself by
repeatedly taking the average of its neighbors’ positions until
convergence is reached. We refer to this scheme as RRT +
avg.

We choose greedy routing to be our geographic routing
algorithm, due to its simplicity and requirement for node
positions. While the aim of this study is to clearly elucidate
the issues surrounding geographic routing on PLNs, we would
note that by using more sophisticated routing techniques, as
in [34], one could further reduce routing error.

C. Localization in PLNs

Before we investivate geographic routing in PLNs, we
discuss the actual localization process in these networks. As
mentioned above, we use MDS-MAP to compute the positions



of localizable nodes in the network and estimate the positions
of non-localizable nodes using averaging. When running RRT
+ avg, the physical location error can be reduced at lower
connectivities in comparison with running MDS over the entire
graph, as shown in Fig. 17. The key observation to be made
here is that by identifying RRTs and running RRT + avg,
physical location error will decrease and the routing success
rate will increase, supporting the value of our decomposition
tools. By identifying localizable portions of the network, we
avoid computing incorrect positions for non-localizable nodes.
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Fig. 17. Physical location error vs. connectivity. Results shown are for 100-
node randomly deployed networks including 10 beacons.

A potential flaw in this approach, as noted in [25], is that in
real-life scenarios, due to uncertainty in edge measurements,
nodes determined to be uniquely localizable by generic con-
ditions may not in fact have uniquely determined positions.
Through simulation, we find that this does occur, although
infrequently enough that the RRT decomposition remains a
useful tool in realistic deployments.

We simulated uniform random deployments of 20 node
networks containing 5 beacons with zero-mean Gaussian edge
length measurement error with a standard deviation of 5% of
the sensing range over a wide range of expected node degree.
We ran a localization algorithm consisting of MDS followed
by Kalman Filter based refinement on both the set of exact
edge lengths and on the noisy edge lengths. Nodes which are
localized with a small error when using the exact edge lengths
but which exhibit a large localization error when using the
noisy edge lengths are potentially those nodes upon which the
unique localizability conditions break down in the presence of
errors.

For expected degree greater than 6, due to the redundancy
in the connectivity of RRT components, such nodes are almost
never present. However, the minimally rigid structures preva-
lent at lower connectivity are indeed susceptible to becoming
ambiguous due to edge measurement errors. An example of
such a situation is shown in Fig. 18. In this example, in
localizing the node at the top right using noisy edge length
data, the network is flipped into a faulty configuration. The
common situation however, which occurs for more than 90%
of the tested random networks of average degree 6, is similar
to that shown in Fig. 19. In these cases, the computed positions

exhibit computation error but are not mislocalized into a faulty
network configuration.
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Fig. 18. Faulty outcome in localization with errors in which top right node
is mislocalized. Solid lines represent distance measurements, dashed lines
represent implicit inter-beacon distance measurements
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Fig. 19. Common outcome in localization with edge length errors. Solid lines
represent distance measurements, dashed lines represent implicit inter-beacon
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D. Experimental Investigations: Geographic Routing

Returning to geographic routing in PLNs, we measure and
compare the routing error obtained through various approaches
to the problem. We define routing error as the distance between
the target point of a query to the final point reached by routing,
measured for all pairs of nodes between which we attempt to
route a message.

We evaluate greedy routing in three different settings. We
first establish a lower-bound on routing error by routing using
the true positions. We then measure the routing error when
routing is performed using the positions obtained by RRT +
avg. We also measure the improvement in error as a result of
performing a limited one-hop multicast of the query after the
greedy routing terminates at a position. Fig. 20 presents the
performance results. Again, as stated above, the routing error
using positions obtained by RRT + avg is close to that of the
lower-bound.

These error results are evidence that the performance of
geographic routing is affected in PLNs. Further, once a portion



of the network is identified as an RRT, applications such
as greedy routing can exploit this knowledge and increase
performance using hybrid schemes such as RRT + avg.
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Fig. 20. Routing error vs. connectivity. Results shown are for 100-node
randomly deployed networks with 10 beacons.

V. RELATED WORK

Network localization is an active research field (see [17] for
a survey). The previous approaches can be classified into two
types: coarse-grained and fine-grained. The focus of this paper
is fine-grained localization in which some nodes know their
locations, and the distances between proximal pairs of nodes
are measured. As we discussed in the Introduction, a major
shortcoming of previous studies on fine-grained localization
is that they cannot correctly identify the nodes that can be
localized.

A problem related with network localization is the molecu-
lar conformation problem studied in the Chemistry community
(e.g., [16]). However, the focus of these studies is on three
dimensions. Also, issues of network design and deployment
are not studied, since the structure of molecules is fixed.

One major building block of the uniqueness condition is
rigidity theory. Rigidity has long long studied in mathematics
and structural engineering (see for example [15], [30], [43])
and has a surprising number of applications in many areas.
This paper builds on the results from [10] by using grounded
graphs for localization. However, the objective of [10] is to
check the unique localizability of the entire network and thus
does not identify subsets of nodes which can localize and
consider applications of this identification.

We use the Pebble Game developed by Jacobs and Hen-
drickson [19], originally proposed in the field of computational
physics, to identify redundantly rigid subgraphs of a graph.
There are also other algorithms for identifying redundantly
rigid graphs with better average-case complexity. However,
we chose the Pebble Game for its simplicity and intuitive
appeal. The original use of the Pebble Game was to find
over-constrained regions in a two-dimesional lattices known as
“network glasses”. As such, its inventors did not need to worry
about “flips” in the graph structure, and redundant rigidity was
sufficient for structural stability. In network localization, we
must test for the full conditions for unique localizability (in-
cluding triconnectivity), and employ a recursive decomposition

of the network that outputs redundantly rigid and triconnected
components of the network grounded graph.

We study the effects of localization on network coverage
and geographic routing. Although there is a large literature
on both topics (see [1] for a survey), the assumption of the
previous approaches is that the positions of all of the nodes are
known. In [34], Seada et al. studied the effects of localization
errors on geographic face routing; however, they consider only
local random errors while our geographic routing evaluation
considers global issues due to the existence of both localizable
and non-localizable regions. Overall, there is no earlier study
on partially localized networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we designed a complete framework for local-
ization with an efficient component which correctly determines
which nodes are localizable and which are not. Implementing
this system, we have conducted comprehensive evaluations
of network localizability, as it affects both network design
and deployment. We find that our method for identifying
localizable nodes is robust enough in the presence of edge
length errors to be practical. We further studied routing in
partially localizable networks. We evaluated an integration of
geographic routing with location and geographic routing with-
out location information and showed that such novel cross-
layer integrations can greatly improve network performance.

There are multiple avenues for further study. The focus of
this paper is on unique localizability. Measurement errors also
play an important role in localization and these effects should
be investigated. One practical direction is in the identification
of nodes that would be localizable in a scenario of perfect
edge measurements but whose positions become ambiguous
under the real life edge length error model. We envision that
in order to increase the robustness of the uniqueness testing
and decomposition, some measurement edges should not be
used, if the lengths of the edges are close to singular positions.

Another line of research with good potential is partially
localized networks for other applications beyond coverage,
event detection, and geographic routing. Almost all previous
research using node positions assumes that all of the nodes
in the network know their positions. Our evaluations show
that there can be a significant portion of the nodes that
cannot determine their positions uniquely. Thus many of these
protocols need to be revisited upon a likely setup for the future:
a hybrid network in which some nodes know their positions,
some know their positions subject to ambiguity (e.g., two
possible positions), and others do not know their positions
at all. Designing protocols for such hybrid networks is likely
to be both challenging and worthwhile.
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APPENDIX

A. Joint Source and Network Localization

We consider a network of deployed sensors to detect a
(known) target, which we call a source. The sensors can
measure some relative distances among themselves and the
signal strength of the target. We assume that the sensors are
static but the source can move. The objective of the sensors
is to determine the positions of the source.



We formulate a joint source and network localization prob-
lem as follows. For network localization, we assume that the
measured distance Li,j between nodes i and j is: Li,j =
li,j(1 + ei,j), where li,j is the true distance between nodes
i and j, and ei,j is the measurement noise. We assume
that this noise is a zero mean Gaussian noise with variance
σ2

i,j [32]. As for source localization, we assume that the
sensors have synchronized clocks and collect measurements
periodically. Let the detected signal strength at node i for the
k-th measurement (called an event) be: sk,i = Sk

l2
k,i

+ ek,i,

where Sk is the signal strength of the event at its origin, lk,i

the distance from event k to node i, and ek,i the noise. Note
that the above model assumes an inverse-square model and is
valid for many types of signals such as acoustic signals [37].
We assume that the noise is a zero mean Gaussian noise with

variance ω2
k,i. We assume that all of the measurement noises

are independent. Thus the maximum likelihood (ML) estimate,
which maximizes the log likelihood function, minimizes the
following:

∑

(i,j)∈E

1

σ2
i,j

(

Li,j

li,j
− 1

)2

+
∑

(k,i)∈K

1

ω2
k,i

(

sk,i −
S

l2i,j

)2

Remark The above formulation has two terms. If we consider
network localization alone, we have the first term. We can
easily change this term to handle other types of range mea-
surement errors. If we assume that the network is completely
localizable, we have the second term. By considering both
network localization and source localization, we have both
terms. The above optimization formulation can be solved using
EM or projection algorithms.


